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CODES FROM INFINITELY NEAR POINTS∗

BRUCE M. BENNETT† , HING SUN LUK‡ , AND STEPHEN S.-T. YAU§

Dedicated to Professor Fabrizio Catanese on the occasion of his 60th birthday

Abstract. We introduce a new class of nonlinear algebraic-geometry codes based on evaluation
of functions on infinitely near points. Let X be an algebraic variety over the finite field F q. An
infinitely near point of order µ is a point P on a variety X′ obtained by µ iterated blowing-ups
starting from X. Given such a point P and a function f on X, we give a definition of f(P ) which is
nonlinear in f (unless µ = 0). Given a set S of infinitely near points {P1, · · · , Pn}, we associate to f

its set of values (f(P1), · · · , f(Pn)) in F
n
q . Let V be a k dimensional vector space of functions on X.

Evaluation of functions in V at the n points of S gives a map V → F
n
q , which we view as an (n, qk, d)

code when the map is injective. Here d is the largest integer such that a function in V is uniquely
determined by its values on any n − d + 1 points of S. These codes generalize the Reed-Solomon
codes, but unlike the R-S codes they can be constructed to have arbitrarily large code length n. The
first nontrivial case is where X = A

2
F q

, affine 2-space, and we study this case in detail.
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1. Introduction. Let F q denote the field with q = pe elements. An (n, qk, d)
code is an injective map G : V → F

n
q , where V is a finite set with k = logq |V |. If

C is the image of G, d is the minimum, over all pairs of distinct elements c1, c2 of
C, of the number of coordinates in which c1 and c2 differ. d is called the minimum
distance of the code. The ratio k/n is called the transmission rate of the code, and
δ = d/n is called the relative minimum distance. For codes which are optimal from
the standpoint of both transmission efficiency and error correction, it is desirable to
make k/n and δ as large as possible, and also to make n large. n, k and d (or n,
k/n and δ) are called the parameters of the code. Frequently V = F

k
q and G is a

linear map; the code is then called a linear [n, k, d] code. Even if G is not linear, it
may be that V = F

k
q in a natural way. For both linear and nonlinear codes, by a

pigeonhole argument, n, k, and d are constrained by the inequality k + d ≤ n+ 1 (or
k/n+ δ ≤ 1 + 1/n), called the ‘Singleton bound’ [TV, p27].

The simplest examples of linear algebraic-geometry codes are the Reed-Solomon
codes. Here V is the vector space of polynomials of degree ≤ k− 1 in one variable (k
chosen arbitrarily). Let S = {P1, · · · , Pq} be the set of points in F q, i.e., the points
on the affine line A

1
F q

. We define G : V → F
q
q by f 7→ (f(P1), · · · , f(Pq)); this map

is linear in f . Since a polynomial in one variable of degree k − 1 is determined by its
values on any k points, we have d = q − k+1, i.e., k+ d = q+ 1. The Reed-Solomon
codes were generalized by Goppa [G]. For the Goppa codes the vector space V consists
of the rational (meromorphic) functions on a given algebraic curve X over F q which
represent the complete linear system associated to a divisor D on X , i.e., V = L(D) in
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the standard algebraic-geometry notation. S is usually taken to be the set of all F q-
rational points of X not contained in the support of D. Thus k = dim(L(D))(= l(D)
in the standard notation), and the code length n depends on the number of F q-rational
points on X . It has been shown that there are families of curves with arbitrarily large
n, and good curve parameters k/n and δ. Denoting by n(C), M(C) and d(C) the
length, size and minimium distance of a code C over Fq, let Uq = {(q, R) ∈ R

2 :

∃{Ci}∞i=1 with n(Ci) → ∞ and δ = lim
i→∞

d(Ci)

n(Ci)
, R = lim

i→∞

logqM(Ci)

n(Ci)
}. It is shown

in [TV, section 1.3.1] that there exists a continuous function αq(δ), δ ∈ [0, 1] such
that Uq = {(δ, R) ∈ R

2 : 0 ≤ R ≤ αq(δ), 0 ≤ δ ≤ 1}. Let Hq be the normalized
entropy function Hq(δ) := δ logq(q − 1) − δ logq δ − (1 − δ) logq(1 − δ). Then the
Gilbert-Varshamov bound [TV, p.34] holds:

(1.1) αq(δ) ≥ RGV (q, δ) := 1−Hq(δ), for all δ ∈ (0,
q − 1

q
)

Let N(X/Fq) denote the number of F q-rational points of an algebraic curve X . By
the Hasse-Weil bound, N(X/Fq) ≤ q + 1 + 2g(X)

√
q, where g(X) is the genus of the

curve X , one considers for any prime power q and any integer g ≥ 0,

Nq(g) := max
g(X)=g

N(X/Fq)(1.2)

A(g) := lim sup
g→∞

Nq(g)

g
(1.3)

Goppa’s construction of algebraic-geometry codes gives [TV, corollary 3.4.2]

(1.4) αq(δ) ≥ RG(q, δ) := 1− δ − 1

A(q)
, for all δ ∈ [0, 1]

When q is a square prime power, A(q) =
√
q−1 [TVZ] and the Tsfasman-Vladut-Zink

bound holds:

(1.5) αq(δ) ≥ RTV Z(q, δ) := 1− δ − 1√
q − 1

, for all δ ∈ [0, 1]

Recently, Xing [X] gave a beautiful new method of finding nonlinear algebraic-
geometry codes over Fq, using sections of line bundles as well as the sections’ deriva-
tives. Xing’s codes improve the bounds (1.4) and (1.5). Indeed, for prime power
q,

(1.6) αq(δ) ≥ RX(q, δ) := 1− δ − 1

A(q)
+

∞∑

i=2

logq
(
1 +

q − 1

q2i
)
, for all δ ∈ (0, 1)

and for square prime power q,

(1.7) αq(δ) ≥ 1− δ − 1√
q − 1

+

∞∑

i=2

logq
(
1 +

q − 1

q2i
)
, for all δ ∈ (0, 1)

Xing’s nonlinear codes unfortunately are nonconstructive. Nonlinear generalization
of Goppa codes was also studied by Elkies [E1] using rational functions on curves.
His codes in [E1] improve on Goppa’s in a range of parameters that includes all the
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Goppa codes that improve on Gilbert-Varshamov. More recently Elkies [E2] applied
Xings’ technique to his codes of [E1]. His new codes of [E2] have parameters that

improve on Xing’s, replacing the sum

∞∑

i=2

logq
(
1 + q−1

q2i

)
= 1

log q

(
q−3 − q−4 +O(q−5)

)

in (1.7) by logq(1 +
1
q3
) = 1

log q
(q−3 +O(q−6)) when q is a square prime power.

As pointed out by Elkies [E2], these nonlinear codes, unlike Goppa codes, are
still very far from any practical use. In order to get codes with good parameters and
large n, we are led back to the original idea of the Reed-Solomon codes, but now
we remedy the severe restriction on n (n = q) by evaluating functions not just on
points of X , but on infinitely near points. An infinitely near point is a point on a
variety X ′ obtained from X by a sequence of blowing-ups (see §2 below). Since the
number of infinitely near points is unlimited (if we allow sufficiently many iterated
blowing-ups), we can now achieve large code lengths n at will. The problem is to find
pairs (S, V ) where S is a set of infinitely near points and V is a set of functions on
X , so that d and k are jointly maximized. There is the initial question how to define
the evaluation of functions at infinitely near points; the obvious definitions yield an
uninteresting result (the values are zero). However there is a geometrically natural
definition which permits explicit computation, but which is nonlinear. While this
nonlinearity complicates the analysis, it leads to a clear presentation of the central
issue in calculating d, namely, the calculation of the rank of a family of multivariable
generalizations of Vandermonde matrices. The exact form of these matrices depends
on the choice of V and S, and the relevant results consist in showing that a judicious
choice of pairs (V,S) produces matrices of computably large rank. We illustrate our
techniques by an example (Section 4) of a modified code which can be viewed as a
linear approximation of our nonlinear code. The parameters of the new linear code are
obtained in Theorem 4.3. In addition to being simple and explicit, the new linear code
is self-orthogonal (Theorem 4.4). In Remark 4.5, the code is compared to algebraic
geometry codes on curves and is shown to have a strong advantage in terms of the
difference between n and the lower bound of k + d.

We would like to thank Hao Chen and the referee for their very helpful remarks.

2. Blowing up. Let X be an algebraic variety over a field F . X is covered by
Zariski open affine sets {Xi}; each Xi is associated to a ring of functions Ai which
is a finitely generated F -algebra. The points of Xi correspond to the maximal ideals
M of Ai such that Ai/M = F . (In other words, for the purpose of this study, we
consider only the “F -rational points” of the variety.) Let Y be a subvariety of X ,
defined on Xi by the ideal Ji in Ai. The “blowing up (or monoidal transform) of
X with center Y ” is a variety X ′ with a morphism π : X ′ → X , such that π is an
isomorphism outside π−1(Y ) and π−1(Y ) is the projectivized normal cone of Y in X .
In particular if the ideal J is locally principal, i.e., if Y is a divisor on X , then π is an
isomorphism (everywhere), since in this case the normal cone is a line bundle, which
when projectivized reduces to Y itself. If Y is a point {y}, then X ′ is sometimes
called a “quadratic transform”, then π−1(y) is the projectivized tangent cone of X at
y. Thus if X is nonsingular at y and π : X ′ → X is the quadratic transform of X with
center {y}, then π−1(y) is Pm−1

F (projective m− 1-space over F ) where dimX = m.

The construction of X ′ is local on X , so to describe it we may assume that X
is affine with ring A. Then X ′ is covered by affine open sets X ′

g where g ranges
over all the elements of J . The affine ring A′

g of X ′
g is A[J/g], the A-subalgebra

of the ring of fractions of A generated by all h/g, h in J . If g1 and g2 are in J ,
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then X ′
g1 ∩ X ′

g2 = X ′
g1g2 , and the inclusion X ′

g1g2 ⊂ X ′
g1 corresponds to the

canonical homomorphism A[J/g1g2]← A[J/g1]. It follows that if g1, · · · , gm are a set
of generators for J , thenX ′ = X ′

g1∪X ′
g2∪· · ·∪X ′

gm . The morphism π|X′
g
: X ′

g → X
corresponds to the canonical ring homomorphism A[J/g]← A. Hence π−1(Y )∩X ′

g is
defined by the ideal JA[J/g], which is just the principal ideal (g)A[J/g]. Thus, π−1(Y )
is the divisor on X ′ which is defined on X ′

g by g = 0; it is called the “exceptional
divisor”, denoted by E. Let Eg denote E ∩ X ′

g. Then the Eg are affine varieties
which cover E, and the affine ring of Eg is A[J/g]/(g).

For any f in A, let νJ(f) be the highest power of J which contains f , so that
νJ(f) ≥ 0. Let g1, · · · , gm be a minimal set of generators of J ; in particular νJ(gi) = 1.

We describe the affine ring A[J/g1]/(g1) of Eg1 . For f in A, f/g
νJ(f)
1 is in A[J/g1];

let f/g
νJ(f)
1 be its image modulo (g1). A[J/g1]/(g1) is the graded A/J-algebra whose

homogeneous piece of degree ν, denoted (A[J/g1]/(g1))ν , is the A/J-module generated
by all f/gν1 , with νJ(f) = ν, and with relations as follows: Let f1, · · · , fs be in A
with νl = νJ (fl), l = 1, · · · , s. Let a1, · · · , as in A be given, with al the image of al
modulo J . Then

a1f1/g
ν1
1 + · · ·+ asfs/g

νs
1 = 0

in
(
A[J/g1]/(g1)

)
ν
iff

νJ(a1f1 + · · ·+ asfs) > ν.

It is equivalent to describe E as the projective variety over Y whose homogeneous
coordinate ring is

GrJ (A) = ⊕ν≥0J
ν/Jν+1

and Egi is the affine piece of this projective variety where InJ(gi) 6= 0 (where InJ(gi)
is the ‘J-adic initial form’ of gi, i.e., gi (modulo J2)); it is homogeneous of degree 1
in the graded algebra. The statement that the gi generate J is equivalent to saying
that these InJ(gi) generate the graded algebra; i.e., that the Egi cover E.

Let X ′ → X be the blowing up of X with center Y . Suppose Z is a subvariety
of X . We will define the strict transform Z ′ of Z in X ′ as follows. Suppose X is a
variety with affine ring A, and Z ⊂ X is a subvariety with ring B = A/I, where I is
the ideal defining Z in X . The blowing up Z ′ of Z with center Y ∩Z can be viewed as
a subvariety of X ′ (the blowing up of X with center Y ) called the strict transform of
Z in X ′; it is the closure in X ′ of π−1(Z−Z∩Y ) where π : X ′ → X . The ideal which
defines Z ′ in X ′ may be described explicitly as follows. Let g be an element of J ; for
simplicity we use the same notation g for its image in B = A/I. Then we have affine
pieces X ′

g of X ′ and Z ′
g of Z ′, with affine rings A′

g = A[J/g] and B′
g = B[JB/g]

respectively. Let I ′g be the ideal in A′
g defined by

I ′g = {f/gνJ(f)|f ∈ I};

f/gνJ(f) is called the strict transform of f in A′
g, and I

′
g is called the strict transform

of I in A′
g. I

′
g is the ideal of Z ′

g in X ′
g, i.e., B

′
g = A′

g/I
′
g. If I = (f)A is a principal

ideal, then I ′g is the principal ideal (f/gνJ(f))A′
g.

As an example we consider the case X = A
m
F , affine m-space over a field F .

The affine ring A of X is then F [x1, · · · , xm]. Let Y be the origin of X , so that
the ideal of Y is J = (x1, · · · , xm)F [x1, · · · , xm]. X ′, the blowing up of the origin
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in X , is covered by the affine pieces X ′
x1 , · · · , X ′

xm
. The affine ring of X ′

x1 , for
example, is A′

x1 = F [x1, · · · , xm][J/x1] = F [x1, x2/x1, · · · , xm/x1]. Letting x′i =
xi/x1 for i ≥ 2, we may write Ax1 = F [x1, x

′
2, · · · , x′m], and the map π : X ′

x1 → X
corresponds to the inclusion F [x1, x

′
2, · · · , x′m] ⊃ F [x1, · · · , xm]; this inclusion holds

since x1x
′
i = xi. The exceptional divisor is defined by x1 = 0 on X ′

x1 , i.e., Ex1 :
x1 = 0, so the affine ring of Ex1 may be identified with F [x2/x1, · · · , xm/x1], i.e.,
with F [x′2, · · · , x′m]. Thus E is the (m− 1)-dimensional projective space Pm−1

F with
homogeneous coordinate ring F [x1, · · · , xm], and Exi

is the affine piece of Pm−1
F where

the homogeneous coordinate xi 6= 0. Suppose Z : f = 0 is a hypersurface in X = A
m
F

where f = f(x1, · · · , xm), and suppose the origin y is in Z. Let Z ′ denote the blowing
up of y in Z. Then Z ′ is a hypersurface f ′ = 0 in X ′. On Z ′

x1
the affine ring Bx1 is a

quotient of the affine ring Ax1 of X ′
x1 by the ideal generated by the strict transform

f ′ of f . f ′ = f/x
νJ (f)
1 , viewed as a polynomial in x1, x

′
2, · · · , x′m. For instance if

m = 3 and f = x1x
2
2 + x53, then νJ (f) = 3 and f ′(x1, x

′
2, x

′
3) = x′22 + x21x

′5
3. The

exceptional fibre Z ′ is the double hyperplane x′
2
2 = 0 in P

m−1
F .

3. Evaluation of functions at infinitely near points and explicit con-

struction of codes. LetX be a variety, and letX = X(0), X ′ = X(1), X(2), · · · , X(µ)

be a sequence of blowing-ups starting with X . This means the for each k =
0, · · · , µ− 1, there is a subvariety Y (k) ⊂ X(k) such that X(k+1) is the blowing up of
X(k) with center Y (k). Let P ∈ X(µ). Let f be a function on X ; for this discussion
we may assume that X is affine with ring A, and that f is in A, i.e., assume f is
a regular algebraic function on X . We want to define ‘f(P )’. Let ψ(k) : A → B(k)

be the canonical map, where B(k) is the ring of regular algebraic functions on X(k).
ψ(k) is the map on rings of functions corresponding to the composite of the canonical
maps X ← X ′ = X(1) ← · · · ← X(k−1) ← X(k). Thus we can simply define ‘f(P )’
to be ψ(u)(f)(P ). However this definition is uninteresting. For if ψ(k)(f) is in the
ideal of Y (k) in X(k) for any k < µ, then ψ(µ)(f)(P ) = 0. And if f is not in the ideal
of any of the Y (k), then ψ(µ)(f)(P ) = f(Q), where Q in X is the image of P under
the composite of the canonical maps X ← X = X(1) ← X(2) ← · · · ← X(µ). Thus,
this naive definition for ‘f(P )’ gives no new information. We give a more informative
definition below.

For the present work we will restrict our attention to the important special case
of a sequence of quadratic transforms, i.e., the case where each center Y (k) is a point
in X(k). For consistency of notation we will denote by P (µ) the point P in X(µ) where
we want to evaluate f . We are going to evaluate f at P (k) by induction on k. In fact
beginning with f we define a sequence of functions f (k) on X(k), k = 0, · · · , µ, and
then we take f (µ)(P (µ)).

Definition 3.1.
(i) f (0) = f .
(ii) If f (k−1) is defined, let

f (k) =
(
f (k−1) − f (k−1)(P (k−1))

)′
,

where the prime (′) denotes strict transform with respect to the ideal J (k−1)

of P (k−1), in the ring of an affine subset of X(k) which contains P (k).

To explain this, let A(k) be the ring of an affine subset U of X(k) which contains
P (k), and let J (k−1) be the (maximal) ideal of P (k−1) in A(k−1). Then, as in §2,
A(k) = A(k−1)[g/tνJ(k−1) (g)|g ∈ J (k−1)], where t ∈ J (k−1) is such that J (k−1)A(k) =
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(t)A(k). Note that f (k−1) − f (k−1)(P (k−1)) is in J (k−1) since it vanishes at P (k−1).
Thus

(
f (k−1) − f (k−1)(P (k−1)

)′
=

(
f (k−1) − f (k−1)(P (k−1))

)
/tν

where ν = νJ(k−1)

(
f (k−1) − f (k−1)(P (k−1))

)
is > 0.

We will study the consequences of this definition in the case where X = A
m
F . We

begin with an example which illustrates the procedure in Definition 3.1.

Example 3.2. We consider X(0) = A
2
F with coordinate ring A(0) = F [t, z]. Let

P (0) be (0,0); the ideal J (0) of P (0) in A(0) is (t, z)F [t, z]. The blowing up X(1) of X(0)

with center (0,0) is covered by two affine sets X
(1)
t and X

(1)
z , which are isomorphic to

A
2
F with coordinate rings F [t, z/t] and F [t/z, z] respectively. Let P (1) be the point

in X
(1)
t with coordinates t = 0, z/t = 1, and for convenience let z′ = z/t. Note that

the condition t = 0 means P (1) lies in the exceptional fibre of X
(1)
t over X(0). The

ideal of P (1) is (t, z′ − 1)F [t, z′]. Let X(2) be the blowing up of X
(1)
t with center

P (1). It is covered by two affine pieces X
(2)
t and X

(2)
z′−1, whose coordinate rings are

F [t, (z′ − 1)/t] and F [t/(z′ − 1), (z′ − 1)] respectively. Let P (2) be the point in X
(2)
t

with coordinates t = 0, (z′ − 1)/t = 2; P (2) lies in the exceptional fibre of X
(2)
t over

X
(1)
t . Let f = f (0) = zt2 + t3 + z4.
We calculate f (k)(P (k)), k = 0, 1, 2. We have f (0)(P (0)) = 0, so f (1) = f (0)/t3

since νJ(0)(f (0)) = 3. Thus, in the t, z′ coordinate system on X
(1)
t , we may write

f (1) = z′+1+ tz′
4
, so that f (1)(P (1)) = 2. Hence f (1)− 2 = (z′− 1)+ t((z′− 1)+1)4,

i.e.,

f (1) − 2 = (z′ − 1) + t+ 4t(z′ − 1) + 6t(z′ − 1)2 + 4t(z′ − 1)3 + t(z′ − 1)4.

Therefore νJ(1)(f (1) − 2) = 1, so f (2) = (f (1) − 2)/t, i.e.,

f (2) = (z′−1)/t+1+4t((z′−1)/t)+6t2((z′−1)/t)2+4t3((z′−1)/t)3+ t4((z′−1)/t)4

Hence f (2)(P (2)) = f (2)(t = 0, (z′ − 1)/t = 2) = 3.

As the example above suggests, for the purpose of simplifying the above calcula-
tion it is convenient to have a coordinate system which simplifies the representation
of the successive P (k)’s. The following result assures that this can be done in a
particularly nice way.

Proposition 3.3. Let X(0) = A
m
F , and let X(0), X(1), · · · , X(µ) be a sequence

of quadratic transforms, where X(k+1) is obtained by blowing up given points P (k) in
X(k), k = 0, · · · , µ−1. Then there exists a coordinate system t z̃1, z̃2 · · · , z̃m−1 on A

m
F

with the property: The point P (k) is the origin in the affine piece of X(k) with coordi-
nate functions t, z̃1/t

k, · · · , z̃m−1/t
k, i.e., P (k) : t = 0, z̃1/t

k = 0, · · · , z̃m−1/t
k = 0.

Unfortunately, the values f (k)(P (k)), k = 0, · · · , µ, depend on the affine pieces
we choose successively on each X(0), · · · , X(k). For the construction of our codes, we
need to keep track of the affine sets covering each X(k) and their respective coordinate
rings. We do so in order to evaluate f at all points on the exceptional divisor of
each quadratic transform. Continuing with Example 3.3, we explain a scheme for
coordinatizing all infinitely near points for µ = 2, in which we replace X(2) by a
larger variety X−(2).
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Example 3.2 (Continued). We have X(1) = X
(1)
t ∪ X(1)

z where X
(1)
t and

X
(1)
z are isomorphic to A

2
F with coordinate rings F [t, z/t] and F [t/z, z] respectively.

Then the exceptional divisor E(1) = E
(1)
t ∪ E(1)

z , where E
(1)
t = E(1) ∩ X(1)

t and

E
(1)
z = E(1) ∩X(1)

z . E
(1)
t consists of the points P

(1)
ℓ , for all ℓ ∈ F , with coordinates

t = 0, z′ = ℓ. The ideal of P
(1)
ℓ is (t, z′ − ℓ)F [t, z′]. Let t′ = t

z
. E

(1)
z consists of

the points P
(1)
ℓ∗ , for all ℓ∗ ∈ F ∗ = F \ {0}, now with coordinates t′ = 1

ℓ∗
, z = 0,

and the point P
(1)
∞ with coordinates t′ = 0, z = 0. The corresponding ideals are

(t′ − ℓ′, z)F [t′, z], ℓ′ = 1
ℓ∗

for P
(1)
ℓ∗ and ℓ′ = 0 for P

(1)
∞ .

Let X−(2) be the variety obtained by blowing up X(1) at each point of E(1). The

exceptional divisor E
(2)
ℓ over P

(1)
ℓ , ℓ ∈ F , can be given in terms of the coordinates

(t, z′ − ℓ) in two ways as above. Namely, E
(2)
ℓ consists of the points with coordinates

t = 0, z′−ℓ
t

= m, m ∈ F , and the points with coordinates t
z′−ℓ

= m1, z
′ − ℓ = 0,

m1 ∈ F , where, for m∗ ∈ F ∗, t = 0, z′−ℓ
t

= m∗ describe the same point as t
z′−ℓ

= 1
m∗

,
z′ − ℓ = 0.

Similarly, E
(2)
ℓ∗ , ℓ∗ ∈ F ∗, and the exceptional divisor E

(2)
∞ over P

(1)
∞ can be given

in terms of the coordinates (t′ − ℓ′, z), ℓ′ = 1
ℓ∗

for P
(1)
ℓ∗ and ℓ′ = 0 for P

(1)
∞ . Thus,

points on these exceptional divisors are given by t′−ℓ′

z
= m′, z = 0, m′ ∈ F , or

t′ − ℓ′ = 0, z
t′−ℓ′

= m′
1,m

′
1 ∈ F , where m′ and m′

1 in F ∗ describe the same point if
m′m′

1 = 1. We summarize the situation as follows:

E(1) = {P (1)
0 , P

(1)
ℓ∗ , P

(1)
∞ } ℓ∗ ∈ F ∗ = F \ {0}

E(1) = {P (1)
0 , P

(1)
ℓ∗ }, where P

(1)
0 , P

(1)
ℓ∗ are given by t = 0, z′ = 0, ℓ∗

E(1) = {P (1)
ℓ∗ , P

(1)
∞ }, where P (1)

ℓ∗ , P
(1)
∞ are given by t′ = 1

ℓ∗
, 0, z = 0

E
(2)
0 = {P (2)

00 , P
(2)
0m∗ , P

(2)
0∞} m∗ ∈ F \ {0}

E
(2)
ℓ∗ = {P (2)

ℓ∗0, P
(2)
ℓ∗m∗ , P

(2)
ℓ∗∞} ℓ∗,m∗ ∈ F \ {0}

E
(2)
∞ = {P (2)

∞0, P
(2)
∞m∗ , P

(2)
∞∞} m∗ ∈ F \ {0}

The four sets of points

P
(2)
00 P

(2)
0m∗ P

(2)
0m∗P

(2)
0∞ P

(2)
ℓ∗0P

(2)
ℓ∗m∗ P

(2)
ℓ∗m∗P

(2)
ℓ∗m∗

P
(2)
ℓ∗0P

(2)
ℓ∗m∗ P

(2)
ℓ∗m∗P

(2)
ℓ∗m∗ P

(2)
∞0P

(2)
∞m∗ P

(2)
∞m∗P

(2)
∞∞

are respectively given by

t = 0, z′−ℓ

t
= m t

z′−ℓ
= m1, z

′
− ℓ = 0 t′−ℓ′

z
= m′, z = 0 t′ − ℓ′ = 0, z

t′−ℓ′
= m′

1

(ℓ,m ∈ F ) (ℓ,m1 ∈ F ) (ℓ′,m′
∈ F ) (ℓ′,m′

1 ∈ F )

For simplicity, we consider polynomials f ∈ A(0) = F [t, z] with only terms of degrees
3 and 4. Thus

(0) f(t, z) =
∑

i+j=3

aijt
izj +

∑

α+β=4

aαβt
αzβ

We write f (0) = f . Then f (0)(P (0)) = 0 with νJ(0)(f (0)) = 3

The strict transform f (1) ∈ F [t, z′] is given by

(1)t f (1)(t, z′) =
f (0)

t3
=

∑

i+j=3

aijz
′j +

∑

α+β=4

aαβtz
′β
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Evaluating at t = 0, z′ = ℓ, we may define

(1)
t,P

(1)
ℓ

f (1)(P
(1)
ℓ ) = a30 + a21ℓ+ a12ℓ

2 + a03ℓ
3

On the other hand, the strict transform f (1) ∈ F [t′, z] is given by

(1)z f (1)(t′, z) =
f (0)

z3
=

∑

i+j=3

aijt
′i +

∑

α+β=4

aαβt
′αz

Evaluating at t′ − 0, z = 0, we may define

(1)
z,P

(1)
∞

f (1)(P (1)
∞ ) = a03.

But, for ℓ∗ ∈ F ∗, the value of f (1)(t′, z) at t′ = 1
ℓ∗
, z = 0 is equal to a03 +

a12

ℓ∗
+ a21

ℓ∗2 +
a30

ℓ∗3 = 1
ℓ∗3 f (1)(P

(1)
ℓ∗ ), which does not agree with (1)

t,P
(1)

ℓ∗
. By abuse of notation, we use

the same symbol f (1) for both strict transforms, but we shall state the coordinates
explicitly as in (1)t and (1)z, so that no confusion would arise. To compute f (2), we
consider (1)t and observe that

f (1)(t, z′)− f (1)(0, ℓ)

=
∑

i+j=3

aij(z
′j − ℓj) +

∑

α+β=4

aαβtz
′β

=
∑

aij
((
(z′ − ℓ) + ℓ

)j − ℓj
)
+
∑

aαβt
(
(z′ + ℓ) + ℓ

)β

=
∑

i+j=3

aij

j∑

k=1

(
j

k

)
(z′ − ℓ)kℓj−k +

∑

α+β=4

aαβt

β∑

γ=0

(
β

γ

)
(z′ − ℓ)γℓβ−γ

=

3∑

k−1

( 3∑

j=k

a3−j,j

(
j

k

)
ℓj−k

)
(z′ − ℓ)k +

4∑

γ=0

( 4∑

β=γ

a4−β,β

(
β

γ

)
ℓβ−γ

)
t(z′ − ℓ)γ(2)t,z′−ℓ

Note the νJ(1)(f (1)(t, z′)− f (1)(0, ℓ)) = 1 at P
(1)
ℓ if and only if

(∗)ℓ a21 + 2a12ℓ+ 3a03ℓ
2 6= 0 or a40 + a31ℓ+ a22ℓ

2 + a13ℓ
3 + a04ℓ

4 6= 0

Under the assumption that νJ(1)(f (1)(t, z′) − f (1)(0, ℓ)) = 1, the strict transform of

f (2) ∈ F [t, z′−ℓ
t

] is given by

f (2)(t,
z′ − ℓ
t

) =
f (1)(t, z′)− f (1)(0, ℓ)

t

=

3∑

k=1

( 3∑

j=k

a3−j,j

(
j

k

)
ℓj−k

)
tk−1

(z′ − ℓ
t

)k

+
4∑

γ=0

( 4∑

β=γ

a4−β,β

(
β

γ

)
ℓβ−γ

)
tγ
(z′ − ℓ

t

)γ
(2)

t, z
′
−ℓ
t

Evaluating at t = 0, z′−ℓ
t

= m, we may define

(2)
t, z

′
−ℓ
t

,P
(2)
ℓm

f (2)(P
(2)
ℓm ) = (a21+2a12ℓ+3a03ℓ

2)m+(a40+a31ℓ+a22ℓ
2+a13ℓ

3+a04ℓ
4)
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On the other hand, the strict transform f (2) ∈ F [ t
z′−ℓ

, z′ − ℓ] is given by

f (2)(
t

z′ − ℓ , z
′ − ℓ) = f (1)(t, z′)− f (1)(0, ℓ)

z′ − ℓ

=

3∑

k=1

( 3∑

j=k

a3−j,j

(
j

k

)
ℓj−k

)
(z′ − ℓ)k−1

+
4∑

γ=0

( 4∑

β=γ

a4−β,β

(
β

γ

)
ℓβ−γ

)( t

z′ − ℓ
)
(z′ − ℓ)γ(2) t

z′−ℓ
,z′−ℓ

Evaluating at t
z′−ℓ

= 0, z′ − ℓ = 0, we may define for all ℓ ∈ F

(2) t
z′−ℓ

,z′−ℓ,P
(2)
ℓ∞

f (2)(P
(2)
ℓ∞) = a21 + 2a12ℓ+ 3a03ℓ

2

Again, for m∗ ∈ F ∗, the value of f (2)( t
z′−ℓ

, z′− ℓ) at t
z′−ℓ

= 1
m∗

, z′− ℓ = 0 is equal to

(a21 + 2a12ℓ + 3a03ℓ
2) + (a40+a31ℓ+a22ℓ

2+a13ℓ
3+a04ℓ

4)
m∗

= 1
m∗
f (2)(P

(2)
ℓm∗), which does not

agree with (2)
t, z

′
−ℓ
t

,P
(2)

ℓm∗

.

If we now consider (1)z, then we observe that

f (1)(t′, z)− f (1)(ℓ′, 0)

=
∑

i+j=3

aij(t
′i − ℓ′i) +

∑

α+β=4

aαβt
′αz

=

3∑

k=1

( 3∑

i=k

ai,3−i

(
i

k

)
ℓ′
i−k)

(t′ − ℓ′)k

+

4∑

γ=0

( 4∑

α=γ

aα,4−α

(
α

γ

)
ℓ′
α−γ)

(t′ − ℓ′)γz(2)t′−ℓ′,z

Note that νJ(1)(f (1)(t′, z)− f (1)(ℓ′, 0)) = 1 if and only if

(#)ℓ′ 3a30ℓ
′2 + 2a21ℓ

′ + a12 6= 0 or a40ℓ
′4 + a31ℓ

′3 + a22ℓ
′2 + a13ℓ

′ + a04 6= 0

For ℓ∗ ∈ F , (#) 1
ℓ∗

only partially matches with (∗)ℓ∗ . Namely

a40

ℓ∗4
+
a31

ℓ∗3
+
a22

ℓ∗2
+
a13
ℓ∗

+ a04 6= 0 iff a40 + a31ℓ
∗ + a22ℓ

∗2 + a13ℓ
∗3 + a04ℓ

∗4 6= 0.

Assuming νJ(1)(f (1)(t′, z)− f (1)(ℓ′, 0)) = 1, we have f (2) ∈ F [ t′−ℓ′

z
, z] given by

f (2)
( t′ − ℓ′

z
, z
)

=

3∑

k=1

( 3∑

i=k

ai,3−i

(
i

k

)
ℓ′
i−k)( t′ − ℓ′

z

)k
zk−1

+
4∑

γ=0

( 4∑

α=γ

aα,4−α

(
α

γ

)
ℓ′
α−γ)( t′ − ℓ′

z

)γ
zγ(2) t′−ℓ′

z
,z



98 B. M. BENNETT, H. S. LUK AND S. S.-T. YAU

Evaluating at t′−ℓ′

z
= m′, z = 0, we may define for all m′ ∈ F

(2) t′−ℓ
z

,z,P
(2)

∞m′

f (2)(P
(2)
∞m′) = a12m

′ + a04

Under the same assumption, f (2) ∈ F [t′ − ℓ′, z
t′−ℓ′

] is given by

f (2)(t′ − ℓ′, z

t′ − ℓ′ )

=

3∑

k=1

( 3∑

i=k

ai,3−i

(
i

k

)
ℓ′
j−k)

(t′ − ℓ′)k−1

+

4∑

γ=0

( 4∑

α=γ

aα,4−α

(
α

γ

)
ℓ′
α−γ)

(t′ − ℓ′)γ( z

t′ − ℓ′ )(2)t′−ℓ′, z
t′−ℓ′

Evaluating at t′ − ℓ = 0, z
t′−ℓ′

= 0, we may define

(2)
t′−ℓ′, z

t′−ℓ′
,P

(2)
∞∞

f (2)(P (2)
∞,∞) = a12

To summarize, the values of the various f (2) are related but not identical. Un-
der the assumptions (∗)ℓ and (#)ℓ′ , we specify, in (2)

t, z
′
−ℓ
t

,P
(2)
ℓm

, (2) t
z′−ℓ

,z′−ℓ,P
(2)
ℓ∞

,

(2) t′−ℓ
z

,z,P
(2)

∞m′

and (2)
t′−ℓ′, z

t′−ℓ′
,P

(2)
∞∞

, values of f (2) at all points of X−(2). In gen-

eral, νJ(1)(f (1) − f (1)(P (1))) varies as P (1) varies in E(1). Still, we may apply the
same procedure to specify values of f (2). Then we assign to each f the code-

word (f (1)(P
(1)
ℓ ), f (1)(P

(1)
∞ ), f (2)(P

(2)
ℓm ), f (2)(P

(ℓ)
ℓ∞), f (2)(P

(2)
∞m), f (2)(P

(2)
∞∞)), for all

ℓ,m ∈ F . It would be interesting to find combinatorial relations among the νJ(1) at
various points and among the forms of the strict transforms. Apparently there are
too many cases to consider, but we need to know the number of specified values of
f (1) and f (2) required to determined f , in order to compute the minimal distance of
the resulting code.

Different codes can be constructed using a larger space of polynomials and a
correspondingly longer sequence of blowing-ups. Since the combinatorics is involved,
we illustrate the techniques by an example of a modified code based on the form of
strict transforms in the next section.

4. Linear “approximation” of nonlinear codes. Write the finite field with
q elements as F = {ℓ1, · · · , ℓq}, where we assume q ≥ 5. Let V be the vector space of

polynomials given by V = {f ∈ F [t, z] : f =
∑

i+j=3

aijt
izj +

∑

α+β=4

aαβt
αzβ}.

Consider the code V
w−−−−→ Fn, n = q + q2, defined by

f 7→ wf = (c1, · · · , cq, c11, · · · , c1q, · · · , cq1, · · · , cqq),

where

(4.1) ci = a30 + a21ℓi + a12ℓ
2
i + a03ℓ

3
i

and

(4.2) cjk = (a30 + a21ℓj + a12ℓ
2
j + a03ℓ

3
j)ℓk + (a40 + a31ℓj + a22ℓ

2
j + a13ℓ

3
j + a04ℓ

4
j)
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If we write

(4.3) dj = a40 + a31ℓj + a22ℓ
2
j + a13ℓ

3
j + a04ℓ

4
j

then

(4.4) cjk = cjℓk + dj

The components of the codewords are suggested by the forms of (1)
t,P

(1)
ℓ

and

(2)
t, z

′
−ℓ
t

,P
(2)
ℓm

in section 3. We treat all ℓi equally, ignoring assumptions (∗)ℓ, (#)ℓ′ .

Also we modify (2)
t, z

′
−ℓ
t

,P
(2)
ℓm

so that a30, a21, a12, a03 appear in the same way as in

(1)
t,P

(1)
ℓ

.

We give a lower bound of the minimum distance of this code. For convenience,
we put the components of the codeword wf in q columns, as follows:

(4.5)

c11 · · · cq1
...

...
...

...
c1q · · · cqq
c1 cq
↑

column 1
↑

column q

q ≥ 5

Lemma 4.4. If 2 entries are known in each of some 5 columns in (4.5), then all
the coefficients of f can be determined.

Proof. Suppose 2 entries are known in column i. There are two cases:

Case 1: ci and cij = ciℓj + di are known. Then we know ci and di = cij − ciℓj .
Case 2: cij = ciℓj + di, cik = ciℓk + di(j 6= k) are known. Then we know ci and

di, since

∣∣∣∣
ℓj 1
ℓk 1

∣∣∣∣ 6= 0.

Then, by the hypothesis of the lemma, we know 5ci’s and 5dj’s. Any 4 of the 5ci’s
determine a30, a21, a12, a03 by (4.1) in view of the 4 × 4 Vandermonde determinant.
Similarly, the 5dj ’s determined a40, a31, a22, a13, a04 by (4.3).

Lemma 4.5. Any 5q + 1 entries in (4.5) determine f .

Proof. Consider any N entries in (4.5). Count the number of entries in each
column. Arrange these numbers in order, say n1 ≤ n2 ≤ · · · ≤ nq. The “closest” case
for which the hypothesis of Lemma 4.1 fails is:

n1 = 1, · · · , nq−4 = 1, nq−3 = q + 1, · · · , nq = q + 1

In this case, N = n1 + · · ·+ nq = (q− 4)+ 4(q+1) = 5q. One more entry will realize
the hypothesis of Lemma 4.1.

Theorem 4.6. The minimum distance d of the code w satisfies d ≥ q2 − 4q.

The other parameters of the code are n = q2 + q and k = 9. Furthermore, q2−4q+9
q2+q

≤
k
n
+ d

n
≤ q2+q+1

q2+q
.
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Proof. The code length n is clearly q2 + q. For any distinct f, g ∈ V , wf and wg

agree in at most 5q components. Hence d(wf , wg) ≥ n−5q = q2−4q. This proves the
bound d ≥ q2 − 4q. Since q ≥ 5 implies q2 − 4q > 0, d(wf , wg) > 0 for all f 6= g in V .

Hence V
w−→ Fn is injective. Then k = dimF V = 9. It follows that k

n
+ d

n
≥ q2−4q+9

q2+q
.

Since w is a linear code, k
n
+ d

n
≤ q2+q+1

q2+q
by the Singleton bound.

Theorem 4.7. For q > 7, the code w is self-orthogonal, that is, w ⊂ w⊥

Proof. We first write down a basis for the code w. Then it suffices to check self-

orthogonality on the basis. Recall that the polynomials we use are f =
∑

i+j=3

aijt
izj+

∑

α+β=4

aαβt
αzβ. Let uj (0 ≤ j ≤ 3), vβ (0 ≤ β ≤ 4) be the words corresponding to the

monomials t3−jzj and t4−βzβ respectively. These words form a basis of w. Written
explicitly by (4.1) and (4.2),

uj = (ℓj1, · · · , ℓjq, ℓj1ℓ1, · · · , ℓj1ℓq, · · · , ℓjqℓ1, · · · , ℓjqℓq)(4.6)

vβ = (0, · · · , 0, ℓβ1 , · · · , ℓβq , · · · , ℓβ1 , · · · , ℓβq )(4.7)

where F = {ℓ1, · · · , ℓq}. Then for 0 ≤ i, j ≤ 3 and 0 ≤ α, β ≤ 4,

ui · uj =
q∑

k=1

ℓikℓ
j
k +

q∑

k,m=1

(
ℓikℓm

)(
ℓjkℓm

)
=

( q∑

k=1

ℓi+j
k

)(
1 +

q∑

m=1

ℓ2m
)

(4.8)

uj · vβ =

q∑

k,m=1

(
ℓjkℓm

)(
ℓβk
)
=

( q∑

k=1

ℓj+β
k

)( q∑

m=1

ℓm
)

(4.9)

vα · vβ =

q∑

k,m=1

ℓαk ℓ
β
k = q

( q∑

k=1

ℓα+β
k

)
(4.10)

Recall the trick that for any nonzero y in F ,
∑

x∈F

xn =
∑

x∈F

(xy)n, hence (
∑

x∈F

xn)(1−

yn) = 0, which implies that
∑

x∈F

xn = 0 for any positive integer n not divisible by

q − 1, in particular for n < q − 1. In (4.8), since i+ j ≤ 6, all ui · vj vanish for q > 7.
Together with the vanishing of the inner products in (4.9) and (4.10), the theorem is
proved.

Remark 4.8. It is interesting to compare the code w with algebraic geometry
codes on curves. In order to get an algebraic geometry code with our length n = q2+q,
one needs this number of Fq rational points on a curve over Fq. By the Hasse-Weil
bound, the number of rational points on a curve of genus g is at most q + 1 + 2g

√
q.

Hence one needs a curve of genus g ≥ 1
2 (q

3
2 − q− 1

2 ). Then the lower bound of k + d
for the resulting algebraic geometry code is n+ 1 − g. Hence the difference between
n and the lower bound of k+ d is g− 1 ≥ 1

2 (q
3
2 − q− 1

2 )− 1. By theorem 4.3, the lower
bound of k + d for our code is q2 − 4q + 9. Hence the difference between n and the
lower bound of k + d for our code is (q2 + q)− (q2 − 4q + 9) < 5q, which is much less

than 1
2q

3
2 . In this sense, our construction is better.

The code w is a linearised version of codes from infinitely near points. We can
increase k and n of w by taking polynomials of higher degrees and more variables.
These modified codes can be constructed simply and explicitly.
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