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EVERYWHERE EQUIVALENT AND EVERYWHERE DIFFERENT
KNOT DIAGRAMS*
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Abstract. A knot diagram is said to be everywhere different (resp. everywhere equivalent) if
all the diagrams obtained by switching one crossing represent different (resp. the same) knot(s). We
exhibit infinitely many everywhere different knot diagrams. We also present several constructions
of everywhere equivalent knot diagrams, and prove that among certain classes these constructions
are exhaustive. Finally, we consider a generalization to link diagrams, and discuss some relation to
symmetry properties of planar graphs.
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1. Introduction. This paper is concerned with the study of two suggestive
classes of knot (and partly link) diagrams, namely those for which the diagrams ob-
tained by one crossing change all represent the same or all represent different knots.

A knot diagram is said to be everywhere different if all the diagrams obtained
by switching one crossing represent different knots. This property was apparently
first considered by K. Taniyama, who found a few everywhere different diagrams by
computation. Taniyama (and independently Ishii for alternating diagrams) asked
whether infinitely many such diagrams exist. He and Shinjo proposed a candidate
series of examples.

In the first part of the paper (§3), we will exhibit three infinite sequences of ex-
amples: two alternating ones, and the (non-alternating) one of Taniyama and Shinjo.
We take two approaches, which rely on the Kauffman bracket [Kf] for the Jones poly-
nomial in different ways. First (theorem 2) we apply the semiadequacy formulas in
[St3, DL] in combination with the Menasco-Thistlethwaite Flyping theorem. This
leads to a short and elegant proof, which, however, works only for a suitably cho-
sen class of examples. We then introduce another method, which is more laborious,
but can be applied rather generally. It is based on an algebraic formalism of the
Temperley-Lieb category (see theorems 3 and 4).

The similar properties of everywhere non-trivial diagram and everywhere equiva-
lent diagram are specified by demanding that all diagrams obtained by switching one
crossing represent a non-trivial, resp. the same knot. These properties were also de-
fined by Taniyama, and considered by Makoto Ozawa and Ryo Hanaki (unpublished).
In [SA] we previously studied diagrams we should call (here) ”everywhere trivial”,
which unknot at every crossing.

The second part of the paper (§4) is devoted to everywhere equivalent diagrams.
First we consider the special case of everywhere trivial diagrams. We answer a question
in [SA] regarding everywhere trivial unknot diagrams (proposition 2), using an idea in
an example of everywhere non-trivial unknot diagrams by Shinjo and Taniyama. We
then present several constructions of everywhere equivalent diagrams (proposition 3).
We use the work in [St5, St6, SV] to show that among diagrams of low genus, only
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96 A. STOIMENOW

the expected ones are everywhere equivalent (theorem 5).

The discussion of everywhere equivalent diagrams finishes, in §5, with a longer dis-
course into some graph theory. We observe that our constructions are closely related
to some well-studied (transitive) symmetry properties of planar graphs. We introduce
then two graph-based methods for obtaining everywhere equivalent diagrams. Beside
subsuming the preceding constructions in the case of knots, they give rise to new
families of everywhere equivalent diagrams of links. With this different point of view
on everywhere equivalence, it seems that the relationship between knot and graph
theory is worth stressing in this context.

A large part of the paper bases on computations, performed with various tools,
including KnotScape [HT], but most substantially using MATHEMATICA™ [Wo).
Roughly the work here can be circumscribed by how to program MATHEMATICA
to verify what is needed. Thus our attitude in the proofs will be mainly to explain
the theoretical input into, and to guide through the calculation with the program.

The referee made a number of substantial comments on the paper, in response
to which several portions were reorganized (and often expanded), with the hope to
enhance readability and make the content more widely accessible. (Occasionally these
changes are explicitly indicated.)

2. Preliminaries. It seems useful to collect various preliminaries, which will be
used at different places throughout the proofs later in the paper.

2.1. Link diagrams. All link diagrams are considered oriented, even if orienta-
tion is sometimes ignored. We also assume here that we actually regard the plane in
which a link diagram lives as S2, that is, we consider as equivalent diagrams which
differ by the choice of the point at infinity. By !D we denote the mirror image of
a diagram D, obtained by switching all crossings (as opposed to taking the planar
mirror image).

A diagram D is composite if there is a closed curve +, called decomposing curve,
transversally intersecting D in two points outside the crossings, such that both the
interior and the exterior of v contain crossings of D. If D is not composite, then we
call D prime. A composite diagram D can be decomposed along a decomposing curve
~v as a connected sum D = D1# D5 of two diagrams D1 and Ds. To obtain D;, take
the parts of D in the interior and exterior of 7y, and close each of the two with a trivial
arc. This operation can be iterated until we have a prime (diagram) decomposition
D = #;D; of D. It will often be enough to look at prime diagrams D, and we will
assume our diagrams to be so, unless we speak explicitly of composite ones.

The writhe, or (skein) sign, is a number, +1 or —1, assigned to every crossing in
a link diagram. A crossing as on the left in (1) has writhe 1 and is called positive.
A crossing as in the middle of (1) has writhe —1 and is called negative. The writhe
w(D) of a link diagram D is the sum of writhes of all its crossings. A diagram is called
positive (see e.g. [St, O]) resp. negative, if all its crossings are positive resp. negative.

2.2. Jones polynomial. The Jones polynomial V can be defined as the poly-
nomial taking the value 1 on the unknot, and satisfying the skein relation

(1) t’1V<‘X) - tV(X) = (tl/Q*flﬂ)VOC)'

We will denote in each triple as in (1) the link diagrams (from left to right) by D,
D_ and Dy; they are understood to be identical except at the designated spot.

It is useful to give here the alternative description of V via Kauffman’s state
model [Kf]. A state is a choice of splicings (or splittings) of type A or B (see figure
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1) for any single crossing of a link diagram D. We call the A-state A(D) the state in
which all crossings are A-spliced, and the B-state B(D) is defined analogously.

When for a state S all splicings are performed, we obtain a splicing diagram,
which consists of a collection of (disjoint) circles in the plane (solid lines) together
with crossing traces (dashed lines). This splicing diagram is called in combinatorics a
perfect matching in a planar trivalent graph. We will for convenience identify below
a state S with its splicing diagram for fixed D. We will thus talk of the loops and
traces of a state.

Fic. 1. The A- and B-corners of a crossing, and its both splittings. The corner A (respectively
B) is the one passed by the overcrossing strand when rotated counterclockwise (respectively clockwise)
towards the undercrossing strand. A type A (resp. B) splitting is obtained by connecting the A (resp.
B) corners of the crossing. The dashed line indicates the trace of the crossing after the split.

Recall, that the Kauffman bracket (D) [Kf] of a link diagram D is a Laurent
polynomial in a variable A, obtained by a sum over all states S of D:

(2) (D) = 3 A#A@#BE) (g2 - 42)571
S

where #A(S) and #B(.S) denote the number of type A (respectively, type B) splittings
and |S| the number of (solid line) loops in the splicing diagram of S. The formula (2)
results from applying the first of the bracket relations

3 (X) = a ) +a()(), (Qux) = (-42-472)(x),

to each crossing of D, and then deleting (except one) isolated loops using the second
relation, at the cost of a factor —A% — A=2. (The normalization is thus here that one
loop with no crossings has unit bracket.)

The Jones polynomial of a link L can be determined from the Kauffman bracket
of some diagram D of L by

)*W(D)

(4) Vi) = (7 o)

A=t71/4

with w(D) being the writhe of D. This is another way, different from (1), to specify
the Jones polynomial.

It is well-known that V' € Z[t*!] (i.e., only integral powers occur) for odd number
of link components (in particular, for knots), while V € ¢'/2 - Z[t*'] (i.e., only half-
integral powers occur) for even number of components.

2.3. Semiadequacy and adequacy. Let S be the A-state of a diagram D and
S’ a state of D with exactly one B-splicing. If |S| > |S’| for all such S’, we say that
D is A-adequate. Similarly one defines a B-adequate diagram D. See [LT]. Then we
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set a diagram to be

adequate = A-adequate and B-adequate,

(5) semiadequate A-adequate or B-adequate,

inadequate = neither A-adequate nor B-adequate.

(Note that inadequate is a stronger condition than not to be adequate.)

A link is called A (or B)-adequate, if it has an A (or B)-adequate diagram. It
is semiadequate if it is A- or B-adequate, and inadequate, if it is not semiadequate,
that is, neither A- nor B-adequate. A link is adequate if it has an adequate diagram.
This property is stronger than being both A- and B-adequate, since a link might have
diagrams that enjoy either properties, but none that does so simultaneously. The
Perko knot 10141 in [Ro, appendix] is an example. This property of the Perko knot
follows from work of Thistlethwaite [Th2], and is explained, e.g., in Cromwell’s book
[Cr, p. 234], or (along with further examples) in [St9].

It is easily observed (as in [LT]) that a reduced alternating diagram (and hence
an alternating link) is adequate.

For V e Z[tl/Q, t_1/2], the minimal or mazimal degree mindeg V' or maxdegV is
the minimal resp. maximal exponent of ¢ with non-zero coefficient in V. Let span V =
maxdeg V —mindeg V. The coefficient in degree d of ¢ in V' is denoted [V];a or [V]q.
More often, however, we will need to designate coefficients in degrees relative to the
minimal and maximal degree of the polynomial. In that case, we will use the below
notation.

Let V € Z[t*'/2] have only integral or only half-integral powers, and n > 0 be
an integer. Let m = mindegV and M = maxdegV (then 2m,2M € Z). We write
Vis1 (V) := [V]min and V_,,_1 (V) := [V]pr—n for the n+ 1-st or n+ 1-last coeflicient
of V. Similarly we set V,,(D) := V,,(V(D)) and V,,(L) := V,,(V(L)) for a link L or a
diagram D.

A basic observation in [LT] is that when L is A- resp. B-adequate then |V (L)| =
1 resp. |V_1(L)] = 1. Thus if L is adequate, and in particular alternating, both
properties hold.

When L is an A-adequate link, then V, (L) for n < 3 were studied in [DL, St3].
We will need the formulas below, without giving the details of their application, but
for completeness the formulas should be explained. Let D be an A-adequate diagram
of L. (We will assume that D is connected.) Then, in the notation of [St3],

(6) Va(D)] = e — |A(D)| +1,
and
(7) o) = (I e s a,

Here |A(D)] is the number of loops in the A-state A(D), and the quantities e, e,
d, and A are the number of pairs or triples of loops in A(D) for which there exist
crossing traces (obtained as in figure 1) making them look (up to moves in S?) like
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in:

(& G ) A

(We do not require that these be the only traces connecting the loops, only that such
traces should exist.) Note that when D is alternating, then 6 = 0.

2.4. Graphs. Let in the following a graph be finite, i.e., with finitely many edges
and vertices, and planar, i.e., having a fixed planar embedding (this is often called a
planar map). Let us, again, for convenience assume that we actually regard the plane
as 52, that is, we take the freedom to move the point at infinity.

A graph may have several edges connecting the same two vertices. For two such
vertices, the n edges connecting them (when n > 1) are called multiple edges, and are
not regarded as one edge (of multiplicity n). Thus a multiple (resp. double or triple)
edge is an edge with some (resp. exactly 1 or 2) other edge(s) connecting the same
two vertices. We write E(G) for the set of edges of G.

A planar graph G has a planar dual G*. We will assume G to be 2-connected (no
isthmuses) and dually 2-connected (no loop edges).

Let M, be the graph of two vertices with ¢ edges. This is the planar dual of the
cycle of length g. In particular, M; is a single edge, Ms is a 2-cycle, and M3 is the
graph often called theta-curve.

For a graph, let the operation
(9) —e — o—o—o

(adding a vertex of valence 2) be called bisecting. The doubling of an edge consists
in adding a new edge connecting the same two vertices in a way that a new 2-gonal
region is created in the plane. The doubled graph G is the graph obtained from G by
doubling all its edges.

Recall the checkerboard graph construction. It associates a connected graph G =
G(D) to an unoriented connected link diagram D (and vice versa), in the following
manner. Consider the plane curve D of D as a 4-valent planar graph. There is a
black-white coloring of the regions of ﬁ, the checkerboard coloring, which assigns
different colors to each pair of regions opposite at some edge of D. Then G(D) is
defined to have a vertex for each black region of D and an edge for each crossing. See
figure 2 (or also, e.g., [Th, Fig. 5] or [St4, MS, Kf]). We should note that G(D) is in
fact a planar graph, i.e., comes with a planar embedding.

When a checkerboard graph G of D is fixed, each crossing of D carries a Kauffman
sign. Let a crossing ¢ of D, or its corresponding edge e in G, be Kauffman positive
(resp. Kauffman negative) if the A-corners (resp. B-corners) of ¢ in figure 1 come from
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2]

two checkerboard colorings the checkerboard graph
of the first coloring

Fic. 2. Checkerboard coloring and checkerboard graph.

the black regions of the checkerboard coloring G' was obtained from?.

Since Kauffman signs are an unoriented feature, they are not the same as the (skein)
signs from (1); there is, though, a relationship between both, which will occur later.
Since the separation between skein and Kauffman signs of crossings is fundamental,
we will still often write “(skein) sign” instead of simply “sign”.

Observe that a diagram is alternating iff all its crossings have the same Kauffman
sign. For example, it is always negative in the right diagram of figure 2.

The median graph (or sometimes also called line graph) M(G) of G is a planar
4-valent graph obtained as follows: vertices of M(G) are edges of G, and an edge
connects v and vy in M(G) if and only if v; and ve are edges incident to the same
vertex in G and in the boundary of the same face of G.

V2

U1

(Here the thick lines correspond to edges in M (G) and the thin ones to edges in G.)
To conform to 4-valence, if a bigonal region is formed by edges v; and vy in G, two
edges should connect vertices v; and vg in M(G).

The plane curve of D, regarded as a 4-valent graph, is the median graph of G(D).
Thus, given G = G(D), one can reconstruct D when Kauffman signs of the crossings
are specified. In particular, an alternating diagram D is determined up to mirror
image.

!Both the choice of checkerboard color G = G(D) is built from, and the choice of Kauffman
sign, are widely unstandardized conventions: they are sometimes followed, and sometimes reverted
in other articles as compared to here.
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Note that M (G*) = M(G), and thus graphs dual to each other give rise to the
same alternating diagram D (up to mirror image). For non-alternating diagrams, the
Kauffman signs of all crossings change when G is replaced by its dual. On the other
hand, D determines G up to duality. In this sense, we will below speak of the graph
of a diagram and the diagram of a graph.

The star starv of a vertex v in G is the set of incident edges. A cut vertex is a
vertex v in G for which deletion of v along with all edges in starv (but keeping their
adjacent vertices different from v) disconnects G. A graph G is cut-free, if it has no
cut vertex. A connected link diagram D is prime (as defined in §2.1) if and only if
G(D) is cut-free.

A symmetry of the graph is for us a permutation of its vertices and edges induced
by a homeomorphism of the plane. Such a homeomorphism is a deformation of the
identity or of the inversion of the plane. A graph is edge transitive if for every two
edges e, e’ there is a symmetry mapping e to ¢’.

2.5. Conway/Alexander polynomial and Determinant. The Conway poly-
nomial V(z) is given by its value 1 on the unknot and a property similar to (1):

(10) V(X) - V(X) - zv(SC)

This polynomial is an equivalent of the Alexander polynomial A(t):
A(t) = V(2 —t71/2),

(For the shape of V(z), see §2.6.)

By putting ¢ = —1 into the skein relations for V' and A, one sees easily that
V(-1) = £A(-1), the sign depending on the parity of ne of components of the link.
Thus V and A contain the common invariant

det(L) := |A(L)(-1)| = [V(L)(-1)|,

which is called determinant of L. The reasons for this name and the significance of
this quantity should not be discussed here. We will need, however, some well-known
properties of the determinant.

LEMMA 1. Let D be an alternating diagram. Then det(D) is equal to the number
of spanning trees of a checkerboard graph G(D) of D.

Proof. There are several explanations of this fact. One comes from the Kauffman
bracket.

Notice that when t*! = AT = —1, then the sum in (2) collapses to the sum
over the, so-called monocyclic, states .S, those with one loop. Such states correspond
one-to-one to spanning trees of a fixed checkerboard graph of D. (Of course, the
number of spanning trees is invariant under duality.) For a monocyclic state, look at
the subgraph of G which is inside one of the regions of the loop. For a spanning tree
T, splice all crossings corresponding to edges of I" so that the black regions (of the
checkerboard coloring giving rise to ) are joined.

Since in an alternating diagram all crossings have the same Kauffman sign, in
the expression (2) of £V(D)(—1) as the sum of £1 over the spanning trees of the
checkerboard graph, all terms have the same sign.

For more details see, e.g., [St4]. There is also a similar explanation using the
Alexander polynomial, which can be found, e.g., in [MS]. O
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LEMMA 2. Let D be a prime alternating diagram and D’ be a mon-alternating
diagram obtained from D by applying crossing changes (i.e., with the same plane
curve). Then det(D') < det(D).

Proof. This follows rather directly from the previous proof. If G = G(D’) has no
cut vertex, and edges of opposite Kauffman sign, then for two different spanning trees
of G the terms +1 in (2) will have opposite sign, and will cancel. O

2.6. 2-divisibility of the determinant. There is a 2-divisibility property of
the determinant, which seems not often mentioned, but easily results, e.g., from the
description of values taken by the Conway/Alexander polynomial. It is well-known,
that for a knot K, the Conway polynomial is of the form V(K) = 1 + 22P(z?) for
some P € Z[z], while for an n-component link L, we have V(L) = z"~1 . P(22). By
noticing that

A(-1) = V(2V-1),

we immediately see the following:

PROPOSITION 1. A link L had odd determinant if and only if L is a knot. When
L has n components, then 2"~ 1 | det(L).

As a consequence, the following relationship was observed essentially in [St4, MS]:

LEmMMA 3. A link diagram D represents a knot if and only if its checkerboard
graph G = G(D) has an odd number of spanning trees. For an n-component link
diagram D, this number is divisible by 271,

Proof. Number of components is not changed by choosing D alternating. For
such D, the number of spanning trees of G is equal to the determinant by lemma 1.
Then apply proposition 1. O

Note that this lemma has an entirely combinatorial reformulation: it relates the
2-divisibility of the number of spanning trees of a planar graph G to the number
of (transversely intersecting) planar loops that form M(G). When G is additionally
bipartite, many more properties were given in [MS]. It seems legitimate to ask whether
there is a self-contained framework to explain these relations independently from knot
theory.

2.7. Vassiliev invariants. The degree-2 Vassiliev knot invariant ve is given by
the coefficient of 2z? in V(z). This invariant can be also expressed from the Jones
polynomial as vo = —1gV”(1). The normalization of the degree-3 invariant vz (see
e.g. [PV, St]) we will use is

1 1
11 = ——=V"(1)-=V"(1).
(11) v =~ V(1) = V()
It is worth remarking (and we will use below) that vy and vs enjoy a maximizing
property for positive diagrams similar to the one of the determinant for alternating
diagrams in lemma 2.

LEMMA 4. (see [St, Theorem 5.2 and Exercise 6.2]) Let D be a positive knot dia-
gram and D’ be a non-positive diagram obtained from D by applying crossing changes
(at least one). Then vo(D') < va(D) (unless D' =!D) and v3(D’) < vs(D).
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We will also need a few times the degree-4 invariant v, being the z*-coefficient in
V(z), and once the degree-5 invariant given by
- Ly®
(12) v = 12OV (1)
(where the parenthesized superscript means derivative).
Note more generally, that the invariants V(”)(l) are Vassiliev invariants of degree
n, and that these determine V' (see [BN]).

2.8. Flypes. Next, we briefly clarify the use of flypes and the Menasco-
Thistlethwaite theorem.

DEFINITION 1. A flype is a move on a diagram shown in figure 3. Note that if
one of the tangles P or @ contains only (possibly zero) horizontal twists, the flype is
trivial (does not alter the diagram). We say that a diagram admits a flype if it can
be represented as one of the diagrams in the figure, and neither P nor () contain only
horizontal twists.

- 0

Fic. 3. A flype near the crossing p.

By the fundamental work of Menasco-Thistlethwaite, we have a proof of the Tait
flyping conjecture.

THEOREM 1. ([MT]) For two alternating diagrams of the same alternating link,
there is a sequence of flypes (and moves in S?) taking the one diagram into the other.

2.9. Genus and Generators. We summarize very briefly the tools for the treat-
ment of the diagram genus developed in [St5, St6, SV].

We first recall the genus of a knot diagram. The replacement of a (positive or
negative) crossing by the the rightmost picture in (1) is called smoothing out. When
all crossings of D are smoothed out, we have a collection of loops called Seifert circles.
Let s(D) be the number of Seifert circles of D and ¢(D) the number of its crossings.
We recall that the genus of a knot diagram D is given by

1
5(C(D) —s(D)+1).

Two crossings p and ¢ in a knot diagram D are linked if the cyclic order of the
basepoints is pgpq (and not ppqq), or equivalently, if smoothing out both crossings
gives a knot (and not a 3-component link) diagram. Another way of saying this is:
for a given crossing p of D, a crossing ¢ is linked with p iff ¢ involves strands of
two different components, i.e., is a mized crossing, of the (2-component) link diagram
obtained by smoothing out p in D. Notice in a link diagram the number of mixed



104 A. STOIMENOW

crossings is even, and thus so is the number of crossings ¢ linked with a given crossing
p in a knot diagram. We called this in [St] the even valence property.

We call two crossings p and g to be ~-equivalent if p and ¢ form a reverse clasp
up to flypes. For instance, in the below fragment, ¢ and r form a reverse clasp, thus
they are ~-equivalent. However, after the tangle @ is flyped to the right (and p moves
to the left), p and ¢ form a reverse clasp, too. Thus also p and ¢ are ~-equivalent.

13) \/\q PN

For a knot diagram, ~-equivalence of crossings p and g can be reformulated by saying
that p and ¢ are not linked, but each r # p, ¢ is linked with p iff r is linked with ¢. (In
this description, one easily sees ~ to be an equivalence relation from the even valence
property.)

A knot diagram decomposes into ~-equivalence classes, which we often simply
call ‘classes’ below. We can then talk of (un)linked classes S, T, when some (or any)
crossing in S is (un)linked with some (or any) crossing in 7.

At move is one replacing a crossing by three ~-equivalent ones of the same sign.
Up to mirroring this is given by

K= XXX

(For example, the 5 crossings in the reverse twist tangle of (61) can be obtained
from one crossing by applying two 5 moves.) A reverse th, move acts in the opposite
direction, and reduces three ~-equivalent crossings to one. In certain cases, a diagram
admits no reverse 5 move, but does so after a flype. We saw such an example in (13),
where crossing p can be moved close to crossing ¢ by flyping the tangle @@, and then
a reverse ¢, move can be applied on p, ¢ and r (to discard two of them).

An diagram is called a generator if it is alternating and if each ~-equivalence class
of its crossings has 1 or 2 elements. That is, generator diagrams are the alternating
diagrams which cannot be reduced further by reverse t;, moves after any sequence of
flypes.

The set of diagrams obtained from a generator D by flypes, crossing changes, and
th, moves is called the series of D.

By abuse of terminology, we call a generator also a knot (or link) with a generating
diagram, or equivalently, we consider generator diagrams up to flypes. Of course, by
theorem 1, if one diagram is a generator, so are all diagrams of the same knot (or
link). Working with one diagram per generator knot instead of all diagrams is justified
as long as the statements asserted and methods employed in the proof are invariant
under (diagram) mutations.

The connected sum of two generators is again a generator (of the sum of the
genera). These can often be disregarded, and thus it is relevant to consider only
prime generators.

A fundamental feature of generator knots ([St5]) is that there are only finitely
many of given genus. Their list has been obtained up to genus 4 in [St6, St8], and
forms a basis of our later inspective efforts. We cannot repeat here details of the
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generation of these lists, but we summarize their size in the below table.
genus H

number of prime generators

1‘ 2 ‘ 3 ‘ 4
2 \ 24 \ 4,017 \ 3,414,819

A clasp is the tangle with two crossings. A clasp is trivial or resolved if both
crossings have opposite sign (i.e., can be canceled by a Reidemeister II move).

If a diagram D has no trivial clasp up to flypes, then D has no class that contains
crossings of either sign. We will refer to such classes below as unsigned; otherwise the
class is signed, and positive resp. negative depending on the (skein) sign of its crossings.
Diagrams with no unsigned class of more than 2 crossings admit a parametrization
by a twist vector, which we will work with, and thus which describe now.

Consider a generator D with g classes?. A diagram in the series of D is given by
Dy for a twist vector y = (y;)?_;, where y; are integers. This diagram Dy is defined
by saying that class i in Dy should have writhe

(15) w; = 2y; — 2+ #H,

where #i € {1,2} is the number of crossings in ~-equivalence class i of D. Let us call
a class i even or odd depending on #i. The writhe w; is understood to be realized by
|w;| crossings of skein sign sgn(w;), except for w; = 0, where we consider a resolved
clasp (one positive and one negative crossing).

3. Examples of everywhere different diagrams.

3.1. An example based on semiadequacy. We consider an alternating di-
agram D, of 8 4+ 2n crossings formed from the tangle T' by composing it with an
oriented braid tangle (o105 1)" and closing up. The composition for n = 7 (prior to
closing up and moving two o105 ' on the other side) is shown on the right of figure 4.

Fic. 4.

THEOREM 2. For almost all n = 3k + 1, the diagram D,, is everywhere different.

Proof. It will be helpful to introduce also the tangles 77 and T" obtained from T
by incorporating the outermost 1 resp. 2 powers of 105 1 in the braid tangle.

2Unlike here, in the cited papers, g stands for the genus.
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Number the crossings inside T (not T) by 1,...,16. It is not very important
which crossing receives which number, however, we will need some particular attention
to the two encircled crossings, which in our numbering received labels 2 and 6 (see
below).

Let D,,; for i = 1,...,16 be D,, with the crossing labeled as ¢ in 7" turned
around, and K, ; the knot D, ; represents. Similarly let D, ; ; and K, ; ; be D,, with
the j-th crossing in the i-th power of o105 Lin the braid tangle turned around. (A
few diagrams then receive two names.)

First, the knot K,, of D,, is different from K, ; and K, ;; because of the deter-
minant (lemma 2).

We took n =7 and calculated V (K, ;) and V(K ; ;). All they were distinct. In
the following we explain how to infer from the case n = 7 to the general case.

The K, ;; for 1 < i < n simplify to an alternating diagram of 4 4 2n crossings,
which can be distinguished by theorem 1. (One has to observe that these diagrams
are mutually distinct, even up to moves in the 2-sphere, and none admits flypes.)

The K, ,; can be distinguished as follows. Since V(K7,;) are distinct for all i,
for each 1 < 7 < j < 16, there is a Vassiliev invariant v = v; ; (obtained from
V as discussed at the end of §2.7) distinguishing K7,; and K7 ;. Now Kspi1,; and
Ksp41,; form braiding sequences, so the map k +— v(Ksgy1,) is a polynomial in k
[St2]. Polynomials differing at one spot differ almost everywhere, and thus, excluding
finitely many k, we have that v distinguishes K3;41; and K3r11,;. By applying this
argument on v; ; for all ¢, j, we are done.

The most interesting case is how to distinguish K, ,, from K, ; ; when 2 < i <
n — 1. If the crossing m does not belong to T, we distinguished them by theorem 1.
So we assume the switched m-th crossing of T"” belongs to T".

For this we use the semiadequacy formulas in [St3]; see §2. Let Vi,, as in §2, be
the p-th resp. p-th last coefficient of V' (where powers of t are ordered increasingly).

It is easy to see from the alternating 4 + 2n crossing diagrams and the semiade-
quacy formulas (6) and (7) that when 2 < i <n—1, j =1,2, then all K,,; ; have the
same V), for |p| < 3. We denote by V,, these values when n is fived.

Moreover, one can check that except for two m, the D,, ,, either

e simplify to a diagram of < 4 + 2n crossings, or to a non-alternating diagram
of 4 4+ 2n crossings, or
e simplify through an isotopy of T’ to a semiadequate diagram D;Lm.

We check next for n = 7 that when Dy, . is A-adequate, not all (sgn(Vy) -
Vu)(Dy, ) for 1 < p < 3 match sgn(Vy) - V,. Similarly we check that when Dy, .,
is B-adequate, then (sgn(V_1) - V_,)(D;, ,,) for some 1 < p < 3 does not match

sgn(V_1) - V_,.

Now the change from n > 7 to n + 3 affects the quantities (8) that determine V},
in a prescribed way. (The details can be easily worked out, and we omit them. Let us
notice, however, that here it is important that the isotopy simplifying Dy, ,,, to Dy, ,,
acts inside 7”.) Thus it is easy to see that when they do not match for n = 7, they
will not either for general n.

There are two crossings in 1" whose switch does not simplify to a semiadequate
diagram; they are encircled in figure 4. Let the right crossing have m = 6 and the left
m = 2.

Both crossings are negative. We can obtain V(D m) = V(D ,,) from V(D)
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and V of another alternating link Dn,m via the skein relation (1):
(16) V(D) = (32 =t Y2V (Dpn) + t2V(Dy) .

Note that since D,, and Dn,m are alternating, we can control the 3 outermost
terms of either summands on the right by the semiadequacy formulas (6) and (7).
The formulas imply that for n > 4 and fixed m both V,(D,,) and V,(D,, ) are (up
to sign)

e 1 for p= 41,
e linear in n with linear coefficient 1 for p = +2 (for both D,, and Dn,m, but
with possibly different absolute term between D,, and Dmm), and
e quadratic in n with quadratic coefficient 1/2 (and possibly different lower
degree terms) for p = +3.
In particular, the values V,(D,,) and V,(D,, ,,) in dependence on n can be determined
from two values of n > 4.
It remains to look what cancellations occur. In the case n =7 we have
e mindeg V(D,) = —14 and maxdegV(D,,) =8,
e mindeg V(D; 2) = —10 and maxdeg V (D, 2) =7,
e mindeg V(D, ) = —10, with Vi (D, 6) = —2 (and maxdeg V' (D, ¢) = 8).

For m = 2 we see that when n = 7, the two lowest and three highest terms cancel
on the right of (16). By checking this also for n = 4, we conclude that this occurs for
general n, and so span (V(Dy,2)) < 3 4 2n, which cannot be the Jones polynomial of
an alternating 4 4+ 2n crossing knot.

For m = 6 we see from (16), that for n = 7 the two lowest terms cancel, and the
third lowest term gives V4 (Dy,,6) = —2, which does not occur for the Jones polynomial
of any alternating knot. By checking the same also for n = 4, we have the general
case.

With this the proof is finished. O

The examples were clearly chosen here so as to have a simple proof. For other
examples the proof appears considerably more complicated. We now introduce a
method which accomplishes this. It is more laborious, but much more generally
applicable.

3.2. An example based on the Temperley-Lieb category. We consider an
example studied by Shinjo and Taniyama.

!’

T

SECSSE T2

Fia. 5.

\

2

Let D,, be the (alternating) knot diagram obtained by composing T in figure 5
with n copies of T’ and closing up. Shinjo and Taniyama had verified that D; is
everywhere different.

THEOREM 3. For almost all n, the diagram D,, is everywhere different.
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Proof. Let D, ; ; be the diagram obtained by switching the j-th crossing in the
i-th tangle 77 (or T if ¢ = 0). The number of crossings in T and 7" will be fixed in a
moment.

We will not make any use whatsoever of alternation of D,,, and distinguish D, ; ;
by a value of the Kauffman bracket. The variable A in the bracket will be understood
as a complex number, and will in fact use only two values,

Ag=T7/8—+/~1/8 and Aj=1-+/-1/8.

Their choice will be justified shortly. (A handful of other values served for additional
checks, but it is not necessary to discuss these here.)

We used MATHEMATICA™ [Wo] for our calculations. It allows us to work
exactly and numerically. Both modi are important. In certain cases the coincidence
or vanishing of certain terms decisively impacts the way we organize our estimates,
and thus it must be established in exact arithmetic. On the other hand, the occurring
expressions for each number occupy half a page, and working with them is too tedious
(even to MATHEMATICA). Thus we turned to numerical comparison each time we
need to see non-coincidence. We must admit that we did not carry any error analysis.
Still the values we had to compare were visibly different, in a range above calculation
precision error, as we observed for several A. Moreover, it is still possible, the way we
will explain, to make each check exact.

Consider the Temperley-Lieb category TL. Its objects are TL,, = {1,...,n}. Its
morphisms are tangles factored by the Kauffman bracket relations (3). Our convention
is that composition of morphisms is from bottom to top, and points on TL, are
numbered left to right.

These morphisms can be decomposed as a Z[A*!]-linear combination of crossing-
free arcs. The multiplication of such elements is accomplished by joining top of the
first one with bottom of the second, deleting each of the resulting n closed loops, and
multiplying by (—A? — A=2)",

Let us here already fix that we normalize all morphisms by (—A3)~"ithe g ac-
count to the writhe normalization of the bracket, occurring in (1). Note, however,
that the writhe of a morphism depends on more the morphism itself, for strand orien-
tation is determined only by the knot diagram as a whole. This writhe normalization
will thus be carried out for individual morphisms only because we know in advance
the knot diagram made up of all such morphisms taken together.

The normalized closure bracket cl(E) of such an endomorphism F is defined on a
crossing-free diagram D as cl(D) = (—A? — A=2)"~! where n is the number of loops
of the braid-style closure of D. This is then expanded Z[A*!]-linearly.

By (4) the normalized bracket of the tangle closure is then equal to V(A~%). Let
us stipulate that when we write V in the following, we always regard it in Z[AT!]
under this substitution ¢t = A=,

We will need a few special morphisms:
7l

wom | = |

Am,n =
[ N~ —— [
m n —m m n—m
\ 1 / ~
omm = || A | Tum = | N Trom 1= motine2Rmetne2 = ||
~—~ ~—~ —~— ~—~ ~—~ ~—

m—1 n—m-—1 m—1 n—m-—1 m—1 n—m-—1

We will in particular deal with End(T L3), which is a Z[A*!] module freely gen-
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erated by the 5 basis elements

T2 21 74 X
~ M ~ AN

L3 72,3 71,3 72,37T1,3 71,3723

We need to determine E(T'), E(T") coming from T and T”. Let us fix the following
presentation of these tangles, which also gives a numbering of the crossings.

T:=kos-{—3,2,-3,4,-3,4,2,-3,4,-3,2,-3,4} - ap 3,
TI L= Ii273 . {—1, 2,4, —1, —3} . 0&1,3 s

where {i1, 2, ...} stands for the 5-braid H asgn(z’“) (Note that the strands in D,, are

not oriented to point in the same dlI‘eCthD within the braids.)

Let T be T' with crossing j switched, and 77 be T" with crossing j switched.

Since in D, ;; we have iteration of T”, we will need to look in particular at
E(T") € End(TLs), the endomorphism of T'L3 induced by 7".

It is important to determine the eigenvalues of E(T").

We found by calculation that (for the values of A we considered) F(T”) has 3
different eigenvalues of different norm. We name them A = A3, X = Ay and X' = A;.
So

NI < VT < AL

Still E(T") diagonalizes. This has to be checked in exact arithmetic, since it is a
non-generic condition (at the presence of repeated eigenvalues).

By looking at the endomorphisms in the diagonalizing basis of E(T”), we see then
that

3

(17) V(Dnir00) = 3 diNL,
k=1

3
(18) V(Diytnattm41.0) = D0 3 dip AP A2,

k=11=1

Mu

The numbers dgf] and d° ]l can be determined in two ways.
The first one is to evaluate the Lh.s. for 3 values of k& and I. We have

(19) V(Dnt1,0,5) = cl(es - E(Ty) - E(T")"H),

(20)  V(Dussnariming) = ellos- B(T) - BT)™ - B(T)) - E(T')").

We also checked that the Jones polynomials are correct by comparing them with a
skein calculation.

Then we have to solve a 3 X 3 resp. 9 x 9 linear system. We employed this method
to obtain numerical values for dgf] and dgi]l. We used k,l = 0,1,2, but checked that
for some other choices we obtain the same solutions (numerically).

However, it became necessary and useful to determine some d[ k. exactly, while
handling a 9 x 9 system with page-long entries was too daunting to MATHEMATICA.
Then we used a different method.
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Let @ be a diagonalizing basis of E(T"), so that
B(T') = Q diag(\) Q"

with ’)\\1 = ), for some j. The matrix @) is determined by MATHEMATICA.
Define the ‘fake’ matrices

Fj = Q dlag (6Aj,/k\i)Q_1 ,
where ¢ is Kronecker’s delta. Then we obtain dgs]l by replacing E(T') in (20) by a
fake matrix (normalized as if it were of writhe 0):

dy = cl(is- E(T) - Fy - E(T)) - Fy).
This yields then (and faster) the exact values for dgfl.
This calculation was needed to verify the numerically suggested coincidence

2 5
£, =
Moreover it was very useful to establish exactly that
(21) dih = dil, =0

forallc=1,...,5. (For Ay and d[1?j]37 MATHEMATICA needed a little manual help
along the way.)

The property (21) is the essential reason we chose the values Ag and Aj for A.
Apparently there is always this vanishing for some branch of eigenvalues (when A
varies continuously), but for many A the A; order in norm so that dgc]Q and d[;]3 vanish
instead.

With this now we can distinguish D,, and its crossing-switched versions D), in
cases. Our attitude will be to find a contradiction if some among (the specific evalu-
ations of) V(D,,) and V(D) match for arbitrarily large n.

Case 1. D,, o . among each other for 0 < ¢ < 13. (This includes D,, = Dy, ,0.)
By normalizing (17), we obtain

1 . . M\ - A\
)\_nV(DnJrl,O,c) = dg] +d[2] ‘ <X) er[f] : (T) .

Since the bases are in norm < 1, for large n only the comparison of d'¥ matters. We
determined that for both Ay and Af all dgc] are different. Here is the list of increasingly
ordered norms |dgc]| for A = Ap.

{1.74146, 2.28564, 2.51662, 3.60422, 4.28911, 5.20145, 5.32003,
5.64902, 6.12361, 6.6246, 7.61719, 10.1355, 12.0127, 13.9591}

In the following when we say “n large (enough)”, we mean some bound n > ng.
The “almost all n” in the theorem will be obtained by combining all these bounds.
(They can be made explicit, at the cost of further technicalities.)

Case 2. Dy, o, from Dy ;. (with 0 < ¢ <13 and 1 < ¢ < 5). We have, using
O-notation,

1 ~ A\
FV(DTH-I,I-‘,-LC) = )‘(n7 l7 C) + O X B



EVERYWHERE EQUIVALENT AND DIFFERENT DIAGRAMS 111

with
~ )\/ )\// )\/ n—l : )\// n—I
2\ l d[C] d[C] -~ d[C] N d[C] d[‘] -
(na ’ C) 33 + Y + Y + )\ + 31 Y
Now fix ¢ and ¢/. We determine Iy by being the smallest nonnegative integer with

(22) |did — 1| > (jald] + |dis] did| + |dl| ‘—

5] +

(we tested this numerically with an extra tolerance of 107°).
It is clear that when [ > Iy and n — [ > [y, we have X(n, l,c) # d:[gc I, This leads
then to the distinctness of V (D, ;..) and V(Dy 0, ) for large n in the following way.
When n — oo and we have a sequence | = [(n) with [ > lp and n — 1 > o,

1 1
then )\_nV(Dn,l,c) is distinct from )\—nV(Dmo,c/) for n > ng. Here ng depends on the

difference between the hand-sides of (22) but not on the concretely chosen I(n).

It remains now to test the cases | < lp and n — [ < lyp. We can then w.l.o.g.
assume that [ or n — [ is fixed. Let us define
(23)

. a /A A\ _ . a (N l a (N l
Ac) = d[3§+d[231(>\) tdl (A) LA = d4dld (X) T dld (7) .

1
These are the limits of VV(DM,C) when either [ or n — [ is fixed, and n — oo.

It is enough to test now that
(24) Ale) £dST and A1) £ dE for 0 <1<l

Each of these finitely many non-coincidences gives then some ng such that V(D,, ;.c) #
V(Dh,0,e) for n > ng.

For Ay the smallest norm of difference of the hand-sides of (24), in the instances
necessary to test, is > 1. For A it is ~ 0.162.

Case 3. The distinction of D,, ;. and D,, 1~ is more complicated, and requires
several subcases. ,

Case 3.1. dg%] # d[3c3]. Fix such a ¢, .

We determine [y by being the smallest nonnegative integer with

lo

)\//

X[
25) )~ d)| > a1+ 103 5|+ e+ 1050 |5

(we tested this numerically with an extra tolerance of 10~?).
It is then enough to prove that with (23),

(26) {)‘(la C)a X(lv C)} N {)‘(llv Cl)a X(llv CI)} =
for 0 <1 < ly and I’ > 0 arbitrary.

For such [ let Iy = 13(I) be the smallest nonnegative integer with

y e | X" N
en ) -awol > G+ g | 3|+ a1ty ||
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resp. with

% N 1 &1 % )\// 1
(28) |y =X, o] > (1) + 1, |)‘ ‘ + (1 + 145 | 5

(we tested this numerically with an extra tolerance of 107°).

Then (26) holds for I’ > Iy for almost all n (where ‘almost’ is uniform in ["). We
finish the check by testing (26) for 0 <[ <y and 0 <" < [;(I).

The smallest norm of difference in non-coincidence tests is about 0.034 for Ay and
about 0.0479 for Aj.

Case 3.2. ¢ = ¢/. This case is now more complicated, because the leading terms

1 1
of VV(DTL,LC) and VV(Dn,l/,C) on the right of (18) are equal.

We will assume w.l.o.g. I’ > [ > 0 and examine the difference, which we now
organize thus:

1 . ML N
29) 35V Dainind) ~VDusrwnr ) =) (5 )~ (3)

where

(30) (A)=1- (%’)l/l d2€]3 [(AT) B (A”) (AXI)H
@G 6)
AR CORCORECN

and

/ l/—l [C] 173 n—l/ 173 n—I / l/—l
o mo1-(5) - () )
Al 66
dh, [\ X
d[ch] i )\” l/_ X l. Y nfl. b -1
dv, ) N ) '

Note that when applying (18) in (29), the terms with d;; and daz depend only on n
but not on [, and thus cancel out in the difference. We did not ignore them, since
we will adapt this case to case 3.3 below, and there the terms will receive a non-zero
factor.

Now the first written term ‘1’ in (A) and (B) is the most important. Let us

consider the case that it is dominant.
Let lp be the minimal nonnegative integer with

+

+

+

+

N Jd] g e
32 1- Bl 2 S d
( ) )\ |d[ | )\ > an
NI ld s e
(33) -5 -2 | 5
|d32|
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Case 3.2.1. This means then that for [,n — 1" > Iy we have |(A)| > ¢ and
|(B)| > €, where ¢ is independent of n,1,1’. On the other hand, it is straightforward
that there are constants a, b independent of n, [ with

(34) I(A)| < a
and
(35) |(B)| <b.

Then with (34) and (35) if

(36) s () =it (X))

then we have for I,n —1' > Iy

$3<A>
a0

(n—1)—1l<C.

Thus

, and is independent

[ ]
Here C involves the constants a, b and €, and a logarithm of [2
3,2

L

of n,l,1'.

This then implies that [ and n — I’ are both bounded or both unbounded as
n — 0o.

Case 3.2.1.1. If | and n — I’ are bounded, then we can assume them fixed. Then
taking the limit of the Lh.s. of (29) for n — co and using (18), we get to exclude an
equality of the type

. N . A l . N n=l' . A\ n—l
(37) dy’, <X> +di} <7) =df), <X> +di} <7>

The examination of this is somewhat tedious, which is why we have prepared (21).

[c] /
Then excluding (37) blows down to saying that ﬁ is not an integral power of R
3,2

which is directly checked (already by using norms).

Note that still (21), which we do not know to hold for all tangles, is not indispens-
able (and this is the reason we have not simplified the above formulas using it). For
larger I,n — I’ we can estimate the second terms on either hand sides of (37) against
the first, and approximate the contradiction for di3 = d3; = 0. For a few smaller [ or
n — 1’ that may remain, we can examine (37) ad hoc.
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Case 3.2.1.2. Now let [ and n— " be unbounded. Then for n — oo the d[;;—term
in (31) becomes negligible along with the dy1, d12 and da; terms, and

w53 6]
)

Now from (36) we have

=0.

)&

When we let n — oo, we have that the second factor on the right takes only finitely
many (non-zero) values, while the third converges to 1.

[c] /
TQj must be some integral power of % which we
d3y

i = d

We obtain then again that

already saw is not the case.
Case 3.2.2. After this we still have to deal with [ < lp or 0 < n —1' < ly. We
can then assume [ resp. n — !’ is fixed, and work as in case 3.1 with (27) and (28).

Case 3.3. ¢ # ¢’ but dgg = dgc/]. This final case appears non-generic, and is an
unpleasant feature of the tangle TV we work with. It occurs for ¢, ¢’ = 2,5.

The case is treated parallelly to case 3.2. We assume again [ < !’ and must take
both orderings of ¢,¢’. Then (32) and (33) become, with [ =1’ —1,

’ [ 4 / ! l
B e e e e e R ek v ‘A_ "o
120 di | 1A d53 2
and
<mm L | A_’l)_Idéﬁ]l+Idécfl+ld£i]l+ld£i]| NI =g e
2o | [ |1 di| ¥ gl 1A

(plus the two inequalities obtained by interchanging ¢ and ¢’). And then we must
ascertain that
d[C] d[C ]
(38) g = 7 g2=
[c'] ]
das
are not integral powers of \'/\.
We have for A = Aj that |g;| ~ 2.636 and |A\/N| = 2.203, and for A = A, that
lgi| ~ 1.151 and |\/N| ~ 2.632.
Again for min(l,n — ') < ly we would need to test some finite number of non-

coincidences of the sort (26). However, this case in fact does not occur, since lp = 0
(for both Ay and Ap). O

3.3. A non-alternating series of examples. Shinjo and Taniyama also pro-
posed an infinite sequence of examples of non-alternating diagrams.
In this case

T =rkos-{3,2,-3,—4,-3}-a13 and T =T -ros-{3,4,—3,4,-3,2,-3,4,—-3}-a13.
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Note that the extra copy of T” inside T needs a little attention, since the orientation
of strands is different from the others.
Again let D,, be the closure of T' - (T")™.

THEOREM 4. For almost all n, the diagram D,, is everywhere different.

Proof. We repeat the proof of theorem 3 with a few modifications.

Everything until and including case 3.1 goes through for a proper value of A (we
specify below).

Case 3.2 works as before for ¢ = 1,2,4. However, for ¢ = 3,5 we have

(39) dyy = dy) =0

(which must be checked in exact arithmetic). The properties (21) hold again for all
c=1,...,5.

1

Let us assume [’ > . Now with (21) and (39) we have for ¢ =3
(40) _(V(Dn+1,l+1,C) - V(Dn+1,l’+1,c‘))
P\

- (- e () )
YT E @)

The d[fQ—term becomes negligible. Thus, in case of vanishing of (40), when we divide

+db]

+di]

Vi l
by (X) and take the limit for n — oo, we have

d[c] 1 B )\_/ l’*l _ 7d[c] )\_// n—I B i/ llfl )\_// nfl'
23 Y 21 Y Y Y .

Now I’ —1 > 0 and n—1’ > 0. If some of these two quantities becomes unbounded
for n — oo, the r.h.s. goes to 0, while the 1.h.s. cannot. Thus we can w.l.o.g. assume
that I’ — [ and n — I’ are fixed.

We determine [y by being the smallest nonnegative integer with

(] N (]
(41) |3 1_‘X > 2|dy

lo

)\l
By

(we tested this numerically with an extra tolerance of 107°). Then =1 —1<lo.
For each such [ consider all k :=n — 1" > 0 with

/i
o) (1-[3] ) = 2m

’ A\
- (3)

[)\,,k

A

)

)\l
By

and test the norm of

]

+d

()G (5]
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to be sufficiently away from 0.

It d[°3] = 0 (as for ¢ = 5 here), then in the test we just described replace d[ S
d[2 and d by d[c]

This Worked out for ¢ = 3,5.

Case 3.3 occurs now for ¢,¢/ = 3,5. These are exactly the values involved in
(39). Let ¢ = 3 and ¢’ = 5, and make no restriction on how ! and !’ compare.

The coincidence we have to exclude now can be written thus:
N l i d[] \ d[] A\
(12) <—>d231+6<> +<)
5 i) TS
d[] \ A\ l [11] \ n—l A\ ™
+dm X ) Tar\x 5y
23
N n—1’ (e d Y% A
SEORAE O 10
A d£2] A a<l \U A
d[C/] A N d[C/] A N ’
32 32

This is rather daunting to work with. However, it drastically simplifies by checking
(exactly, after numerical evidence) that in our case

d) =df) and df) =diJ =o0.

This means that the terms that involve d5J, d5J in (42) and those with d[QCQI], d[fQ] in
(43) drop out.

The other terms in the braces different from 1 become in norm smaller than 1 for
n > ng independently of [ or I’. Thus for n large enough we see again that |n — 1’ — |
is bounded (independently of n, I and {’). Then, however, letting n — oo, we obtain
again that go in (38) must be an integral power of X' /A, which is easily excluded.
2 1 1 1
1377787 10

1
and ITh For every of the above cases the smallest norm of difference that had to be

15
The values of A we worked with are 6 s-v/—1, where s is one of —

tested was at least 0.01 for some of these five values of A. O

The delicate choice of values for A was made necessary by the way we designed
our estimates. If the estimates are properly reorganized, it appears that many more
A (and such with even more convenient numerical behavior) can be used. It is evident
that this approach, with a certain amount of flexibility in details, can be applied to a
rather general iterated tangle construction.

4. Everywhere equivalent diagrams.

4.1. Generalities and outline. In order to express ourselves succinctly, let
throughout in the following D be a knot diagram and D’ denote a diagram obtained
from D by (exactly) one crossing change.

Following Taniyama, D is called everywhere trivial (resp. everywhere non-trivial)
if all D’ represent (resp. do not represent) the unknot. Everywhere trivial diagrams
are a special case of Taniyama’s everywhere equivalent (EE) diagrams D, which are
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characterized by demanding that all D’ should represent the same (though not nec-
essarily trivial) knot. Let us fix here that equivalence means taking mirroring into
account, but ignoring orientation. This notion is opposite to that of everywhere differ-
ent diagrams, except that we did not specify whether D and D’ should have the same
knot type. If they do, let us call D strongly everywhere equivalent (SEE), otherwise
weakly everywhere equivalent (WEE).

We will generally assume that prime diagrams are considered up to taking the
mirror image. This is done when examining some sort of EE property, which is
invariant under taking the mirror image. Thus, for example, a positive diagram
below should mean a positive or negative one. We should still emphasize again that
links depicted by diagrams D’ are not considered equivalent in the treatment of EE
if they are mirror images. For example, the 8 crossing diagrams of the knots 83 and
815 in [Ro, appendix| are not EE in our sense.

In the following, we will examine SEE and WEE diagrams, first starting with
everywhere trivial diagrams, continuing our preceding work [SA] (proposition 2). We
then go over to treat the general case and present several constructions of everywhere
equivalent knot diagrams. We speculate (likely too optimistically in question 1) that
these constructions give in fact all EE diagrams, and prove (theorem 5) that this is
so among diagrams of low genus.

4.2. A sequence of everywhere trivial diagrams. It is not known what are
the everywhere trivial diagrams of a non-trivial knot. The following six examples,
consisting of two trefoil and four figure-8-knot diagrams, were given in (11) and (12)
of [SA] (where "trivial” was called ”1-trivial”):

w O O©ORE

trefoil figure-8-knot

It remains an open question whether these are all. (A verification in [SA] up to 14
crossings found no further diagrams.) Theorem 5 below will answer affirmatively the
question for diagrams up to genus 3.

For everywhere trivial diagrams of the unknot, many more examples were found;
see §5.2.2 of [SA]. There are trivial ways of building more complicated ones by con-
nected sum. (This includes adding kinks, i.e. crossings created or reduced by a Rei-
demeister I move.)

For prime diagrams (such which are no connected sum) it was observed in [SA]
that many of the examples can be extended to infinite families by adding trivial
(resolved) clasps. It was then asked (Question 5.6 ibid.) about prime everywhere
trivial diagrams of the unknot without trivial clasps.

Here first we observe an answer to that question in analogy to a construction of
everywhere non-trivial unknot diagrams shown to me by Shinjo and Taniyama.

PROPOSITION 2. For every crossing number > 11 there are prime everywhere
trivial unknot diagrams without a trivial clasp.

Proof. Look at the (3-string) tangle T' on the left of figure 6. For a knot diagram
D containing this tangle, let Dj, be a diagram obtained by replacing 7" in D by T*,
where T* is obtained by composing k copies of T. Hereby strings are connected from
left to right, as on the right of the figure (for k = 2).
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Since T simplifies to a trivial tangle diagram (three parallel non-intersecting
strings), switching a crossing in one of the k copies of T'in T* gives the same tangle
as if this crossing is switched in T itself. Thus the set of knot types of diagrams D,
is the same as for D’ = Dj. In particular, when D is everywhere trivial, so is Dj.

It turns out that one of the (prime, with no trivial clasps) everywhere trivial
diagrams D of the unknot shown in Example 5.4 of [SA], the one with 12 crossings,
contains this tangle. By applying the aforementioned argument on this 12 crossing
unknot diagram D, we obtain a family of everywhere trivial unknot diagrams Dj of
6 + 6k crossings (k > 1) with no trivial clasps.

With a minor modification, this idea can be applied also to any crossing changed
version of the tangle diagram T in figure 6 which simplifies to a trivial tangle diagram.
In particular, the strand going on top in 7' may pass below the other two strands,
and/or these two strands’ crossings may be (simultaneously) switched. The 11 and
13 crossing diagrams of Example 5.4 of [SA] contain such tangles.

It remains to find similar diagrams of 14 to 16 crossings. Three suitable diagrams
are shown in figure 7. (They still required some computation; in particular the 15

crossing diagram shown is the only one we found.) O
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4.3. Some families of everywhere equivalent diagrams. We turn now to

Fic. 7.
the more general family of everywhere equivalent (EE) diagrams. The case that D
and D’ are both unknotted suggests itself as too abundant to have an interesting
(complete) description. We have made some experiment in the case that some of D
or D’ is knotted. It helped us observe the following series of diagrams. The proof
that they are everywhere equivalent is rather straightforward by observation.
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Let P(p,q) be the pretzel tangle diagram P(p,q) = (p,p,...,p).
——

q times

& - § 5950

PRrOPOSITION 3. The diagrams of these types are everywhere equivalent.
1. The pretzel knot diagram p(p, q) with p > 1,q > 3 both odd (obtained from
P(p,q) as in (45) by closing the two top and two bottom ends).
2. In the following k > 2.
2.a. The diagram Q(k,1) of the closed 3-braid (ctab)® for | odd and 3t k,
and
2.b. the diagram of the closed braid (o109)", in which each crossing is replaced
(with orientation possibly different from the braid and adjusted to the
resulting diagram) by l positive half-twists in the direction not coinciding
with the one of the braid. We assume here l > 1, and 3t k for | odd.
Let this diagram be called Q(k,1).
8. The arborescent diagram

(46) (P(Svp)a T ,P(3,p))

with q copies of P(3,p) for p,q > 3 odd.

4. A diagram obtained from those in type 2 by replacing each twist of l crossings
by P(3,1) forl > 2. (This replacement should be done respecting the direction
of the twists, as shown below in (47).) O

o
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A natural question about such constructions is how exhaustive they are. In the
realm of examining this question beyond brute-force verification, we decided below to
concentrate on a(n infinite) class of diagrams of low genus studied in [St5, St6, SV].
The work therein allows us to develop here a method for deciding the everywhere
equivalence for such diagrams.

We thus recall the preparations collected in §2.9 regarding generators, as well as
the brief explanation about low-degree Vassiliev invariants in §2.7.

In the following it is legitimate to consider a generator up to flypes. This is
because one can easily see that the proofs in §4 are not affected by mutations. Low-
degree Vassiliev invariants are mutation invariant, and so is the property of a diagram
to be unknotted. Also, the diagrams described in proposition 3 admit no mutations.

Note that in type 1 of proposition 3, we have the (2, ¢)-torus knot diagram as
P(1,q). For k = 2, type 2a gives the arborescent diagram (I,{)(—I, —[), and type 2b
the rational diagram (21, —2l). Types 1 and 3 give alternating odd crossing number
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examples, while types 2 and 4 yield non-alternating diagrams of even crossing numbers
except those of the form 2-3!. Note also that all the diagrams are positive. Let us in
relation to this remark the following.

LEMMA 5. Positive or alternating diagrams D are not SEE (unless all crossings
are nugatory).

Proof. When D is alternating, then D and D’ can be distinguished by the using
lemma 2, or alternatively by span V' (see [Th]).

If D is positive, then such diagrams can be distinguished using the Vassiliev
invariants vo and vz of degree 2 and 3, as noticed in lemma 4. O

We designed a fast yet efficient computational test for everywhere equivalence
based on comparing the degree-2 Vassiliev invariants of all D’. It enabled us to
verify:

(a) prime diagrams up to 18 crossings, and
(b) prime diagrams of genus up to 2/3/4 with up to 40/30/25 crossings.

Our partial verification must be nevertheless held as rather unrepresentative for
the general case. For example, the last two types of links in proposition 3 are far
beyond the range of our experimental observation. For type 3 the simplest diagram
(46), coming from P(3,3) and ¢ = 3, has 27 crossings and genus 10. (See the left
diagram in example 1 in §5, for P(3,2) and ¢ = 3, which gives a link.) The first
essential instance of type 4, obtained by applying (47) for P(3,2) on Q(2,2), has 24
crossings and genus 9. (Compare with the middle diagram in figure 9 for Q(B, 2).)

Still, everywhere we looked the (first two) patterns in proposition 3 exhausted all
examples in which not both D and D’ are unknotted. In particular, the prediction
that there is not a single such 18 crossing (prime) diagram is indeed true. (Whether
one occurs for 54 crossings is a mysterious riddle.) The outcome also means that
(within the range of our verification) the case that D’ is knotted, but D is not, never
occurs, and that in the opposite case D knotted, D’ not, the list (44) has no visible
succession. This lends some curiosity to the following extension of the related problem
in [SA].

QUESTION 1. Assume D is a prime everywhere equivalent diagram.
1. If D is SEE, is D (and D’) unknotted?
2. If D is WEE, is then D one of the diagrams in (44) or proposition 3?
3. If D’ is knotted, is D always positive?

Note that part 3 is a special case of the combination of parts 1 and 2.

Let us make a remark on composite diagrams. If a composite diagram D = #;D;
is SEE, then all D; are SEE, and so, expectably, D; are unknotted. We formulate the
following property when D = #;D;, is WEE.

LEMMA 6. If the answer to question 1 is affirmative and D = #;D; is WEE,
then all D; are among the same of the below three types:

(a) positive WEE diagrams in proposition 3,

(b) their (negative) mirror images, or

(¢) among the four figure-8-knot diagrams in (44).

Proof. It D = #;D; is WEE, then all D; are WEE. Thus if the answer to question
1 is affirmative, then D; are among the listed three types. We thus need to argue that
two different types cannot occur.

First assume that a figure-8-knot diagram D; occurs with some factor Dy of
another type (and possible further factors).
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Note that D) always depicts a positive or negative (or the trivial) knot. A positive
or negative knot has no figure-8 knot factor, and thus Dj#Ds# ... and D1#Dj ...
will have a different number of figure-8 knot factors.

Thus we remain to rule out a positive factor D; and a negative factor Ds.

Now, whenever D is a WEE diagram in proposition 3, D’ either simplifies to an
unknot diagram (if D is one of the few trefoil diagrams in (44)), or it simplifies to a
positive prime diagram of two fewer crossings than D. By the result in [O], both D
and D’ represent prime knots (unless D’ represents the unknot).

Moreover positive (non-trivial) knots are not negative. Thus looking at the posi-
tive and negative prime factors of D{#Dy# ... and D1#Dj ..., we see that D} and
D; must have the same knot type, which is not the case (e.g., by lemma 4). O

In fact, one can likely, stronger than the statement of the lemma, conclude that
the knot types of all D; are the same. This basically requires to verify that for the
positive diagrams D in proposition 3, all the apparently distinct knot types of D and
D’ are indeed distinct. We have not done all (and so omit here) the technicalities.
The (weaker) statement in the lemma will be needed later, though, and thus we wrote
an argument with some care.

A refinement of our computational test led to the following partial confirmation
results for low genus diagrams.

THEOREM 5. Let D be a prime EE diagram of genus up to 4. Then the answer
to question 1 is affirmative if D has one of the following properties: SEE, positive,
alternating, or genus at most 3. Precisely:

1. If D is SEE, then D is unknotted.

2. If D is positive, then D is among the diagrams of proposition 3, namely
15(p7 q) for 3 < ¢ <9 odd and Q(k,l) for 2 <k <5andl > 1, with l even
when k = 3.

3. If D is alternating, then D is a pretzel diagram p(p, q) for 3 < ¢ <9, or the
4-crossing figure-8 knot diagram.

4. If D has genus at most 3 and is WEE, then it is among the diagrams in (44),
or a pretzel diagram P(p,q) for 3< ¢ <7, or Q(k,l) for2<k <4 and [ > 1,
with [ even when k = 3.

Note that in the second part, positivity is assumed, and not (as question 1 sug-
gests) claimed. We do not yet feel confident about treating general WEE diagrams
of genus 4. The reason will become apparent in the proof of theorem 5. It requires
some discussion, and thus occupies the whole next subsection.

4.4. Proof of Theorem 5. All four parts are proved essentially along the same
pattern.

Our outset will be that for a potentially EE diagram D, we look at the corre-
sponding generator D with classes 1,...,9. (Thus g, as in §2.9, and unlike elsewhere,
denotes the number of classes of D) After seeing what one has to do with unsigned
classes, depending on the situation, we will assume D = by determined by a twist
vector y.

Let Dj be the diagram obtained from D by switching a crossing in class . We
then examine conditions of the sort

(48) (D) = v, (D)) (for SEE) resp. v, (D}) = ’Un(D;-) (for WEE)

for Vassiliev invariants v,, as constraints on the twist vector y of D (for n = 2, 3,4, 5,
as far as we need). It is a consequence of the work in [St2] (already invoked in the
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proof of theorem 2) that equalities like (48) give algebraic conditions of degree (up to)
n — 1 on that vector. Thus first, for n = 2, we restrict possible y to a certain (affine
sub)lattice of Z9. In many cases this lattice is already empty (the solutions over Q
of (48) give an affine space with no integer points). If it is not, we examine on it the
vanishing of the higher order polynomials, until we are left only with (twist vectors
giving) diagrams we claimed. Several extra restrictions on y, depending on the type
of diagrams we examine, will help us along the way.

We always start with a finite, but rather large, number of generators (c¢f. table
(14)). First we perform the simpler tests using MATHEMATICA, which narrows the
list of worthwhile cases. We will explain for the proof of each of the four statements
of the theorem what was ordered to the program, and what was the outcome. The
remaining cases are examined by hand on an individual basis. This list is still too long
(and of little interest) to be presented in entirety, but we give a few representative,
and among the more subtle, examples to show how we proceeded.

The four parts of the theorem are ordered chronologically, and essentially with
increasing complexity of the test procedure. Thus the balance shifts between what
had to be done by computer, and what was left to manual records. For a general WEE
diagram of genus 4, some even more delicate programming will be needed, and/or the
ad hoc treatment of an exceedingly daunting remaining list. Thus, even although the
result would be more general and less technical, we felt that the effort for the proof
grows disproportionally to the importance of the statement.

Part 1. Consider first the claim on SEE diagrams.

Working recursively over crossing number, we argue first that it is enough to
consider prime diagrams D without a trivial clasp up to flypes, in particular such
with no unsigned classes.

For SEE diagrams with unsigned classes the inductive argument over the crossing
number works thus: Let D* be the diagram obtained from D after flypes and resolving
a trivial clasp. (Note that D* can be composite even if D is prime.) Flypes commute
with crossing changes and do not affect the SEE property. Similarly neither does
resolving (though not creating) a trivial clasp. Thus, as remarked above lemma 6,
D* is SEE (even if composite). Eliminating a trivial clasp in an SEE diagram, and
decomposing the result into prime factors, does not increase the diagram genus, and
gives SEE diagram(s) of fewer crossings. By induction every prime factor of D* is
unknotted. The connected sum of unknotted diagrams is unknotted, and then so is
D.

Thus, until the end of the proof of part 1, we need to consider only prime diagrams
D with no unsigned classes. Then we can work with twist vectors. Every component
y; of the twist vector corresponds to a class i of the generator. We number the
classes i = 1,...,g. The order is not really relevant, but was chosen in the following
calculation by the first crossing in the notation of Dowker and Thistlethwaite [DT],
in which generators are maintained. The restriction remains that y; # 0 when the
i-th class is even, and this condition will be used extensively.

Now when D is in the series of D, we examine vy(D) — vo(D’), where vy is the
Vassiliev invariant of degree 2. The difference is given by the linking number of the
2-component link obtained by smoothing the switched crossing p. This depends only
on the ~-equivalence class of p.

Let for D = Dy, consider the diagram D’ = D} be obtained from D by switching
a crossing in class i. Unless y; = 0 and the class is even, one can then, after possible
flypes, remove a trivial clasp. We assume we do so, and thus always regard D as
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one of ﬁyie%, for the standard basis vector e; of Z9 (with 1 in the i-th position, and
0 everywhere else). The sign =+ is opposite to sgn(w;) (or either signs are possible if
w; = 0). However, the sign is not relevant, because

(49) U2(ﬁy+ei) - ”2(Dy) = U2(ﬁy) —v2(Dy—e,)

and so the vanishing on this expression does not depend on the sign of the crossing
we switch.

Now va(D) — va(D’) is the sum of the writhes of the ~-equivalence classes linked
with class . We obtain then from

(50) va(D) —va(D}) =0 foralli=1,...,9
a linear g X g equation system

(51) Apy =10,

where the matrix A = Ap is given by

{ 1 if class ¢ and j are linked,
Aij =

0 if class ¢ and j are not linked,

and the vector b by
1
b; = 3 # { odd classes linked with class ¢ } .

(Note that b; are integers, essentially because of the even valence property.) Solving
this system gives an affine subspace L = L of Q9 in which all y lie where D = Dy is
“strongly everywhere vy-equivalent”, i.e. satisfies condition (50).

We calculated these affine spaces L p for all generators D using MATHEMATICA.
Still y must be in Z9, and many of these affine spaces contain no integer points.
Moreover, we need that y; # 0 when #i = 2; otherwise we have a diagram D with a
trivial clasp. These restrictions turn out severe: computation shows that such integer
points in Lz occur only for 2 generators of genus 3 (out of 4017; c¢f. table (14)) and
31 of genus 4 (among the nearly 3.5 million).

Now A is a square matrix, but it may sure have a corank r. (The largest corank
we had was 5.) Then the relevant twist vectors y are of the form

,
(52) yza—i-chbk,
k=1

where a is one element of Lz and (by) is a basis of the kernel of Ax. Note that even
if a basis (by) is integral, not necessarily for every integer point y the ¢, must be
integers. To ascertain this, we had to manually readjust the bases for two generators
D.

From now on we can work with twist vectors y and their diagrams D = Dy,
parametrized by integers ¢j through (52). The next step is to do a similar test using
vg of (11).

Consider therefore the difference

(53) v3(D) —v3(D;) ,
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for a positive class ¢ of D. In case of vy this was a linear function in the cg; now it
is a quadratic polynomial. (We mentioned that for a Vassiliev invariant of degree n
this difference is a polynomial of degree at most n — 1.)

Note that the difference (53) for the given choice of D} would be relevant only if
w; > 0. For the opposite sign of crossing to switch we would have a separate polyno-
mial. However it turns out that when the expression in (49) is zero, the analogue of
(49) holds also for vq replaced by vs:

(54) v3(Dye,) — v3(Dy) = v3(Dy) —v3(Dy—e,) -
The property (54) can be deduced from the identity
V(by+eq,) = (tQ + 1)V(Dy) - tQV(Dy—ei) )

which in turn follows from (1) (and was used e.g. in [St6]), and the expressions of vy
and vz in terms of V" (1) and V(1) (see (11) and above it). With (54), the vanishing
of (53) can thus again be assumed not to depend on the sign of class i.

Regarding the difference (53) as expressed in terms of ¢, we replace now (51)
by a quadratic equation system in ci, with r variables and ¢ equations. Despite that
r < g, this system is often underdetermined; sometimes even all equations are trivial.
However, many non-trivial quadratic polynomials are simple; often they are single
monomials. Their vanishing then means that some ¢y, is zero. It turns out then that
this implies via (52) that y; = 0 for some ¢ with #¢ = 2. Then D has a trivial clasp
(up to flypes), a case we excluded, though.

This leaves now a few very specific diagrams. Many of them are directly checked
to be unknotted. Then we remain at 5 generators. With them a similar test using vy,
the coefficient of z* in the Conway polynomial, works. (Note that vy also satisfies a
property like (49) and (54), which follows from (10).)

This procedure finishes the proof for the SEE case.

Part 2. The method can, in principle, be used also for WEE diagrams. Then,
though, the v-test means that a twist vector y with WEE ﬁy must satisfy an equation
system obtained from (51) by multiplying the i-th equation by sgn(w;w1) (see (15)),
and then subtracting the first equation of the system (which is discarded) from all
others. Let this new system be denoted as

(55) Apy=1b.

This system depends on the signs of w;, up to reversing all of them simultaneously.
Thus we have to deal not with one, but with 29! systems for each generator b, which
is too tedious (at least for genus 4; see the remark before the proof).

However, if we focus on positive (prime) diagrams, we have again one equation
system per generator. The rank of A p often decreases in comparison to Ap, and there
are many more D with integer points in the solution space L p of (55). However, now
a new condition enters for the twist vector y: all y; (or equivalently, w;) are positive.

This again brings the relevant generators D down to a manually manageable list.
We can then perform an analogous test with vz and vy. Let
(56) Pijin = v (DY) — va(D}).

K2

Now we have to examine the vanishing of quadratic polynomials F;;;3 in the coefficients
cx of (52) (or simpler, it is enough to look just at Pp;;3) and, when needed, the cubic
polynomials P;;.4. To give an idea how this goes, we include a specific example.
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The 24 crossing generator, given in the notation of Dowker and Thistlethwaite
(DT,

6421048 14 4 18 8 24 12 40 30 16 46 34 22 38 28 44 32 20 2 36 26
has the following solution of (55), where we order the 12 classes by the first crossing

occurring in the above notation. The vector a in (52) is the zero vector (so L is here
a genuine linear space), and r = 3 with

bl - ( 1) 17 17 1) 1) 17 07 1) 0) 1) 1) 1)7
b2 = ( _17 07 07 1) 0) _15 07 0) 1) 0) 0) 0)7
b3 ( 0) _15 17 0) _17 07 17 0) 0) 0) 0) O) .

By looking at coordinates 7, 9 and 10, we see that in order y in (52) to be an integer
vector, all ¢ must be integers.

It turns out that the wvs-test gives no new restriction on this linear space, i.e.,
P53 =0 for all i, 5. (Note that, while the equality (54) may no longer hold, we know
that we always have to look at the term on its right hand side. Now this term is not
supposed to vanish, but to be equal for all i.)

Looking at v4, let D} be again the diagram obtained from (a positive diagram) D
by switching a crossing in class ¢ (where ¢ = 1,...,12). By calculating Pi3.4 of (56)
in a few explicit diagrams, we find

Pi3.4 = 2cgc3(cg + ¢3) + 2c1c3(cs — ¢1) — 2¢1c2(c1 + ¢2) -

Now observe that the positivity of y; imposes the restrictions ¢; > ¢2,c3 > 0 on ¢i. It
is then, however, easy to see that Pi3.4 < 0 for ¢ satisfying these inequalities. Thus
none of these positive diagrams D is everywhere equivalent.

Part 3. It was already indicated in part 2 how to handle diagrams where classes
have crossings of given sign. We tried this out in the, most interesting, case of alter-
nating diagrams. For a negative (crossing) class ¢ the restriction on the twist vector
component y; is now y; < 1 — #4.

We restricted ourselves only to non-special generators, since for the special ones
the properties positive and alternating are equivalent, and thus we are back to part
2.

Testing for integer points in the solution of (55) and (in some rudimentary and
not thorough way) the admissibility of the proper signs of w;, we had 121 generators
of genus up to 4. We used on them the vs test. (Again (54) may no longer hold, and
we must choose what hand side to look at depending on sgn(w;).)

We combined the vs test with the following extra argument. We have observed
(e.g. in [St7]) that a ¢, move in a positive class of an alternating diagram increases
maxdeg V by 2, and fixes mindeg V. In a negative class, it decreases mindeg V' by 2
and fixes maxdeg V. This implies that no alternating diagram D can be EE when

(57) there are some 1 <4, j < g with w;, —w; > 3.

We illustrate the argument by the following example. For the 17 crossing gener-
ator

48182222026306 12 34 28 14 32 16 24 10
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we have 13 classes, only the sixth of which is negative in an alternating diagram. The
linear system (55) has the affine (integer) basis, with r = 3,

a=(-1,0, 1, 0,0, 1, 0, 0, —1, 0, 0,0, 0),
by=(-1,0, 1, 0,0, 0, 0, —1,—1, 1, 0,0, 1),
b2:( 47 ]-a 737 ]-7 177 ) ]-a 07 4; ]-7 07 ]-7 0)7
bs=( 0, 0, 0, 0,0, 0, —1, 1, 0, —1,1,0,0).

From the condition y; > 0 when j = 11,12, 13, we see that ¢; > 0 for i =1,2,3.
Now look at the sixth coordinate in (52). If ¢ > 1, then we find yg = 1 — 2¢co < —3,
while y12 = ¢ > 1. Thus wg < —6 and w2 > 3, which cases can be excluded by the
test (57).

Thus ¢ = 1. Now, though, looking at the seventh coordinate, we have y; =
ca —c3 =1—c3 <0, in contradiction to wy > 0, that is needed for a positive class.

The vanishing test of P;;.3, together with the test (57) and the condition on the
signs of w;, allows us to deal with all the remaining generators in a way similar to the
above example. We are finally left only with the 4-crossing (figure-8-knot) diagram.

We emphasize the importance of the test (57) as follows. In some cases, the
polynomials P;;., (for n = 3,4) of (56) were too complicated to easily give restrictions
on the ci. In other cases they were too hard to obtain. Our approach to determining
P;j.3 (and Pjj.4) was via diagrammatic calculation of vs (resp. v4). Namely, since we
know the maximal possible degree of P;j,,, the polynomial can be determined from
its values on (absolutely) small arguments cx. These determine via (52) particular
diagrams ﬁy However, the bases (by) of the lattices we obtained for some genus 4
generators were not simple, in that they had large coordinates (in absolute value; the
largest one we had is 57). Thus even small ¢ can lead to large |y;| and diagrams with
many hundred crossings, on which v would have to be evaluated. The test (57) made
it redundant to treat such complicated cases. The unavailability of (57) to avoid these
situations is one main reason for the considerable increase in difficulty of the test for
non-alternating diagrams.

Part 4. We have tried, in the end, to look at the full set of systems (55) at least
for genus up to 3. We explained that they depend on the pair (D, (sgn(wi))le),
which we will call a signed generator. Before we describe the handling of signed
generators, we discuss, though, another additional case which returns to relevance:
the diagrams D with unsigned classes.

Case 1. Unsigned classes do not occur for positive or alternating diagrams, and
for SEE diagrams the inductive argument over the crossing number worked easily. We
wrote lemma 6 mainly in order to see here how to deal with the WEE case.

Now, if D is WEE, D* is also. (We use D* with the meaning of part 1.) Note
that a WEE diagram has no nugatory crossings. We use again an induction argument
over crossing number and want to apply lemma 6. This is justified under induction
assumption by repeating the argument we had for SEE that the diagram genus does
not increase under flypes and clasp resolution.

Lemma 6 then says that either D* is positive, or a possible connected sum of
the figure-8-knot diagrams in (44). The case that D* is positive is handled by the
following lemma.

LEMMA 7. A diagram D with ezactly one negative crossing is not EFE.

Proof. One of the D’ will be positive, while others will be not. This is the situation
treated in lemma 4. O
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However, the case that D* is a connected sum of some of the four right (figure-
8) diagrams in (44) must be paid attention to. The genus does not increase after
resolving a clasp, and by checking the genus of the diagrams in (44), we see that a
diagram D* of genus 3 can have at most 15 crossings (the connected sum of 3 of the 5
crossing diagrams). So D has at most 17 crossings. This already leaves a finite range
of diagrams, but we mention two arguments which further considerably narrow this
range, and make the check practicable.

First, if an unsigned class has more than two crossings, then D* is prime (after
removing the trivial clasp). It is then one of the diagrams in (44) (without connected
sum). In these diagrams all crossing switches give the unknot. To show that D is
not EE, it is enough to check that a #, move at whatever crossing of a diagram in
(44) gives no unknot. This can be seen using vy without electronic intervention: the
invariant of these diagrams will be —2, since the diagram D depicts figure-8 with
v9 = —1, and the unknot has zero invariant.

We then have to deal only with the case that unsigned classes have two crossings.
We can exclude next the diagrams with more than one such class. Namely, in this
case D* would still have an unsigned class. This can then be ruled out by induction,
since our list of WEE diagrams has none with an unsigned class.

Thus we need to check diagrams D of at most 17 crossings, with exactly one
unsigned class, and this class having two crossings. These diagrams were examined
by a case-by-case (computer) verification.

Case 2. We can now turn to diagrams with signed classes only. One can assume
up to mirroring (and we did) that sgn(w;) = 1. After about 10 hours of computation,
verifying the solvability of the systems (55), MATHEMATICA leaves ~ 1200 signed
generators for further treatment.

At this point, not only the determination (as in the previous parts of the proof),
but also most of the test of P;;;3 had to be automatized. Recall that P;;;3 are quadratic
polynomials in the c¢g. It turns out in practice that very often they depend on only
one variable among the ¢i. In that case, the roots can be easily found, and they must
be rational (or often even integral, when the integrality of ¢, can be deduced from
the integrality of y via (52)). Whenever they are not, the signed generator can be
discarded.

We also discarded signed generators which correspond to positive or alternating
diagrams, since these were treated in the previous two parts of the proof. We thus
aim to remain only with the figure-8-knot diagrams in (44) (except the alternating
one).

With this we reduced the list of signed generators from about 1200 to about 200.
For them P;;.3 can be examined closer. Here we left it to MATHEMATICA to solve
the system of polynomial equations
(58) (Pijiz = 0)i
in (cg). (Again, it is enough to take ¢ = 1.) In the previous parts of the proof we
had tried to rule out or restrict integer solutions to (58) by looking at the polyno-
mials manually, in particular because we were not confident that MATHEMATICA’s
output would be manageable. But here the program performed unexpectedly well,
and revealed that for most generators these systems are unsolvable. In a few cases,
it yielded sporadic solutions. These, however, are not real or not rational or integral,
or do not lead to the proper signs of w;.

Apart from the three non-alternating figure-8-knot diagrams in (44), we were
left only with two signed generators for which (relevant) solutions of (58) occur.
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These arise, for certain signs of classes, from the 16 crossing generator Q(4, 2) (made
alternating by crossing switches). The vy test reduced the two parameters of each
family to one, and that one had to be eliminated using the degree-5 Vassiliev invariant
vs of (12). 0O

5. A graph-theoretic construction. Finally, we discuss a relation to graph
theory, as outlined in the introduction. We admit (responding to advice by the ref-
eree), that this relation occurred to us clearly only after we had observed and examined
(on low genus diagrams) the knot theoretic constructions in the previous section. We
convinced ourselves in the end (see propositions 4 and 5) that for knots the below
graph-theoretic point of view only reformulates, and does not extend, the families of
everywhere equivalent diagrams we obtained. However, it gives a way of observing the
generalization to link diagrams, showing a natural relationship to totally symmetric
graphs. In the belief that studying this relationship might be worthwhile, we present
§5 as a conclusion of the paper.

5.1. Edge transitive graphs. We recall the generalities regarding graphs put
together in §2.4.

As mentioned, we will consider everywhere equivalence below also for link dia-
grams. For our purpose we should assume that all D’ represent unorientedly isotopic
links. Isotopy must be understood also to allow interchange between components
of D’. It should still, though, preserve mirroring. For everywhere equivalent ori-
ented link diagrams, isotopy may both alter orientation of individual components and
interchange some of them.

Throughout the below exposition, G will play the role of a checkerboard graph
G = G(D) of a diagram D.

Let us in the following restrict ourselves to prime diagrams D. (We discussed
how to infer about composite ones in and above lemma 6.) Consequently, we will
assume below that G is cut-free. Note also that a cut-free graph G is 2-connected
(has no isthmus), unless G is a single edge. Here is a way to generate some families
of everywhere equivalent diagrams.

Let P(p,q) be a pretzel tangle as in (45), and let P(1,q) be called a ¢-twist. For
a graph G with G = G(D), we define diagrams D;(G;q) resp. D2(G;q) by replacing
each edge e of G by a ¢g-twist in edge direction, resp. a twist opposite to edge direction
as follows (for ¢ = 5):

— oo,
(59) /\ N %
X
edge in G twist in edge direction twist opposite to edge direction

For p > 1, we can define D1(G;p,q) and D2(G;p,q) analogously, when setting the
direction of the pretzel tangle so that for p = 1 we obtain the previous picture. (Thus,
for example, P(3,5), as positioned in (45), should be parallel to a horizontal edge e
as in (59).)

That is, G(D1(G;p,q)) is obtained from G by bisecting (¢ — 1) times each edge
of G, and doubling (p — 1) times each of the resulting ¢ edges. (For G(D2(G;p,q)),
double (¢ — 1) times, and then bisect (p — 1) times.)
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Thus,
(60) D1(G;p,q) =!Da(G*;p,q).

In (59), the twist in edge direction is Kauffman negative (and in the checkerboard
coloring, the bigons are colored black), while twist in opposite to edge direction are
Kauffman positive (and the bigons they create are colored white).

CONSTRUCTION 1. Let G be a cut-free edge transitive graph and fix p = 1,3 and
g > 1. Consider the link diagram D; = D;(G;p,q) for i = 1,2. That is, replace each
edge e of G by a P(p, q)-pretzel tangle either along, or opposite to, the direction of e.
Choose crossings of D; to be all Kauffman positive.

When G has a reflection symmetry that reflects an edge (i.e., exchanges its end-
points), then consider also D1(G;p,2) for p > 1. (We will call this the reflective
case.)

ExaMPLE 1. Let G = Mj3 be the theta-curve, p = 3 and ¢ = 2. The two diagrams
are shown below. They are manifestly different: among others, the first one has 3
components, the second one two.

) ) 0 00 99

D1 (M3;3,2) Dy (M3;3,2)

It is possible to take also p = 2, but then we must either demand that ¢ = 2 and
(depending on the direction of the twists) that G is vertex or face transitive, or we
must regard D’ as equivalent also under changing ways to build connected sum.

REMARK 1. Note that when G has an edge-reflecting symmetry, G* has an
edge-fixing one. Both types need to be separated here. For example, let G be the
cuboctahedron, the median graph of the cube net, or the icosidodecahedron, the median
graph of the dodecahedron net. Then both G and G* are edge-transitive (see the proof
of proposition 4 below). Moreover, G has an edge-reflecting symmetry, and thus G*
has an edge-fixing one, but not vice versa. Thus D1 (G;p, 2) is EE, but not necessarily
D1 (G*;p,2) =!Dy(G; p, 2).

By lemma 3, one can characterize those G giving a knot diagram D in construction
1 by saying that G should have odd number of spanning trees. Note the following
important consequence of this property: whether a graph G gives a knot diagram D
with G = G(D) does not depend on the planar embedding of G. We will not refer
to this circumstance explicitly, but to follow some of the below arguments, it will
be helpful to choose a favorable embedding of G to decide whether it gives a knot
diagram.

LEMMA 8. If D is obtained by construction 1, then D is everywhere equivalent.
Moreover, D is alternating and, if it is a knot diagram, it is (up to mirroring) positive,
i.e., special alternating.
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Proof. Since D is constructed from G, the symmetry of G that carries e to €’
will carry the twists of e in D to those of ¢’. If the plane homeomorphism alters the
orientation, then it is realized by a m-rotation of the link in space, which mirrors the
diagram and then changes all crossings. Thus in these cases again Kauffman positive
twists are carried to Kauffman positive ones.

When all crossings are Kauffman positive (or all are Kauffman negative), then
D is alternating. It remains to see that for a knot diagram, all crossings are either
(skein) positive or all are (skein) negative. For this it is enough to look at p = 1
(instead of p = 3), where D consists of ¢-twists. The reflective case gives no knot
diagrams; see the proof of proposition 4 below.

The sign of Kauffman positive twists depends on the local orientation of the
strands: Kauffman negative reverse twists are (skein) positive, while Kauffman neg-
ative parallel twists are (skein) negative (opposite with Kauffman positive twists).

(61)

edge e reverse twist parallel twist

Let e be an edge in G corresponding to a twist in D = D;(G;q) (i = 1,2), and let
r be a crossing of D in that twist. For every knot diagram D and a crossing r, one of
the two splicings of 7 in D as in figure 1, the skein smoothing, gives a 2-component
link diagram, and the other one gives a knot diagram. The twist at e is reverse if
and only if the skein smoothing of r is the splicing that corresponds (after possible
nugatory crossings are removed) to the deletion (as opposed to contraction) G \ e of
e in G.

Now, by lemma 3, this is equivalent to saying that G \ e has an odd number of
spanning trees. (One can distinguish using the lemma the two spliced diagrams by
the parity of this number.) But by symmetry of G, this number (and its parity) must
be the same for all edges e of G. Thus the local orientation of all twists in D is the
same, and since (in an alternating diagram) the Kauffman signs of all crossings are
the same, so are all skein signs. O

The spanning tree number argument given here depends essentially on the prop-
erty D to be a knot diagram: one cannot in general recognize between an n-component
and an (n+ 1)-component link diagram for n > 1 using the number of spanning trees.
This is also evident, since altering orientation of individual (diagram) components
does not affect the Kauffman sign, but it will alter skein signs of some crossings.
Thus one can easily construct a number of counterexamples to the analogous positiv-
ity statement for diagrams of several components. For this reason we chose to work
only with unoriented everywhere equivalence for links.

Note that families 1 and 3 in proposition 3 arise from construction 1 using the
graphs M, of two vertices, where ¢ is odd.

We hoped construction 1 to give more examples in the knot case, but it turns out
that it is not so.

PROPOSITION 4. All everywhere equivalent knot diagrams obtained from con-
struction 1 are given by families 1 and 8 in proposition 3.

Proof. Let us put aside the reflective case first (we will come back to it at the
end).



EVERYWHERE EQUIVALENT AND DIFFERENT DIAGRAMS 131

Edge transitive graphs have been studied in combinatorics for some time. If in our
case G is 3-connected and dually 3-connected it gives a planar tesselation. By Whit-
ney’s work every symmetry of the abstract graph is realizable by a homeomorphism
of the plane (see [CP, p. 2] or [FI, p. 98], for example).

There are only nine finite edge transitive tesselations; see [FI, Theorem 1] and
[HS, p. 405]. Five are given by the nets (1-skeletons) of the Platonic solids. The other
four graphs are the cuboctahedron and icosidodecahedron (see remark 1), and their
planar duals.

It is easily checked that none of the nine graphs gives a knot diagram via con-
struction 1 (i.e., all have even number of spanning trees).

The other cases, we have up to duality a non 3-connected graph. Let us first
assume there are no multiple edges. These cases were treated in [FI, Theorem 2],
which for convenience we restate here.

THEOREM 6. (Theorem 2 of [FI]) The finite, simple, connected edge-transitive
planar graphs which are not 3-connected are the single vertex, the single edge, stars,
simple cycles, and the graphs obtained from the single edge, simple cycles and the nets
of the Platonic solids, the cuboctahedron, and the icosidodecahedron by replacing every
edge by Ko, (the complete bipartite graph), where n is a fized positive integer.

Replacing an edge e by K3 , means the deletion e, followed by the identification
of the vertices of valence n in K, (or of any pair of nonadjacent vertices for n = 2)
with the endpoints of e. (E.g., when n = 1, we have the bisection in (9).)

Note, however, that in the above theorem edge-transitivity w.r.t. symmetries of
the abstract graph is considered. When 3-connectivity fails, not all such symmetries
come from homeomorphisms of the plane (they come from the flipping phenomena
shown by Whitney). In our case a homeomorphism of the plane still preserves the
two covalencies dq and ds of each edge (the number of edges bounding the two faces
adjacent to the edge). Thus d; and ds are the same (up to order) for each edge.

This argument readily discards most of the graphs in theorem 6. The star is not
2-connected (and hence not cut-free). The edge gives the diagrams of family 1 in
proposition 3, and the cycle gives those of family 3.

The replacement of each edge in a graph G’ by K, , will give a graph G whose
link diagram has a component (among others) for each face of G’. Moreover, (d1, ds2)
are not equal for all edges of G, unless n =1 or G = K ,. But G = Ky, gives a
knot only if n = 1, which is of little interest.

It remains to look at the case of multiple edges. By symmetry then all edges
are multiple, and then by a recursive nesting argument, some of them must bound a
2-gonal face. Thus d; = 2, which means that G is obtained from some graph G’ by
doubling each edge at least once. If some edge is (at least) triple, all must be, and by
the same nesting argument we have three multiple edges enclosing two 2-gons. Then
d> = 2 also, and so we have a two-vertex graph M,.

When all edges of G’ are doubled, then one can still analyze what G’ is (it must
have d; = 2), but it is not necessary. One directly sees that for whatever G’, con-
struction 1 on G cannot give a knot diagram.

The reflective case is easily seen to give no new knot diagrams. If p is even, then
there are always extra components in the tangle P(p,2). Otherwise, for p odd, the
connectivity is the same as for p = 1, which we already studied. O

5.2. Dually edge transitive graphs. The reason for explaining construction
1 is mainly for introducing its analogue which explains types 2 and 4 in proposition
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3, but which is less standard.

DEFINITION 2.  Let us call a graph G dually edge transitive if the following
conditions are satisfied.

First, G is self-dual, that is, homeomorphic on the plane to its planar dual G*.
Note that each edge e € G has its dual edge e* € G*. Thus for each set of edges E of
G we have a dual set E* (which is different from the planar dual of E regarded as a
graph for itself!).

Let i = 1,2 and j = 3 — i. We demand that there is a disjoint partition E(G) =
E1 U E5 of the edges of G with the following property. If e, e’ € E;, there should be a
symmetry of G taking each of E; to itself and e to ¢’. If e € E; and ¢’ € E;, then a
symmetry of G should take each of E; to E7 and e to e'*.

Even if dual edge transitivity is a tangible property, we are not aware of any
attention given previously to it, and of how much graph theoretical interest it is.
(See, however, question 2 below and the comment after it.)

ExaMPLE 2. Cousider a wheel (graph) W,,, the result of connecting all vertices of
an n-cycle graph to an extra, central, vertex (see middle of figure 8 or e.g. [St4]). Fur-
ther examples of dually edge transitive graphs include the double stars and twofold?
wheels. Typical instances of each class are shown in figure 8. In all three cases, F;
can be taken as the set of edges incident from the central vertex. (Thus for double
stars, Fo = @.)

Fic. 8. Dually edge transitive graphs: a double star, a wheel, and a twofold wheel.

Of course, the role of Fy and E» in the above definition can be interchanged. This
switch will be used (with non-trivial effect), so let us for simplicity write

E = E(G)\ E

for an edge set E C E(G) of G. In at least one case (see below example 3) there is
an ambiguity of F beyond taking the complement in E(G). For the following it will
thus be helpful to regard a dually edge transitive graph as the pair (G, E1).

CONSTRUCTION 2. Let (G, E7) be a cut-free dually edge transitive graph. Take
p=1,3 and ¢ > 1. Replace each edge e of G by a P(p, q)-pretzel tangle, oriented in
the direction of e (¢f. (59)) if e € Ey, and opposite to that direction if e € Ey. Switch
crossings so that all crossings corresponding to edges in E; (resp. E2) are Kauffman
positive (resp. Kauffman negative). Call the result D(G, E1;p, q).

If G has an edge-reflecting symmetry along an edge e € E1, then consider addi-
tionally D(G, E1;p,2) for p > 1 (and again call it the reflective case).

3We very intentionally use the word ‘twofold’ here: the twofold wheels are not double wheels,
i.e., the doubled graphs of wheel graphs.
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7

D(r,starv; 3,2) D(r,starv; 3,2)

Fic. 9. EE diagrams obtained from 7. In the right two diagrams, v is the vertex of T that
corresponds to the rightmost bounded region (when the checkerboard coloring is chosen so as this
region to be black).

(A similar remark to construction 1 applies in the case p = 2.)

In order D to be a knot diagram, one can again say that for odd ¢, the graph G
should have odd number of spanning trees. For even ¢ one can say that after bisecting
all edges in F7 and doubling all edges in Fs5 (or vice versa), the number of spanning
trees should be odd.

ExaMPLE 3. We show here the case of the tetrahedral graph G = 7, since it
has an extra peculiarity. First, 7 is edge-transitive and self-dual, and thus dually
edge-transitive with F; = E(7) or By = @. But 7 = W3 is also dually edge-transitive
as a wheel graph, with F; = starv (for whatever vertex v). Below we see several
diagrams obtained from 7 by composing with P(3,2).

First, if an edge-transitive graph is self-dual, we have comparing with (60), up to
mirroring,

D(G,E(G);p,q) = D1(G;p,q) ='D2(G;p,q) ='D(G,2;p,q) .

Here, for G = 7 and (p, q) = (3,2), we have beside this diagram also D(r, star v; 3, 2)
and D(r,starv;3,2). The three diagrams are shown in figure 9. Apart from having
all 36 crossings, they are entirely different: the first is an alternating diagram of 4
components, the other two are non-alternating, of one and 3 components, resp.

REMARK 2. Again, as in remark 1, the reflective case is not duality invariant.
Consider the wheel W,, with an n-valent central vertex v, for n # 3. The graph has
edge-reflecting symmetries along edges in the cycle star v, but not along those in star v
(which connect vertices of different valence). Thus D(W,,,starv;p,2) is EE, but not
in general D(W,,,starv;p, 2).

LEMMA 9. A diagram obtained by construction 2 is everywhere equivalent. More-
over, if it is a knot diagram, it is positive.
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Proof. For knot diagrams, an argument similar to construction 1 is needed to
ensure the strand orientation at each twist is proper. This goes as before, with the
additional remark that switching between e and e* is compensated for by altering the
direction of the twists (which changes their local orientation). For knots, the reflective
case is again irrelevant (see proposition 5). O

Types 2 and 4 in proposition 3 come from construction 2 applied on G = Wy.
In particular, Q(k,1) = D(Wj,starv;1,1) for the central vertex v, and Q(k,l) =
ID(Wy,, starv; 1,1).

We proposed this second construction, because it raises the following graph the-
oretic question, which the referee recommended to further highlight:

QUESTION 2. What graphs G are dually edge transitive? Can graphs other than
those on figure 8 occur?

Since the double stars are not cut-free, they are not very relevant to us. The
twofold wheels, however, were initially unexpected, and came up during our attempt
to systematically study the occurring possibilities for G. We are quite convinced
that the given families are all, but we have not done the complete details to rule out
everything else. (However, note for example, that the below proposition 5, together
with lemma 3, implies the case of odd number of spanning trees.)

We have not studied exhaustively question 2 also because graph theory was not
our main objective. Coming back to our initial motivation of knot diagrams, we have
been able to clarify the most important point in this context, whose proof concludes
the paper.

PROPOSITION 5. The knot diagrams yield by construction 2 are families 2 and 4
in proposition 3 (obtained when G is a wheel).

Thus our graph theoretic concept is not helpful in generating more examples of EE
knot diagrams. There are, however, some new link diagrams obtained by construction
2 applied on the twofold wheels.

Proof. As for proposition 4, we can easily argue that, once we clarify the occurring
knot diagrams outside the reflective case, we see that this case gives nothing new. We
will thus not consider the reflective case below.

In the following let ¢ = 1,2 and j = 3—1. Let us first stipulate that we understand
E; not only as edge sets, but as subgraphs of G. The vertices of E; are set to be all
vertices of G connected by at least one edge in E; (i.e., we delete isolated vertices).
Similarly is done with E; (which, again, is here not the dual of E; taken for itself).

Now edge transitivity of F; means that F; is a union of some number n of copies
of the same connected component E;. This graph E; is edge transitive itself, and thus
it is either among the graphs in [FI, Theorems 1 and 2], or is obtained from some of
these graphs by (possibly iterated) edge doubling. In particular, if some edge of E; is
multiple, so are all its edges.

Since each edge transitive symmetry of FE; is realizable by a planar homeomor-
phism, for each Ej, the same number of its faces contains further E;. Now, since the
number n of E; is finite, we see that precisely one of the faces of each E; contains
further E;. We can choose the point at infinity w.l.o.g. so that this is the infinite
face.

Next, the number of connected components of E7 is equal to the number of faces
of E; containing edges of E;. This number must be equal to n (since E; = E]*)

Moreover, by symmetry the same number of faces of each E; contains edges of E;. If
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n > 1, we see that exactly one finite face of each E; contains edges of E;, and the
infinite face of E; contains none. Now, however, exactly one face (the infinite one) of
E; contains edges of ;. Thus Ef = E; must be connected, which implies that n =1,
i.e., E,L' = Ez

Next, edge transitive symmetry implies that for each edge in F; the same number
(0, 1 or 2) of adjacent faces must contain edges of E;. This number is obviously not
0. If it is 2, connectivity of E; implies that E; has only one face, and no edge can
have two adjacent faces. Thus the number is 1. Since we argued that exactly one face
of E; contains edges of £, we see that F; must have a face bounded by all edges.
Thus each F; is either a cycle, an edge, a star or double star (i.e., each edge of a star
is doubled; see figure 8).

Now recall that F; and E5 have the same number of edges. If one of them is a
single edge, so is the other, and this case is trivial. The other situations are studied
below using that one can interchange the role of F; and Es, and that G = F1 U Es
should come from a knot (and not a link) diagram.

Case 1. Let ¢ be odd. Then the diagram given by construction 2 is a knot
diagram iff the one of G (i.e., with G as checkerboard graph) is so.

Case 1.1. Assume first F; is a double star. Note that each vertex of E; must be
also a vertex of Fs, otherwise G gives no knot diagram.

Case 1.1.1. If Es is a double star, then G is a doubled graph, and D is not a
knot diagram.

Case 1.1.2. If F» is a star, then Fy, and E, cannot have the same number of
edges (unless G has an isthmus).

Case 1.1.3. Thus F» is a cycle. Using that F; and E5 have the same number
of edges, and that each vertex of F is a vertex of E5, we see that some edge of Fs
is parallel to some edge of F1. By duality this means that both F; and E5 have an
isthmus, a contradiction.

Similarly the case is done that E5 is a double star.

Case 1.2. Both F; and Es are cycles. They have the same length n. Unless
n = 2, no vertex of E; has valence 2 in G (otherwise E; = Ef will have a double
edge). Thus G = E;1 U Es is a doubled cycle, which is not self-dual. If n = 2, we have
the 4-crossing diagram D.

Case 1.3. Both E; and E5 are stars. They have the same number n of leafs
(vertices of valence 1). If their centers (vertices of valence > 1) are equal, then G is
a double star (or has an isthmus), and is not cut-free. If the center of E; is a leaf of
E5, it is directly checked that we obtain a self-dual graph G with no isthmus only for
n = 2, which gives the 4 crossing diagram. If the center of F; is not a vertex of Fs,
then since G has no isthmus, G = Ky ,,. This graph is not self-dual.

Case 1.4. The final case is that F is a star and E5 a cycle. Again E; and Es
have the same number of edges, E5 cannot have a vertex of valence 2 in G, and GG
cannot have an isthmus. The only option then is that G is a wheel graph.

Case 2. Now assume ¢ = 2[ is even. This goes similarly to case 1, with the
following modifications.

First, E; should have no cycle (or multiple edge). Otherwise, we argued that at
least in one of the interior or exterior of that cycle there are no edges of F5. When
each edge of the cycle is replaced by an even number of crossings in edge direction, we
obtain a component of D for this empty interior or exterior, along with some other
component(s). Therefore, D is not a knot diagram. With a similar argument, each
vertex of F5 must be a vertex of Ej.
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The exclusion of a cycle (or multiple edge) in E; renders obsolete the analoga
of cases 1.1 and 1.2. It becomes necessary to mention that the situation here is no
longer symmetric in F; and Es. Thus we must treat the opposite case to 1.1, when
FE is a double star. This reduces to the opposite of case 1.1.2, which goes as before,
with the role of F; and E» swapped (and using that each vertex of Es is a vertex of
E,). Since Fj has no cycle, the opposite to case 1.4 (when F; is a cycle, and Es a
star) is also unnecessary. Finally, cases 1.3 and 1.4 go through the same way. O
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