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CHARACTERIZATIONS OF PROJECTIVE SPACES AND

HYPERQUADRICS∗

STÉPHANE DRUEL† AND MATTHIEU PARIS†

Abstract. In this paper we prove that if the r-th tensor power of the tangent bundle of a smooth
projective variety X contains the determinant of an ample vector bundle of rank at least r, then X is
isomorphic either to a projective space or to a smooth quadric hypersurface. Our result generalizes
Mori’s, Wahl’s, Andreatta-Wísniewski’s and Araujo-Druel-Kovács’s characterizations of projective
spaces and hyperquadrics.
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1. Introduction. Starting with Mori’s seminal paper [Mor79] where the author
characterized projective spaces as the only smooth projective varieties with ample
tangent bundle, the study of the relation of the positivity of the tangent bundle with
the geometry of the variety has become a very active subject in the classification
theory of smooth projective variety.

In [CS95], the authors prove that if X is a smooth complex projective variety of
dimension > 3 with ∧2TX ample, then X is isomorphic to a projective space or an
hyperquadric.

The aim of this paper is to provide a new characterization of projective spaces
and hyperquadrics in terms of positivity properties of the tangent bundle. We refer
the reader to the article [ADK08] which reviews these matters. Notice that our
results generalize Mori’s (see [Mor79]), Wahl’s (see [Wah83] and [Dru04]), Andreatta-
Wísniewski’s (see [AW01] and [Ara06]) and Araujo-Druel-Kovács’s (see [ADK08])
characterizations of projective spaces and hyperquadrics. K. Ross recently posted a
somewhat related result (see [ROS10]).

In this paper, we prove the following theorems. Here Qn denotes a smooth quadric
hypersurface in Pn+1, and OQn

(1) denotes the restriction of OPn+1(1) to Qn. When
n = 1, (Q1,OQ1

(1)) is just (P1,OP
1(2)).

Theorem A. Let X be a smooth complex projective n-dimensional variety and E

be an ample vector bundle on X of rank r + k with r > 1 and k > 1. If h0(X,T⊗r
X ⊗

det(E )⊗−1) 6= 0, then (X, det(E )) ≃ (Pn,OPn(l)) with r + k 6 l 6 r(n+1)
n .

Theorem B. Let X be a smooth complex projective n-dimensional variety and E

be an ample vector bundle on X of rank r > 1. If h0(X,T⊗r
X ⊗ det(E )⊗−1) 6= 0, then

either (X, det(E )) ≃ (Pn,OPn(l)) with r 6 l 6 r(n+1)
n , or (X, E ) ≃ (Qn,OQn

(1)⊕r)
and r = 2i+ nj with i > 0 and j > 0.

In [ADK08], the authors prove that a nonsingular complex projective variety X is
biholomorphic to a projective space or an hyperquadric if and only if for some positive
integer p, the p-th wedge product ∧pTX of the holomorphic tangent bundle contains
the p-th tensor power of an ample line bundle on X .
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The line of argumentation follows [AW01] and [ADK08]. We first prove Theorem
A and Theorem B for Fano manifolds with Picard number ρ(X) = 1 (see Proposition
16). Then the argument for the proof of the main Theorem goes as follows. We
argue by induction on dim(X). We may assume ρ(X) > 2. Hence the H-rationally
connected quotient of X with respect to an unsplit covering family H of rational
curves on X is non-trivial. It can be extended in codimension one so that we can
produce a normal variety XB equipped with a surjective morphism πB with integral
fibers onto a smooth curve B such that either B ≃ P1, XB → B is a Pd-bundle
for some d > 1 and h0(XB , T

⊗i
XB/P1 ⊗ π∗G ⊗r−i ⊗ det(E )⊗−1

|XB
) 6= 0 for some integer

1 6 i 6 r where G be a vector bundle on P1 such that G ∗(2) is nef, or XB → B
is a Pd-bundle for some d > 1 and h0(XB , T

⊗r
XB/B ⊗ det(E )⊗−1

|XB
⊗ π∗

BG ∗) 6= 0 where

G is a nef vector bundle on B, or the geometric generic fiber of πB is isomorphic to

a smooth hyperquadric and h0(XB, T
[⊗r]
XB/B ⊗ det(E )⊗−1

|XB
⊗ π∗

BG ∗) 6= 0 where G is a

nef vector bundle on B. But this is impossible unless X ≃ P1 × P1 (see Lemma 4,
Lemma 5 and Proposition 7).

Throughout this paper we work over the field of complex numbers.

Acknowledgments. We are grateful to Nicolas Perrin for very fruitful discus-
sions. The authors would like to thank the referee for his valuable comments on the
manuscript.

2. Proofs.

2.1. Projective spaces and hyperquadrics. In this section, we gather some
properties of the tangent bundle to projective spaces and smooth hyperquadrics.

Lemma 1. Let n, r and k be integers with n > 1 and r > 1. Then

h0(Pn, T⊗r
P

n (−k)) 6= 0 if and only if k 6
r(n+1)

n .

Proof. It is well-known that TPn is stable in the sense of Mumford-Takemoto with
slope µ(TPn) = n+1

n with respect to OPn(1). By [HL97, Theorem 3.1.4], T⊗r
Pn (−k) is

semistable with slope µ(T⊗r
P

n (−k)) =
r(n+1)

n −k. It follows that if h0(Pn, T⊗r
P

n (−k)) 6= 0

then k 6
r(n+1)

n . Conversely, let us assume that k 6
r(n+1)

n . Write r = an+ b where
a and b are integers with a > 0 and 0 6 b < n. Then k− a(n+1) = xk− a(n+1)y 6

x
b(n+1)

n y = xb+ b
ny = b and

h0(Pn, T⊗r
Pn (−k)) = h0(Pn, T⊗an

Pn (−a(n+ 1))⊗ T⊗b
Pn(−k + a(n+ 1)))

> h0(Pn, [T⊗n
P

n (−(n+ 1))]⊗a ⊗ T⊗b
P

n(−b))

> h0(Pn, [det(TPn)(−(n+ 1))]⊗a ⊗ T⊗b
Pn(−b))

= h0(Pn, T⊗b
Pn(−b)) > 1,

as claimed.

Let d be a positive integer. Let Q ⊂ Pd+1 = P(W ) be a smooth hyperquadric
defined by a non degenerate quadratic form q on W := Cd+2 and let OQ(1) denote
the restriction of OPd+1(1) to Q. Let x be a point of Q and w ∈W \ {0} representing
x; then TQ(−1)x identifies with x⊥/ < x > and q induces an isomorphism TQ(−1) ≃
Ω1

Q(1) or equivalently a nonzero section in H0(Q, (TQ(−1))⊗2) still denoted by q. Let

V := x⊥/ < x >. Let G := SO(W ) and let P ⊂ SO(W ) be the parabolic subgroup
such that G/P ≃ Q corresponding to x ∈ Q. Let α ∈ H0(Q, det(TQ(−1)) be a
nonzero section.
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Lemma 2. Let the notations be as above.
1. The vector bundle TQ is stable in the sense of Mumford-Takemoto; in partic-

ular, one has h0(Q, T⊗r
Q (−k)) = 0 for k > r > 1.

2. The space of sections H0(Q, (TQ(−1))⊗r) is generated as a C-vector space by
the σ ·q⊗i⊗α⊗j’s where i and j are nonnegative integers such that r = 2i+dj
and σ ∈ Sr the symmetric group on r letters acting as usual on the vector
bundle (TQ(−1))⊗r.

Proof. Observe that TQ(−1) is homogeneous or equivalently that

TQ(−1) ≃ (G× V )/P

over Q ≃ G/P where g ∈ P acts on G× V by the formula

g · (g′, v) = (g′g, ρ(g−1) · v)

and

ρ : P → GL(TQ(−1)x) = GL(V )

is the stabilizer representation. It vanishes on the unipotent radical U of P and can
be viewed as the representation of the Levi subgoup L ≃ C∗×SO(V ) ⊂ P on V given
by the standard representation of SO(V ) on V . It is irreducible and therefore TQ(−1)
is indecomposable hence stable by [Ram66] and [Ume78] with slope µ(TQ(−1)) = 0
with respect to OQ(1). By [HL97, Theorem 3.1.4], (TQ(−1))⊗r is semistable with
slope µ((TQ(−1))⊗r) = 0. This ends the proof of the first part of the Lemma.

Observe that (TQ(−1))⊗r is homogeneous and that the stabilizer representation

P → GL((TQ(−1))⊗r
x )

is ρ⊗r. In particular, (TQ(−1))⊗r decomposes as the direct sum of indecomposable
vector bundles hence as the direct sum of stable vector bundles with slope 0. Re-
call that a non-trivial morphism between stable sheaves is an isomorphism. It fol-
lows that there is a one-to-one correspondence between the set of nonzero section in
H0(Q, (TQ(−1))⊗r) and the set of rank one direct summands of TQ(−1))⊗r. Finally,
we obtain an isomorphism

H0(Q, (TQ(−1))⊗r) ≃ (V ⊗r)SO(V )

since SO(V ) has no nontrivial character. The result now follows from [Wey39, Theo-
rem 2.9 A].

2.2. Fibrations over curves. In this section, we prove our main Theorems for
fibrations over curves.

Notation 3. Let X be a normal variety and X → B a morphism. Set TX/B :=
(Ω1

X/B)
∗.

Lemma 4. Let F be a vector bundle on P1 of rank m > 2, X := PP
1(F )

and π : X → P1 be the natural morphism. Let E be an ample vector bundle on
X of rank r + k with r > 2 and k > 0. Let G be a vector bundle on P1 such
that G ∗(2) is nef. If h0(X,T⊗i

X/P1 ⊗ π∗G ⊗r−i ⊗ det(E )⊗−1) 6= 0 for some integer
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0 6 i 6 r then X ≃ P1 ×P1, F = OP
1(a)⊕2 for some integer a, k = 0, 2i = r and

det(E ) ≃ OP1(2)⊠ OP1(2).

Proof. Write F ≃ OP
1(a1)⊕· · ·⊕OP

1(am) with a1 6 · · · 6 am. Let b := am−a1 >
0. Let σ be a section of π corresponding to a surjective morphism OP1(a1) ⊕ · · · ⊕
OP

1(am) ։ OP
1(am) and let σ1 the section of π corresponding to the projection map

OP
1(a1)⊕ · · · ⊕ OP

1(am) ։ OP
1(a1). Then σ ≡ σ1 + bℓ where ℓ is vertical line and

det(E ) · σ > r + k + b(r + k) = (r + k)(b+ 1).

We may assume that h0(σ, (T⊗i
X/P1 ⊗ π∗G ⊗r−i ⊗ det(E )⊗−1)|σ) 6= 0 since σ is a free

rational curve, or equivalently,

(1) det(E )|σ →֒ (T⊗i
X/P1 ⊗ π∗

G
⊗r−i)|σ.

Write G ≃ OP1(c1)⊕ · · · ⊕ OP1(cs) with c1 6 · · · 6 cs and cs 6 2 since G ∗(2) is nef.
Note that

TX/P1
|σ

≃ Nσ/X ≃ OP1(am − a1)⊕ · · · ⊕ OP1(am − am−1).

From (1), we obtain

(2) (r + k)(b + 1) 6 det(E ) · σ 6 i(am − a1) + (r − i)cs 6 ib+ 2(r − i),

r(b + 1) 6 (r + k)(b+ 1) 6 ib+ 2(r − i) 6 rb + 2(r − i)

and

(3) 2i 6 r.

Let F ≃ Pm−1 be a general fiber. Then h0(F, (T⊗i
X/P1⊗π

∗G ⊗r−i⊗det(E )⊗−1)|F ) 6= 0.

Thus h0(F, T⊗i
F ⊗ (det(E )⊗−1)|F ) 6= 0 since (π∗G ⊗r−i)|F ≃ O

⊕s(r−i)
F . By Lemma 1,

we must have

r + k 6 i
m

m− 1
.

Thus, using (3), we get

2r 6 2(r + k) 6 2i
m

m− 1
6 r

m

m− 1

and we must have m = 2, k = 0 and 2i = r. From (2), we obtain

2r(b+ 1) 6 rb + 2r

hence b = 0.

Lemma 5. Let X be a smooth complex projective variety, E be an ample vector
bundle on X of rank r + k with r > 1 and k > 0. Let π : X → B be a surjective
morphism onto a smooth connected curve with integral fibers. Let G be a numerically
effective vector bundle on B of rank > 0. Assume that the geometric generic fiber is
isomorphic to a projective space. Then h0(X,T⊗r

X/B ⊗ det(E )⊗−1 ⊗ π∗G ∗) = 0.
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Proof. Let η be the generic point of B. Tsen’s Theorem implies that Xη ≃ Pd
κ

where κ is the residue field at η. Thus there exists a divisor H on X such that
OX(H)|Xη

≃ O
P

d
κ
(1). Let L := OX(H). Let r′ > r + k be defined by the

formula det(E )|Xη
≃ O

P
d
κ
(r′). It follows from the semicontinuity Theorem that

h0(Xb, (det(E )⊗ L ⊗−r′)|Xb
) > 1 and h0(Xb, (L

⊗r′ ⊗ det(E )⊗−1)|Xb
) > 1 for any

point b in B. Thus h0(Xb, (det(E )⊗ L ⊗−r′)|Xb
) = 1 since Xb is integral. By the

base change Theorem, det(E ) ≃ L ⊗r′ ⊗ π∗M for some line bundle M on B. Thus
L is ample/B and by [Fuj75, Corollary 5.4], π is a Pd-bundle. By replacing B with
a finite cover B̄ → B and X with X ×B B̄ we may assume that M ≃ M ′⊗r′ for
some line bundle M ′ on B. Set L ′ := L ⊗ π∗M ′⊗−1. Then L ′⊗r′ ≃ det(E ) hence
L ′ is ample. Let F := π∗(L

′). Then F is an ample vector bundle on B and
X ≃ PB(F ). By [CF90], By replacing B with a finite cover B̄ → B and X with
X ×B B̄, we may assume that there exist an ample line bundle A on B, a positive
integer m and a surjective map of OB-modules A ⊕m ։ F . Observe that the line
bundle L ′⊗π∗A ⊗−1 is generated by its global sections. Let C = D1∩· · ·∩Ddim(X)−1

be general complete intersection curve with Di ∈ |L ′ ⊗ π∗A ⊗−1| (C is a section of

π). Then (TX/B)|C ≃ NC/X ≃ (L ′ ⊗ π∗A ⊗−1)
⊕ dim(X)−1
|C . Moreover

h0(C, (L ′ ⊗ π∗
A

⊗−1)⊗r
|C ⊗ det(E )⊗−1

|C ⊗ π∗
G

∗
|C)

= h0(C,L ′⊗r−r′

|C ⊗ π∗
A

⊗−r
|C ⊗ π∗

G
∗
|C)

= 0

since r′ > r > 0, π∗L ′
|C and π∗A|C are ample vector bundles and π∗G|C is a nef

vector bundle. Our claim follows.

When dealing with sheaves that are not necessarily locally free, we use square
brackets to indicate taking the reflexive hull.

Notation 6 (Reflexive tensor operations). Let X be a normal variety and Q a
coherent sheaf of OX-modules. For n ∈ N, set Q[⊗n] := (Q⊗n)∗∗, S[n]Q := (SnQ)∗∗

and det(Q) := (∧rank(Q)(Q))∗∗.

Proposition 7. Let X be a normal complex projective variety, E be an ample
vector bundle on X of rank r+k with r > 1 and k > 0. Let π : X → B be a surjective
morphism onto a smooth connected curve with integral fibers. Let G be a numerically
effective vector bundle on B of rank > 0. Assume that the geometric generic fiber is

isomorphic to a smooth hyperquadric. Then h0(X,T
[⊗r]
X/B ⊗ det(E )⊗−1 ⊗ π∗G ∗) = 0.

Proof. Let η be the generic point of B and κ̄ be an algebraic closure of the residue
field κ of η. Let qη̄ be a non degenerate quadratic form defining Xη̄ ⊂ Pd+1

κ̄ where
d := dim(X)− 1. By Lemma 2, k = 0 and det(E )|Xη̄

≃ OXη̄
(r).

Let us assume to the contrary that h0(X,T
[⊗r]
X/B ⊗ det(E )⊗−1 ⊗ π∗G ∗) 6= 0 and

let s ∈ H0(X,T
[⊗r]
X/B ⊗ det(E )⊗−1 ⊗ π∗G ∗) be a nonzero section. Notice that, for any

σ ∈ Sr and any non negative integers i and j such that r = 2i+ dj,

σ · [(S[2]TX/B)
[⊗i] ⊗ det(TX/B)

[⊗j]]⊗ det(E )⊗−1 ⊗ π∗
G

∗

is a direct summand of

T
[⊗r]
X/B ⊗ det(E )⊗−1 ⊗ π∗

G
∗.
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By Lemma 2, we may assume that

s ∈ H0(X, (S[2]TX/B)
[⊗i] ⊗ det(TX/B)

[⊗j] ⊗ det(E )⊗−1 ⊗ π∗
G

∗)

and

s|Xη̄
= q⊗i

η̄ ⊗ detη̄
⊗j ⊗ gη̄

for some non negative integers i and j with r = 2i + dj and some non zero section
gη̄ ∈ π∗H0(η̄,G|η̄). It follows that the induced map

G → π∗((S
[2]TX/B)

[⊗i] ⊗ det(TX/B)
[⊗j] ⊗ det(E )⊗−1)

has rank one and therefore, we may assume that G is a line bundle (with deg(G ) > 0).
We obtain a map

ϕs : Ω
1
X/B

[⊗i]
→ TX/B

[⊗i] ⊗ det(TX/B)
[⊗j] ⊗ det(E )⊗−1 ⊗ π∗

G
∗

whose restriction to Xη̄ is an isomorphism. Finally, we obtain a nonzero section

s
′ := det(ϕs) ∈ H

0(X,det(TX/B
[⊗i])⊗det(TX/B

[⊗i]
⊗det(TX/B)

[⊗j]
⊗det(E )⊗−1

⊗π
∗
G

∗))

≃ H
0(X,det(TX/B)

[⊗(2idi−1+dij)]
⊗ det(E )⊗−di

⊗ π
∗
G

⊗−di).

Observe that s′ does not vanish anywhere on a general fiber of π and that any fiber
of π is integral. Thus

−KX/B ≡
di

2idi−1 + dij
c1(det(E )) + π∗∆

for some (integral) effective divisor ∆ > di

2idi−1+dij c1(G ) and −KX/B is ample. But
that contradicts Lemma 8.

Lemma 8 ([ADK08, Theorem 3.1]). Let X be a normal projective variety, f :
X → C be a surjective morphism onto a smooth curve, and let ∆ ⊆ X be a Weil divisor
such that (X,∆) is log canonical over the generic point of C. Then −(KX/C +∆) is
not ample.

Lemma 9. Let S be a smooth projective surface equipped with a surjective mor-
phism π : S → B with connected fibers onto a smooth connected curve. Suppose that
the general fiber of π is a (smooth) rational curve. Let M be a nef and big line bundle
on S. Assume that, for a general point b in B, M · Sb = 2r for some r > 1. Then
h0(S, T⊗r

S ⊗ M⊗−1) = 0.

Proof. Let c : S/B → S̄/B be a minimal model /B. Write M = c∗M̄ (−E)
for some divisor E on S supported on the exceptional locus of c. Observe that
E is effective by the negativity Lemma (see [KM98, Lemma 3.39]) and that M̄ is
nef since M is nef. Therefore, the natural map TS → c∗TS̄ induces an inclusion
H0(S, T⊗r

S ⊗ M⊗−1) ⊂ H0(S̄, T⊗r
S̄

⊗ M̄⊗−1). Note that S̄ is a ruled surface over B.

Replacing S/B with S̄/B we may assume that S → B is smooth. The short exact
sequence

0 → TS/B → TS → π∗TB → 0
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yields a filtration

T⊗r
X = F0 ⊃ F1 ⊃ · · · ⊃ Fr+1 = 0

such that

Fi/Fi+1 ≃ T⊗i
S/B ⊗ π∗T⊗r−i

B .

Since M ·Sb = 2r and TS/B ·Sb = 2 for b ∈ B, we must have h0(S, T⊗i
S/B ⊗π∗T⊗r−i

B ⊗

M⊗−1) = 0 for 0 6 i 6 r − 1. Thus

H0(S, T⊗r
S/B ⊗ M

⊗−1) = H0(S, T⊗r
S ⊗ M

⊗−1).

Let us assume to the contrary that h0(S, T⊗r
S ⊗ M⊗−1) 6= 0. Then r(−KS/B) ∼

c1(M ) + π∗∆ where ∆ is an effective divisor on C and KS/B is nef and big. But
K2

S/B = 0 for any (geometrically) ruled surface, a contradiction.

2.3. Tools. The proof of the main Theorem will apply rational curves on X .
Our notation is consistent with that of [Kol96].

Let X be a smooth complex projective uniruled variety and H an irreducible
component of RatCurves(X). Recall that only general points in H are in 1:1-
correpondence with the associated curves in X . Let ℓ be a rational curve corre-
sponding to a general point in H , with normalization morphism f : P1 → ℓ ⊂ X . We
denote by [ℓ] or [f ] the point in H corresponding to ℓ.

We say that H is a dominating family of rational curves on X if the corresponding
universal family dominatesX . A dominating familyH of rational curves onX is called
unsplit if it is proper. It is called minimal if, for a general point x ∈ X , the subfamily
of H parametrizing curves through x is proper.

Let H1, . . . , Hk be minimal dominating families of rational curves on X . For each
i, let Hi denote the closure of Hi in Chow(X). We define the following equivalence
relation on X , which we call (H1, . . . , Hk)-equivalence. Two points x, y ∈ X are
(H1, . . . , Hk)-equivalent if they can be connected by a chain of 1-cycles from H1 ∪
· · · ∪ Hk. By [Cam92] (see also [Kol96, IV.4.16]), there exists a proper surjective
morphism π0 : X0 → Y0 from a dense open subset of X onto a normal variety
whose fibers are (H1, . . . , Hk)-equivalence classes. We call this map the (H1, . . . , Hk)-
rationally connected quotient of X . For more details see [Kol96].

Lemma 10. Let X be a smooth complex projective variety and H1, . . . , Hk unsplit
dominating families of rational curves on X. Let π0 : X0 → Y0 be the (H1, . . . , Hk)-
rationally connected quotient of X. If the geometric generic fiber is isomorphic to a
projective space, then π0 is a Pd-bundle in codimension one in Y0 with d := dim(X0)−
dim(Y0).

Proof. By [ADK08, Lemma 2.2], we may assume that π0 is a proper surjective
equidimensional morphism with integral fibers. Let C0 ⊂ Y0 be a general complete
intersection curve. Set XC0

:= π−1
0 (C0). Then XC0

is a smooth variety. Let η be the
generic point of C0 with residue field κ and let LC0

be a line bundle on XC0
that

restricts to OPd
κ
(1) on XC0η ≃ Pd

κ (d > 1) (see the proof of Lemma 5). Let M be an
ample line bundle on X and r a positive integer such that M|XC0η

≃ O
P

d
κ
(r).

For each i, denote by Hj
i , 1 ≤ j ≤ ni, the unsplit covering families of rational

curves on XC0
whose general members correspond to rational curves on X from the
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family Hi. Then πC0
:= π0|XC0

: XC0
→ C0 is the (H1

1 , . . . , H
n1

1 , . . . , H1
k , . . . , H

nk

k )-

rationally connected quotient of XC0
. Let F be a fiber of πC0

. Let [Hj
i ] denote the

class of a member of Hj
i in N1(F ) and H := {[Hj

i ] | i = 1, . . . , k, j = 1, . . . , ni}. Then
by [Kol96, Proposition IV 3.13.3], N1(F ) is generated by H. Therefore any curve
contained in any fiber of πC0

is numerically proportional in N1(XC0
/C0) to a linear

combination of the [Hj
i ]’s. Hence N1(XC0

/C0) is generated by H and c1(MXC0
) =

rc1(LC0
) ∈ N1(XC0

/C0). Thus LXC0
is ample/C0 and the claim follows from [Fuj75,

Corollary 5.4].

Notation 11. Let X be a normal variety and Q be a coherent torsion free
sheaf of OX -modules. We say that a curve C ⊂ X is a general complete intersection
curve for Q in the sense of Mehta-Ramanathan if C = H1 ∩ · · · ∩ Hdim(X)−1, where
Hi ∈ |miH | are general, H is an ample line bundle on X and the integers mi ∈ N are
large enough so that the Harder-Narasimhan filtration of Q commutes with restriction
to C.

Lemma 12. Let X and Y be a smooth complex projective varieties with dim(Y ) >
1, X0 be an open subset of X with codimX(X\X0) ≥ 2, Y0 be a dense open subset of Y
and let π0 : X0 → Y0 be a proper surjective equidimensional morphism. Let C ⊂ X0 be
a general complete intersection curve for π∗

0Ω
1
Y0

in the sense of Mehta-Ramanathan.
If (π∗

0Ω
1
Y0
)|C is not nef then Y is uniruled.

Proof. Fix an ample line bundle H on X , and consider general elements Hi ∈
|miH |, for i ∈ {1, . . . , dim(X) − 1}, where the mi ∈ N are large enough so that the
Harder-Narasimhan filtration of π∗

0Ω
1
Y0

commutes with restriction to C := H1 ∩ · · · ∩
Hdim(X)−1. Setting Z := H1∩· · ·∩Hdim(X)−dim(Y ) and Z0 := Z∩X0, we may assume
that Z is a smooth variety of dimension dim(Y ), and that the restriction ϕ0 := π0|Z0

is a finite morphism.
By the hypothesis (ϕ∗

0Ω
1
Y0
)|C is not nef, therefore (ϕ∗

0TY0
)|C contains a subsheaf

with positive slope. Thus if we denote by i : Z0 →֒ Z the inclusion and by F

the reflexive sheaf i∗(ϕ
∗
0TY0

), then the maximally destabilizing subsheaf E of F has
positive slope (with respect to H|Z).

Let K be a splitting field of the function field K(Z0) over K(Y0), and let ψ : T →
Z be the normalization of Z in K. Consider T0 := ψ−1(Z0), and let j : T0 →֒ T be
the inclusion. If we denote by ψ0 the restriction of ψ to T0, then the reflexive sheaf
F ′ := (ψ∗F )∗∗ = j∗(ψ

∗
0ϕ

∗
0TY0

) contains the sheaf (ψ∗E )∗∗. Notice that (ψ∗E )∗∗

has positive slope. Consequently the maximally destabilizing subsheaf E ′ of F ′ has
positive slope. Hence by replacing Z0 with T0, ϕ0 with ϕ0 ◦ ψ0, and (F , E ) with
(F ′, E ′) if necessary, we may assume that K(Z0) ⊃ K(Y0) is a Galois extension with
Galois group G.

Because of its uniqueness, the maximally destabilizing subsheaf E of F is invari-
ant under the action of G. Thus by replacing Z0 with another open subset of Z if
necessary, we may assume that there exists a saturated subsheaf G of TY0

such that
E = i∗(ϕ

∗
0G ).

As E has positive slope, it follows from [KSCT07, Proposition 29 and Proposition
30] that the vector bundles E|C and (E ⊗E ⊗(F/E )∗)|C are ample. The morphism ϕ0

being finite, this implies that G|ϕ0(C) and (G ⊗ G ⊗ (TY0
/G )∗)|ϕ0(C) are ample vector

bundles too. In particular we deduce from this that Hom(G ⊗G , TY0
/G ) = 0, because

the deformations of the curve ϕ0(C) dominate the variety Y0. As a consequence G is
a foliation on Y0.
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Finally, by extending G to a foliation G̃ on the whole variety Y , we can conclude
by using [KSCT07, Theorem 1]. Indeed it follows from the fact that G̃|ϕ0(C) is ample

that the leaf of the foliation G̃ passing through a general point of ϕ0(C) is rationally
connected; in particular Y is uniruled.

The proof of our main result is based on the following result.

Corollary 13. Let X be a smooth complex projective variety, X0 be an open
subset of X with codimX(X \X0) ≥ 2, Y0 be a smooth variety with dim(Y0) > 1 and
let π0 : X0 → Y0 be a proper surjective equidimensional morphism. Assume that the
generic fiber of π0 is isomorphic to a projective space. Let C be a general complete
intersection curve for π∗

0Ω
1
Y0

in the sense of Mehta-Ramanathan. If (π∗
0Ω

1
Y0
)|C is not

nef then there exists a minimal free morphism f : P1 → Y0.

Proof. Let Y be a smooth projective variety containing Y0 as a dense open subset.
By Lemma 12, Y is uniruled. Let HY be a minimal dominating family of rational
curves on Y . By Tsen’s Theorem, there exists a dominating family HX of rational
curves on X such that for a general member [f ] ∈ HX , [π0 ◦ f ] is a general member of
HY . By [Kol96, Proposition II 3.7], if [f ] ∈ HX is a general member then f(P1) ⊂ X0.
The claim follows from [Kol96, Corollary IV 2.9].

The following Lemma is certainly well known to experts. We include a proof for
lack of an adequate reference.

Lemma 14. Let X be a smooth complex variety and H be a minimal dominating
family of rational curves on X. Let x be a general point in X and [ℓ] ∈ H with x ∈ ℓ.
If Tℓ,x does not depend on ℓ ∋ x then there exists a non empty open subset X0 in X
and a proper surjective morphism π0 : X0 → Y0 onto a variety Y0 such that any fiber
of π0 is a rational curve from the family H.

Proof. Let [f ] ∈ H be a general member. By [Kol96, Corollary IV 2.9], f∗TX ≃

OP
1(2)⊕OP

1(1)⊕d ⊕O
⊕(n−d−1)

P1 with d := −KX · f∗P
1 − 2. Let x be a general point

in X with x ∈ ℓ := f(P1). By [Hwa01, Proposition 2.3], d = 0 using the fact that
Tℓ,x does not depend on ℓ ∋ x.

Let H̄ be the normalization of the closure of H in Chow(X) and Ū the normaliza-
tion of the universal family. Let us denote by π̄ : Ū → H̄ and ē : Ū → X the universal
morphisms. By shrinking H if necessary, we may assume that H parametrizes free
morphisms. Then H is smooth (see [Kol96, Theorem I 2.16]) and e := ē|U : U → X
is étale where U := π̄−1(H) (see [Kol96, Proposition II 3.4]).

It remains to show that there exists a dense open subset H0 of H such that the
restriction of ē to π̄−1(H0) induces an isomorphism onto the open set ē(π̄−1(H0).
By Zariski’s main Theorem, it is enough to prove that ē is birational. We argue
by contradiction. Then there exists a curve C ⊂ Ū such that dim(π̄(C)) = 1 and
ē(C) = ℓ. Let c be a general point in C. Then dcē(TC,c) = Tℓ,ē(c) since ē(C) = ℓ and
Tℓ,ē(c) = dcē(Tπ̄−1(π̄(c)),c) since Tℓ′,c does not depend on ℓ′ ∋ c ([ℓ′] ∈ H). But that
contradicts the fact that ē is étale at c. The claim follows.

2.4. Characterizations of projective spaces and hyperquadrics. The
proof of Theorem A and Theorem B stated in the introduction is based on the fol-
lowing result whose proof is similar to that of [ADK08, Theorem 6.3].

Notation 15. Fix a minimal covering family H of rational curves on X . Let
[f : P1 → X ] ∈ H . We denote by (f∗TX)+ the subbundle of f∗TX defined by

(f∗TX)+ = Im
[
H0

(
P1, f∗TX(−1)

)
⊗ OP

1(1) → f∗TX
]
→֒ f∗TX .
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Proposition 16. Let X be a smooth complex projective n-dimensional variety
with ρ(X) = 1 and E be an ample vector bundle on X of rank r + k with r > 1 and
k > 0. If h0(X,T⊗r

X ⊗ det(E )⊗−1) 6= 0, then either X ≃ Pn, or k = 0 and X ≃ Qn

(n 6= 2).

Proof. First notice that X is uniruled by [Miy87], and hence a Fano manifold with
ρ(X) = 1. The result is clear if dimX = 1, so we assume that n ≥ 2. Fix a minimal
dominating family H of rational curves on X . Let L be an ample line bundle on X
such that Pic(X) = Z[L ].

Let E ′ ⊂ TX be the maximally destabilizing subsheaf of TX ; E ′ is a reflexive sheaf

of rank r′ > 1. By [ADK08, Lemma 6.2], µ
L
(E ′) ≥

µ
L

(det(E ))

r . Let [f ] ∈ H be a
general member. Note that deg(f∗ det(E )) > r + k since E is ample. This implies

that deg(f∗
E

′)
r′ ≥ deg(f∗ det(E ))

r > r+k
r > 1. If r′ = 1, then E ′ is ample and we are done

by Wahl’s Theorem. If f∗E ′ is ample, then X ≃ Pn by [ADK08, Proposition 2.7],
using the fact that ρ(X) = 1.

Otherwise, as f∗E ′ is a subsheaf of f∗TX ≃ OP
1(2)⊕OP

1(1)⊕d⊕O
⊕(n−d−1)

P1 (see
[Kol96, Corollary IV 2.9]), we must have deg(f∗ det(E ′)) = r′, deg(f∗ det(E )) = r,
k = 0 and f∗E ′ ≃ OP

1(2)⊕OP
1(1)⊕r′−2⊕OP

1 for a general [f ] ∈ H . Then OP
1(2) ⊂

f∗E ′ for general [f ] ∈ H . Thus by [Hwa01, Proposition 2.3], (f∗T+
X )p ⊂ (f∗E ′)p for a

general p ∈ P1 and a general [f ] ∈ H . Since f∗E ′ is a subbundle of f∗TX , we have an
inclusion of sheaves (f∗TX)+ →֒ f∗E ′, and thus f∗ det(E ′) = f∗ω−1

X . Since ρ(X) = 1,

this implies that detE ′ = ω−1
X , and thus 0 6= h0(X,∧r′TX⊗ωX) = hn−r′(X,OX). The

latter is zero unless r′ = n sinceX is a Fano manifold. Notice that deg(f∗ det(E )) = r.
It follows that f∗E ≃ OP

1(1)⊕r for any [f ] ∈ H since E is ample. By [AW01,
Proposition 1.2] (see also [ROS10, Theorem 4.3]), E ≃ L ⊕r and deg(f∗L ) = 1.
Since n = r′, we must have ω−1

X ≃ det(E ′) ≃ L ⊗n. Hence X ≃ Qn by [KO73].
We will need the following auxiliary result.

Lemma 17. Let X be a smooth complex projective variety and E be an ample
vector bundle on X of rank r + k with r > 2 and k > 0. Assume that X is uniruled
and fix a minimal dominating family H of rational curves on X. If h0(X,T⊗r

X ⊗
det(E )⊗−1) 6= 0, then H is unsplit.

Proof. Let [f ] ∈ H be a general member. Let us assume to the contrary that
h0(X,T⊗r

X ⊗ det(E )⊗−1) 6= 0 and f∗(P
1) ≡ C1 +C2 with C1 and C2 nonzero integral

effective rational 1-cycles. Notice first that det(E ) · C > r + k for all rational curves

C ⊂ X . By [Kol96, Corollary IV 2.9], f∗TX ≃ OP
1(2)⊕ OP

1(1)⊕d ⊕ O
⊕(n−d−1)

P1 and
we must have deg(f∗ det(E )) 6 2r. Finally, 2(r + k) 6 deg(f∗ det(E )) 6 2r and we
must have k = 0, deg(f∗ det(E )) = 2r and f∗ det(E ) ≃ OP

1(2r) ⊂ f∗ ∧r (TX) ≃

∧r(OP
1(2) ⊕ OP

1(1)⊕d ⊕ O
⊕(n−d−1)

P1 ). Hence T⊗r
ℓ,x = det(E )x ⊂ T⊗r

X,x for a general
point x in ℓ and therefore, Tℓ,x does not depend on ℓ ∋ x. Thus, by Lemma 14,
there exists a non empty open subset X0 in X and a proper surjective morphism
π0 : X0 → Y0 onto a variety Y0 such that any fiber of π0 is a rational curve from the
family H and det(E )|X0

≃ T⊗r
X0/Y0

. Let L ⊂ TX be the saturated line bundle such

that TX0/Y0
≃ L|X0

. Notice that det(E ) ⊂ L ⊗r with equality on X0. Let C ⊂ X be
a general complete intersection curve and let S be the normalization of the closure in
X of π−1

0 (π0(C ∩ X0)). By [Dru04, Lemme 1.2] (or [ADK08, Proposition 4.5]), the
map Ω1

X → L ⊗−1 induces a map Ω1
S → LS

⊗−1 where LS denotes the pull-back of
L to S. Notice that π0 induces a surjective morphism πS : S → B onto a smooth
curve. By Lemma 9, dim(X0) 6= 2. Thus, we may assume g(B) > 1. Let S̃ → S be a
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minimal desingularization of S. By [BW74, Proposition 1.2], Ω1
S → LS

⊗−1 extends
to Ω1

S̃
→ LS̃

⊗−1. Let πS̃ : S̃ → B be the induced morphism. By replacing LS̃ with

its saturation in TS̃ , we may assume det(E )S̃ ⊂ L
⊗r

S̃
⊂ T⊗r

S̃
. Observe also that, for

a general point b in B, det(E )S̃ · S̃b = 2r. But that contradicts Lemma 9.

Now we can prove our main theorems.

Theorem 18. Let X be a smooth complex projective variety and E be an ample
vector bundle on X of rank r + k with r > 1 and k > 0 and such that h0(X,T⊗r

X ⊗
det(E )⊗−1) 6= 0.

1. If k > 1 then X ≃ Pn.
2. If k = 0 then either X ≃ Pn, or X ≃ Qn.

Proof. We shall proceed by induction on n := dim(X). The result is clear if
n = 1, so we assume that n ≥ 2. If r + k = 1 then we are done by Wahl’s Theorem
so we assume that r + k > 2.

Notice that X is uniruled by [Miy87]. Fix a minimal dominating family H of
rational curves on X . By Lemma 17, H is unsplit. Let π0 : X0 → Y0 be the
H-rationally connected quotient of X . By [ADK08, Lemma 2.2], we may assume
codimX(X \X0) > 2 and π0 is an equidimensional surjective morphism with integral
fibers. By shrinking Y0 if necessary, we may also assume that Y0 is smooth.

By Proposition 16, we may assume ρ(X) > 2. By [Kol96, Proposition IV 3.13.3],
we must have dim(Y0) > 1.

Let F be a general fiber of π0. There exist (see [ADK08, Lemma 5.1]) non negative

integers i and j with i + j = r such that h0(X,T
[⊗i]
X0/Y0

⊗ det(E )⊗−1
|X0

⊗ π∗
0T

⊗j
Y0

) 6= 0

and h0(F, T⊗i
F ⊗ det(E )⊗−1

|F ) 6= 0. Notice that i > 1 since det(E )|F is an ample line

bundle and d := dim(F ) > 1.

The induction hypothesis implies that F ≃ Pd if i < r or k > 1 and either F ≃ Pd

or F ≃ Qd if i = r and k = 0.

Let C ⊂ X0 be a general complete intersection curve (with respect to some
very ample line bundle on X). Let XC be the normalization of π−1

0 (π0(C)). Let
πC : XC → C be the induced map. Note that XC is the normalization of C ×Y0

X0

and that C ×Y0
X0 is regular in codimension one since any fiber of π0 is integral.

Hence, we must have h0(XC , T
[⊗i]
XC/C ⊗ det(E )⊗−1

|XC
⊗ π∗

C(Ω
1
Y0

⊗−j

|C
)) 6= 0.

Let us assume that either (π∗
0Ω

1
Y0
)|C is a nef vector bundle or i = r. If the

geometric generic fiber of π0 is isomorphic to a projective space then we may assume
that π0 is a Pd-bundle by Lemma 10. But that contradicts Lemma 5. By Proposition
7, the geometric generic fiber of π0 is not isomorphic to a (smooth) hyperquadric.
Thus (π∗

0Ω
1
Y0
)|C is not nef, i < r and F ≃ Pd by the induction hypothesis.

By Lemma 13, there exists a minimal free morphism f : P1 → Y0. By generic
smoothness, we may assume that Xf := P1 ×Y0

X0 is smooth. We may also assume

that h0(Xf , T
[⊗i]

Xf/P1 ⊗ det(E )⊗−1
|Xf

⊗ π∗
f (TY0

⊗j
|P1)) 6= 0. Let Lf be a line bundle on Xf

that restricts to OPd(1) on F ≃ Pd (see the proof of Lemma 5). By [Fuj75, Corollary
5.4], πf : Xf → P1 is a Pd bundle. It follows from Lemma 4 that k = 0, d = 1,
(Xf/P

1) ≃ (P1 ×P1/P1) and det(E )|Xf
≃ OP

1(2)⊠OP
1(2). Let H ′ be the covering

family of rational curves on X whose general member corresponds to the ruling of
Xf that is not contracted by π. Observe that H ′ is a minimal dominating family of
rational curves since f : P1 → Y0 is a minimal free morphism (using [Kol96, Corollary
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IV.2.9]). Since E is ample, H ′ is an unsplit covering family of rational curves, using
Lemma 17.

Let π1 : X1 → Y1 be the (H,H ′)-rationally connected quotient of X . By [ADK08,
Lemma 2.2], we may assume codimX(X \ X1) > 2 and π1 is an equidimensional
surjective morphism with integral fibers. By shrinking Y1 if necessary, we may also
assume that Y1 is smooth. Replacing π0 : X0 → Y0 with π1 : X1 → Y1 above, we
obtain a contradiction unless X ≃ P1 ×P1.

Proof of Theorem A. By Theorem 18, X ≃ Pn and by Lemma 1, det(E ) ≃ OPn(l))

with r + k 6 l 6 r(n+1)
n .

Proof of Theorem B. By Theorem 18, either X ≃ Pn or X ≃ Qn. If X ≃ Pn,
then the claim follows from Lemma 1. Let us assume X ≃ Qn. By Lemma 2,
det(E ) ≃ OQn

(r). Thus, for any line P1 ⊂ Qn ⊂ Pn+1, E|P1 ≃ OP1(1)⊕r, and the
claim follows from [AW01, Proposition 1.2] (see also [ROS10, Theorem 4.3]).
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