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IMPROVEMENTS OF THE FIVE HALVES THEOREM OF J.

BOARDMAN WITH RESPECT TO THE DECOMPOSABILITY

DEGREE∗

PATRICIA E. DESIDERI† AND PEDRO L. Q. PERGHER†

Abstract. Let (Mm, T ) be a smooth involution on a closed smooth m-dimensional manifold
and F =

⋃n
j=0 F

j (n < m) its fixed point set, where F j denotes the union of those components
of F having dimension j. The famous Five Halves Theorem of J. Boardman, announced in 1967,
establishes that, if F is nonbounding, then m ≤ 5

2
n; further, this estimative is best possible. In

this paper we obtain improvements of this theorem, taking into account certain natural numbers
which we call the decomposability degrees ℓ(F j) of the nonbounding components F j of F (see the
definition in Section 1). Also, these improvements are obtained under assumptions on the set of
dimensions occurring in F , which we denote π0(F ). The main result of this paper is: suppose the
involution (Mm, T ) has π0(F ) = {0, 1, ..., j, n}, where 2 ≤ j < n < m and F j is nonbounding. Write
M(n − j) for the function of n − j defined in the following way: writing n − j = 2pq, where q ≥ 1
is odd and p ≥ 0, M(n − j) = 2n + p − q + 1 if p ≤ q and M(n − j) = 2n + 2p−q if p ≥ q. Then
m ≤ M(n − j) + 2j + ℓ(F j). In addition, we develop a method to construct involutions (Mm, T )
with π0(F ) as above, in some special situations, which in some cases will show that the above
bound is best possible. This will provide some improvements of the general Five Halves Theorem
(π0(F ) = {i / 0 ≤ i ≤ n}), by considering the particular case j = n− 1.

Key words. Involution, Five Halves Theorem, projective space bundle, indecomposable mani-
fold, decomposability degree, splitting principle, Stiefel-Whitney class, non-dyadic partition.
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1. Introduction. Suppose Mm is a closed smooth m-dimensional manifold and
T : Mm → Mm is a smooth involution on Mm. The fixed point set of T , F , can

be expressed as a union of submanifolds of Mm, F =

n⋃

j=0

F j , where F j denotes the

union of those components of F having dimension j, and thus n is the dimension of
the components of F of largest dimension. In our context, each j-dimensional part of
F can be assumed to be connected, since any involution is equivariantly cobordant to
an involution with this property. If the involution pair (Mm, T ) is not an equivariant
boundary, then n cannot be too small with respect to m. This intriguing fact was
firstly evidenced from an old result (1964) of P. E. Conner and E. E. Floyd (Theorem
27.1 of [6]), which stated: for each natural number n, there exists a number ϕ(n) with

the property that, if (Mm, T ) is an involution fixing F =

n⋃

j=0

F j and if m > ϕ(n),

then (Mm, T ) bounds equivariantly. Later (1967), this was explicitly confirmed by
the famous

Five Halves Theorem of J. Boardman: If (Mm, T ) is an involution fixing

the set F =

n⋃

j=0

F j , for which F is nonbounding (which means that at least one F j is
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nonbounding), then m ≤
5

2
n. 1

The generality of the Five Halves Theorem, which is valid for every n ≥ 1, allows
the possibility that fixed components of all dimensions j, 0 ≤ j ≤ n, occur; in this
way, it is natural to ask whether there exist better bounds for m when we omit some
components of F and restrict the set of involved dimensions n. This question is
inspired by the following results of the literature (as in Abstract, π0(F ) means the set
of dimensions occurring in F ):

1) (R. E. Stong and C. Kosniowski, [13], 1978): if (Mm, T ) is an involution with
π0(F ) = {n}, and if m > 2n, then (Mm, T ) bounds equivariantly. Consequently,
if π0(F ) = {n} and Fn is nonbounding, then m ≤ 2n. For each fixed n, with the
exception of the dimensions n = 1 and n = 3, the maximal value m = 2n is achieved
by taking the involution (Fn × Fn, T ), where Fn is any nonbounding n-dimensional
manifold and T is the twist involution: T (x, y) = (y, x). In other words, one has
in this case an improvement for the Boardman bound by omitting the j-dimensional
components of F with j < n and excluding n = 1 and 3.

2) (D. C. Royster, [21], Theorem 2.3, page 269, 1980): in this case, the result in
question is referring to an intriguing improvement for the Boardman bound, given by
n odd and the omission of the j-dimensional components of F , with 0 < j < n. Let
(Mm, T ) be an involution with π0(F ) = {0, n} and n odd. Then, in this case, the
bound for the codimension of the top dimensional component of F is constant and
quite small: m ≤ n+ 1. Evidently, this bound is best possible and is realized by the
involution (RPn+1, T ), where RPn+1 is the (n+1)-dimensional real projective space
and T [x0, x1, ..., xn+1] = [−x0, x1, ..., xn+1], with n odd.

This class of problems was introduced by P. Pergher in [16], where the case
π0(F ) = {0, n} was enlarged in the following way: if (Mm, T ) is an involution with
π0(F ) = {0, n}, where n is an even number having the form n = 2p with p odd,
then m ≤ n + p + 3. This case (π0(F ) = {0, n}) was completed by R. Stong and
P. Pergher in [20]: for each natural number n ≥ 1, if (Mm, T ) is an involution with
π0(F ) = {0, n}, then m ≤ M(n) (see Abstract for the definition of M(n)). Further,
this bound is best possible.

The references [7], [8], [9], [10], [11] and [12] deal with the cases π0(F ) = {1, n},
π0(F ) = {2, n} and π0(F ) = {n − 1, n}. We remark that the method used for
π0(F ) = {n− 1, n} does not work for π0(F ) = {n− 2, n}, and the arguments used for
π0(F ) = {0, n}, π0(F ) = {1, n} and π0(F ) = {2, n} become an unpleasant mess for
π0(F ) = {j, n} if n > j > 2. In other words, the general case π0(F ) = {j, n}, n > j,
is difficult. Recently, the following advance was obtained in [17]:

Theorem A. Let (Mm, T ) be an involution with π0(F ) = {j, n}, where F j is
indecomposable and n > j. Then m ≤ M(n−j)+2j+1. Further, there are involutions
with m = M(n− j) + 2j and π0(F ) = {j, n}, n > j, where F j is indecomposable, for
every n ≥ 3 and j ≥ 2 not of the form 2t − 1. 2

1In fact, the first version of the Five Halves Theorem was proved under the hypothesis that
Mm is nonbounding; the result in question is a consequence of the following version obtained by C.

Kosniowski and R. E. Stong in [13]: if (Mm, T ) is a nonbounding involution, then m ≤
5

2
n. Further,

this bound is best possible (more detailed proofs for the Five Halves Theorem can be found in [1]
and [14]).

2A closed manifold is called indecomposable if its unoriented cobordism class cannot be expressed
as a sum of products of lower dimensional cobordism classes; indecomposable j-dimensional manifolds
occur only for j ≥ 2 not of the form 2t − 1.
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The decomposability hypothesis can be placed within the broader context of as-
sociating to closed manifolds its decomposability degree. To state it, write W (Fn) =
1 + w1 + ... + wn ∈ H∗(Fn, Z2) for the total Stiefel-Whitney class of Fn. From a
given homogeneous symmetric polynomial over Z2 of degree n on degree one variables
x1, x2, ..., xn, P (x1, x2, ..., xn), we get a cohomology class in Hn(Fn, Z2) by identify-
ing each wi to the ith elementary symmetric function in the variables x1, x2, ..., xn,
and next by expressing P (x1, x2, ..., xn) as an n-dimensional polynomial in the wi′s.
For a partition ω = (i1, i2, ..., ir) of n, 1 ≤ r ≤ n, let sω(x1, x2, ..., xn) be the smallest
symmetric polynomial containing the monomial xi1

1 xi2
2 ...xir

r (these are the monomial
symmetric functions associated to sequences ω in the literature of symmetric func-
tions) , and denote by sω(F

n) ∈ Hn(Fn, Z2) the cohomology class which corresponds
to sω(x1, x2, ..., xn) through the previous procedure. It is well known that the cobor-
dism class of Fn is determined by the set of modulo 2 numbers obtained by evalu-
ating such n-dimensional Z2-cohomology classes on the fundamental homology class
[Fn] ∈ Hn(F

n, Z2), sω(F
n)[Fn]. In fact, we do not need all of these numbers: we say

that a partition ω = (i1, i2, ..., ir) is non-dyadic if none of the it is of the form 2p − 1.
From [13, Section 5], one has the following

Fact. The cobordism class of Fn is determined by the set of numbers of the form
sω(F

n)[Fn], with ω non-dyadic.

Definition. If Fn is nonbounding, we call the decomposability degree of Fn,
denoted by ℓ(Fn), the minimum length of a non-dyadic partition ω with sω(F

n)[Fn] 6=
0 (here, length(ω = (i1, i2, ..., ir)) = l(ω) = r).

For example, if n = 2k and Fn is cobordant to RP 2×RP 2×...×RP 2, the cartesian
product of k copies of the 2-dimensional projective space RP 2, then ℓ(Fn) = k. If
n ≥ 2 is not of the form 2t−1 and Fn is indecomposable, then ℓ(Fn) = 1. So ℓ(Fn) is,
up to cobordism, a measure of how Fn is decomposable. From a different perspective,
we can consider the question of finding bounds for the general case π0(F ) = {i / 0 ≤
i ≤ n}, taking into account the decomposability degrees ℓ(F j), 2 ≤ j ≤ n. In this
direction, from [18] one has the following result: if (Mm, T ) is an involution with
π0(F ) = {i / 0 ≤ i ≤ n} and such that the top dimensional component Fn is
indecomposable, then m ≤ 2n+1. Further, this bound is best possible. Generalizing
this result, one has from [19] the following

Theorem B. Let (Mm, T ) be an involution with π0(F ) = {i / 0 ≤ i ≤ n} and
such that the top dimensional component Fn is nonbounding. Then m ≤ 2n+ ℓ(Fn).
Further, this bound is best possible.

The main result of this paper generalizes Theorem A, replacing indecomposability
by ℓ(F j); further, it allows components F k with 0 ≤ k < j. Specifically, we prove the
following

Theorem 2.1. Let (Mm, T ) be an involution with π0(F ) = {0, 1, ..., j, n}, where
2 ≤ j < n < m and F j is nonbounding. Then m ≤ M(n− j) + 2j + ℓ(F j).

In addition, given a partition ω = (i1, i2, . . . , it) of j, we develop a method
(Theorem 3.1) to construct involutions (Mm, T ) with π0(F ) as above, where m =
M(n − j) + 2j + t and sω[F

j ] 6= 0, for special values of n, j and ω. In some spe-
cial situations, this method will show that the bound given by Theorem 2.1 is best
possible.

The paper is organized as follows. In Section 2 we prove the main result, Theorem
2.1, using the Conner and Floyd theory of [6] and some special polynomials in the



430 P. E. DESIDERI AND P. L. Q. PERGHER

characteristic classes of total spaces of projective space bundles, introduced by Stong
and Pergher in [20]. In Section 3 we develop the method mentioned above of building
special involutions (Theorem 3.1); to do this, we combine some special constructions
with a nontrivial result of Richard L. W. Brown of [5] and the maximal involutions
of Stong and Pergher of [20].

The fact that components F k with 0 ≤ k < j are allowed, together with the
method above of building involutions, provides some additional improvements of the
general Five Halves Theorem (π0(F ) = {i / 0 ≤ i ≤ n}), by considering the particular
case j = n− 1. These improvements are direct consequences of the previous results,
and will be the content of Section 4.

2. Proof of the main result. This section will be devoted to the proof of
Theorem 2.1. Take ω = (i1, i2, . . . , it) a non-dyadic partition of j, with sω(F

j)[F j ] 6= 0
and minimal length; that is, ℓ(F j) = t. For 0 ≤ k ≤ j and k = n, denote by ηk the
normal bundle of F k in Mm, with dim(ηk) = m − k, and by Ek the total space of
the projective space bundle RP (ηk) over F k; Ek is a smooth closed manifold with
dimension m−1. Denote by λk the line bundle over Ek associated to the double cover
S(ηk) 7→ Ek, where S(ηk) is the total space of the sphere bundle associated to ηk. If η
is a vector bundle over a closed manifold F , writeW (η) = 1+w1(η)+w2(η)+. . . for the
total Stiefel-Whitney class of η, and, as in Section 1, W (F ) = 1+w1(F )+w2(F )+ . . .
for the Stiefel-Whitney class of the tangent bundle of F . From [6], one has the
following algebraic tool: let P (w1, w2, . . . , wm−1; c) be any homogeneous polynomial
over Z2 with degree m − 1, where each variable wi has degree i and the variable c
has degree 1. For simplicity, set w∗ = (w1, w2, . . . , wm−1). For each k, 0 ≤ k ≤ j or
k = n, we can evaluate the cohomology class P (w∗(Ek);w1(λk)) ∈ Hm−1(Ek, Z2) on
the fundamental homology class [Ek] ∈ Hm−1(Ek, Z2), thus getting the characteristic
number P (w∗(Ek);w1(λk))[Ek] ∈ Z2.

Lemma 2.1. ([6]) The following relation is true:

j
∑

k=0

P (w∗(Ek);w1(λk))[Ek] = P (w∗(En);w1(λk))[En].

This follows from the fact that the disjoint union of line bundles (

j
⋃

k=0

λk) ∪ λn

bounds as a line bundle, that is, as an element of the cobordism group of manifolds
with line bundles, Nm−1(BO(1)). The crucial point of our argument is the use of
Lemma 2.1 with the choice of a very special polynomial P (w∗; c). This polynomial is
the product of two special polynomials. One of them, called X , was introduced by
Stong and Pergher in [20], and has dimension M(n− j). The other polynomial, Sω,
associated to line bundles over closed manifolds, is built with the use of the splitting
principle and is related with the partition ω = (i1, i2, . . . , it). The dimension of Sω

is 2j + t. Our strategy is described as follows: we suppose by contradiction that
m > M(n− j) + 2j + t, which gives dim(X .Sω) = M(n− j) + 2j + t ≤ m− 1. Then
it makes sense to consider the polynomial P = P (w∗; c) = X .Sω .c

m−1−M(n−j)−2j−t,
with dimension m − 1. We will have P [Ej ] = 1 and P [Ek] = 0 for 0 ≤ k < j and
k = n, and thus Lemma 2.1 will give a contradiction.

We then describe the technical details of the above argument, which will be
divided into some lemmas. First we describe the polynomial X of Stong and Pergher.
Let η be a s-dimensional vector bundle over a closed b-dimensional manifold F , with
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s + b = m, and λ the usual line bundle over E, where E is the total space of the
projective space bundle associated to η. Set w1(λ) = c. From [4], one has that

W (E) = W (F ).(
∑

0≤i≤s

(1 + c)s−iwi(η)).

For any integer r, one lets

W [r] = 1 +W [r]1 +W [r]2 + . . . =
W (E)

(1 + c)s−r
.

Note that each class W [r]u is a polynomial in the classes wi(E) and c. Further, these
classes satisfy the following special properties (see [20], Section 2):

W [r]2r = wr(F )cr + terms with smaller powers of c,
W [r]2r+1 = (wr+1(F ) + wr+1(η))c

r + terms with smaller powers of c.

The polynomial X is a product of classes W [r]u, considering s = m − n (and so
b = n) and the following list of values of r: write n− j = 2pq, where p ≥ 1 and q is
odd, and set ri = 2p − 2p−i, for 1 ≤ i ≤ p. Specifically, if p < q + 1,

X = W [rp]
q+1−p

2p+1−1.
∏

1≤i≤p

W [ri]2ri ,

and if p ≥ q + 1,

X =
∏

1≤i≤q+1

W [ri]2ri .

An easy calculation shows that X has dimension M(n− j); also, by using the prop-
erties of the classes W [r]u above listed, it can be proved that X has the form

X = Ayc
M(n−j)−y + terms with smaller powers of c,

where Ay is a cohomology class of dimension y ≥ n − j + 1 and comes from the
cohomology of F (see [9] or [20]).

Now we describe the polynomial Sω, which is associated to a line bundle λ over
a closed (m− 1)-dimensional manifold N . Let Sω(x1, x2, . . . , xm−1, c) be the smallest
polynomial on degree one variables x1, x2, . . . , xm−1, c, which is symmetric in the
variables x1, x2, . . . , xm−1 and contains the polynomial

xi1
1 (x1 + c)i1+1xi2

2 (x2 + c)i2+1 . . . xit
t (xt + c)it+1.

We then identify w1(λ) to c and each wi(N) to the ith elementary symmetric func-
tion in the variables x1, x2, . . . , xm−1; next, we express Sω(x1, x2, . . . , xm−1, c) as a
polynomial of dimension 2j + t in the w′

is(N) and w1(λ). It is convenient to denote
this polynomial by Sω(λ). The crucial point is that Sω(λ) has a nice behavior with
respect to the standard line bundles over the total spaces of projective space bundles.

Lemma 2.2. As before, let η be a s-dimensional vector bundle over a closed b-
dimensional manifold F , with s+ b = m, λ the usual line bundle over E, where E is
the total space of the projective space bundle associated to η, and w1(λ) = c. Then

Sω(λ) = sω(F )cj+t + terms with smaller powers of c.
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Proof. We use the splitting principle, which allows to write the Stiefel-Whitney
class of any s-dimensional vector bundle formally as 1 + w1 + w2 + . . . + ws = (1 +
x1)(1 + x2) . . . (1 + xs), where each xi has degree one, and effectively to see each
wi as the ith elementary symmetric function in the variables x1, x2, . . . , xs. Write
W (F ) = (1 + x1)(1 + x2) . . . (1 + xb) and W (η) = (1 + y1)(1 + y2) . . . (1 + ys). Then

W (E) = (1 + x1)(1 + x2) . . . (1 + xb)(1 + c+ y1)(1 + c+ y2) . . . (1 + c+ ys).

First we collect the terms with greatest power of c, and to do this we must analyze
terms

zi1e1(ze1 + c)i1+1zi2e2(ze2 + c)i2+1 . . . zitet(zet + c)it+1

coming from ordered subsets of degree one variables

{ze1 , ze2 , . . . , zet} ⊂ {z1, z2, . . . , zm} = {x1, x2, . . . , xb, y1 + c, y2 + c, . . . , ys + c}.

If {ze1 , ze2 , . . . , zet} ⊂ {x1, x2, . . . , xb}, we can write

zi1e1(ze1 + c)i1+1zi2e2(ze2 + c)i2+1 . . . zitet(zet + c)it+1 =

= zi1e1



ci1+1 +

i1
∑

f=0

(

i1 + 1

f

)

z
i1+1−f
e1

c
f



 . . . zitet



cit+1 +

it
∑

f=0

(

it + 1

f

)

z
it+1−f
et c

f



 =

= zi1e1z
i2
e2

. . . zitetc
j+t + terms with smaller powers of c.

Therefore, the sum of all terms coming from subsets

{ze1 , ze2 , . . . , zet} ⊂ {x1, x2, . . . , xb}

has the form sω(F )cj+t + terms with smaller powers of c, with the agreement that
the cohomology class sω(F ) ∈ Hj(F,Z2) makes sense also for j 6= b.

If {ze1 , ze2 , . . . , zet} has x elements of the set {y1+c, y2+c, . . . , ys+c}, 1 ≤ x ≤ t,
the same calculation above shows that cj+t−x is the greatest power of c that appears
in the terms coming from {ze1 , ze2 , . . . , zet}. Putting together the two possibilities,
the lemma then follows.

Following our strategy, the next step is to calculate P [Ek] for 0 ≤ k ≤ j and
k = n, where P = X .Sω(λk).c

m−1−M(n−j)−2j−t.

Lemma 2.3. One has P [En] = 0.

Proof. As before mentioned, X = Ayc
M(n−j)−y+ terms with smaller powers of

c, where Ay is a cohomology class of dimension y ≥ n − j + 1 and comes from the
cohomology of Fn. Thus each term of X has a factor of dimension at least n− j + 1
from the cohomology of Fn. On the other hand, Lemma 2.2 says that every term
of Sω(λn) has a factor of dimension at least j from the cohomology of Fn. In this
way, X .Sω(λn) is a class in HM(n−j)+2j+t(En, Z2) with each one of its terms having
a factor of dimension at least n+ 1 from Fn, which means that X .Sω(λn) = 0. Then
P [En] = 0, as desired.

Lemma 2.4. For 0 ≤ k < j, one has that P [Ek] = 0.
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Proof. This follows from Lemma 2.2 and the fact that sω(F
k) is a cohomology

class of dimension j > k coming from the cohomology of F k.

Lemma 2.5. One has P [Ej ] = 1.

Proof. From Lemma 2.2, one has

Sω(λj) = sω(F
j)cj+t + terms with smaller powers of c =

= sω(F
j)cj+t +

∑
Ayc

x,

where eachAy is a cohomology class of dimension y coming from F j , with y+x = 2j+t
and x < j + t. Thus, y > j and so Ay = 0, which gives Sω(λj) = sω(F

j)cj+t. This
implies that, if I denotes the ideal of H∗(Ej , Z2) generated by the classes coming
from F j and with positive dimension, then Sω(λj).θ = 0, for each θ ∈ I. Thus, in
the computation of X for k = j, one needs to consider only that W (Ej) ≡ (1+ c)m−j

mod I. Further, X is obtained with s = m − n, which means that in this case each
factor W [r] of X takes the form

W [r] =
W (Ej)

(1 + c)m−n−r
≡ (1 + c)n−j+r mod I = (1 + c)2

pq+r mod I.

Specializing, for ri = 2p − 2p−i, i = 1, 2, . . . , p, one has

W [ri]2ri ≡

(
2pq + 2p − 2p−i

2p+1 − 2p−i+1

)

c2ri mod I,

and for r = 2p − 1, one has

W [r]2r+1 ≡

(
2pq + 2p − 1
2p+1 − 1

)

c2r+1 mod I.

The lesser term of the 2-adic expansion of 2pq + 2p is 2p+1. Using the fact that a

binomial coefficient

(
a

b

)

is nonzero modulo 2 if and only if the 2-adic expansion of b is

a subset of the 2-adic expansion of a, we conclude that the above binomial coefficients
are nonzero modulo 2. It follows that each factor W [r]u of X satisfies W [r]u ≡ cu

mod I, which implies that X ≡ cM(n−j) mod I. Thus

P = X .Sω(λj).c
m−1−M(n−j)−2j−t = sω(F

j).cm−j−1.

Since from the Leray-Hirsch Theorem (see [3]; p. 129), H∗(Ej , Z2) is the free
H∗(F j , Z2)-module on 1, c, c2, . . . , cm−j−1, we conclude that

P [Ej ] = sω(F
j).cm−j−1[Ej ] = sω(F

j)[F j ] = 1.

As previously explained, Theorem 2.1 then is established.

3. Maximal involutions. Take natural numbers j, n, with 2 ≤ j < n, and let
ω = (i1, i2, . . . , it) be a non-dyadic partition of j. As announced in Section 1, in this
section we develop a method to construct an involution (Mm, T ) whose fixed point

set has the form F = (
⋃

k<j

F k)∪F j ∪Fn, with m = M(n− j)+2j+ t and sω[F
j ] 6= 0,

for special values of n, j and ω (for technical reasons, in this section we abandon the
notation π0(F )). To perform this construction, we need the following facts:
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Fact A (R. L. W. Brown, [5]). Let P j be a closed smooth j-dimensional manifold, and

consider the orbit space
S1 × P j × P j

−1× twist
, which is a closed 2j+1-dimensional manifold;

here, S1 is the unit circle. Then, if P j is indecomposable,
S1 × P j × P j

−1× twist
also is.

Fact B (R. Stong and P. Pergher, [20]). There are involutions (Nm, S) having fixed
point set of the form {point} ∪ Fn, with m = M(n), for every n ≥ 1.
Fact C (P. E. Conner and E. E. Floyd, [6]). Let (Wn, T ) be an involution defined
on a closed smooth n-dimensional manifold Wn, with fixed point set F . Suppose

that Wn bounds. Then the involution Γ(Wn, T ) =

(
S1 ×Wn

−1× T
, τ

)

, defined on the

orbit space
S1 ×Wn

−1× T
(which has dimension n + 1), is equivariantly cobordant to an

involution (Nn+1, S) fixing F ; here, τ is the involution induced by c × 1, where c is

the complex conjugation. If the orbit space
S1 ×Wn

−1× T
is a boundary, we can repeat

the process taking Γ2(Wn, T ), and so on.
Fact D (P. Pergher, A. Ramos and R. Oliveira, [15]). For m, n even, m < n, write
n−m = 2pq, where p ≥ 1 and q ≥ 1 is odd. Let (RPm+n+1, Tm,n) be the involution

Tm,n[x0, x1, . . . , xm+n+1] = [−x0,−x1, . . . ,−xm, xm+1, . . . , xm+n+1],

whose fixed point set is F = RPm ∪ RPn. Then the underlying manifold of the
involution Γj(RPm+n+1, Tm,n) bounds for 0 ≤ j ≤ 1 if p = 1, and for 0 ≤ j ≤ 2p−2 if
p > 1. From Fact C, this gives that Γj(RPm+n+1, Tm,n) is cobordant to an involution
(Mm+n+1+j , T ) fixing F = RPm∪RPn, for 0 < j ≤ 2 if p = 1, and for 0 < j ≤ 2p−1
if p > 1.

The following two lemmas are crucial for the desired construction.

Lemma 3.1. Suppose that (Mm, T ) is an involution with fixed point set of the
form P j ∪ Fn, where j 6= n and P j is indecomposable. There is then an involu-
tion (W 2m+1, T ′) whose fixed point set has the form P 2j+1 ∪ F 2n+1, where P 2j+1 is
indecomposable.

Proof. On S1 ×Mm ×Mm, consider the involution 1 × T × T . This involution
commutes with −1 × twist and then induces an involution S on the orbit space

N =
S1 ×Mm ×Mm

−1× twist
. The fixed set of S is the union of three manifolds:

S1 × P j × P j

−1× twist
︸ ︷︷ ︸

P 2j+1

∪
S1 × Fn × Fn

−1× twist
︸ ︷︷ ︸

F 2n+1

∪
S1 × (P j × Fn ∪ Fn × P j)

−1× twist
.

Because j 6= n, there is a tubular neighborhood of
S1 × (P j × Fn ∪ Fn × P j)

−1× twist
in

N which is diffeomorphic to a tubular neighborhood of S1×P j×Fn in S1×Mm×Mm.
Then, this fixed manifold is S1 × P j × Fn with normal bundle S1 × ν, where ν is
the normal bundle of P j × Fn in Mm ×Mm (that is, S1 × ν is the pullback of ν by
the projection S1 × P j × Fn → P j × Fn), and being a product with S1 this bundle
bounds. Thus, (N,S) is cobordant to an involution (W 2m+1, T ′) with fixed point set
of the form P 2j+1 ∪ F 2n+1, and by Fact A P 2j+1 is indecomposable.
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Lemma 3.2. If j ≥ 2 is not of the form 2s − 1, write j + 1 = 2p(2q + 1), where
p ≥ 0 and q > 0 (note then that j − 2p+1 = 2p+1(q − 1) + 2p − 1 ≥ 0). There is then
an involution (M2j+1, T ) with fixed point set of the form P j ∪Fn, where n = j−2p+1

and P j is indecomposable.

Proof. We use induction on p ≥ 0. For p = 0, we have j = 2q and j−2p+1 = 2q−2.
From Fact D, the involution Γ2(RP 4q−1, T2q−2,2q) is equivariantly cobordant to an
involution (M4q+1, T ) fixing RP 2q−2 ∪ RP 2q. Since RP 2q is indecomposable, the
result is true for p = 0.

Now suppose (M2j+1, T ) an involution with fixed point set of the form P j ∪ Fn,
where j+1 = 2p(2q+1) with p ≥ 0 and q > 0, n = j−2p+1 and P j is indecomposable.
From Lemma 3.1, there is an involution (M ′, T ′) with dimM ′ = 2(2j + 1) + 1 and
fixed point set of the form P 2j+1 ∪ F 2n+1, where P 2j+1 is indecomposable. Since
(2j + 1) + 1 = 2p+1(2q + 1) and 2n+ 1 = (2j + 1)− 2p+2, the result is proved.

We are now able to state and prove the main result of this section.

Theorem 3.1. Let ω = (i1, i2, . . . , it) be a non-dyadic partition of j, and for
each 1 ≤ r ≤ t write ir + 1 = 2pr(2qr + 1), with pr ≥ 0 and qr > 0. Suppose that
n > j and n − j < 2pr+1, for each 1 ≤ r ≤ t. Then there is an involution (Mm, T )
with m = M(n− j) + 2j + t and fixed point set of the form

F = (
⋃

k<j

F k) ∪ F j ∪ Fn,

where sω[F
j ] 6= 0.

Proof. Lemma 3.2 provides, for each r ∈ {1, 2, . . . , t}, an involution (M2ir+1,

Tr) with fixed point set of the form P ir ∪ F ir−2pr+1

, where P ir is indecompos-
able. Set F j = P i1 × P i2 × . . . × P it , and consider the set of natural numbers
A = {

∑

r∈σ 2
pr+1 / σ ⊂ {1, 2, ..., t}, σ nonempty}. Consider the product involution

(W 2j+t, U) = (M2i1+1, T1) × (M2i2+1, T2) × . . . × (M2it+1, Tt). The fixed point set
of (W 2j+t, U) has the form F j ∪D, where each component of D has dimension j − a
for some a ∈ A; conversely, for each a ∈ A, there is a component of D with dimen-
sion j − a. From Fact B, one has an involution (NM(n−j), S) with fixed point set
of the form {point} ∪ Gn−j ; set Fn = F j × Gn−j . Then the desired involution is
(Mm, T ) = (W 2j+t, U)× (NM(n−j), S). In fact, m = M(n− j)+ 2j+ t and the fixed
point set of (Mm, T ) has the form D∪(D×Gn−j)∪F j∪Fn, with the components of D
having dimension less than j; further, using the fact that each P ir is indecomposable,
the splitting principle and dimensional considerations, one has

sω[F
j ] = si1 [P

i1 ]si2 [P
i2 ] . . . sit [P

it ] 6= 0.

Thus it remains to show that the components of D ×Gn−j have dimension less than
j. These dimensions are of the form (n− j)+ (j − a) = n− a, where a ∈ A. If a ∈ A,
there is r ∈ {1, 2, . . . , t} such that a ≥ 2pr+1, and so n − a ≤ n − 2pr+1. Since by
hypothesis n− j < 2pr+1, one then has n− a < j, which ends the proof.

Remark. For j < n fixed, the bound m ≤ M(n − j) + 2j + ℓ(F j) of Theorem
2.1 is then best possible for nonbounding manifolds F j whose decomposability degree
ℓ(F j) is realized by partitions ω satisfying the condition required by Theorem 3.1.
For example, it is best possible for j = n − 1 (see Section 4). For j = n − 2 and
j = n− 3, it is best possible for manifolds F j for which ℓ(F j) is realized by partitions
ω = (i1, i2, ..., it) where ir is odd, 1 ≤ r ≤ t. In particular, it is best possible if
j = n− 2 or j = n− 3, F j is indecomposable and j is odd.
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4. Some improvements of the Five Halves Theorem. In this section we
obtain some improvements of the general Five Halves Theorem (π0(F ) = {i / 0 ≤
i ≤ n}), which are direct consequences of our previous results. First we obtain the
following improvement for Theorem B (see Section 1):

Theorem 4.1. let (Mm, T ) be an involution with π0(F ) = {i / 0 ≤ i ≤ n}
and such that the components Fn and Fn−1 are nonbounding. Then m ≤ min{2n+
l(Fn−1), 2n + l(Fn)}. Further, the bounds m ≤ 2n + ℓ(Fn−1) and m ≤ 2n + ℓ(Fn)
are separately best possible.

Proof. From [19], one knows that m ≤ 2n+ ℓ(Fn) and, under the condition “Fn

is nonbounding”, this bound is best possible. From Theorem 2.1 with j = n− 1 and
the fact that M(1) = 2, one has

m ≤ M(1) + 2(n− 1) + ℓ(Fn−1) = 2n+ ℓ(Fn−1).

Now, if ω = (i1, i2, . . . , it) is a non-dyadic partition of n−1, and if we write ij+1 = 2pq,
with p ≥ 0 and q odd, certainly 2p+1 ≥ 2 and so n− (n− 1) = 1 < 2p+1. This means
that Theorem 3.1 gives an involution (Mm, T ) with m = 2n + t and fixed point set

F =

n⋃

j=0

F j satisfying sω(F
n−1)[Fn−1] 6= 0; in particular, this is true for a partition ω

that realizes ℓ(Fn−1). This shows that, under the condition “Fn−1 is nonbounding”,
the bound m ≤ 2n+ ℓ(Fn−1) is best possible, and Theorem 4.1 is proved.

We remark that the precise statement of the Five Halves Theorem is: if (Mm, T )
has π0(F ) = {i / 0 ≤ i ≤ n} with F nonbounding, then
(i) if n = 2k with k ≥ 1, m ≤ 5k, and
(ii) if n = 2k + 1 with k ≥ 0, m ≤ 5k + 2.
We have seen in [19] that Theorem B gives the following improvement in case (ii): if
(Mm, T ) has π0(F ) = {i / 0 ≤ i ≤ n} with Fn nonbounding and n = 2k + 1, then
m ≤ 5k + 1; further, this bound is best possible. In the same direction, Theorem 4.1
gives the following improvement in case (i):

Theorem 4.2. Let (Mm, T ) be an involution with π0(F ) = {i / 0 ≤ i ≤ n},
where n = 2k, k ≥ 3 and Fn−1 is nonbounding. Then m ≤ 5k − 2, and this bound is
best possible.

Proof. Since Fn−1 is nonbounding, m ≤ 2n+ℓ(Fn−1). Among all non-dyadic par-
titions of n−1 = 2k−1, the maximal lenght occurs for the partition ω = (2, 2, ..., 2, 5),
whose lenght is k − 2. Then 1 ≤ l(Fn−1) ≤ k − 2 and

m ≤ 2n+ ℓ(Fn−1) ≤ 4k + k − 2 = 5k − 2.

Further, the argument of Theorem 4.1 particularized for the partition ω =
(2, 2, ..., 2, 5) shows that there is an involution (Mm, T ) with m = 5k−2 and fixed set

F =

n⋃

j=0

F j satisfying sω(F
n−1)[Fn−1] 6= 0. Therefore m ≤ 5k − 2 is best possible.

If (Mm, T ) has π0(F ) = {i / 0 ≤ i ≤ n} with F nonbounding and t is the
codimension of the top dimensional component Fn, then the Five Halves Theorem
says that t ≤ 3k if n = 2k, and t ≤ 3k + 1 if n = 2k + 1. In this way, these bounds
for t increase with n, that is, they are not limited as functions of n. Now, if (Mm, T )
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has π0(F ) = {0, 1, ..., j, n}, where 2 ≤ j < n < m and F j is nonbounding, then
Theorem 2.1 says that the codimension of the top dimensional component satisfies
t ≤ M(n− j) + 2j + ℓ(F j) − n. For j fixed, an easy calculation shows that, if n− j
is even, then M(n− j)− n is not limited as a function of n, and so in the same way
the bound for t increases with n in this case. However, if n− j is odd, one has unlike
the following small codimension phenomenon:

Theorem 4.3. Suppose that (Mm, T ) has π0(F ) = {0, 1, ..., j, n}, where 2 ≤
j < n < m and F j is nonbounding, and denote by t the codimension of the top
dimensional component Fn. Then, for j fixed, t is limited as a function of n if n− j
is odd. Specifically, if j = 2k+1 is odd, t ≤ j+k, and if j = 2k is even, t ≤ j+k+1.

Proof. Among all non-dyadic partitions of j = 2k+1, the maximal lenght occurs
for the partition ω = (2, 2, ..., 2, 5), with lenght k − 1, and for j = 2k the maximal
lenght is k . Thus, if j = 2k + 1, 1 ≤ l(F j) ≤ k − 1, and if j = 2k, 1 ≤ l(F j) ≤ k.
Further, if n− j is odd, M(n− j) = n− j + 1. Then, if j = 2k + 1,

t ≤ M(n− j) + 2j + ℓ(F j)− n ≤ n− j + 1 + 2j + k − 1− n = j + k,

and, similarly, if j = 2k, t ≤ j + k + 1.
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