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COLLAPSE OF THE MEAN CURVATURE FLOW
FOR EQUIFOCAL SUBMANIFOLDS*

NAOYUKI KOIKET

Abstract. In this paper, we investigate the mean curvature flows having an equifocal subman-
ifold in a symmetric space of compact type and its focal submanifolds as initial data. It is known
that an equifocal submanifold of codimension greater than one in an irreducible symmetric space of
compact type occurs as a principal orbit of a Hermann action. However, we investigate the flows
conceptionally without use of this fact. The investigation is performed by investigating the mean
curvature flows having the lifts of the submanifolds to an (infinite dimensional separable) Hilbert
space through a Riemannian submersion as initial data .
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1. Introduction. Let f;’s (t € [0,T')) be a one-parameter C*°-family of immer-
sions of a manifold M into a Riemannian manifold N, where T is a positive constant
or T =o0. Define amap f: M x [0,T) = N by f(z,t) = fe(x) (z,t) € M x [0,T)).
If, for each t € [0,7), ﬂ((%)(m,t)) is the mean curvature vector of f; : M — N, then
fi’s (t €]0,T)) is called a mean curvature flow. In particular, if f;’s are embeddings,
then we call My := f(M)’s (0 € [0,T)) rather than f;’s (0 € [0,7)) a mean curva-
ture flow. Liu-Terng [LT] investigated the mean curvature flow having isoparametric
submanifolds (or their focal submanifolds) in a Euclidean space as initial data and
obtained the following facts.

Fact 1 ([LT]). Let M be a compact isoparametric submanifold in a Euclidean
space. Then the following statements (i) and (ii) hold:

(i) The mean curvature flow M; having M as initial data collapses to a focal
submanifold of M in finite time. If a focal map of M onto F is spherical, then the
mean curvature flow My has type I singularity, that is, t_lgn_o max, gtz || AL |12 (T —

t) < oo, where Al is the shape operator of M for v, ||AL||e is the sup norm of Al
and S+M; is the unit normal bundle of M,.

(ii) For any focal submanifold F of M, there exists a parallel submanifold M’ of
M such that the mean curvature flow having M’ as initial data collapses to F in finite
time.

FACT 2 ([LT)]). Let M be as in Fact 1, C be the Weyl domain of M at xo (€ M) and
o be a stratum of dimension greater than zero of OC. Then the following statements
(i) and (ii) hold:

(i) For any focal submanifold F (of M) through o, the maen curvature flow F}
having F as initial data collapses to a focal submanifold F' (of M) through o in
finite time. If the fibration of F onto F' is spherical, then the mean curvature flow
F; has type I singularity.
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(i) For any focal submanifold F (of M) through Oc, there exists a focal subman-
ifold F' (of M) through o such that the mean curvature flow F{ having F' as initial
data collapses to F' in finite time.

As a generalized notion of compact isoparametric hypersurfaces in a sphere and
a hyperbolic space, and a compact isoparametric submanifolds in a Euclidean space,
Terng-Thorbergsson [TT] defined the notion of an equifocal submanifold in a sym-
metric space as a compact submanifold M satisfying the following three conditions:

(i) the normal holonomy group of M is trivial,

(ii) M has a flat section, that is, for each z € M, ¥, := exp™(T;- M) is totally
geodesic and the induced metric on ¥, is flat, where T;- M is the normal space of M
at « and exp' is the normal exponential map of M.

(iii) for each parallel normal vector field v of M, the focal radii of M along the
normal geodesic ,, (with 7, (0) = v,) are independent of the choice of x € M, where
Yy, (0) is the velocity vector of ~,, at 0.

On the other hand, Heintze-Liu-Olmos [HLO] defined the notion of an isoparametric
submanifold with flat section in a general Riemannian manifold as a submanifold M
satisfying the above condition (i) and the following conditions (ii’) and (iii’):

(ii") for each € M, there exists a neighborhood U, of the zero vector (of T M)
in T;- M such that ¥, := exp™(U,) is totally geodesic and the induced metric on X,
is flat,

(iii") sufficiently close parallel submanifolds of M are CMC with respect to the
radial direction.

In the case where the ambient space is a symmetric space G/K of compact type, they
showed that the notion of an isoparametric submanifold with flat section coincides
with that of an equifocal submanifold. The proof was performed by investigating its
lift to H°([0,1],g) through a Riemannian submersion 7 o ¢, where 7 is the natural
projection of G onto G/K and ¢ is the parallel transport map for G (which is a
Riemannian submersion of H°([0,1],g) onto G (g :the Lie algebra of G)). Let M be
an equifocal submanifold in G/K and v be a parallel normal vector field of M. The
end-point map 1,(: M — G/K) for v is defined by n,(x) = expt(v,) (x € M). Set
M, = n,(M). We call M, a parallel submanifold of M when dim M, = dim M and
a focal submanifold of M when dim M, < dim M. The parallel submanifolds of M
are equifocal. Let f : M x [0,T) — G/K be the mean curvature flow having M as
initial data. Then, it is shown that, for each ¢t € [0,T), f; : M — G/K is a parallel
submanifold of M and hence it is equifocal (see Lemma 3.1). Fix g € M. Let

C (C T3 M) be the fundamental domain containing the zero vector (of T;; M) of the

Coxeter group (which acts on T M) of M at xo and set C' := exp™(C), where we note
that exp™ | & is a diffeomorphism onto C. Without loss of generality, we may assume
that G is simply connected. Set M := (m o ¢)~1(M), which is an isoparametric
submanifold in H°([0,1],g). Fix ug € (7 o ¢)~ (). The normal space T;-M is
identified with the normal space Ti} M of M at ug through (7 0 @).y,. Each parallel
submanifold of M intersects with C' at the only point and each focal submanifold of
M intersects with 0C at the only point, where OC' is the boundary of C. Hence,
for the mean curvature flow f : M x [0,7) — G/K having M as initial data, each
M;(:= f:(M)) intersects with C at the only point. Denote by x(¢) this intersection
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point and define ¢ : [0,T) — C (C TEM = Té)ﬂ) by expt(£(t)) = z(t) (t € [0,T)).
Set M; := (mo¢) (M) (t € [0,T)). It is shown that M; (t € [0,T)) is the mean
curvature flow having M as initial data because the mean curvature vector of M; is

the horizontal lift of that of M; through 7 o ¢. By investigating £ : [0,7) — TjDM,
we obtain the following fact corresponding to Fact 1.

THEOREM A. Let M be an equifocal submanifold in a symmetric space G/K of
compact type. Then the following statements (i) and (ii) hold:

(i) If M is not minimal, then the mean curvature flow My having M as initial
data collapses to a focal submanifold F of M in finite time. Furtheremore, if M is
irreducible, the codimension of M is greater than one and if the fibration of M onto
F is spherical, then the flow My has type I singularity.

(ii) For any focal submanifold F of M, there exists a parallel submanifold of M
collapsing to F' along the mean curvature flow and the set of all parallel submanifolds
collapsing to F' along the mean curvature flow is a one-parameter C'*°-family.

REMARK 1.1. U. Christ ([Ch]) showed that all irreducible equifocal submanifolds
of codimension greater than one on symmetric spaces of compact type are homoge-
neous and hence they occur as principal orbits of hyperpolar actions. On the other
hand, A. Kollross ([Kol]) showed that all hyperpolar actions of cohomogeneity greater
than one on irrdeucible symmetric spaces of compact type are orbit equivalent to Her-
mann actions on the space. Hence all equifocal submanifolds of codimension greater
than one on irreducible symmetric spaces of compact type occurs as principal orbits
of Hermann actions. Therefore they are classified completely. Hence we can show the
statement of Theorem A by using this classification. However, it is very important
to prove the statement conceptionally without the use of this classification. In fact,
Liu-Terng ([LT]) prove the results in [LT] conceptionally without the use of the clas-
sification of isoparametric submanifolds in Euclidean spaces by J. Dadok ([D]). So, in
this paper, we prove the statement of Theorem A conceptionally.

Also, we obtain the following fact corresponding to Fact 2 for the mean curvature
flow having a focal submanifold of an equifocal submanifold as initial data.

THEOREM B. Let M be as in the statement of Theorem A and o be a stratum of
dimension greater than zero of OC (which is a stratified space). Then the following
statements (i) and (ii) hold:

(i) For any non-minimal focal submanifold F (of M) through o, the maen cur-
vature flow F; having F as initial data collapses to a focal submanifold F' (of M)
through Oo in finite time. Furthermore, if M is irreducible, the codimension of M is
greater than one and if the fibration of F onto F' is spherical, then the flow F; has
type I singularity.

(ii) For any focal submanifold F' of M through do, there exists a focal submanifold
of M through o collapsing to F along the mean curvature flow, and the set of all focal
submanifolds of M through o collapsing to F along the mean curvature flow is a
one-parameter C'°-family.

Since focal submanifolds of M through 0-dimensional stratums of 9C' are minimal,
it follows from these theorems that M collapses to a minimal focal submanifold of M
after finitely many times of collapses along the mean curvature flows.



104 N. KOIKE

M, — F!

(t—T1) non—min.
Fl —  F?

(t—T>) non—min.

Ftk71 Fk
(t—T} ) min.

F% : a focal submanifold of M
F' : a focal submanifold of F*! (i =2,--- k)

According to the homogeneity theorem for an equifocal submanifold by Christ [Ch],
all irreducible equifocal submanifolds of codimension greater than one in symmetric
spaces of compact type are homogeneous. Hence, according to the result by Heintze-
Palais-Terng-Thorbergsson [HPTT], they are principal orbits of hyperpolar actions.
Furthermore, according to the classification by Kollross [Kol] of hyperpolar actions
on irreducible symmetric spaces of compact type, all hyperpolar actions of cohomo-
geneity greater than one on the symmetric spaces are Hermann actions. Therefore,
all equifocal submanifolds of codimension greater than one in irreducible symmetric
spaces of compact type are principal orbits of Hermann actions. In the last section,
we describe explicitly the mean curvature flows having orbits of Hermann actions of
cohomogeneity two on irreducible symmetric spaces of compact type and rank two as
initial data.

2. Preliminaries. In this section, we briefly review the quantities associated
with an isoparametric submanifold in an (infinite dimensional separable) Hilbert
space, which was introduced by Terng [T2]. Let M be an isoparametric submani-
fold in a Hilbert space V.

2.1. Principal curvatures, curvature normals and curvature distri-
butions. Let Ey and E; (i € I) be all the curvature distributions of M, where

Ey is defined by (Ep), = n Ker A, (x € M). For each x € M, we have
veT; M

T.M = (Ep), @ ( &) (El)x), which is the common eigenspace decomposition of A,’s
i€l

(v € T;-M). Also, let \; (i € I) be the principal curvatures of M, that is, A; is the
section of the dual bundle (T+M)* of T+M such that A,|(x,), = (Ai)s(v)id holds for

any x € M and any v € T;* M, and n; be the curvature normal corresponding to \;,
that is, A;(+) = (ny, ).

2.2. The Coxeter group associated with an isoparametric submanifold.
Denote by [7 the affine hyperplane (\;); (1) in T;- M. The focal set of M at z is equal
to the sum 4UI($ + I7) of the affine hyperplanes x + [*’s (i € I) in the affine subspace

1€

x + T;-M of V. Each affine hyperplane [ is called a focal hyperplane of M at .
Let W be the group generated by the reflection R?’s (i € I) with respect to . This
group is independent of the choice x of M up to group isomorphism. This group is
called the Coxeter group associated with M. The fundamental domain of the Coxeter
group containing the zero vector of T M is given by {v € T;-M | \;j(v) < 1(i € I)}.

2.3. Principal curvatures of parallel submanifolds. Let M, be the parallel
submanifold of M for a (non-focal) parallel normal vector field w, that is, M,, =
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1w (M), where n,, is the end-point map for w. Denote by A" the shape tensor of M,,.
This submanifold M, also is isoparametric and A,  (g,)., = %id (tel
for any v € T (l)Mw, that is, #@,S (i € I) are the principal curvatures of M,, and
hence 1" em ) s (i € I) are the curvature normals of M,,, where we identify T;;(z)Mw

with T;-M.

Let M be a (general) submanifold in a Hilbert space V.

2.4. The mean curvature vector of a regularizable submanifold. Assume
that M is regularizable in sense of [HLO], that is, for each normal vector v of M,
the regularizable trace Tr, A, and Tr A2 exist, where Tr, A, is defined by Tr, 4, :=

o0
Z(Nz +u;) (uy <py <+ <0<+ <puf <pf : the spectrum of A,). Then the
1=1

mean curvature vector H of M is defined by (H,v) = Tr, A, (Vv € T+M).

2.5. The mean curvature flow for a regularizable submanifold. Let
fi: M —V (0<t<T)beaC>-family of regularizable submanifold immersions into
V. Denote by H; the mean curvature vector of f;. Define a map F: M x [0,T) =V
by F(z,t) == fi(z) ((x,t) € M x [0,T)). If 2 = H, holds, then we call f, (0 <
t < T) the mean curvature flow. In particular, if f;’s are embeddings, then we set
M; = fi(M) and call M; (rather than f;) the mean curvature flow. Note that, for
a given regularizable submanifold immersion f : M < V, there does not necessarily
exist the mean curvature flow having f as initial data in short time. Furthermore,
we note that, for the restriction f|y of f to a relative compact domain U of M, the
existence of the mean curvature flow having f|y as initial data in short time is not
assured for the sake of absence of the infinite dimensional vector bundle version of
the Hamilton’s theorem (Theorem 5.1 of [Ha]) for the existence and the uniqueness
of solutions of a certain kind of evolution equation (which includes the Ricci flow
equation and the mean curvature flow equation (of finite dimensional case)) in short
time.

Let M be an equifocal submanifold in a symmetric space G/K of compact type
and set M := (7o ¢)"1(M), where 7 is the natural projection of G onto G/K and
¢ : H°([0,1],9) — G is the parallel transport map for G.

2.6. The mean curvature vector of the lifted submanifold. Denote by H
(resp. H) the mean curvature vector of M (resp. M). Then M is a regularizable

isoparametric submanifold and H is equal to the horizontal lift of HY of H (see
Lemma 5.2 of [HLO]).

3. Proofs of Theorems A and B. In this section, we prove Theorems A and
B. Let M be an equifocal submanifold in a symmetric space G/K of compact type,
G — G/K be the natural pI‘OJeCthH and ¢ be the parallel transport map for

G Set M : = (mo¢)” L(M). Take ug € M and set zo := (7 o ¢)(ug). We identify
T;=M with TLM Let C(C TLM T;-M) be the fundamental domain of the
Coxeter group of M at uo containing the zero vector 0 of TLM (= TLM ) and set
C :=exp (C) where exp™ is the normal exponentlal map of M. Denote by H (resp.
H ) the mean curvature vector of M (resp. M ). The mean curvature vector H and
H are a parallel normal vector field of M and M , respectively. Let w be a parallel
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normal vector field of M and w’ be the horizontal lift of w to H°([0, 1], g), which is a
parallel normal vector field of M. Denote by M, (resp. M,.) the parallel (or focal)
submanifold 7, (M) (resp. 1,z (M)) of M (resp. M) where 7, (resp. 71,z) is the
end-point map for w (resp. w”). Then we have My = (rog)” Y(M,). Denote by
H" (resp. H*") the mean curvature vector of M, (resp. M,z). Define a vector field
X on C(CTEM = TEM) by Xy := (H%)yy1w (w € C), where @ is the parallel
normal vector field of M with @,, = w. Let £ : (=S, T) — C be the maximal integral
curve of X with £(0) = 0. Note that S and T are possible be equal to co. Let EA(t/) be
the parallel normal vector field of M with E(T)zo = £(t).

LEMMA 3.1. The family MNL (0 <t < T) is the mean curvature flow having

M as initial data and Mg(t (0 < t < T) is the mean curvature flow having M as
wnitial data.

Proof. Fix to EALO,T). Define a flow F': M x [0,T) — H([0,1],9) by F(u,t) :=
Ug(vt)L(u) ((u,t) € M x [0,T)) and fr : M — H°([0,1],9) (0 <t < T) by fi(u) :=

F(u,t) (u € M). Here we note that fy(M) = MT)L For simplicity, denote by

H' the mean curvature vector of ME/G/)L It is easy to show that F, ((at)( o)) 18
0

a parallel normal vector field of Mg(t/‘\/)L and that F*((&)(uo,to)) = (Ht ) fug (u0)- On
0

the other hand, since M % is isoparametric, Hb is also a parallel normal vector

ot Hence we have Fi ((at)( t0)) = H'o. Therefore, it follows from
0

the arbitrariness of ¢y that M~L (0 <t < T) is the mean curvature flow having
M as initial data. Define a ﬂow F: Mx|[0,T) - G/K by F(z,t) := ng(vt)(ac)
((x,t) € Mx[Q,T))andft M — G/K (0 <t < T)by fi(x) := F(z,t) (x € M). Here
we note that f;(M) = 5 0 t) For snnpllclty7 denote by H? the mean curvature vector

of Mg(t) Fix to € [0,T). i )L = (mo¢)” ( G )) we have (Hto) — [to.
0
On the other hand, we have F*((%)(,7to)) = F*((E)(uto))(* H™). Hence we have

F*((%)Q,m)) = H'. Therefore, it follows from the arbitrariness of ¢, that Mg(t)

(0 <t < T)is the mean curvature flow having M as initial data. O

Proof of Theorem A. Clearly we suffice to show the statement of Theorem A in
the case where M is full. Hence, in the sequel, we assume that M is full. Denote
by A the set of all principal curvatures of M. Set r := codim M. It is shown that
the set of all focal hyperplanes of M is given as the sum of finite pieces of infinite
parallel families consisting of hyperplanes in T%M which arrange at equal intervals.
Let {l,;|j € Z} (1 < a < T) be the finite pieces of infinite parallel families con-
sisting of hyperplanes in Tj;)M . Since l,;’s (j € Z) arrange at equal intervals, we

can express as A = U { |j € Z}, where \,’s and b,’s are parallel sections of

a
a=1"1+ baj
(T+M)* and positive constants greater than one, respectively, which are defined by
((Ma)uo) 11 + baj) = loj. For simplicity, we set \yj = lj‘g . Denote by ng; and
E,; the curvature normal and the curvature distribution correspondlng to Agj, Te-

spectively. The fundamental domain C of the Coxeter group of M at ug is given
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C={weTEtM[N\w)<1(1<a<P))}

It is shown that, for each a, Ay 2;’s (j € Z) have the same multiplicity and so are
also Ag2j+1’s (j € Z). Denote by mg and mg the multiplicities of Aq 2 and Aa,2j11,

respectlvely Take a parallel normal vector field w of M with Wy, € C. Denote by
Av (resp. H w) the shape tensor (resp. the mean curvature vector) of the parallel

submanifold M,,. Since Zﬂnw(]gw)u = % id (v e TuLM), we have

B Aa 2] ) Mg (Aa,2j+1)u(v)
Tr, A = Z (Z 1— (Na2j)u(wa) * Z; 1- (Aa,2j:1)u(wu)>

= Z (ma cot gp=(1 = (Aa)u(wa)) = m{ tan 5= (1 <Aa>u<wu>>) 5= (Aa)u(v),
where we use the relation cot g = EZZ ﬁ. Therefore we have
J

™

(3.1) ov — Z (m cot, ﬁ( — Ao (w)) — m? tan QLba(l - )\a(w))) Ena

where n, is the curvature normal corresponding to Aq. Denote by 0o (1 <a <7) the
maximal dimensional stratum (A,),. (1) of dC. Fix ag € {1,---,7}. Take wy € &y,

and and w), € C near wy such that wy —wj is normal to 7,,. Set w§ := ew)+(1—&)wy
for ¢ € (0,1). Then we have hr-li-lo(AaO)“U (w§) = 1 and sup (Ag)u,(wg) <1 for
e—

0<e<1
each a € {1,---,7} \ {ao}. Hence we have limeﬂm cot 57— (1 — (Aag )Juo (W) = 00
ag
and supO<8<1 cot(l — (Ag)uo(wh)) < oo (a € {1,---,7} \ {ao}). Therefore, we have
lim is the outward unit normal vector of 7,,. Also we have hm || Xuwe || =
Jm e o-

From these facts, X is as in Fig. 1 on a sufficiently small collar nelghborhood of G4, .

Fia. 1.
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Define a function p over C by

plu) = = 3 (i Togsin 571 = (Ao (1)

a=1

+m® log cos 2”7@(1 — (Mg (w))) (w e O).

Let (z1,---,,) be the Euclidean coordinate of T M. For simplicity, set 9; = 62_
(¢ =1,---,r). Then it follows from the definition of X and (3.1) that (9;p)(w) =

(Xw,0;) weC, i=1,---,r), that is, gradp = X. Also we have

" e

@23p)w) = 2 <sm2 (- (@) oo 71— Ol <w>>>
)‘a)uo (8i)()‘a)u0 (6])

v
12

a

X

It follows from this relation that p is downward convex. Also it is shown that p(w) —
00 as w — OC. Hence we see that p has the only minimal point. Denote by wqg this
minimal point. It is clear that X,,, = 0. From these facts and the fact that X is
as in Fig. 1 on a sufficiently small collar neighborhood of each maximal dimensional
stratum o of OC, p and X are as in Fig. 2.

— P

E C

: -

.

wo 4
?
X

Fia. 2.

Let W be the Coxeter group of M at up and Wy the isotropy group of W at 0. Also,
let I' be the lattice of translations of W and set I'* := {w € (Tt M)* |w(T') C Z}.

Also, let C& (Tj;)]’\\j )W be the space of all finite sums of W-invariant eigenfunctions
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of A, where A is the Laplace operator of Tjo M. Then we can show

CA(T;(-)]’\Z)W @C={f= Z a,e>™ " |a, € C (a, = 0 except for finite w)
o & f @ W —invariant}.

Hence, according to Chapter VI,§ 3, Theorem 1 of [B], we have C* (Tj{)ﬂ)w ®C=
Cl¢1, -, ¢, (polynomial ring) for some ¢y, - - , ¢, (€ C* (Tj;M)W) Here we note
that » = dim T;BM because G/K is irreducible and hence M is full and irreducible.
By reordering ¢1, - - - , ¢, suitably, it is shown that {Re ¢1, - ,Re ¢r, 41y, Im &y 41,

-+, Im ¢y, 4, } is a base of C2 (T (M))W (see proof of Theorem 7.6 of [HLO]), where
Re(+) (resp. Im(+)) is the real part (resp. the imaginary part) of (), and r; and r are
positive integers with r; + 2ro = r. Denote by {1, - ,,} this base for simplicity.
Set U := (¢1, - ,1,), which is a C*°-map from Tj{)]f\\j onto R”. It is shown that

VU is injective and that \I/|E is a homeomorphism of C onto U(C), where C is the
closure of C. Set &, () := by (w) and &, (t) := U(¢y(w)), where w € C and {¢,;} is the
local one parameter transformation group of X. Also, we set &, () := x;(£w(t)) and
€L (t) := yi(€w(t)), where (y1,--- ,y,) is the natural coordinate of R". Then we have

( W) (t) = (grad(y; o V), 1), Xeo (1)
-y (m; Ot -1 = (G (0))) = 5 tan( -1 = (g (m@s)))))

a

X T (A (rad(y: o \mgw(t))) |

Let f; be the W-invariant C'°*°-function over Tul0 M such that

fi) =3 ((m COtl (1 = (Aa o)) = tan (1 = (Ao <v>>>)

o (e a3 wm)

forall v € W-C. 1t is easy to show that such a W-invariant C'*°-function exists
uniquely. Hence, we can describe f; as f; = Y; o ¥ in terms of some C'°°-function Y;
over R". Set Y := (Y1,---,Y;), which is regarded as a C'*°-vector field on R". Then
we have Yy, = Vu(Xw) (w € C), that is, Y]y@ = ¥«(X). Also we can show
that Y|6\11(5) has no zero point. From these facts and the fact that X is as in Fig.

2, we see that the flow of X starting any point of C other than wo (wp : the only
zero point of X) converges to a point of dC in finite time, and that, furthermore,
for each point of 86’, there exists a unique flow of X converging to the point. Since
M is not minimal by the assumption, we have Xo # 0, that is, 0 # wp. Hence we
have T' < oo and tli_{r%«f(t) € 0C, where £(t) = ¢+(0) and T is the supremum of the

domain of £. Set wy := , li%n O{(t). Therefore, since M; = M{(T)v the mean curvature
ST

flow M, collapses to the focal submanifold F' := Mg, in time T, where w; is the
parallel normal vector field of M with (w1)y, = w1. Also, My’s (=S <t < T) are all
of parallel submanifolds of M collapsing to F' along the mean curvature flow, where
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—S is the infimum of the domain of £&. Thus the first-half part of the statement (i)
and the statement (ii) are shown. Next we shall show the second-half part of the
statement (i). Assume that M is irreducible and the codimension of M is greater

than one and that the fibration of M onto F is spherical. Set M := (w0 ¢)~*(M) and
F = (o ¢)"1(F). Since the fibration of M onto F is spherical, F passes through
a highest dimensional stratum & of dC. Let ag be the element of {1,---,7} with
7 C (Mao)wy ( ). Set M; := (w0 ¢)"2(M,) (t € [0,T)), which is the mean curvature
flow having M as initial data. Denote by A! (resp. Zt) the shape tensor of M; (resp.

~ —~ ' —
My). Then, since M; is the parallel submanifold of M for £(¢) , we have

i (Ao (v) o
SpeCAFU\{O}:{ > |a:1,~~~,r,]€Z}
1= (Aaj)uo (€(1))
for each v € T- +§(t)M = T;BM Since tiiﬁog(t) € (Map)uy (1) and

im £() ¢ (Na)yy (1) (@ € {1+ .7} \ {ao}), we have Tim (Ag)uy (1) = 1
and . 1i$0(Aa)uo (&(t)) < 1 (a # ap). From these facts, &'(t) = (I?‘g(v’f)L)uO+§(t) and
(3.1), we have

im AT 1)

L (Aao ) o (v)?
- tilzlrrio (1 — Ovag )uo (€(0)) 2T =)
(32) = 2 )0, hm -
g\ ao/uo -0 (1 ()\ao)uo (g(t)))()‘ao)uo (gl(t))
()‘ao)uo(U)Q

2mé, [ (nag )uo 1

Hence we have

1
2mg,

lim ma. A2 (T —t) =
g, g IR =

Thus the mean curvature flow M, has type I singularity. Set 0; := (T 0 ¢)su4e() (V)
and let {Af, -+ AL} (Ap < -0 <L) (vesp. {pg, - ppt (0 < py < - < ppy)) be
all the eigenvalues of AL (resp. R(-,7:)¥¢), where n := dim M. Since M is an irre-
ducible equifocal submamfold of codimension greater than one by the assumption, it is
homogeneous by the homogeneity theorem of Christ (see [Ch]) and hence it is a prin-
cipal orbit of a Hermann action by the result of Heintze-Palais-Terng-Thorbergsson
(see [HPTT]) and the classification of hyperpolar actions by Kollross (see [Kol]).
Furthermore, M and its parallel submanifolds are curvature-adapted by the result
of Goertsches-Thorbergsson (see [GT]). Therefore, A% and R(-,7;)7; commute and
hence we have

DO (Ker(AL, = Aid) NKer(R(-, )0 — p11d)) = Tmog) (uore(t)) Me-

i=1 j=1

Set Ef; := Ker(AL — Aid) N Ker(R(:,v:)v; — pbid) (3,5 € {1,---,n}) and I, :=
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{(,4) € {1,--- ,n}?| Ef; # {0}}. For each (i,j) € I, we have

15
\/7 |[keZyp (uj#0)

t
arctan V)f:j + km

A\ l (1t = 0)

in terms of Proposition 3.2 of [Koil] and hence

Spec(Af}|(m¢):1(E§j)) =

t

~ 221
|4 ||oo = max 7JW|<i,j>eIts.t.u§-¢o U{IA] (i, 4) € I s.t. il = 0}
arctan ij
It is clear that sup pu!, < oo. If lim [\ = oo, then we have
0<t<T t—=T—0

[ ¢
M.
lim ! -

t—T-0 %
arctan
)‘i

/AL = 1. Hence we have

: At 112 o
lim (A %,(T - )

:max{ lim \)*(T—t)|i=1,---,n
t—>T—0

= i N2(T —H)|li=1,---
=t max{O0T = 1)
= im (144 (T — 1),

t—T—
which together with (3.2) deduces

(Aag )uo (U)Q

li AL P (T —t) = —22ton/
tﬁlqr*n,OH 'Ut||OO( ) 2m30||(na0)u0||2

Therefore we obtain

1
lim max AL (T —t) = —— < 0
T =00eS 1 ey ™Mt o MG

Thus the mean curvature flow M; has type I singularity. O
Next we prove Theorem B.

Proof of Theorem B. For simplicity, set I := {1,---,7}. Let & be a stratum of
dimension greater than zero of 9C and Iz := {a € I|5 C (Aa)y; (1)} Let wy € 0.

Denote by F (resp. F) the focal submanifold of M (resp. M) for w; (resp. wr).

Assume that F' is not minimal. Then, since Kerng,« = @ (Fao)u,, we have
acls

T ﬁ: @1x (Eaj)u 51+ ((Fag .
winF = (0 8 m (B0 (8 0 ()

Also we have

Tk, 0 F= ( ® (an)uO) @ TEM,
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where we identify Tyo4w, H°([0,1],9) with T,,H°([0,1],9). For v € TpoM(C
Tk F

o, F), we have

A (i) = %d ((a,4) € (I\T5) x Z) U (I5 x (Z\ {0})))-

Hence we have

~~L

Tr,AQ?

me (Aa,2j )ue (v Mo (Aa,2j+1)uo (V
Zz(z)()z(u)()

L= (Aa25)uo (1) 2 1= (Aa,2541)uo (W1)

acl\Iz \JEZ JEZ

Y mg (Na,2)uo (V) Y Mg (Na,2j+1)uo (V)

T \erdon 1 Qaziuo(wr) 1 = a2t Juo (w1)
™

= % (mioot (1 = (uuafn) ~ g tan -1 = (1))
a€l\I5 @ @

™

E ()\a)uo (U),

that is, the T M-component ((lr;'“’lL)uDerl)TL 77 of (ﬁ@f)uoﬂul is equal to
uo

™

2_ba(na)uo-

3 (mz cot (1~ (A (1)) — S tam =~ (1 — (A )ug <w1>>)

et 2b, 2b,,

Denote by ®,,+, the normal holonomy group of F at up +w; and Ly, be the focal
leaf through ug for w;. Since Ly, = Pyytw, - Yo, there exists u € Dy, 44, such that
M(Ti)M) = TuﬁF for any point u; of L,,. On the other hand, since F' has constant

principal curvatures in the sense of [HOT], (H @y Yuo+w; 18 Pogw, -invariant. Hence

5 ~
we have (H™1 )y4w, € Q T:- M, where we note that Q T:-M contains & as an
uE Ly uE€ Ly

open subset. Therefore, we obtain

(ﬁﬁf)uo-i-’wl = Z (mg cot %(1 B ()\a)uo (wl))
(3.3) e\l '

Define a tangent vector field X° on & by X7 = (H")yotw (w € &). Let & :
(=S, T) — & be the maximal integral curve of X7 with £(0) = w;. Define a function
ps over g by

pz(w) := — Z (mg logsin%(l = (Aa)uo ()
ac€l\I5 @

+m? log cos ;Ta(l — (MNa)uo (w))) (w e o).

It follows from the definition of X% and (3.3) that grad pz = X°. Also we can show
that ps is downward convex and that pz(w) — oo as w — do. Hence we see that pz
has the only minimal point. Denote by wg this minimal point. It is clear that Xgo =0.
Also, by imitating the proof of Theorem A, we can show that the flow of X7 starting



THE MEAN CURVATURE FLOW FOR EQUIFOCAL SUBMANIFOLDS 113

any point of & other than wy converges to a point of do in finite time, and that,
furthermore, for each point of 95, there exists a unique flow of X% converging to the
point. Since F' is not minimal by the assumption, we have Xgl # 0, that is, wy # wy.
Hence we have T < oo and tii%n_of(t) € 00. Set wy := t_lgn_og(t). Therefore,

since Fy = M, oL the mean curvature flow F; collapses to the lower dimensional focal
submanifold F’ := Mg, in time T, where ws is the parallel normal vector field of
M with (@W2)z, = we. Also, Fi’s (=S < t < T) are all of focal submanifolds of M
through & collapsing to F’ along the mean curvature flow. Thus the first-half part of
the statement (i) and the statement (ii) are shown. Also, by imitating the proof of

Theorem A, we can show the second-half part of the statement (i). O

4. Hermann actions of cohomogeneity two. According to the homogene-
ity theorem for an equifocal submanifold in a symmetric space of compact type by
Christ ([Ch]), equifocal submanifolds of codimension greater than one in an irreducible
compact type symmetric space are homogeneous. Hence, according to the result by
Heintze-Palais-Terng-Thorbergsson ([HPTT]), they occur as principal orbits of hy-
perpolar actions on the symmetric space. Furthermore, by using the classification of
hyperpolar actions on irreducible compact type symmetric spaces by Kollross ([Kol)),
we see that they occur as principal orbits of Hermann actions on the symmetric spaces.
We have only to analyze the vector field X defined in the previous secton to analyze
the mean curvature flows having parallel submanifolds of an equifocal submanifold M
as initial data. Also, we have only to analyze the vector fields X°’s (¢ :a simplex of
86’) defined in the proof of Theorem B to analyze the mean curvature flows having
focal submanifolds of M as initial data. In this section, we shall explicitly describe
the vector field X defined for principal orbits of all Hermann actions of cohomogeneity
two on all irreducible symmetric spaces of compact type and rank two (see Table 3).
Let G/K be a symmetric space of compact type and H be a symmetric subgroup of
G. Also, let  be an involution of G with (Fix )y C K C Fix 6 and 7 be an invloution
of G with (Fix 7)o C H C Fix 7, where Fix 6 (resp. Fix7) is the fixed point group of 6
(resp. 7) and (Fix 6)g (resp. (Fix 7)) is the identity component of Fix 6 (resp. Fix 7).
In the sequel, we assume that 706 = fo7. Set L := Fix(fo7). Denote by the same sym-
bol § (resp. 7) the involution of the Lie algebra g of G induced from 6 (resp. 7). Set
t:= Ker(0—id), p := Ker(0+id), b := Ker(r—id) and q := Ker(7+id). The space p is
identified with Tex (G/K). From ot = 706, we have p = pNh+pNgq. Take a maximal
abelian subspace b of pN g and let p = 3,(b) + > pg be the root space decomposi-

BeA!,
tion with respect to b, where 3, (b) is the centralizer of b in p, A/, is the positive root
system of A’ := {# € b*|IX(# 0) € p s.t. ad(h)}(X) = —B(b)?X (Vb € b)} under
some lexicographic ordering of b* and pg := {X € p|ad(b)*(X) = —B(b)>X (Vb€ b)}
(B e AL). Also, let A'Y = {Be N, [psnq+#{0}} and AT == (e A/ |psNh #
{0}}. Then we have q = b+ > (pgNq) and h = 3,(6) + > (pgNh), where
pBen’y penH
35(b) is the centralizer of b in h. The orbit H(eK) is a reflective submanifold and it is
isometric to the symmetric space H/H N K (equipped with a metric scaled suitably).
Also, expt (T (H(eK))) is also a reflective submanifold and it is isometric to the
symmetric space L/H N K (equipped with a metric scaled suitably), where exp™ is
the normal exponential map of H(ekK). The system A'Y := A’K U (fA’K) is the root
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system of L/H N K. Define a subset C ofb by
C:={beblo<B<n(VBerY) —= <6< (VBEA’H)}

Set C := Exp(a), where Exp is the exponential map of G/K at eK. Let P(G,H x
K) :={g € H'([0,1],G)|(9(0),9(1)) € H x K}, where H'([0,1],G) is the Hilbert
Lie group of all H!-paths in G. This group acts on H°([0, 1], g) as gauge action. The
orbits of the P(G,H x K)-action are the inverse images of orbits of the H-action
by m o ¢. The set ¥ := Exp(b) is a section of the H-action and b is a section of
the P(G,H x K)-action on H°([0,1],g), where b is identified with the horizontal
lift of b to the zero element 0 of H°([0,1],g) (0 :the constant path at the zero
element 0 of g). The set C is the fundamental domain of the Coxeter group of a
principal P(G, H x K)-orbit and each prinicipal H-orbit meets C' at one point and
each singular H-orbit meets dC at one point. The focal set of the principal orbit
P(G,HxK)-Zy (Zy € C) consists of the hyperplanes 8~1(jm)’s (3 € A’K\A’f, je
z), 57 + 5)m)’s (8 € AMN\NAY, G ez), BTHEYs (Be AUNAY, je)
in b(= TZL0 (P(G,H x K) - Zy)). Denote by exp® the exponential map of G. Note
that m o exp®|, = Exp. Let Yj € C and M(Ypy) := H(Exp(Yp)). Then we have

TELXP(YO)M(YO) = (exp%(Yp)).(b). Denote by AYo the shape tensor of M(Yy). Take
ve TEXP(Y )M (Yy) and set v := (exp®(Yp)): 1 (v). By scaling the metric of G/K by a

suitable positive constant, we have

A Bv) . v
(4.1) A% |exp (vo). (psna) = —mld (Ben'y)
and
(12) Al oep ) oy = B(E) tam BYo)id (5 € A1),

Set m)Y = dim(ps N q) (8 € A’Y) and m¥ := dim(ps Nh) (B € A'Y). Set M(Yp) :=
(ro ¢))* (M(Y0))(= P(G,H x K) -Yp). We can show (7o ¢)(Yy) = Exp(Ys). Denote
by AY0 the shape tensor of M( o). According to Proposition 3.2 of [Koil], we have

1Yo *6(6) . /
Spec(AY |(wo¢);,}0(expG(Yo)*(pﬁmq))) \ {0} = {W)U ez} (Ben'y),
—B(v

Yo 7 ‘ I
Spec(Ay |(w0¢):§0(expG(Y0)*(pgﬂb))) \ {0} = {ﬁ(YO) TG+ %)ﬂ |jeZ} (Beny),

and
AY
SPec(Az° | (rog) = (expC (¥o)- (s (61))) = 10}

Hence the set PC~ of all principal curvatures of M (Yp) is given by

M (Yo)
PC+ 2{75|66A' jGZ}U{ -8 |BEA’ jEZ},
MGo0) 1 B(Yo) + jim ” B(Yo) + (j + 5)m *’

where £ is the parallel section of (TL]\Z(YO))* with EUO = Boexp®(Yy);!. Also, we

can show that the multiplicity of GCRSA K) is equal to mg and that of

—B
B(Yo)+ijm
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W (B € A’H) is equal to mf. Define )\};‘) and b};‘) (BeA',)b
. Beni\at
B(Yo)  B(Yo) * *
Ao pY0) = =5 T e\ AV
75 ™ % 1 H

B 280v0) (Fedsnsy)

Th h *E _ AZO h A/V AIH 75 o )\2/0 h
on e have mp)am — Tgnp en Be N N\DL, swmyrGrDe = ERTA A
AY0 A¥0

1H v 8 ] _ 8 3 /V
BeAT\AY and ( (Y0)+J7f’ B(Yo)+(i+3 )w) o (1+2ng0’ 1+(2j+1)b 0 ) when § € A

A’f. That is, we have

)\YO
PCM(YO) = {71)1/0 |8 € A ,j EL}.

Denote by mg; the multiplicity of . Then we have

1+]b
my (B e A’%\A’g) mYy (B e A’E\A’g)
mgoj = mg (BeAT\AD) mg2jr1 =4 mf (BeAT\AY)
my (Be Y na, m  (Bennath,

where j € Z. Denote by HYo the mean curvature vector of M (Yp) and ng" the
~ Y,
curvature normal corresponding to )\};‘). Define 8% (€ b) by 3(:) = (5%,-) and let 3¢ ’

—~ ~ Y,
be the parallel normal vector field of M (Yy) with (5% O)YO = B*, where we identify b
with Ty M (Yp). From (3.1) (the case of w = 0), we have

Yo _ T Y
H ZmﬁCthU.bYo 50

ﬂEA/V
m nY
mH tan —— - o
(4.3) ﬂgH 8 2bY0 25 i
~Y,
S mY ot AY0)F 4 Y mt tan B(Y)5
pen’y Benri

Define a tangent vector field X on C by assigning (HY0)y, (€ TXJ,;)M(YO) =b(CV))
to each Yy € C. From (4.3), we have

(4.4) Xy, = — Z mg COtﬂ(Yo)ﬁﬁJr Z mgtanﬁ(Yo)ﬂ“.

v H
pen’y peart

By using this description, we can explicitly describe this vector field X for all Hermann
actions of cohomogeneity two on all irreducible symmetric spaces of compact type and
rank two. All Hermann actions of cohomogeneity two on all irreducible symmetric
spaces of compact type and rank two are given in Table 1. The systems A’ K and A’ f
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for the Hermann actions are given in Table 2 and the explicit descriptions of X for the
Hermann actions are given in Table 3. In Table 1, H* ~ G*/K implies the dual action
of H ~ G/K and L*/HNK is the dual of L/HN K. In Table 2, {«, 5, «+ 8} implies
a positive root system of the root system of (az)-type (a = (2,0),8 = (—=1,/3)),
{a, B, @+ 8,2 + [} implies a positive root system of the root system of (ba)(=(c2))-
type (o = (1,0),8 = (—1,1)) and {a, 8, + B, + 28, + 35,2 + 38} implies a
positive root system of the root system of (go)-type (@ = (2v/3,0),8 = (—v/3,1)).
In Table 1 ~ 3, p; (i = 1,---,16) imply automorphisms of G' and (-) implies the
product Lie group (-) x (-) of a Lie group (-). In Table 2, (oz) and so on imply that
m

the multiplicity of « is equal to m.

H~G/K

H* A G*/K

L*/HNK

p1(50(3)) ~ SU(3)/50(3)

S00(1,2) ~ SL(3,R)/SO(3)

(SL(2,R)/SO(2)) x R

SO(6) ~ SU(6)/Sp(3)

SO*(6) ~ SU*(6)/Sp(3)

SL(3,C)/SU(3)

p2(Sp(3)) ~ SU(6)/Sp(3)

Sp(1,2) ~ SU"(6)/Sp(3)

(SU"(4)/5p(2)) x U(1)

S00(2,q) ~ S00(2,9)/S0(2) x SO(q)
SU(2,q9)/5(U(2) x U(q))
S(UQ1,7) xU@1,q—3)) ~
SU(2,q)/S(U(2) x U(q))
SO(1,5) x SO(1,q — 5) ~
50(2,9)/S0(2) x SO(q)
SO*(4) x SO*(4) ~

SO(g+2) ~
SU(q+2)/5(U(2) x U(q))
SUGE+1) xU(g—j+1)) ~
SU(q+2)/5(U(2) x U(9)
SO(j+1) x SO(qg—j+1) ~
SO(q +2)/50(2) x SO(q)
SO(4) x SO(4) ~

(SU(1,7)/5(U(1) x U(5))) %
(SU(1,q—3)/S(U(1) x U(q — 7)))
(500(1,3)/S0(4)) %
(SO0(1,q — j)/SO(q — j))
SU(2,2)/S(U(2) x U(2))

SO(8)/U(4) SO*(8)/U(4)
p3(SO(4) x SO(4)) ~ 50(4,C) ~ SO*(8)/U(4) S0(4,C)/SO(4)
SO(8)/U(4)

(SO"(4)/U(2)) x (SO (4)/U(2))
SU(2,3)/S(U(2) x U(3))

pa(U(4)) ~ SO(8)/U(4)
S0(4) x SO(6) ~

U(2,2) ~ SO*(8)/U(4)
SO*(4) x SO*(6) ~

SO(10)/U(5) SO*(10)/U(5)
50(5) x SO(5) ~ 50(5,C) A SO*(10)/U(5) S0(5,C)/SO(5)
SO(10)/U(5)

U(2,3) ~ SO*(10)/U(5)
50(2,C) x SO(3,C) ~
50(5,C)/S0(5)
500(2,3) ~ SO(5,C)/SO(5)

(SO™(4)/U(2)) x (SO™(6)/U(3))
S00(2,3)/50(2) x SO(3)

ps(U(5)) ~ SO(10)/U(5)
50(2)% x SO(3)? ~
(SO(5) x SO(5))/SO(5)
pe(SO(5)) ~
(SO(5) x SO(5))/SO(5)
p7(U(2)) ~ Sp(2)/U(2)

(50(2,0)/50(2))
x(50(3,C)/S0(3))
(Sp(1,R)/U(1))
x(Sp(1,R)/U1))
SU(2,q)/5U(2) x U(9)

U(1,1) ~ Sp(2,R)/U(2)

SU(2,q) ~
Sp(2,q9)/Sp(2) x Sp(q)

SU(g+2) ~
Sp(q +2)/Sp(2) x Sp(q)

TABLE 1.
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H A~ G/K

H* ~ G*/K

L*/JHNK

U(4) ~
Sp(4)/Sp(2) x Sp(2)

U*(4) ~
Sp(2,2)/Sp(2) x Sp(2)

Sp(2,C)/Sp(2)

Sp(j+1) x Sp(g—j5+1)~
Sp(q +2)/Sp(2) x Sp(q)

Sp(1,5) x Sp(l,q —j) ~
Sp(2,q)/Sp(2) x Sp(q)

(Sp(1,35)/Sp(1) x Sp(4))x
(Sp(1,q —35)/Sp(1) x Sp(q — 7))

SU(2)% - 50(2)% ~
(Sp(2) x 5p(2))/Sp(2)

SL(2,C) - SO(2,C) ~
Sp(2,C)/Sp(2)

Sp(2,R)/U(2)

ps(Sp(2)) ~
(Sp(2) x Sp(2))/Sp(2)

Sp(2,R) ~ Sp(2,C)/Sp(2)

(SL(2,C)/SU(2))
x(S0(2,C)/S0(2))

po(Sp(2)) ~
(Sp(2) x Sp(2))/Sp(2)

Sp(1,1) ~ Sp(2,C)/Sp(2)

(Sp(1,C)/Sp(1))
x(Sp(1,C)/Sp(1))

Sp(4) ~ Eg/Spin(10) - U(1)

Sp(2,2) ~ Eg ' /Spin(10) - U(1)

Sp(2,2)/5p(2) x Sp(2)

SU(6) - SU(2) ~
Eg/Spin(10) - U(1)

SU(2,4) - SU2) ~
Eg ' /Spin(10) - U(1)

SU(2,4)/S(U(2) x U(4))

p10(SU(6) - SU(2)) ~
Eg/Spin(10) - U(1)

SU(1,5) - SL(2,R) ~
Eg '™ /Spin(10) - U(1)

S0*(10)/U(5)

p11(Spin(10) - U(1)) ~
E¢/Spin(10) - U(1)

SO*(10) - U(1) ~
E; ' /Spin(10) - U(1)

(SU(1,5)/S(U(1) x U(5)))
x(SL(2,R)/SO(2))

p12(Spin(10) - U(1)) ~
Eg/Spin(10) - U(1)

S00(2,8) - U(1) ~
Eg ' /Spin(10) - U(1)

S00(2,8)/50(2) x SO(8)

Sp(4) . Eg/F4

Sp(1,3) ~ E5 %5/ Fy

SU*(6)/5p(3)

p13(Fa) ~ Eg/Fy

F2° A B 2% F,

(500(1,9)/50(9)) x U(1)

p14(SO(4)) ~ G2/SO(4)

SL(2,R) x SL(2,R) ~ G2/S0(4)

S0(4)/50(2) x SO(2)

P15(50(4)) ~ G2/S0(4)

pi5(SO(4)) ~ G3/50(4)

(SL(2,R)/S0O(2))
x(SL(2,R)/SO(2))

p16(G2) ~ (G2 x G2)/G2

G2~ GS /G,

(SL(2,C)/SU(2))
x(SL(2,C)/SU(2))

SU(2)4 m (G2 X GQ)/G2

SL(2,C) x SL(2,C) ~ GS /G2

G3/50(4)

TABLE 1 (CONTINUED).
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H~ G/K AL =0 A'Y i
p1(SO(3)) ~ SU(3)/S0(3) {a, B,a+ B} {a} {B,a+ 8}
M @ @ (1) 1 (@)
SO(6) ~ SU(6)/Sp(3) {a, B,a+ 8} {a, B,a+8} {a, B,a+ 8}
W@ @ @@ @ @@ @
p2(Sp(3)) ~ SU(6)/Sp(3) {a, B,a+ B} {a} {B,a+pB}
4) (a) (4 (4) (4)  (4)
SO(q+2) ~ a B a+p, a , B,a+p, a , B,a+p,
(@ lala & 10 a2y &85 @2’ ) e
SU(q+2)/S(U(2) x U(q)) 20 + B, 2a, 20 + 2B} 2a + B} 2a + B, 2a, 2 + 28}
@ @O @ 1) (ED TN CO RN €

(¢ > 2)

SUGE+) xU@—ji+1) ~

SU(q+2)/5(U(2) x U(q))

(g >2)

a B a+pB,
{agts (@) (24-9)

2a + B, 2a, 2a + 28}
@ @O @

{

a ., o+ )
(2j-2) (2g—2j—2)

2, 2 + 208
(1) (1) ;

a B,
{(2072j76) (2)

a+B,2a+ 8}
(25-2) (2)

S(U(2) x U(2)) ~ a, B,a+ 3, a, o+ a, B,
(W(2) x U2)) {gy Brat {oyat sl o8
SU(4)/S(U(2) x U(2)) 2a + B} a+ B, 2a + B}
(1) (1) (1)
(non-isotropy gr. act.)
SO +1)xSO(g—j+1) ~ a ., B,a+p, { a,a+pB} a B,
(@=2) (1) (¢-2) (G=1) (g—j—-1) (a=3i—=1) (1)
SO(q+2)/50(2) x SO(q) 2a + B} a+ B,2a + B}
™ G-1) 1)
SO(4) x SO(4) ~ {a, B,a+5, {a, B,a+p, {a,a+ B}
@) (1) () 2 1) (2 2 (2
SO(8)/U(4) 2a + B} 2a + B}
™ 1)
p3(SO(4) x SO(4)) ~ {a, B,a+8, {a,a+ B} {a, B, a+5,
® 1)y @ (2) (2) @) 1 (@
SO(8)/U(4) 2a + B} 2a+ B
™ ™)
pa(U(4)) ~ SO(8)/U(4) {a, B,a+8, {a,a+ B} {a, B, a+5,
® 1)y (@ [CORNEY) 3) (1) (3
2a + B} 2o+
€] €]
SO(4) x SO(6) ~ {a, B,a+8, {2, B,a+5, {a, B,a+5,
@ @ @ @@ @ @ @ @
SO(10)/U(5) 2a + B, 2a,2a + 28} | 2o+ B, 2a,2a + 28} 2a +
@ ®» @ O &)

SO(5) x SO(5) ~

S0(10)/U(5)

s

a, B o+
{(4) 4) (4

2a+ B, 2a, 2a + 28}
@ O

{

)

a, B,a+
2) (2) (2
2a + B}
(2)

s

a, B,a+
{(2) (2)  (2)

2a+ B, 2a,2a + 28
@ O

TABLE 2.
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Ay =2

A/V

A/H

ps(U(5)) ~ SO(10)/U(5)

a, B,a+ 8B,
{<4> @ @

2a + B, 21a, 2a + 28}

a,2a,2a + 28
{(4) m " ;

{B,a+8, 2a+5}
4) (4

2 2
SO(2)" x SO(3)" ~ {(2)7 (§)7 ﬂ, {(1)7 (?)7 ﬂ, {(1), (B>7 a )67
(80(5) x SO(5))/SO(5) {2a + B} 20 + /ﬂ} 2a + 3}
2 €] [€))
pe(SO(5)) ~ {a,B,a+8, {a} {B,a+8, 2a+/5}
2) (2) (2 (2) 2) (2)
(50(5) x SO(5))/SO(5) {2&(4)» B8}
2
p7(U(2)) ~ Sp(2)/U(2) {a,B,a+8, {a,a+ B} {8,202+ B}
W@ @® @ [EDRRNE)
{2a + B}
)

SU(g+2) ~

Sp(q+2)/Sp(2) x Sp(q)

a B a+p,
{(4q—8) (4) (49—8)
2a + B, 2a, 20 + 28}

a ,B,a+p
{(2 -4 (2) (2q— 4)}
2a + 8, 2a, 2a+25}

,B,a+pB
{(2 —4) (2) (29— 4)}
2a + 8, 20)4 2a+26}

@ G 3 @ M 2
(g >2)
SU4) ~ {a, B,a+p, {a, B,a+8} {a, B,a+8}
@ 3 ® @ @® @ @ @
Sp(4)/Sp(2) x Sp(2) 2a + B} 2a + B} 2a + B}
(4) (1) (3)
U(4) ~ a, B a+ 8B, a, B,a+ a, B,a+p
@ & &ed? taed? o ded?
Sp(4)/Sp(2) x Sp(2) 2a + B} 2a + G} 2a + B}
(4) (2) (2)

Sp(j +1) x Sp(g—j+1 a ., B,a+p, a L 2a, o+ a LB a4+
PG+ 1) x Splg—j+1) ~ {(4LI*8) (E) ((iq 8) {(23'74) (3?; (414;‘64) {(4Q74j74) (/j) ((L'ff)
Sp(q+2)/Sp(2) x Sp(q) 2@(-{)— B, 2a 2« + 28} 2@(—1—)2/:7} 2@(-{)— B}

4 3 4
(¢ >2)
Sp(2) x Sp(2) ~ {a, B,a+8, {a,a+p} {a, B,2a+ 8}
@ 3 3 3 O 3 @
Sp(4)/Sp(2) x Sp(2) 2@(3 B}
SU(2)% - 50(2)* ~ {a, B,a+8, {a, B,a+8, {a,B,a+8,
@@ @ (CORNCO RN E)) [CORNCORNEY)
(Sp(2) x Sp(2))/Sp(2) 2a + B} 2a + B} 2a + B}
(2) (1) (1)
ps(Sp(2)) ~ {a, B,a+8, {a,a+ B} {B,2a+ B}
@ @ @ @ (2 @ @
(Sp(2) x Sp(2))/Sp(2) 2a + B}

(2)

TABLE 2 (CONTINUED).
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pa(Sp(2)) ~ {a,B,a+8, {a,a+ B} {8,204+ 8}
@ @ @ @ @ @ (@
(Sp(2) x Sp(2))/Sp(2) 2@(;5 B}
Sp(4) ~ a, B,a+p, , By ) a, B,a+p,
P {<8> (g €] >ﬂ {<4> <ﬂ> 3 )B {<4> (f) <6>ﬂ
Es/Spin(10) - U(1) 2a + 8, 2a 2a + 283} 2a + B} 2a + B}
(5) (4) (1)
SU(6) - SU(2) ~ {a ,B,a+ﬂ {a,B,a+8, {a,B,a+8
® ©) (9 @ @ @ @ @
Eg/Spin(10) - U(1) 2a + B, 204 2« + 23} 2a + B, 21a,2a + 28} 2a+ B}
(5) (2 [€)) 3
p10(SU(6) - SU(2)) ~ {a 757a+57 {a, B,a+8, {a, B,a+8,
®) () @ @ @ @ @ ¢
Eg/Spin(10) - U(1) 2a + B, 20)4 2a + 23} 2a+ S, 2a 2a +25} 2a+ B}
(5) (4) (1)
p11(Spin(10) - U(1)) ~ {a, 5,a+5, {a, 2a 2a+25} {B,a+B,2a+ 3}
(&) (6) (9) ®) (1) 6) (9 (5)
Eg/Spin(10) - U(1) 2a + B, %104 2a + 28}
5) €D)
p12(Spin(10) - U(1)) ~ {a, B,a+p, {a,B,a+8, {a, B,a+8,
(®) (6) (9 ®) (1) (6 @ ) 3
Eg/Spin(10) - U(1) 2@-{—6,210(,2@-{-26} 2a+B} 2@-{—6,210(,2@—’—26}
Sp(4) ~ E¢/F. » B , B , B
p(4) 6/Fa {(8) (ﬂ) (S)B} {(4) (B) & + B} {(4) (ﬂ) 4 )B}
p13(Fa) ~ Eg/Fy {a, B8,a+ 8} {a} {ﬂ,a+5}
® (8 (3 (®
p1a(SO(4)) ~ {a, B,a+p, {a,3a+28} {8, a+5 2a+6,
(COANCO RN EH) ® @ [ES I ED) (€]
G2/S0(4) 2a+ 8,3a + 8, 3a+ 28} 3a+ B}
[€D) (1) (1)
p15(SO(4)) ~ {a 7B7a+/37 {a,3a+28} {B,a+5, 2a+ﬂ,
(CORCO RN E)) (CORNN S [ES NN ED)
Ga/S0(4) 20((4)— B, 3a(+ B, 3a + 28} 30((4)— B8}
1 1
p16(G2) ~ {a 7B7a+ﬂ7 {a,3a+28} {B,a+ 8, 2a+ﬂ,
@ @ @ @ (@ 2 (@
(G2 x G2)/G2 2a+ B, 3a + B3, da+25} 3a+ B}
2 (2) (2) 2
U@2)?* ~ , Brya+ B, B, ) o, B,a+ B,
@) {<2> (5) <2>B {<1> g) ¢ )ﬁ {<1> <?> <1>B
(G2 x G2)/G2 2a + B,3a + B,3a + 2B} | 2o+ B,3a + B, 5a+25} 2a + B, 3a + B,3a + 26}
2 (2) (2) ) €] €] ) €5)

TABLE 2 (CONTINUED?).
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X (©

p1(SO(3)) ~ SU(3)/S0(3)

X2y ,29) = (tan(z1 + V3xa) — 2cot 21 + tan(z1 — V3z2),
\/§tan(zl + \/5932) — \/gtan(zl - \/3:62))

(C:z1>0,29 > %mlfﬁ,ﬂﬂz < 7%z1+ﬁ)

SO(6) ~ SU(6)/Sp(3)

X(2q,09) = (—4cot2z1 — 2cot(x1 — V3xa) — 2cot(xy 4+ V/3x2)
+4 tan 2z + 2tan(z — \/5932) + 2tan(z; + \/5932),
2v/3 cot(xy — V3xa) — 2v/3 cot(x1 + v3x2)
—2v/3tan(z1 — v3z2) + 2v/3tan(z; + V3z2))

(C :z1>0,z9 > %:Cl,l‘g < —%xl + 57%%=)

p2(Sp(3)) ~ SU(6)/Sp(3)

X(xq,29) = (—8cot 221 + 4tan(z1 — V3xa) + 4cot(z1 + V3z2),
4+/3tan(z1 + V3xz) — 4v3tan(z; — /3x2))

(C : z1>0,22 > %xl—ﬁ,xg < —%xl-i-ﬁ)

SO(qg+2) ~ X(z1,29) = (—(q — 2) cotz1 + cot(z1 — x2) — cot(z1 + x2)
SU(g+2)/S(U(2) x U(q)) +(q — 2) tanzy + tan(x1 — z2) + tan(x1 + z2) + 2 tan 2z,
(g >2) cot(zy — x2) — (¢ — 2) cot za — cot(x1 + xz2)
—tan(z1 — z2) + (¢ — 2) tanzo + tan(zq1 + z2) + 2 tan 2z2)
(6’ tx1 > 0,00 > 21,72 < %)
SO(4) ~ X(z1,29) = (—cotx1 + tanz1 + tan(z1 — z2) + tan(z1 + z2),

SU(4)/S(U(2) x U(2))

—cotxzy — tan(z1 — x2) + tanxa + tan(zi + x2))

(C:ay>0,22 >0, +a2 <)

SUG+1) xU(g—35+1) ~
SU(q+2)/S(U(2) x U(g))
(¢>2)

X(xq,29) = (=2(j —1)cotz1 — 2cot2z1 +2(g — j — 1) tanz,
+2tan(z1 — x2) + 2 tan(z1 + z2),
—2(q —j — 1)cotza — 2cot 2z2 — 2tan(z1 — x2)
+2(j — 1) tanza + 2tan(z; + x2))
(C:21>0,20>0,z1 +a2 < Z)

S(WU2) x U@2)) ~
SU(4)/S(U(2) x U(2))

(non-isotropy gr. act.)

X(zq,09) = (—cotxy + tanzy + tan(z1 — x2) + tan(z1 + z2),
—cotxzy — tan(z1 — x2) + tanxo + tan(zi + x2))

(5 : :vl>(),:62>(),:nl+a:2<%)

SO +1)x SO(q—j+1) ~
SO(q +2)/S0(2) x SO(q)
(¢>2)

X(aq,29) = (—(j —1)cotz1 + (¢ —j — 1) tanzy
+tan(z1 — z2) + tan(z1 + z2),
—(qg—j — 1) cotzy — tan(zy — x2)
+(j — 1) tanzo + tan(zy + x2))

(C: a1 >0,22 >0,z1 +x2 < )

TABLE 3.
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H o~ G/K X (O
SO(4) x SO(4) ~ X(2q,29) = (—2cot z1 — cot(z1 — x2)
SO(8)/U(4) —2cot(z1 + z2) + 2tanzy,

cot(xz1 — x2) — 2cot xo
—2cot(xz1 + x2) + 2tanx2)
(C: 21 >0,22 > 0,22 < T1,21 + x2 < 7)

p3(SO(4) x SO(4)) ~ X(2q,09) = (—2cotz1 + 2tanxy
SO(8)/U(4) + tan(z1 — x2) + tan(x1 + z2),
—2cotzy — tan(z1 — z2)
+2tanzo + tan(z1 + z2))

(6’ t 21 > 0,20 < 0,21 +22 < %)

pa(U(4)) ~ SO(8)/U(4) X(zq,29) = (—cotz1 + 3tanzy
+ tan(z1 — x2) + tan(x1 + z2),
—cotxz — tan(z1 — x2)
+3tanzs + tan(z1 + z2))
(6’ x> 0,22 > 0,21 +x2 < §)

S0O(4) x SO(6) ~ X(xy,29) = 2(—cot z1 — cot(z1 — w2) — cot(z1 + w2)
SO(10)/U(5) —cot 2z1 + tan
+ tan(z1 — z2) + tan(z1 + z2),
cot(z1 — x2) — cot o — cot(z1 + z2)
— cot 2z — tan(xz1 — z2)
+ tan zo + tan(z1 + x2))
(5 tx1 > 0,20 > 71,21 +T2 < %)

SO(5) x SO(5) ~ X(xy,29) = 2(—cot z1 — cot(z1 — w2) — cot(z1 + w2)
SO(10)/U(5) +tanzi + tan(z1 — x2)
+tan(z1 4+ x2) + tan 2z,
cot(z1 — x2) — cot o — cot(z1 + x2)
—tan(z1 — z2) + tanzs
+ tan(z1 + z2) + tan 2z2)
(C: a1 >0,22>0,x2 > x1,22 < I)

ps(U(5)) ~ SO(10)/U(5) X(zq,09) = 2(—2cot 1 — cot 221
+2tan(zi — x2) + 2tan(zy + z2),
—cot 2zo — 2tan(z1 — x2)
+2tan(z1 + z2) + 2tanxg)
(C: 21 >0,20 >0,z +32 < )

TABLE 3 (CONTINUED).
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50(2)% x SO(3)? ~
(SO(5) x SO(5))/SO(5)

X(zq,09) = (—cotzs — cot(x1 — x2) — cot(z1 + x2)
+tanzi + tan(z1 — z2) + tan(zq + z2),
cot(z1 — x2) — cot o — cot(z1 + z2)
—tan(z1 — x2) + tanzs + tan(z1 + x2))

(5 x> 0,2 > 0,22 > 21,71 +x2 < §)

ps(SO(5)) ~
(SO(5) x SO(5))/SO(5)

X(zy,29) = 2(—cot z1 + tan(z1 — x2) + tan(z1 + z2),
—tan(z1 — x2) + tanzs + tan(z1 + x2))

(C : a1 >0,z2>x1 — 5,1 +x2< %)

p7(U(2)) ~ 5p(2)/U(2)

X(21,09) = (—cotzy + tan(z1 — x2) + tan(z1 + x2),
—cotza — tan(z1 — x2) + tan(z1 + x2))

(5 x> 0,22 >0,21 +22< %)

U(g+2) ~ X(zy,09) = (—(2¢ — 4) cot 1 — 2cot(z1 — z2) — 2cot(x1 + x2)
Sp(q+ 2)/Sp(2) x Sp(q) —2cot2z1 + (29 — 4) tanz1 + 2tan(z; — x2)
(g >2) +2tan(z1 + z2) + 4tan 2z,
2cot(z1 — x2) — (2¢ — 4) cot x2 — 2cot(z1 + x2)
—2cot2xg — 2tan(x1 — z2) + (29 — 4) tan zo
+2tan(z1 + x2) + 4 tan 2z2)
(5 sz > 0,22 >x1,02 < F)
SU(4) ~ X(x1,29) = (—2cot z1 — cot(z1 — w2) — cot(x1 + w2)

Sp(4)/Sp(2) x Sp(2)

2tanzi + 2tan(z1 — z2) + 3tan(z1 + x2),
cot(z1 — z2) — 2cot o — cot(z1 + z2)
—2tan(z1 — z2) + tanzs + 3tan(z1 + z2))
(C: @1 >0,20 > 21,21 + 22 < Z)

U(4) ~
Sp(4)/Sp(2) x Sp(2)

X(zq,29) = (—2cotx1 — 2cot(z1 — x2) — 2cot(z1 + z2)
2tanz; + tan(xz1 — z2) + 2tan(zi + z2),
2 cot(z1 — x2) — 2cotxzo — 2 cot(zy + x2)
—tan(z1 — x2) + tanzs + 2tan(x1 + z2))
(5 x> 0,2 > 21,71 +22 < F)

Sp(j+1) x Sp(g —j+1) ~
Sp(q +2)/Sp(2) x Sp(q)
(¢ >2)

X(zy,29) = (—4(j5 — 1) cot 1 — 6cot 2z
+4(q — j — 1) tanz; + 4tan(zy — 22) + 4tan(z1 + 22),
—4(q —j — 1) cotzo2 — 6cot 2z — 4tan(z1 — x2)
+4(j — 1) tanzz + 4tan(z1 + x2))
(C: @ >0,22> 0,2 +a22< )

TABLE 3 (CONTINUED?).
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X (©

Sp(2) x Sp(2) ~

Sp(4)/Sp(2) x Sp(2)

X(zy,29) = (—3cotz1 + tanxy
+3tan(z1 — x2) + 4tan(z1 + z2),
—3cotzo — 3tan(z1 — x2) + 4tan(zy + z2))
(5 x> 0,2 > 0,21 22 < 5)

SU(2)%-50(2)% ~
(Sp(2) x Sp(2))/Sp(2)

X(zq,09) = (—cotz1 — cot(z1 — x2) — cot(x1 + x2)
+tanzi + tan(z1 — z2) + tan(zy + z2),
cot(x1 — x2) — cotxe — cot(x1 + z2)
—tan(z1 — x2) + tanzs + tan(x1 + x2))

(C: @1 >0,20 >z1,31 + 22 < )

ps(Sp(2)) ~

(Sp(2) x 5p(2))/Sp(2)

X(zq,09) = 2(—cotz1 + tan(z1 — x2) + tan(z1 + x2),
—cot xo — tan(zy1 — x2) + tan(z1 + x2))

(5 x> 0,2 > 0,21 22 < 5)

pa(Sp(2)) ~

(Sp(2) x 5p(2))/Sp(2)

X(zq,09) = 2(—cotzq1 + tan(z1 — x2) + tan(z1 + x2),
—cot xo — tan(zy1 — x2) + tan(z1 + x2))

(C: @ >0,29 > 0,2 +z2 < %)

Sp(4) ~
Eg/Spin(10) - U(1)

X(xq,09) = (—4cotx1 — 3cot(x1 — x2) — 4cot(z1 + x2)
+4tanz, + 3tan(z1 — x2) + tan(zi + z2),
3cot(z1 — x2) — 3cotxa — 4dcot(z1 + x2)
—3tan(z1 — z2) + 6tanxs + tan(z + x2))

(C: @1 >0,29 >z1,01 + 22 < )

SU(6) - SU(2) ~
Eg/Spin(10) - U(1)

X(xq,29) = (—4dcotz1 — 2cot(z1 — x2) — 2cot(z1 + x2)
—2cot2x1 + 4tanxy
+4tan(z1 — xz2) + 3tan(x1 + x2),
2 cot(xz1 — x2) — 4cotxa — 2cot(z1 + x2)
—2cot2xy — 4tan(z; — x2)
+5tanxs + 3tan(zi + x2))
(C: @1 >0,20 >z1,01 + 22 < Z)

p10(SU(6) - SU2)) ~
Eg/Spin(10) - U(1)

X(xq,09) = (—4cotz1 — 4dcot(x1 — x2) — 4cot(z1 + x2)
—2cot2x, +4tanx
+2tan(z1 — z2) + tan(z1 + z2),
4 cot(x1 — x2) —4cotxg — 4cot(x1 + x2)
—2cot2x2 — 2tan(xz1 — z2) + Stanxo
+ tan(z1 + z2))
(6’ x> 0,22 >z, 22 < F)

TABLE 3 (CONTINUED?).
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p11(Spin(10) - U(1)) ~
Eg/Spin(10) - U(1)

X(zq,09) = (—8cotz1 — 2 cot 2zq
+6 tan(z1 — x2) + 5 tan(zy + z2),
—2cot2zo — 6tan(z1 — x2)
+9tanzo + 5tan(zy + x2))
(C:21>0,20>0,z1 +a2 < )

p12(Spin(10) - U(1)) ~
Eg/Spin(10) - U(1)

X(21,29) = (—6cotz1 — cot(z1 — x2) — cot(z1 + x2)
2tanzy + 5tan(z1 — x2)
+4tan(z1 + z2) + 2tan 2z4,
cot(xy — x2) — 6cot o — cot(x1 + x2)
—5tan(z1 — z2) + 3tanxo
+4tan(zi + x2) + 2 tan 2z2)
(5 sxyp > 0,22 < §,x2 > 11)

Sp(4) ~ Eg¢/Fa4

X(ey,29) = (—8cot2z1 — 4cot(z1 — V3z2) — 4cot(z1 + V3x2)
+8tan 2z + 4tan(z, — \/5932) + 4 tan(zy + \/5:62),
4\/§cot(zl - \/5932) - 4\/§cot(zl + \/5932)
—4v/3tan(z1 — v/3x2) 4+ 4v/3tan(z; + V3z2))

o g 1 T _ 2L g _rL oy _m
(C:0<a1 <%, m<22< £+ 775, = <wp < st 53

)

p13(F1) ~ Eg/F4

X(ay,00) = (=16 cot 221 + 8tan(z1 — \/gdfg) + 8tan(zy + \/5932),
—8v3tan(x1 — v/3x2) 4+ 8v/3tan(z; + V3zz))
(C : 21 >0,21 — V322 < Z,x1+ V322 < L)

p14(SO(4)) ~ G2/SO(4)

X(xy,09) = (—2cot 221 + 3tan(3z1 — V3z2) + tan(z; — V3z2)
+tan(z1 4+ v3z2) + 3tan(3z; + V3x2),
—2v/3cot 2¢/3z5 — V/3tan(3z1 — V3z2) — V3tan(xz; — V3z2)
+v3tan(z1 + V322) + V3tan(3z1 + v3z2))

(5 sz > 0,20 > 0,V3z1 + 22 < ﬁ)

p15(SO(4)) ~ G2/SO(4)

X(x1,29) = (—2cot 221 + 3tan(3w1 — V3xs) + tan(xy — v/3w2)
+tan(z1 + V3z2) + 3tan(3z1 + V3z2),
—2v/3 cot 2312 — \/gtan(Szl - \/3:62) - \/gtan(azl — \/312)
+vBtan(zy + V3x2) + V3tan(3z1 + v3z2))
(C: @1 > 0,33 >0,VBa1 + 22 < 5%=)

TABLE 3 (CONTINUED?).



126

N. KOIKE

H~ G/K X (O

plg(Gz) a3 (Gz X Gz)/Gz X(zl,zg) = 2(72 cot2x1 + 3tan(3931 — \/§I2) + tan(zl — \/5:62)

+ tan(zq1 + \/3:62) + 3tan(3z1 + \/5932),
—2v/3 cot 232 — \/gtan(Szl - \/5:62) - \/gtan(azl — \/3:62)
+v3tan(z1 + V3x2) + V3tan(3z1 + v3z2))
(C: @1 > 0,20 >0,V301 + 22 < 3275)

SU(2)* ~ (G2 x G2)/G2 X(x1,29) = (—2cot 221 — 3cot(3w1 — V3x) — cot(xy — v/3xa)

—cot(z1 + V3x2) — 3cot(3z1 + V/3xw2) + 2 tan 2z,
+3tan(3z1 — v3z2) + tan(z; — v3x2)
+ tan(z1 + \/3:62) + 3tan(3z1 + \/5932),

\/gcot(Ba:l — \/5932) + \/§cot(azl - \/5932) — \/gcot(azl + \/3:62)
—v3cot(3z1 + \/3:62) — 23 cot 2v/3zo — \/gtan(Ba:l — \/5932)
—V3tan(z1 — V3z2) + V3tan(z1 + V3z2)
+v3tan(3z1 4+ v3x2) + 2v/3 tan 2v/3x2)

(6’ c x> 0,20 < ﬁ,azz > \/3:61)

[BV] J.
[BCO]  J.
B] N.
[Ch] U.
[Co] L.
(GT] 0.
[He] S.
[Ha] R
[Hul]  G.
[Hu2] G

[HLO] E

[HOT] E.
[HPTT] E.
[HTST] D.

TABLE 3 (CONTINUED®).
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