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ESTIMATES FOR THE HEAT KERNEL ON DIFFERENTIAL FORMS

ON RIEMANNIAN SYMMETRIC SPACES AND APPLICATIONS ∗

N. LOHOUÉ† AND S. MEHDI‡

Abstract. We prove upper bounds estimates for the large time behavior of the heat kernel
and for the resolvent of the form Laplacian on Riemannian symmetric spaces, and we obtain L2+ǫ-
estimates for its resolvent on locally symmetric spaces. We deduce lower bounds for the bottom
of the spectrum of the form Laplacian and some results on the vanishing of the L2-cohomology of
locally symmetric spaces.
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1. Introduction. In the last decades the heat kernel has become a fundamen-
tal and powerful tool, subject of a rich and vast literature, reflecting its universality
and formidable efficiency: Atiyah-Singer index theory, K-theory, spectral geometry,
zeta and theta functions, L2-invariants, anomalies, quantum gravity, ... (see e.g.
[4], [7], [28], [37]). Despite these tremendous advances, explicit estimates for the
asymptotics of the heat kernel and computation of related L2-invariants are not avail-
able in general. However, for a large class of Riemannian manifolds, representation
theoretic techniques may be used to obtain estimates for the asymptotics, compute
L2-invariants and derive some results on the L2-cohomology.

More precisely, let G be a non compact connected semisimple Lie group with
finite center and K a maximal compact subgroup of G. The homogeneous space
G/K is naturally equipped with a structure of a non compact Riemannian symmetric
manifold, the metric being induced by the Killing form of G. A finite dimensional
representation (τ, E) of K induces a homogeneous vector bundle E over G/K. The
group G acts by left translations on the Hilbert space L2(G/K, E) of square integrable
sections of E . Let

D : L2(G/K, E) → L2(G/K, E)

be a G-invariant selfadjoint positive elliptic operator, i.e D commutes with the action
of G on L2(G/K, E). Denote by Pt = e−tD the fundamental solution of the heat
equation





DPt = − ∂
∂tPt, t > 0

P0 = δ

where δ is the Dirac function. In particular, for each ψ in L2(G/K, E), the convolution
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product Pt ⋆ ψ is a solution of the heat equation in L2(G/K, E)




Dφt = − ∂
∂tφt, t > 0

φ0 = ψ.

It is known (see [6]) that the heat operator Pt = e−tD is a bounded operator on
L2(G/K, E) so that

(Ptf)(g) =

∫

G

Pt(g, g
′)f(g′)dg′, ∀f ∈ L2(G/K, E)

where

Pt : G×G→ End(E)

is the heat kernel, and End(E) denotes the vector space of complex endomorphisms
of E.

On the other hand, a torsion free discrete subgroup Γ ofG acts on the left onG/K,
so that the double coset space Γ\G/K is a locally symmetric Riemannian manifold.
Except otherwise stated, we assume that Γ is not of finite covolume in G. Since G/K
is simply connected, it is the universal cover of Γ\G/K and

Γ ≃ Π1(Γ\G/K).

The bundle E can be pushed down to a bundle over Γ\G/K and we let L2(Γ\G/K, E)
denote the corresponding Hilbert space of square integrable sections. In particular, the
operator D drops down to Γ\G/K and defines a locally invariant selfadjoint positive
elliptic operator

D̃ : L2(Γ\G/K, E) → L2(Γ\G/K, E).

Write respectively P̃t and P̃t for the corresponding heat operator and heat kernel. In
this setting a certain pair (D, E) will be distinguished. This particular pair, which we
will focus on, may be thought of as a fundamental model for the general theory.

Consider the Cartan decomposition

g = k⊕ s

of g, where g (resp. k) is the complexification of the Lie algebra of G (resp. K) and
s is a complex vector subspace of g satisfying the bracket relations

[k, s] ⊂ s and [s, s] ⊂ k.

The adjoint representation of G induces a finite dimensional representation σℓ of K
on the exterior product

Vℓ = Λℓs

of s, for ℓ = 0, · · · , dim(s), known as the isotropy representation. It should be noted
that the decomposition of σℓ into irreducible components is not known in general, ex-
cept for (real) rank one groups [13]. We have made some explicit computations for real
groups with (real) rank two and for complex groups. These results are described in
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the appendix. From now on we choose the representation (τ, E) to be the isotropy rep-
resentation of K. In particular the Hilbert space L2(G/K, E) (resp. L2(Γ\G/K, E))
identifies naturally with the space L2(G/K,Vℓ) (resp. L

2(Γ\G/K,Vℓ)) of square in-

tegrable ℓ-forms on G/K (resp. Γ\G/K). Then we take D (resp. D̃) to be the

Hodge-de Rham Laplacian ∆ℓ (resp. ∆̃ℓ) acting on ℓ-forms, with corresponding heat

kernel Pℓ
t (resp. P̃ℓ

t ). Related to the large time behavior of the heat kernel, there
are several interesting L2-invariants of Γ\G/K which can be computed explicitly [33].
One of these invariants will bear some special interest to us. Let ∆⊥

ℓ be the restriction
of ∆ℓ to the orthogonal complement of Ker(∆ℓ) in L

2(G/K,Vℓ). The Γ-trace of the

corresponding heat kernel Pℓ,⊥
t is defined as follows:

TrΓ
(
Pℓ,⊥
t

)
=

∫

F
Tr

(
Pℓ,⊥
t (x, x)

)
dx

where F ⊂ G/K is a fundamental domain for the action of Γ on G/K. Then the ℓth
Novikov-Shubin invariant of Γ\G/K is given by

(1.1) aℓ(Γ\G/K) = sup{b ∈ R+ | TrΓ
(
Pℓ,⊥
t

) t→+∞
= O(t−

b
2 )}.

This value (possibly infinite), which does not depend on Γ, nor on the Riemannian
metric on Γ\G/K, measures the asymptotic behavior of the spectral density function
of ∆ℓ at 0. Roughly speaking the ℓth Novikov-Shubin invariant measures the thickness
of the spectrum of ∆ℓ near 0. Using a Plancherel formula for differential forms, we
have computed, for Γ of finite covolume, explicitly these invariants in [26] (see [33] for
a more complete discussion on L2-invariants of locally symmetric spaces):

aℓ(Γ\G/K) =





rkC(G)− rkC(K) if ℓ ∈ I(G;K) and rkC(G) > rkC(K)

∞+ otherwise

where rkC(G) (resp. rkC(K)) denotes the complex rank of G (resp. K) and I(G;K)
is the interval

[
1
2 dimR(G/K) − 1

2

(
rkC(G) − rkC(K)

)
, 12 dimR(G/K) + 1

2

(
rkC(G) −

rkC(K)
)]
.

In the sequel we shall focus on the continuous part of the heat kernel. More
precisely, let Pℓ,⊥

t be the heat kernel associated with ∆⊥
ℓ , i.e the projection of Pℓ

t onto
the restriction of ∆ℓ to the orthogonal complement of Ker(∆ℓ) in L2(G/K,Vℓ). It

turns out that by a result of Borel (2.7), Pℓ
t and Pℓ,⊥

t coincide when rkC(G) > rkC(K)
or when rkC(G) = rkC(K) and ℓ 6= 1

2 dimR(G/K).

We now turn to the statement of our main results.

Theorem 1 (Theorem 3.1). For all ǫ ∈]0, 1[ there exist two positive numbers aǫ
and Aǫ such that, for all g ∈ G and t ∈ R satisfying || g ||> Aǫ and t > 1, we have

|| Pℓ,⊥
t (g) ||≤ aǫe

−tλℓ(G/K)Φ0(g)e
− 1−ǫ

(1+2ǫ)2
||g||2

4t t−ǫ r+z
2

where λℓ(G/K) is the bottom of the spectrum of ∆ℓ, Φ0 is the Harish-Chandra spher-
ical function on G, r is the minimal dimension of non trivial split components of
cuspidal parabolic subgroups of G and z is the minimum of the orders of zero of the
Harish-Chandra c-functions corresponding to the conjugacy classes of proper cuspidal
parabolic subgroups of G.

The strategy of the proof is
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- use the expression of Pℓ,⊥
t derived from the Plancherel formula for square

integrable ℓ-forms on G/K,
- following an idea of Alexopoulos and Lohoué [2], we decompose the scalar

product 〈pℓ,⊥t (g)η , β〉ΛℓsC , g ∈ G, in two pieces ϕ1,ǫ(g) and ϕ2,ǫ(g) with
support depending on ǫ, observing that we can choose η and β in the same
irreducible component of σℓ,

- combine a recent result of van den Ban and Souaifi on the proof by Delorme
of a Paley-Wiener Theorem on the group G, to see that ϕ2,ǫ is smooth and
compactly supported, whose support does not contain g,

- estimate ϕ1,ǫ.
A link between the power of t in the above estimate and the ℓth Novikov-Shubin
invariant of Γ\G/K is provided by Corollary 3.10.

Theorem 2 (Theorem 4.1). For all ǫ ∈]0, 1[, there exist two positive numbers bǫ
and Bǫ such that, for all g ∈ G satisfying || g ||> Bǫ, we have

|| (∆ℓ − µ)−1(g) ||≤ bǫΦ0(g)e
−(1−ǫ)τµ,ℓ(G/K)||g||

where µ is a complex number in the resolvent set of ∆ℓ and τµ,ℓ(G/K) is some positive
real number depending on µ and on the bottom of the spectrum of ∆ℓ.

The main steps of the proof are
- estimate the convolution product (∆ℓ − µ)−1 ⋆ P ℓ

ǫ0 for ǫ0 sufficiently small,
- prove that the constants involved in our estimates do not depend on ǫ0,
- take the limit ǫ0 → 0.

In the case of functions, i.e when ℓ = 0, sharp estimates for the heat kernel Pℓ
t and

the resolvent of ∆ℓ were obtained by J.-P. Anker and L. Ji in [3].

Theorem 3 (Theorem 5.9). Assume that Γ is of finite covolume in G. Then for
all complex number µ with positive imaginary part and element ġ ∈ Γ\G, there exists

a positive number ǫ such that
(
∆̃ℓ − µ

)−k
(ġ, ·) belongs to L2+ǫ(Γ\G/K, End(Λℓs)), for

all integer k >
1

4
dimR(G/K).

The main lines of the proof are
- recall, by a result of A. Borel and H. Garland, that the kernel Ker(∆̃ℓ) of ∆̃ℓ

is finite dimensional,
- use a result of N. Lohoué on the stability of Lp-cohomology around 2 to show
that the orthogonal projection Tℓ : L

2(Γ\G/K,Λℓs) → Ker(∆̃ℓ) is a bounded
operator on L2+ǫ(Γ\G/K,Λℓs) for some positive real number ǫ,

- use a Stein interpolation theorem to prove that
(
∆̃ℓ − µ

)−1
is a bounded

operator on Lp(Γ\G/K,Λℓs) for p ∈ [2, 2 + ǫ] and Im(µ) sufficiently large,

- analyze the generic terms occuring in the kth power of
(
∆̃ℓ − µ

)−1
, with

k >
1

4
dimR(G/K).

Note that this theorem, combined with Proposition 5.5, generalizes a result of R.
Miatello and N. Wallach proved for functions, i.e when ℓ = 0, in the case where G has
real rank one (Theorem 3.4 in [30]).

Theorem 4 (Theorem 6.1). Let βℓ(Γ\G/K) be the bottom of the spectrum of

∆̃ℓ and δ(Γ) the critical exponent of Γ. We assume that Γ is of infinite covolume in
G. Let ρ be the half sum of positive restricted g-roots and ρmin the minimum of the
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values ρ(X), || X ||= 1, taken on the closure of a positive Weyl chamber in s. If we
assume that λℓ(G/K) does not vanish, then we have

(i) if δ(Γ) ≤ ρmin then βℓ(Γ\G/K) ≥ λℓ(G/K),
(ii) if ρmin ≤ δ(Γ) ≤ || ρ || +

√
λℓ(G/K) then βℓ(Γ\G/K) ≥ λℓ(G/K)−

(
δ(Γ)−

ρmin

)2
, and

(iii) if | δ(Γ)− ρmin |≤ || ρ || < δ(Γ) and λℓ(G/K) ≥
(
δ(Γ)− ρmin

)2
then

βℓ(Γ\G/K) ≥ λℓ(G/K)−
(
δ(Γ)− ρmin

)2
.

The main idea of the proof is
- use Poincaré series to deduce, from the previous theorem, an estimate for the
resolvent of ∆̃ℓ,

- combine this estimate with some recent result of E. Leuzinger on β0(Γ\G/K).
An immediate consequence on the L2-cohomology of Γ\G/K can be deduced (see
Section 2.13 for definitions).

Corollary (Corollary 6.5). The (reduced or unreduced) L2-cohomology group of
degree ℓ of Γ\G/K is trivial in the following cases:

(i) δ(Γ) ≤ ρmin,
(ii) ρmin ≤ δ(Γ) ≤ || ρ || +

√
λℓ(G/K) and

√
λℓ(G/K) > δ(Γ)− ρmin,

(iii) | δ(Γ)− ρmin |≤ || ρ || < δ(Γ) and
√
λℓ(G/K) >| δ(Γ)− ρmin |.

In particular, in these cases, the kernel of ∆̃ℓ is reduced to {0}.
Analogous results for hyperbolic manifolds were obtained by G. Caron and E. Pedon
in [13].

Our paper is organized as follows: in Section 2, we fix notations, recall some
facts and give a representation theoretic description of the bottom of the spectrum
of ∆ℓ (proposition 2.32). Section 3 (resp. Section 4) is devoted to the proof of upper
bounds estimates for the large time behavior of the heat kernel (resp. resolvent) of

∆ℓ. Section 5 contains a proof of an L2+ǫ-estimate for the resolvent of ∆̃ℓ. In Section
6, we give lower bounds for the bottom of the spectrum of ∆̃ℓ and we deduce some
results on the vanishing of the (reduced or unreduced) L2-cohomology of Γ\G/K.
Finally we have gathered in the appendix some computations on the bottom of the
spectrum of ∆ℓ. The main results in this paper were announced without proof in [25].

Acknowledgements. We thank Erik van den Ban for providing us with some
new insights on Delorme’s Paley-Wiener theorem which helped us to fill a gap in a
first version of the paper. The second named author is indebted to Martin Olbrich for
useful conversations. We also thank the referee for comments and suggestions that
helped us improve the paper.

2. Preliminaries.

2.1. Roots, decompositions and norms. Let G be a non compact connected
semisimple real Lie group with finite center and Lie algebra g0. Fix a Cartan involution
Θ of G and let K be the corresponding maximal compact subgroup of G with Lie
algebra k0. We shall drop the subscript 0 for the complexification. Let θ be the Cartan
involution of g0 derived from Θ and let

g0 = k0 ⊕ s0

be the associated Cartan decomposition. There is a finite number s of conjugacy
classes of θ-stable Cartan subalgebras in g0, so we fix an element hi,0 in each class
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and we put

ai,0 = hi,0 ∩ s0 and ti,0 = hi,0 ∩ k0.

Let ∆i be the set of g-roots relative to hi and fix a system of positive roots ∆+
i ⊂ ∆i.

Write Σi for the set of restricted roots, i.e the set of g0-roots with respect to ai,0.
Choose a system Σ+

i ⊂ Σi of positive restricted roots with the compatibility condition
(
α ∈ ∆+

i and α|ai,0 6= 0
)

=⇒ α|ai,0 ∈ Σ+
i .

As usual write

ρi =
1

2

∑

α∈∆+
i

α

for the half-sum of positive roots and

ρai,0 =
1

2

∑

α∈Σ+
i

mαα

for the half-sum of positive restricted roots counted with their multiplicities, i.e
mα = dim(g0)α, where (g0)α denotes the root space corresponding to α. The subset
Σ++

i of Σ+
i will denote the set of positive indivisible restricted roots

Σ++
i = {α ∈ Σ+

i | 1
2
α 6∈ Σ+

i }.

Write rkC(G) and rkC(K) for the complex ranks of G and K respectively. Denote by
Wi the Weyl group associated with ∆i and by |Wi | its order. Let

ni,0 =
∑

α∈Σ+
i

(g0)α and mi,0 = ti,0 +
∑

β∈∆i,β|ai,0
=0

(g0)β .

Write (Mi)e, Ai and Ni for the analytic subgroups of G with Lie algebra mi,0, ai,0
and ni,0 respectively. There exists a unique Θ-stable subgroup Mi of G such that the
centralizer of ai,0 in G is MiAi. The subgroup

Pi =MiAiNi

is a cuspidal parabolic subgroup of G, in particular the discrete series (M̂i)d of Mi is
not empty. We may describe, in this way, the set of all conjugacy classes of cuspidal
parabolic subgroups of G with Lie algebra

pi,0 = mi,0 ⊕ ai,0 ⊕ ni,0.

Observe that the group G itself is cuspidal if, and only if, the discrete series Ĝd of G
is not empty, i.e rkC(G) = rkC(K).

We shall drop the subscript i and simply write a0 for a maximal abelian subspace
of s0, a its complexification, Σ the set of restricted roots, ρa0 the half-sum of positive
restricted roots and P = MAN the corresponding (minimal) parabolic subgroup of
G. The real rank rkR(G) of G is the dimension of a0. The Iwasawa decomposition of
G is

G = KAN
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where any element g of G can be written in a unique way as

g = k(g)ea(g)n(g).

Moreover our choice of Σ+ fixes a positive Weyl chamber a+0 in a0 which defines the
following Cartan decomposition of G

G = K exp(a+0 )K

where any element g of G can be written as

(2.1) g = k1(g)e
a+(g)k2(g),

a+0 being the closure of a+0 . Note that the component a+(g) of g is uniquely deter-
mined, whereas the K-components k1(g) and k2(g) are not.

The Killing form of g

K : g× g → C, (X,Y ) 7→ Tr(ad(X) ◦ ad(Y ))

defines the following G-invariant inner product on g

〈X ,Y 〉 = −K(X, θ(Y ))

which in turn induces a Riemannian structure on the symmetric space G/K, whose
tangent space at the origin eK is identified with s. In particular, this enables us to
identify g with its vector dual g⋆, as well as subspaces of g with subspaces in g⋆. We
shall denote by the same symbol || || the induced norms on g and g⋆, as well as the
norm on G defined by

|| g ||=|| a+(g) || .

In particular one has
|| g−1 ||=|| g || and || kgk′ ||=|| g || for all g ∈ G and k, k′ ∈ K.

2.2. Principal series representations. Fix a proper parabolic subgroup Pi =
MiAiNi of G. Let δi be a discrete series representation of Mi in some Hilbert space
Vδi equipped with an Mi-invariant scalar product 〈 , 〉Vδi

and an induced norm || ||Vδi
.

Let αi be a linear form on ai. The principal series representation of G associated with
the data Pi, δi and αi is the induced representation

πPi,δi,αi

def.
= IndGPi

(
δi ⊗ eαi+ρai,0 ⊗ 1

)

of G in some Hilbert space HPi,δi,αi
. More precisely, write V∞

δi
for the space of smooth

vectors in δi and consider the vector space H∞
Pi,δi,αi

of V∞
δi

-valued smooth functions
on G satisfying the equivariance relation

f(gman) = e−(αi+ρai,0
)(a)δi(m)−1(f(g)) ∀g ∈ G, m ∈Mi, a ∈ Ai, n ∈ Ni

equipped with the scalar product

〈φ1 , φ2〉HPi,δi,αi
=

∫

K

〈φ1(k) , φ2(k)〉Vδi
dk.
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Then the Hilbert space HPi,δi,αi
is the completion of H∞

Pi,δi,αi
with respect to this

norm on which G acts by left translations. If αi is imaginary then πPi,δi,αi
is a unitary

representation (Chapter VII of [20]). The module of smooth vectors of the principal
series representation πPi,δi,αi

of G has a realization in the space C∞(K; δi) of smooth
Vδi -valued maps φ : K −→ Vδi on K transforming under the rule

φ(km) = δ−1
i (m)φ(k) ∀k ∈ K, m ∈ K ∩Mi.

If g ∈ G decomposes under G = KMiAiNi as

g = κ(g)µ(g)eH(g)n

then the action of G on C∞(K; δi) is given by

(2.2) πPi,δi,αi
(g)φ(k) = e−(αi+ρai,0

)(H(g−1k))δi(κ(g
−1k))−1φ(κ(g−1k)).

This is known as the compact picture realization of the principal series representation
πPi,δi,αi

(chapter VII of [20]).

2.3. Lp-integrable differential forms on G/K. The group K acts on s by
the restriction of the (linear extension of the) adjoint action Ad of G. This action
induces a representation σℓ of K on the exterior product Vℓ = ∧ℓs

σℓ(k)(v1 ∧ v2 ∧ · · · ∧ vℓ) = Ad(k)v1 ∧ Ad(k)v2 · · · ∧Ad(k)vℓ, ℓ ≥ 1,

σ0(k)v = v, v ∈ C,

known as the isotropy representation. Observe that, by Hodge isomorphism, σℓ and
σdim(s)−ℓ are equivalent for all 0 ≤ ℓ ≤ dim(s). The isotropy representation is not
irreducible in general, and its explicit decomposition into irreducibles

(2.3) (σℓ, Vℓ) ≃
⊕

(σj
ℓ , V

j
ℓ )

is still an open problem. We fix a K-invariant scalar product 〈 , 〉Λℓs on Vℓ such that

〈V i
ℓ , V

j
ℓ 〉 = {0} if i 6= j.

The isotropy representation defines a homogeneous vector bundle Vℓ over G/K and
we let Lp(G/K,Vℓ) be the space of its Lp-sections, i.e the Lp-integrable ℓ-forms on
G/K, with p ∈ N⋆. Naturally there is an action, by left translations, of the group
G on Lp(G/K,Vℓ). More precisely, the tensor product Lp(G)⊗ ∧ℓs is equipped with
an action of G and of K given respectively by L⊗ 1l and R⊗ σℓ, where L

p(G) is the
space of Lp-integrable complex functions on G and L (resp. R) is the left (resp. right)
translation by G. In particular, we obtain an isomorphism of G-modules

Lp(G/K,Vℓ) ≃
(
Lp(G)⊗ ∧ℓs

)K
,

where
(
Lp(G) ⊗ ∧ℓs

)K
denotes the subspace of K-invariant vectors, equipped with

the natural norm

|| φ ||Lp(G/K,Vℓ)=
(∫

G

|| φ(g) ||p
Λℓs

dg
) 1

p

.
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When ℓ = 0, i.e in the case of functions, we will simply write Lp(G/K). Next the
group K acts on the vector space End(Λℓs) of complex endomorphisms of Λℓs as
follows

σ̃ℓ(k)(T ) = σℓ(k) ◦ T ◦ σℓ(k)−1, ∀k ∈ K, ∀T ∈ End(Λℓs).

This representation induces a homogeneous vector bundle End(Λℓs) over G/K and
Lp(G/K, End(Λℓs)) will denote the space of Lp-sections. We also have an isomorphism
of G-modules

Lp(G/K, End(Λℓs)) ≃
(
Lp(G) ⊗ End(Λℓs)

)K

,

for the K-action R⊗ σ̃ℓ, with the norm

|| φ ||Lp(G/K,End(Λℓs))=
(∫

G

|| φ(g) ||p
End(Λℓs)

dg
) 1

p

.

In the case where p = +∞, these definitions are adapted as usual.

2.4. Laplacian on square integrable differential forms on G/K. The
Killing form of g induces a sequence of G-equivariant maps

End(g)
canonical−→ g⊗ g⋆

Killing−→ g⊗ g
injection→֒ T (g)

quotient→֒ U(g),

where End(g) denotes the vector space of complex endomorphisms of g, g⋆ the vector
dual of g, T (g) the tensor algebra of g and U(g) the enveloping algebra of g. Let ΩG

be the image in (the center of) U(g) of the identity. Any element A = A1 ·A2 · · · · ·Ap

of U(g) defines a differential operator Ã on G

Ã = Ã1 ◦ · · · ◦ Ãp where (Ãjf)(g) =
d

dt |t=0

f(exp(−tAj)g) ∀f ∈ C∞(G), g ∈ G.

In particular, the G-invariant differential operator Ω̃G on G is the Casimir operator
of G. Similarly we define the Casimir operators Ω̃K of K and Ω̃Mi

of Mi. The
representation πPi,δi,αi

defines, by differentiation, an action of U(g) on the smooth
vectors of HPi,δi,αi

. We will denote this action by the same symbol πPi,δi,αi
. It is

known that Ω̃G acts as a scalar operator on the (smooth vectors of the) principal
series representation πPi,δi,αi

(see Proposition 8.22 of [20])

πPi,δi,αi
(Ω̃G) = ωδi,αi

Id

with

(2.4) ωPi,δi,αi
=|| char(δi) ||2 + || αi ||2 − || ρi ||2= δi(Ω̃Mi

)+ || αi ||2 − || ρai
||2,

where char(δi) denotes the infinitesimal character of δi. If we let

Qℓ =

∫

K

R(k)⊗ σℓ(k)dk

be the projection of L2(G) ⊗ ∧ℓs onto the subspace
(
L2(G) ⊗ ∧ℓs

)K

of K-invariant

vectors, then the Laplacian ∆ℓ acting on square integrable ℓ-forms on G/K is defined
by

(2.5) ∆ℓ ◦Qℓ = −Qℓ ◦ (Ω̃G ⊗ Id∧ℓs).
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On the other hand, the spectrum sp(∆ℓ) of ∆ℓ decomposes as a discrete spectrum
spd(∆ℓ) and continuous spectrum spc(∆ℓ)

(2.6) sp(∆ℓ) = spc(∆ℓ) ∪ spd(∆ℓ).

It is well known that (see Theorem A and B in [8], and Proposition 1.2 in [33])
if rkC(G) > rkC(K):

Ker(∆ℓ) = {0} for all ℓ,

0 ∈ sp(∆ℓ) ⇔ 2ℓ ∈
[
dim(G/K) + rkC(K) − rkC(G), dim(G/K) +

rkC(G) − rkC(K)
]
,

if rkC(G) = rkC(K):
Ker(∆ 1

2 dimR(G/K)) is infinite dimensional, and Ker(∆ℓ) = {0} if ℓ 6=
1
2 dimR(G/K),
0 ∈ sp(∆ 1

2 dimR(G/K)), and sp(∆ℓ) is strictly bounded away from zero if

ℓ 6= 1
2 dimR(G/K).

For the harmonic ℓ-forms, writing

Ĝ(σℓ) = {π ∈ Ĝd | char(π) = char(1lG)}

where 1lG denotes the trivial representation of G, we have

(2.7) Ker(∆ℓ) =





∑
π∈Ĝ(σℓ)

Hπ if rkC(G) = rkC(K) and ℓ = 1
2 dimR(G/K),

{0} otherwise.

In other words, Ker(∆ℓ) is either reduced to {0} or is infinite dimen-
sional. Observe that the number dimR(G/K) + rkC(K)− rkC(G) is positive and
dimR(G/K) + rkC(G)− rkC(K) is always even. A throughout discussion on the spec-
trum of ∆ℓ for more general manifolds is given in [27].

2.5. Plancherel formula for square integrable differential forms on G/K.

Following (2.6) the space of square integrable ℓ-forms decomposes under the action of
G into a continuous part and a discrete part

L2(G/K,Vℓ) = L2(G/K,Vℓ)c ⊕ L2(G/K,Vℓ)d.

The Harish-Chandra Plancherel formula decomposes the continuous part of the bireg-
ular representation L⊗R of G as

L2(G)c ≃
∑

i, dim(ai)>0

∑

δi∈(M̂i)d

∫ ⊕̂

a⋆
i,0

Hδi,
√
−1νi

⊗̂H⋆
Pi,δi,

√
−1νi

cδi(
√
−1νi)dνi,

where ⊕̂ (resp. ⊗̂) denotes the Hilbert sum (resp. product), dνi a Lebesgue measure

on a⋆i,0 and, for a fixed δi ∈ (M̂i)d, the function cδi is the Plancherel density. It is
known that cδi is a non-negative continuous function with polynomial growth on a⋆i,0
(Theorem 19 of [18]), i.e there exist a positive real number bi and a non negative
integer Ni ∈ 4N (both depending on δi) such that

(2.8) cδi(
√
−1νi) ≤ bi

(
1+ || νi ||2

)Ni
4 .
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We have

L2(G)c⊗Λℓs ≃
∑

i, dim(ai)>0

∑

δi∈(M̂i)d

∫ ⊕̂

a⋆
i,0

Hδi,
√
−1νi

⊗̂
(
H⋆

Pi,δi,
√
−1νi

⊗Λℓs
)
cδi(

√
−1νi)dνi

so that

(
L2(G)c ⊗ Λℓs

)K

≃
∑

i, dim(ai)>0

∑

δi∈(M̂i)d

∫ ⊕̂

a⋆
i,0

Hδi,
√
−1νi⊗̂

(
H⋆

Pi,δi,
√
−1νi

⊗ Λℓs
)K

cδi(
√
−1νi)dνi.(2.9)

Next the Frobenius reciprocity Theorem implies that the restriction IndKMi∩K(δi |Mi∩K

) of πδi,
√
−1νi to K does not depend on νi. If we let Hδi be the completion of the

complex vector space C∞(K; δi) with respect to the norm given by

|| f ||Hδi
=

( ∫

K

|| f(k) ||2Vδi
dk

)1/2

,

then the restriction to K is an isometry of HPi,δi,
√
−1νi

onto the K-module Hδi .

Moreover the complex vector space
(
H∗

δi,
√
−1νi

⊗Λℓs
)K

is isomorphic, as a K-module,

to the space HomK(Hδi ,Λ
ℓs) of K-equivariant homomorphisms from Hδi onto Vl, so

that (2.9) becomes

L2(G/K,Vℓ)c ≃
∑

i, dim(ai)>0

∑

δi∈(M̂i)d

∫ ⊕̂

a⋆
i,0

Hδi,
√
−1νi

⊗̂HomK(Hδi ,Λ
ℓs⋆)cδi (

√
−1νi)dνi.

In particular the only principal series representations πPi,δi,
√
−1νi

of G appearing in
the above decomposition are those satisfying HomMi∩K(σℓ, δi) 6= {0}. We deduce
that (see Section 5 of [26])

L2(G/K,Vℓ)c

≃
∑

i, dim(ai)>0

∑

δi∈M̂i(σℓ)

∫ ⊕̂

a⋆
i,0

HPi,δi,
√
−1νi

⊗̂
(
H⋆

Pi,δi,
√
−1νi

⊗ Λℓs
)K

cδi(
√
−1νi)dνi,

where

(2.10) M̂i(σℓ)
def.
=

{
δ ∈ (M̂i)d | HomMi∩K(σℓ, δ) 6= {0}

}
.

Similarly for the discrete part, we deduce, from (2.7), that

L2(G/K,Vℓ)d =





∑
π∈Ĝ(σℓ)

Hπ ⊗HomK(Hπ,Λ
ℓs⋆) if rkC(G) = rkC(K)

and ℓ = 1
2 dimR(G/K),

{0} otherwise.
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Therefore the Plancherel formula for square integrable ℓ-forms is given by

L2(G/K,Vℓ)

≃
∑

i, dim(ai)>0

∑

δi∈M̂i(σℓ)

∫ ⊕̂

a⋆
i,0

HPi,δi,
√
−1νi

⊗̂
(
H⋆

Pi,δi,
√
−1νi

⊗ Λℓs
)K

cδi(
√
−1νi)dνi

+
∑

π∈Ĝ(σℓ)

Hπ ⊗HomK(Hπ ,Λ
ℓs⋆)

if rkC(G) = rkC(K) and ℓ =
1

2
dimR(G/K),

(2.11)

L2(G/K,Vℓ)

≃
∑

i, dim(ai)>0

∑

δi∈M̂i(σℓ)

∫ ⊕̂

a⋆
i,0

HPi,δi,
√
−1νi

⊗̂
(
H⋆

Pi,δi,
√
−1νi

⊗ Λℓs
)K

cδi(
√
−1νi)dνi

if rkC(G) 6= rkC(K) or ℓ 6= 1

2
dimR(G/K).

2.6. Spherical Fourier transform and inverse Fourier transform. Con-
sider the decomposition (2.3) of the isotropy representation and write prj for the
corresponding projection

prj : Vℓ → V j
ℓ .

Let f : G→ Λℓs be a compactly supported smooth map which is K-equivariant, i.e

f(gk) = σ−1
ℓ (k)f(g), ∀g ∈ G, k ∈ K.

We decompose f as the sum

f =
∑

j

f j

of K-equivariant maps, where

f j = prj ◦ f.

Similarly to (2.10), define for each j the set

M̂i(σ
j
ℓ )

def.
=

{
δ ∈ (M̂i)d | HomMi∩K(σj

ℓ , δ) 6= {0}
}
.

For δi, j and ℓ fixed, let {T ℓ,j
δi,r

}r≥1 be an orthonormal basis of the (finite dimensional)

complex vector space HomK(Hδi , V
j
ℓ ) with respect to the usual scalar product

〈B ,C〉 = 1

dim(V j
ℓ )

Tr(B⋆C)

where B⋆ denotes the adjoint of B. Define the maps

T ℓ,j
δi

=
∑

r

T ℓ,j
δi,r

and T ℓ,j⋆
δi

=
∑

r

T ℓ,j⋆
δi,r

.
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Now the Fourier transform f̂ j of f j is the map

f̂ j : M̂i(σ
j
ℓ )×

√
−1a⋆i,0 → HPi,δi,

√
−1νi

×HomK(Hδi , V
j
ℓ )

defined by

(2.12) f̂ j(δi,
√
−1νi) =

1

dim(V j
ℓ )

∫

G

πPi,δi,
√
−1νi(g) ◦ T

ℓ,j⋆
δi

(f j(g))⊗ T ℓ,j
δi
dg.

The inverse Fourier transform is given by

f j(g)

=
∑

i

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

Φj
δi

(
πPi,δi,

√
−1νi

(g−1)⊗ 1
HomK(Hδi

,V
j
ℓ
)

(
f̂ j(δi,

√
−1νi)

))

×cδi(
√
−1νi)dνi(2.13)

where

Φj
δi

: HPi,δi,
√
−1νi

⊗HomK(Hδi , V
j
ℓ ) → V j

ℓ

is the contraction map. The Fourier transform of f is f̂ =
∑

j f̂
j. It should be

noted that when G has a non empty discrete series, then Pi = G for some i, with
Ai = Ni = {e} and cδi(0) > 0.

Remark 2.14. When ℓ = 0, f = f j : G→ C is a compactly supported complex-
valued function on G. In this case, one has

Φj
δi

(
πPi,δi,

√
−1νi

(g−1)⊗ 1
HomK(Hδi

,V j
ℓ
)

(
f̂ j(δi,

√
−1νi)

))

= Tr
(
πPi,δi,

√
−1νi

(g−1) ◦ f̂ j(δi,
√
−1νi)

)

so that our formulas (2.12) and (2.13) reduce to

(2.15) f̂(δi,
√
−1νi) =

∫

G

πPi,δi,
√
−1νi

(g)f(g)dg

and

f(g) =
∑

i

∑

δi∈(M̂i)d

1

|Wi |

∫

a⋆
i,0

Tr
(
πPi,δi,

√
−1νi

(g−1) ◦ f̂(δi,
√
−1νi)

)
cδi(

√
−1νi)dνi

which are respectively the Harish-Chandra Fourier transform and inverse Fourier
transform for complex-valued functions on G [18].

2.7. Spherical functions on G. In the sequel, it will be useful to write the
Fourier transform in term of some spherical functions on G. From (2.12) we have

(
πPi,δi,

√
−1νi

(g−1)⊗ 1HomK(Hδi
,V j

ℓ
)

(
f̂ j(δi,

√
−1νi)

))

=
1

dim(V j
ℓ )

∫

G

πPi,δi,
√
−1νi

(g′)T ℓ,j⋆
δi

(f j(gg′)) ⊗ T ℓ,j
δi
dg′
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so that

Φj
δi

(
πPi,δi,

√
−1νi

(g−1)⊗ 1HomK(Hδi
,V j

ℓ
)

(
f̂ j(δi,

√
−1νi)

))

=
1

dim(V j
ℓ )

∫

G

Ψℓ,j

δi,
√
−1νi

(g′)(f j(gg′))dg′

=
1

dim(V j
ℓ )

(
Ψℓ,j

δi,
√
−1νi

⋆ f j)(g),

where Ψℓ,j

δi,
√
−1νi

is the End(V j
ℓ )-valued function on G defined by

Ψℓ,j
δi,νi

(g) = T ℓ,j
δi

◦ πPi,δi,
√
−1νi

(g) ◦ T ℓ,j⋆
δi

∀g ∈ G.

Ψℓ,j
δi,νi

is an End(V j
ℓ )-valued σ

j
ℓ -spherical function on G satisfying the following prop-

erty [11]

Ω̃GΨ
ℓ,j
δi,νi

= ωPi,δi,
√
−1νi

Ψℓ,j
δi,νi

.

Remark 2.16. If F is an End(V j
l )-valued function on G, we define the Fourier

transform of F as the map

M̂i(σ
j
ℓ )×

√
−1a⋆i,0→ End(V j

ℓ )

(δi,
√
−1νi) 7→ F̂ (δi,

√
−1νi) =

∫

G

Ψℓ,j

δi,
√
−1νi

(g) ◦ F (g)dg.

The Harish-Chandra spherical function Φλ on G associated with λ ∈ a⋆ is the
function defined by (see Chapter VII of [20])

(2.17) Φλ(g) =

∫

K

e−(λ+ρa0)(log(a(g
−1k)))dk.

By Proposition 7.4 of [20], for all K-finite vectors u, v in Hδi there exists a positive
real number di such that for all g ∈ G

(2.18) | 〈πPi,δi,
√
−1νi

(g)u , v〉HPi,δi,
√−1νi

|≤ diΦ0(g) || u ||Hδi
|| v ||Hδi

.

Moreover the following estimate of the spherical function Φ0 will be useful (see Propo-
sition 2.2.12 in [3]). There exists a positive number C such that, for all g ∈ G

(2.19) Φ0(g) ≤ C
(
Πα∈Σ++

(
1 + α(a+(g))

))
e−ρa0 (a

+(g)).

2.8. On Delorme’s Paley-Wiener Theorem. We recall a recent result of P.
Delorme on the Paley-Wiener theorem of Arthur [16]. We first start with the notion
of successive partial derivatives of principal series representations of G introduced by
Delorme. For this we will follow the description of van den Ban and Souaifi given in
[5]. Let V be a Fréchet space and V0 be a finite dimensional real vector space with
complexification V . For any η ∈ V⋆ and any holomorphic map Φ : V⋆ −→ End(V ),
one defines the derivative Φ(η) of Φ along η as the following holomorphic map

∂

∂η
Φ

def.
= Φ(η) : V⋆ holo.−→ End(V ⊕ V )
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with

(2.20) Φ(η)(λ)(v1, v2) =
(
φ(λ)v1 +

d

dz
(φ(λ + zη)v2) |z=0, φ(λ)v2

)
.

By iteration, for any finite sequence η = (η1, η2, · · · , ηN ) ∈ V⋆, one defines the suc-
cessive derivative Φ(η) of Φ along η as the map

Φ(η) : V⋆ holo.−→ End(V (η))

with

(2.21) Φ(η) =
(
· · ·

(
Φ(ηN )

)(ηN−1) · · ·
)(η1)

where V (η) is the direct sum of 2N copies of V .
Recall, from section 2.1, that a0 is a maximal abelian subspace in s0 and A =

exp(a0) is the analytic subgroup of G with Lie algebra a0. Denote by P(A) the
set of cuspidal parabolic subgroups of G containing A. The set P(A) is finite and
each element P of P(A) has Langlands decomposition P = MPAPNP where MP

is reductive, AP abelian and NP nilpotent with Lie algebras mP,0, aP,0 and nP,0

respectively. Recall that ρaP,0 is the half sum of positive roots in g0 relative to aP,0

counted with their multiplicities, for some fixed positive system for aP,0-roots in g0.
Recall that we drop the subscript 0 for the complexification of real vector spaces.
We shall write P0 for the (standard) minimal parabolic subgroup. Given δ ∈ (M̂P )d,
write End

(
C∞(K, δ)

)
for the vector space of endomorphisms of C∞(K, δ) and define

the map

πP,δ,(·) : G −→
(
a⋆P −→ End

(
C∞(K, δ)

))
, g 7→

(
λ 7→ πP,δ,λ(g)

)

where πP,δ,λ denotes the principal series representation of G associated with P , δ and
λ. Here we use the realization of the principal series in the compact picture described
in (2.2). Let D for the set of 4-tuples ξ = (P, δ, λ, η), where P ∈ P(A), δ ∈ (M̂P )d,
λ ∈ a⋆P and η is a finite sequence in a⋆P . We shall simply write DP0 for the set of
4-tuples ξ = (P, δ, λ, η) with P = P0. Given ξ = (P, δ, λ, η) ∈ D, we define the partial
derivative along η of the principal series representation πP,δ,λ as the G-representation
defined by the following map

(2.22) πξ : G→ End
(
C∞(K, δ)(η)

)
, g 7→ πP,δ,(·)(g)

(η)(λ)

where we have used the notation in (2.20) and (2.21) with V0 = aP,0 and V =
C∞(K, δ). Let C(a⋆P ) be the vector space of complex functions on a⋆P and O(a⋆P ) the
vector space of complex valued holomorphic functions on a⋆P . Write S(P ; δ) for the
space of bi-K-finite elements of End

(
C∞(K, δ)

)
. Then, for an element

(2.23) φ ∈
⊕

P∈P(A)

⊕

δ∈(M̂P )d

(
O(a⋆P )⊗ S(P ; δ)

)
,

we define in a similar way φξ ∈ End
(
C∞(K, δ)(η)

)
. Given a finite sequence ξ =

(ξ1, ξ2, · · · , ξN ) of elements in D, we define

πξ = πξ1 ⊕ πξ2 ⊕ · · · ⊕ πξN and φξ = φξ1 ⊕ φξ2 ⊕ · · · ⊕ φξN .

We can now state Delorme’s intertwining conditions for a map φ as in (2.23).
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(i) For each finite sequence ξ ∈ DN , the map φξ preserves all invariant subspaces
of πξ, and

(ii) for any two finite sequences ξ1 ∈ DN1 and ξ2 ∈ DN2 , and any two se-
quences of closed invariant subspaces Uj ⊂ Vj for πξj , the induced maps

φ̃ξj ∈ End
(
Vj/Uj

)
are intertwined by all intertwining operators T : V1/U1 −→

V2/U2.
There is a third condition. In the compact picture realization of principal series

representations (2.2), each compactly supported smooth function f ∈ C∞
c (G) has an

operator valued Fourier transform defined by (see (2.15))

(2.24) f̂(P, δ, λ)
def.
= πP,δ,λ(f) =

∫

G

f(g)πP,δ,λ(g)dg ∈ End
(
C∞(K; δ)

)
.

In particular, if f is bi-K-finite then f̂(P, δ, λ) belongs to S(P ; δ). Define the pre-
Paley-Wiener space PW pre

P (G,K, r) associated with the parabolic P ∈ P(A) as the
space of maps φ ∈ ⊕

δ∈(M̂P )d
O(a⋆P )⊗ S(P ; δ) for which there exists a number r > 0

and for every n > 0 a number Cn > 0 such that
(iii)r || φ̂(P, δ, λ) ||≤ Cn(1+ | λ |)−ner|Re(λ)| for all δ and λ,

where Re(λ) denotes the real part of λ. Then Delorme’s Paley-Wiener space is the
vector space defined by (Définition 3 in [16])

PWr(G,K) =
{
φ ∈ ⊕P∈P(A) ⊕δ∈(M̂P )d

O(a⋆P )⊗ S(P ; δ) | φ statisfies

conditions (i), (ii) and (iii)r

}
.(2.25)

Finally, we can now state the Paley-Wiener theorem proved by Delorme.

Paley-Wiener Theorem (Théorème 2 of [16]). Let Dr(G) be the space of complex-
valued functions on G which are compactly supported in the closed ball in G of radius
r and center the neutral element of G. The map Dr(G) → PWr(G,K), f 7→ f̂ is a
topological isomorphism of Fréchet spaces.

Unfortunately Delorme’s intertwining conditions, especially condition (ii), are
not easy to check, even in particular cases. It turns out that, using recent results of
van den Ban and Souaifi (Lemmas 4.1 and 4.2 in [5]), one can reduce considerably
these intertwining conditions enabling us to use Delorme’s Paley-Wiener theorem in
our specific situation. Since we shall make an essential use of van den Ban and
Souaifi’s observation, and for the convenience of the reader, we include the proof of
this reduction.

Proposition 2.26. [5] Let φ be a map as in (2.23). Then one has
(1) the map φ satisfies Delorme’s intertwining conditions if, and only if, it stat-

isfies condition (i).
(2) The following assertions are equivalent

(a) φ satisfies (i) for each finite sequence of data in D.
(b) φ satisfies (i) for each finite sequence of data in DP0 .

Proof. For (1), let ξj , πξj , Uj and Vj be as in (ii), for j = 1, 2. Let T : V1/U1 −→
V2/U2 be an intertwining operator. In particular T is equivariant and the graph of T

is an invariant subspace of V1/U1 ⊕ V2/U2. Since φ statisfies (i), the map φ̃ξ1 ⊕ φ̃ξ2

preserves the graph of T , i.e T ◦ φ̃ξ1 = φ̃ξ2 ◦ T .
For (2), (a) ⇒ (b) is obvious. For the other direction, one proceeds in several steps.
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• Fix a 4-tuple ξ = (P, δ, λ0, η) ∈ D, where P ∈ P(A) is a cuspidal parabolic
subgroup of G containing A with Langlands decomposition P = MPAPNP . The
groupMP is a real reductive subgroup of G with Cartan decompositionMP =

(
MP ∩

K
)
exp(mP,0 ∩ s0). Let a

′
P,0 be a maximal abelian subspace of mP,0 ∩ s0 so that

(2.27) a0 = aP,0 ⊕ a′P,0.

• By the subrepresentation theorem, there exist a (minimal) parabolic subgroup
Q′

P of MP with Langlands decomposition

Q′
P =M ′

PA
′
PN

′
P

where A′
P = exp(a′P,0), a unitary irreducible representation σ ∈ M̂ ′

P ofM ′
P and linear

form µ ∈ a′⋆P on a′P such that

δ ≃ subrepresentation of IndMP

Q′
P
σ ⊗ µ⊗ 1.

• There exists a minimal parabolic subgroup QP of G containing A such that
QP ∈ P(A) and

QP ∩MP = Q′
P .

Then, using induction by stages, one obtains that:

IndGP δ ⊗ λ0 ⊗ 1 ≃ subrepresentation of IndGP

(
IndMP

Q′
P
σ ⊗ µ⊗ 1

)
⊗ λ0 ⊗ 1

≃ subrepresentation of IndGQP
σ ⊗ (λ0 + µ)⊗ 1

where we have identified, using (2.27), a⋆P and a⋆P,0 with subspaces of a⋆.
• For the successive derivatives, we deduce that

π
(η)
P,δ,λ0

≃ subrepresentation of π
(η)
QP ,σ,λ0+µ.

In other words, if we define ξ′ to be the 4-tuple (QP , σ, λ0 + µ, η) ∈ D, we have

(2.28) πξ ≃ subrepresentation of πξ′ .

• On the other hand, the parabolic subgroups P and QP of G are conjugate under
the Weyl group of G with respect to A, i.e there exists w ∈ NK(a0) such that QP =
w−1P0w. This induces an intertwining operator from πQP ,σ,λ0+µ to πP0,w·σ,w·(λ0+µ)

and implies, for the successive derivatives, that

π
(η)
QP ,σ,λ0+µ ≃ π

(w·η)
P0,w·σ,w·(λ0+µ)

where w acts on η componentwise. Defining the 4-tuple ξ0 = (P0, w ·σ,w · (λ0+µ), w ·
η) ∈ DP0 and using (2.28), we deduce that

πξ ≃ subrepresentation of πξ0 .

• By additivity, this extends to the case where ξ is a finite sequence
(ξ1, ξ2, · · · , ξN ) ∈ DN which proves that (b) ⇒ (a).
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2.9. On the bottom of the spectrum of ∆ℓ. From Kuga’s formula (see
Proposition 2.5 of [10]), one has

(2.29) πPi,δi,αi
(∆ℓ) = −πPi,δi,αi

(Ω̃G)

independently of the degree ℓ. Moreover it is known from [38] that

(2.30) δi ∈ M̂i(σℓ) =⇒|| char(δi) ||≤|| ρi ||

and the equality holds only if hi is maximally compact (i.e g does not have real roots
relative to hi). Since there is a discrete number of irreducible unitary representations
δi of M occurring in L2(Mi) with Harish-Chandra parameter contained in the closed

ball defined by || char(δi) ||≤|| ρi ||, the set M̂i(σℓ) is finite. We define the real number

(2.31) λℓ(G/K) = inf
{
− ωPi,δi,

√
−1νi

| δi ∈ M̂i(σℓ), νi ∈ a⋆i,0, 1 ≤ i ≤ s
}
.

In particular we have
(i) λℓ(G/K) ≥ 0 for all ℓ (by( 2.30)),

(ii) λℓ(G/K) = inf
{

|| ρi ||2 − || char(δi) ||2 | δi ∈ M̂i(σℓ), 1 ≤ i ≤ s
}

(by(

2.30)), and

(iii) λℓ(G/K) = 0 ⇔ 2ℓ ∈
[
dimR(G/K) + rkC(K) − rkC(G), dimR(G/K) +

rkC(G)− rkC(K)
]
(by (2.7)).

The link with the bottom of the spectrum of ∆ℓ is given by the following proposition.

Proposition 2.32. The number λℓ(G/K) equals the bottom of the spectrum of
∆ℓ.

Proof. Let µℓ be the bottom of the spectrum of ∆ℓ. By the Plancherel theorem
(2.11) and Kuga’s formula (2.29), we know that

λℓ(G/K) ≤ µℓ.

Assume that λℓ(G/K) < µℓ and let ϕ be a smooth real function with compact support
in the interval [λℓ(G/K), µℓ]. Then we have

ϕ(∆ℓ) ≡ 0

where

ϕ(∆ℓ) =

∫ +∞

−∞
ϕ̂(t)e

√
−1t∆ℓdt.

Now we choose δi ∈ M̂i(σℓ) and νi ∈ a⋆i,0 such that

λℓ(G/K) <|| ρi ||2 − || char(δi) ||2 + || νi ||2< µℓ

and we pick a non zero ℓ-form f in L2(G/K,Vℓ) such that

f̂(δi,
√
−1νi) 6= 0
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and f̂(δi, ·) is continuous on
√
−1a⋆i,0. Then we deduce that

ϕ̂(∆ℓ)f(δi,
√
−1νi) = ϕ(|| ρi ||2 − || char(δi) ||2 + || νi ||2)f̂(δi,

√
−1νi)

6= 0

which is absurd.
In the case of functions, i.e when ℓ = 0, it is not difficult to check, using the Plancherel
formula for functions, that

λ0(G/K) =|| ρa0 ||2 .

However the bottom of the spectrum of ∆ℓ is not known in general (see the appendix
for computations of λℓ(G/K) in some examples).

2.10. Heat kernel for differential forms. Recall that the Laplacian on G is
the negative elliptic differential operator ∆ on G defined by

∆ = Ω̃G − 2Ω̃K .

We denote by Pt = et∆ the fundamental solution of the corresponding heat equation
on G

∆φt =
∂

∂t
φt.

It is well known that

(Ptf)(g0) =

∫

G

pt(g
−1
0 g)f(g)dg ∀f ∈ L2(G), g0 ∈ G

where pt ∈ L2(G)∩C∞(G) is the heat kernel on G [6]. Similarly we may consider the
heat equation for differential forms on G/K

∆ℓφt = − ∂

∂t
φt

and the corresponding fundamental solution

P ℓ
t = e−t∆ℓ .

The operator

P ℓ
t : L2(G/K,Vℓ) → L2(G/K,Vℓ)

is a smoothing pseudo-differential operator commuting with the representation πℓ of
G. Actually we have

(P ℓ
t φ)(g0) =

∫

G

pℓt(g
−1
0 g)(φ(g))dg ∀φ ∈ L2(G/K,Vℓ), g0 ∈ G

where

pℓt : G→ End(Λℓs)

is a smooth map satisfying the covariance property

(2.33) pℓt(kgk
′) = σℓ(k)

−1 ◦ pℓt(g) ◦ σℓ(k′)−1 ∀g ∈ G, k, k′ ∈ K.
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We shall refer to pℓt as the heat kernel of ℓ-forms on G/K (see Section 2 of [6]). It is
easy to see from (2.5) that

e−t∆ℓ ◦Qℓ = Qℓ ◦ (et∆ ⊗ e2tΩ̃K ),

and

(2.34) pℓt(g) =

∫

K×K

pt(k
−1gk′)σℓ(k)e

2tΩ̃Kσℓ(k
′)−1dkdk′.

Similarly, for each irreducible component σj
ℓ of the isotropy representation, we define

the heat kernel pℓ,jt

pℓ,jt (g) ◦ prj = prj ◦ pℓt(g), ∀g ∈ G.

Write pℓ,⊥t for the heat kernel corresponding to the projection ∆⊥
ℓ of ∆ℓ on the

orthogonal complement of Ker(∆ℓ) in L
2(G/K,Vℓ). The heat kernel pℓ,j,⊥t is defined

accordingly. From the Plancherel formula for differential form (2.11), one can deduce

an explicit formula for pℓ,j,⊥t using spherical Fourier transform (see (8.6) of [26])

pℓ,j,⊥t (g)(2.35)

=
∑

i, dim(ai)>0

∑

δi∈M̂i(σ
j
ℓ
)

1

|Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

etωPi,δi,
√−1νiΨℓ,j

δi,νi
(g)cδi(

√
−1νi)dνi.

Moreover one can check that

∆ℓp
ℓ,j
t = − ∂

∂t
pℓ,jt

p̂ℓ,jt (δi,
√
−1νi) = etωPi,δi,

√−1νi IdV j
ℓ

pℓ,jt ⋆ pℓ,jt′ = pℓ,jt+t′ for all t, t′ > 0.

It should be noted that the continuous heat kernel pℓ,⊥t coincides with the full heat
kernel pℓt whenever rkC(G) > rkC(K) or ℓ 6= 1

2 dim(G/K).
In the sequel, we shall use the following basic estimates of the heat kernel ht for

functions on G/K (Chapter V of [14] for 0 < t < 1 and Section 3 of [24] for t ≥ 1).
There exist positive constants C1 and C2 such that, for all g ∈ G, we have

(2.36) ht(gK) ≤ C1t
− 1

2 dimR(G/K)e−
||g||2

4t for 0 < t < 1,

and

(2.37) ht(gK) ≤ C2t
− 1

2 rkR(G)−|Σ++|e−||ρa0 ||
2t for t ≥ 1.

On the other hand, there is a well known relation between ht and the heat kernel pℓt
on ℓ-forms. Indeed, there exists two positive numbers αℓ and C3 such that, for all
t > 0 and g ∈ G (Lemme 2.4 in [22]), one has

(2.38) || pℓt(g) ||End(Λℓs)≤ C3e
tαℓht(gK).

The heat operator on functions on G/K will be denoted by Ht.
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2.11. Laplacian on square integrable differential forms on locally sym-

metric spaces. If Γ is a torsion free discrete subgroup of G, it acts on the left on
G/K, so that the double coset space Γ\G/K is locally symmetric. Except otherwise
stated, we do not assume that Γ is of finite covolume in G. Since G/K is simply
connected, it is the universal cover of Γ\G/K and Γ ≃ Π1(Γ\G/K). Moreover, given
a Haar measure on G, there exists a unique measure dν on Γ\G such that

(2.39)

∫

G

f(g)dg =

∫

Γ\G

[∑

γ∈Γ

f(γg)
]
dν(Γg)

for all compactly supported function f on G. A smooth ℓ-form on Γ\G/K may be
viewed as a smooth Λℓs-valued function φ on G satisfying the relation

φ(γgk) = σℓ(k)
−1φ(g), ∀g ∈ g, k ∈ K, γ ∈ Γ.

Write C∞
0 (Γ\G/K,Vℓ) for the complex vector space of compactly supported smooth

ℓ-forms on Γ\G/K. Similarly, we define the vector space Lp(Γ\G/K,Λℓs) of Lp-
integrable ℓ-forms on Γ\G/K, equipped with the norm

|| φ ||Lp(Γ\G/K,Vℓ)=
( ∫

Γ\G
|| φ(Γg) ||p

Λℓs
dν(Γg)

) 1
p

When ℓ = 0, i.e in the case of functions, we shall simply write C∞
0 (Γ\G/K) and

L2(Γ\G/K). The space Lp(Γ\G/K, End(Λℓs)) of End(Λℓs)-valued Lp functions on
Γ\G/K is defined accordingly, with the norm

|| φ ||Lp(Γ\G/K,End(Λℓs))=
(∫

Γ\G
|| φ(g) ||p

End(Λℓs)
dg

) 1
p

.

Write

dℓ : C
∞
0 (Γ\G/K,Vℓ) → C∞

0 (Γ\G/K,Vℓ+1)

for the exterior differential and

d⋆ℓ : C∞
0 (Γ\G/K,Vℓ+1) → C∞

0 (Γ\G/K,Vℓ)

for its adjoint. Then, the locally invariant positive elliptic operator

∆̃ℓ = d⋆ℓdℓ + dℓ−1d
⋆
ℓ−1

is the Laplacian on compactly supported smooth ℓ-forms on Γ\G/K. This differential
operator has a unique selfadjoint extension to L2(Γ\G/K,Vℓ) which will be also de-

noted by the same symbol ∆̃ℓ. In particular, we may also consider the heat equation
on Γ\G/K

∆̃ℓφt = − ∂

∂t
φt.

We shall write P̃ ℓ
t for its fundamental solution and p̃ℓt for the corresponding heat

kernel. The estimate (2.38) is still true if we replace pℓt (resp. ht) by p̃ℓt (resp. h̃ℓt)

where h̃ℓt (resp. H̃t) denotes the heat kernel (resp. heat operator) on functions on

Γ\G/K. Similarly we define p̃ℓ,⊥t and h̃ℓ,⊥t .



550 N. LOHOUÉ AND S. MEHDI

2.12. On the bottom of the spectrum of ∆̃ℓ. Let βℓ(Γ\G/K) be the bottom

of the L2-spectrum of ∆̃ℓ:

βℓ(Γ\G/K) = inf
{
〈∆̃ℓf , f〉L2(Γ\G/K,Λℓs⋆)| f ∈ C∞

0 (Γ\G/K,Λℓs⋆),(2.40)

|| f ||L2(Γ\G/K,Λℓs⋆)= 1
}
.

In the case of functions, i.e ℓ = 0, some estimates for β0(Γ\G/K) have been proved
by E. Leuzinger [21]. More precisely, let D( , ) be the Riemannian distance on G/K
induced by the Killing form. The Poincaré series associated with Γ is given, for all
x, x′ ∈ G/K and s ∈ R, by

Ps(x, x
′) =

∑

γ∈Γ

e−sD(x,γx′).

Then the critical exponent of Γ is the real number δ(Γ) defined as follows. For all
x, x′ ∈ G, Ps(x, x

′) converges for s > δ(Γ) and diverges for s < δ(Γ), i.e

δ(Γ) = inf
{
s |

∑

γ∈Γ

e−sD(x,γx′) < +∞
}
.

It is not difficult to check that (see Section 2.2 of [21])

0 ≤ δ(Γ) ≤ 2 || ρa0 || .

When Γ is a lattice in G, it is known that (see Theorem 7.4 of [2])

δ(Γ) = 2 || ρa0 || .

In the general case, we have the following result.

Theorem (E. Leuzinger, Section 1 of [21]). Let G be a semisimple Lie group
without compact factors and with trivial center. Let ρmin be the positive real number
defined by

ρmin = inf
{
ρa0(X) | X ∈ a+0 , || X ||= 1

}
.

If Γ is a torsion free discrete subgroup of G, the following estimates hold.

(i) If δ(Γ) ∈
[
0 , ρmin

]
then β0(Γ\G/K) =|| ρa0 ||2,

(ii) if δ(Γ) ∈
[
ρmin , || ρa0 ||

]
then || ρa0 ||2 −(δ(Γ) − ρmin)

2 ≤ β0(Γ\G/K) ≤||
ρa0 ||2, and

(iii) if δ(Γ) ∈
[
|| ρa0 || , 2 || ρa0 ||

]
then

Max
{
0; || ρa0 ||2 −(δ(Γ)−ρmin)

2
}
≤ β0(Γ\G/K) ≤|| ρa0 ||2 −(δ(Γ)− || ρa0 ||

)2.

2.13. L2-cohomology on Γ\G/K. We do not assume that Γ is of finite covol-
ume in G. Let W2,ℓ be the vector subspace of L2(Γ\G/K,Vℓ) defined, for ℓ ≥ 0,
by

W2,ℓ = {ω ∈ L2(Γ\G/K,Vℓ) | || dℓω ||L2(Γ\G/K,Vℓ)< +∞}.

It is easy to check that the kernel Ker(dℓ) of dℓ is a subspace of W2,ℓ which is
closed in L2(Γ\G/K,Vℓ). However, the image Im(dℓ−1) of dℓ−1 need not be closed in
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L2(Γ\G/K,Vℓ). We are therefore led to define the unreduced L2-cohomology group
H(ℓ)(Γ\G/K) of degree ℓ of Γ\G/K

H(ℓ)(Γ\G/K) = Ker(dℓ)/Im(dℓ−1)

and the reduced L2-cohomology group H
(ℓ)

(Γ\G/K) of degree ℓ of Γ\G/K

H
(ℓ)

(Γ\G/K) = Ker(dℓ)/Im(dℓ−1),

where Im(dℓ−1) denotes the closure of Im(dℓ−1) in L
2(Γ\G/K,Vℓ). Observe that there

is a natural surjection

H(ℓ)(Γ\G/K) −→ H
(ℓ)

(Γ\G/K)

and

H
(ℓ)

(Γ\G/K) ≃ Ker(dℓ) ∩ Im(dℓ−1)
⊥
= Ker(∆̃ℓ)

where Im(dℓ−1)
⊥

denotes the orthogonal of Im(dℓ−1) in L2(Γ\G/K,Vℓ). When Γ is
cocompact, unreduced and reduced L2-cohomologies coincide.

3. Estimates for the heat kernel.

Theorem 3.1. Let G be a non compact connected semisimple real Lie group with
finite center and K a maximal compact subgroup of G. Let λℓ(G/K) be the bottom
of the spectrum of ∆ℓ and Φ0 the Harish-Chandra spherical function on G. Put

r = inf
i

{
dimR(ai,0) > 0

}
and z = inf

i

{
order of zero of cδi at νi = 0, δi ∈ M̂i(σℓ)

}
.

Then, for all ǫ ∈]0, 1[, there exist two positive numbers aǫ and Aǫ such that

|| pℓ,⊥t (g) ||End(Λℓs)≤ aǫe
−tλℓ(G/K)Φ0(g)e

− 1−ǫ

(1+2ǫ)2
||g||2

4t t−ǫ r+z
2

for all g ∈ G and t ∈ R satisfying || g ||> Aǫ and t > 1.

Proof. Throughout the proof the symbols Bj and Cj will denote positive real
numbers.

Step 1: we reduce the problem. Since the Casimir operator Ω̃K of K acts a
a scalar operator on each irreducible component σj

ℓ of σℓ and, any two irreducible
components are orthogonal with respect to the scalar product 〈 , 〉Λℓs, we may assume
that η and β belong to the same irreducible component σj

ℓ for some j. Then, using
the Cartan decomposition (2.1), we have

〈pℓt(g)η , ω〉Λℓs = 〈pℓ,jt (g)η , β〉Λℓs

= 〈pℓ,jt (k1(g)e
a+(g)k2(g))η , β〉Λℓs

= 〈pℓ,jt (ea
+(g))σj

ℓ (k2(g))η , σ
j
ℓ (k1(g))

−1β〉Λℓs by (2.33).

Therefore it is enough to consider 〈pℓ,j,⊥t (a)η , β〉Λℓs for a ∈ exp(a+0 ) and η, β ∈ V j
ℓ .

In particular, from (2.35), we obtain

〈pℓ,j,⊥t (a)η , β〉Λℓs

=
∑

i, dim(ai)>0

∑

δi∈M̂i(σ
j
ℓ
)

1

|Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

etωPi,δi,
√−1νi 〈Ψℓ,j

δi,νi
(a)η , β〉Λℓscδi(

√
−1νi)dνi.
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Put ηℓi,j = T ℓ,j⋆
δi

η and βℓ
i,j = T ℓ,j⋆

δi
β so that ηℓi,j and βℓ

i,j are two K-finite vectors in
Hδi with

∫

a⋆
i,0

etωPi,δi,
√

−1νi 〈Ψℓ,j
δi,νi

(a)η , β〉Λℓscδi(
√
−1νi)dνi

=

∫

a⋆
i,0

etωPi,δi,
√−1νi 〈πPi,δi,

√
−1νi(a)η

ℓ
i,j , β

ℓ
i,j〉Λℓscδi(

√
−1νi)dνi.

Define the operator

ηℓi,j ⊗ βℓ
i,j : Hδi → Hδi , f 7→ 〈ηℓi,j , f〉Hδi

βℓ
i,j

and write ξt and ξtδi for the complex functions

ξt : M̂i(σ
j
ℓ )× a⋆i → C, (δi, αi) 7→ etωPi,δi,αi

ξtδi : a
⋆
i → C, αi 7→ etωPi,δi,αi .

Consider the End(Hδi)-valued map

φti : M̂i(σ
j
ℓ )× a⋆i → End(Hδi), (δi, αi) 7→ ξt(δi, αi)η

ℓ
i,j ⊗ βℓ

i,j .

Following an idea of Alexopoulos and Lohoué [2], we decompose this map in two
pieces. For this we fix a smooth function ζ : R → R such that ζ(τ) = 1 if | τ |> 1,
and ζ vanishes in an neighborhood of the origin. Then, for ǫ ∈]0, 1[, define the function

ζa : a⋆i → R, y 7→ ζ
(
(1 + ǫ)

|| y ||
|| a ||

)

and write

(3.2) φti = φti,a + φ̃ti,a

with

φti,a(δi, αi) = (ξtδi ⋆ ζ̂a)(αi) η
ℓ
i,j ⊗ βℓ

i,j

φ̃ti,a(δi, αi) = (ξtδi ⋆ 1̂− ζa)(αi) η
ℓ
i,j ⊗ βℓ

i,j .
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Here it should be noted that the convolution and the Fourier transform are defined
on a⋆i , in particular only the parabolic subgroup Pi =MiAiNi is involved. We have

〈pℓ,j,⊥t (a)η , β〉Λℓs

=
∑

i, dim(ai)>0

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

×
∫

a⋆
i,0

e
tωPi,δi,

√−1νi 〈πPi,δi,
√
−1νi

(a)ηℓ
i,j , β

ℓ
i,j〉Hδi

cδi(
√
−1νi)dνi

=
∑

i, dim(ai)>0

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

×
∫

a⋆
i,0

e
tωPi,δi,

√−1νiTr
(
πPi,δi,

√
−1νi

(a) ◦ (ηℓ
i,j ⊗ βℓ

i,j)
)
cδi(

√
−1νi)dνi

=
∑

i, dim(ai)>0

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

Tr
(
πPi,δi,

√
−1νi

(a) ◦ φt
i(δi,

√
−1νi)

)
cδi(

√
−1νi)dνi

=
∑

i, dim(ai)>0

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

Tr
(
πPi,δi,

√
−1νi

(a) ◦ φt
i,a(δi,

√
−1νi)

)
cδi(

√
−1νi)dνi

+
∑

i, dim(ai)>0

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

Tr
(
πPi,δi,

√
−1νi

(a) ◦ φ̃t
i,a(δi,

√
−1νi)

)
cδi(

√
−1νi)dνi.

(3.3)

Observe that

(3.4) φ̃ti,a(δi, αi) = (ξtδi ⋆ 1̂− ζa)(αi)ξ
−t
δi

(αi)φ
t
i(δi, αi).

Consider the global maps

(3.5) Φt = Φt
a + Φ̃t

a ∈
⊕

Pi∈P(A)

⊕

δI∈(M̂i)d

C(a⋆i )⊗ End
(
C∞(K, δi)

)

where

Φt
a(Pi, δi, αi) = φti,a(δi, αi)

Φ̃t
a(Pi, δi, αi) = φ̃ti,a(δi, αi)

Step 2: we apply Delorme’s Paley-Wiener theorem to Φ̃t
a.

⋆ We start with the pre-Paley-Wiener condition (iii)r in Section 2.8 for some r
which will be specified below. For u, v ∈ H∞

δi
, one has

〈φ̃ti,a(δi,
√
−1νi)u , v〉Hδi

= ψ̂t
i,a(

√
−1νi)

where the function

ψt
i,a :

√
−1a⋆i,0 → C,

√
−1νi 7→ ξt(δi,

√
−1νi)(1− ζa)(

√
−1νi)〈ηℓij , u〉Hδi

〈βℓ
ij , v〉Hδi

is supported in the closed ball in a⋆i,0 of radius Rǫ =
1

1 + ǫ
|| a || and center the origin.

Now the classical Paley-Wiener theorem implies that
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• φ̃ti,a extends to an entire function on a⋆i , in particular the map Φ̃t
a is holomor-

phic in the variable αi, and
• for all integer N ∈ N, we have

sup
αi∈a⋆

i

(
1+ || αi ||2

)N
e−Rǫ||Re(αi)|| | ψ̂t

i,a(δi, αi) |< +∞.

Therefore, since M̂i(σ
j
ℓ ) is a finite set, one has for all θ1, θ2 ∈ U(k)

sup
αi∈a⋆

i ,δi∈M̂i(σ
j
ℓ
)

(
1+ || αi ||2 + || char(δi) ||2

)N
e−Rǫ||Re(αi)||

× || πδi,αi
(θ1)φ̃

t
i,a(δi, αi)πδi,αi

(θ2) ||Lc(Hδi,αi
)< +∞,

where

|| πδi,αi
(θ1)φ̃

t
i,a(δi, αi)πδi,αi

(θ2) ||Lc(Hδi,αi
)

= sup
||ω1||=||ω2||=1

| 〈πδi,αi
(θ1)φ̃

t
i,a(δi, αi)πδi,αi

(θ2)ω1 , ω2〉Hδi
|

= sup
||ω1||=||ω2||=1

| 〈φ̃ti,a(δi, αi)πδi,αi
(θ2)ω1 , πδi,αi

(θ1)ω2〉Hδi
| .

Then, by bi-K-equivariance (2.33) of the heat kernel, we deduce that

Φ̃t
a ∈

⊕

Pi∈P(A)

⊕

δi∈(M̂i)d

O(a⋆i )⊗ End
(
S(K, δi)

)

and Φ̃t
a satisfies pre-Paley-Wiener condition (iii)r for r = Rǫ.

⋆ We turn now to the intertwining conditions (i) and (ii). By (3.3) we see that

the map Φt is actually the Fourier transform Φt = ĥt of the complex-valued function

ht : G→ C, g 7→ 〈pℓ,j,⊥t (g−1)η , β〉Λℓs.

Fix a basis {Xj} of g0 such that αi =
∑

j αi,j〈Xj , ·〉 and choose a sequence {fn} of
compactly supported smooth functions on G with supports in some balls in G such
that (see [36])

limn→+∞ fn(g) = 1, ∀g ∈ G, and, ∃C > 0 such that ∀kj ∈ N, ∀g ∈ G,
| (L(Xj1)

k1 · · ·L(Xjp)
kpfn)(g) |≤ C and

limn→+∞(L(Xj1)
k1 · · ·L(Xjp)

kpfn)(g) = 0.
Then, we have for u ∈ H∞

δi

|| f̂nht(Pi, δi, αi)u− ĥt(Pi, δi, αi)u ||Hδi

= ||
∫

G

(
fn(g)− 1

)
ht(g)πPi,δi,αi

(g)udg ||

≤
∫

G

| fn(g)− 1 | | 〈pℓ,j,⊥t (g−1)η , β〉Λℓs | || πPi,δi,αi
(g)u ||HPi,δi,αi

dg.

Now, since the Casimir operator Ω̃K acts on V j
ℓ by a non-negative scalar σj

ℓ (Ω̃K), we
deduce from (2.34) that

pℓ,jt (g−1) = e2tσ
j
ℓ
(Ω̃K)

∫

K×K

pt(k
−1g−1k′)σℓ(k)σℓ(k

′)−1dkdk′.
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But it is not difficult to check that (see Lemma 8 of [34])

|
∫

K

pt(k
−1g−1k′)dkdk′ |≤ C1 | pt+1(g

−1) | ∀g ∈ G, t > 1

and it is also well known that (see Theorem 1 of [32])

| pt+1(g
−1) |≤ C2e

− ||g||2
4(t+1) ∀g ∈ G, t > 1.

Therefore we have

|| pℓ,j,⊥t (g−1) ||End(V j
ℓ
)≤ C3e

2tσj
ℓ
(Ω̃K)e−

||g||2
4(t+1) ∀g ∈ G, t > 1.

On the other hand, one has (see Proposition 7.15 of [20])

|| πPi,δi,αi
(g)u ||Hδi,αi

≤ C4e
||Re(αi)|| ||g||.

Since the function g 7→ e−
||g||2
4(t+1)

+||Re(αi)|| ||g|| belongs to L1(G), we may apply the
Lebesgue convergence theorem to see that

lim
n→+∞

|| f̂nht(Pi, δi, αi)u− ĥt(Pi, δi, αi)u ||HPi,δi,αi
= 0.

Similarly, we have

|| πPi,δi,αi
(Xj)f̂nht(Pi, δi, αi)u − πPi,δi,αi

(Xj)ĥt(Pi, δi, αi)u ||HPi,δi,αi

= ||
∫

G

ht(g)
(
fn(g)− 1

)
πPi,δi,αi

(Xj)πPi,δi,αi
(g)udg ||HPi,δi,αi

= ||
∫

G

ht(g)
(
fn(g)− 1

) d
ds

|s=0 πPi,δi,αi
(exp(sXj)g)udg ||HPi,δi,αi

= ||
∫

G

d

ds
|s=0 ht(exp(−sXj)g)

(
fn(exp(−sXj)g)− 1

)
πPi,δi,αi

(g)udg ||HPi,δi,αi

≤
∫

G

| (L(Xj)ht)(g)(fn(g)− 1) | || πPi,δi,αi
(g)u ||HPi,δi,αi

dg

+

∫

G

| ht(g) | | (L(Xj)fn)(g) | || πPi,δi,αi
(g)u ||HPi,δi,αi

dg,

and, by iteration, the Lebesgue convergence theorem shows that

|| (πPi,δi,αi
(Xj1)

k1 · · ·πPi,δi,αi
(Xjp)

kp
(
f̂nht(Pi, δi, αi)u−ĥt(Pi, δi, αi)u

)
||HPi,δi,αi

limn→+∞
= 0.

Therefore, since f̂nht is compactly supported, it satisfies intertwining condition
(i) so that if V is a closed G-invariant subspace of HPi,δi,αi

, then, we have that

f̂nht(Pi, δi, αi)V ⊂ V . Taking the limit n→ +∞ and using (3.4), we get that

Φ̃t
a(Pi, δi, αi)V ⊂ V.

Next let V1 × V2 be a closed invariant subspace for ∂
∂λk

πPi,δi,αi
. Since f̂nht satisfies

intertwining condition (i), the partial derivative ∂
∂λk

f̂nht leaves V1 × V2 invariant,
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using definition (2.20). Observing that

[ ∂

∂λk
f̂nht(Pi, δi, αi)−

∂

∂λk
ĥt(Pi, δi, αi)

]
(v1, v2)

=
(
f̂nht(Pi, δi, αi)v1 + αi,kf̂nht(Pi, δi, αi)v2, f̂nht(Pi, δi, αi)v2

)

−
(
ĥt(Pi, δi, αi)v1 + αi,kĥt(Pi, δi, αi)v2, ĥt(Pi, δi, αi)v2

)
, ∀(v1, v2) ∈ V1 × V2

and using the same arguments as above, we deduce that ∂
∂λk

Φt leaves V1×V2 invariant,
i.e

[ ∂

∂λk
Φt(Pi, δi, αi)

]
(v1, v2)(3.6)

=
(
〈ηℓi,j , v1〉Hδi

+ 2tαi,k〈ηℓi,j , v2〉Hδi

)
(βℓ

i,j , 0)

+ 〈ηℓi,j , v2〉Hδi
(0, βℓ

i,j) ∈ V1 × V2, ∀(v1, v2) ∈ V1 × V2.

On the other hand, we have, for all (v1, v2) ∈ V1 × V2
[ ∂

∂λk
Φ̃t

a(Pi, δi, αi)
]
(v1, v2)

=
((
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓi,j , v1〉Hδi

+
∂

∂λk

(
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓi,j , v2〉Hδi

)
(βℓ

i,j , 0)

+ (ξtδi ⋆
(
1̂− ζa)

)
(αi)〈ηℓi,j , v2〉Hδi

(0, βℓ
i,j).

In particular, since both ξtδi and ξtδi ⋆
(
1̂− ζa) are radial functions, ∂

∂λk
Φ̃t

a(Pi, δi, 0)
leaves V1 × V2 invariant. Indeed, when αi = 0, one has

[ ∂

∂λk
Φ̃t

a(Pi, δi, 0)
]
(v1, v2)

=
(
ξtδi ⋆ (1̂ − ζa)

)
(0)ξ−t

δi
(0)

[ ∂

∂λk
Φt(Pi, δi, 0)

]
(v1, v2) ∈ V1 × V2.

Actually, if 〈ηℓij , v2〉Hδi
= 0, and αi need not be trivial, then

[ ∂

∂λk
Φ̃t

a(Pi, δi, αi)
]
(v1, v2)

=
(
ξtδi ⋆ (1̂− ζa)

)
(αi)ξ

−t
δi

(αi)
[ ∂

∂λk
Φt(Pi, δi, αi)

]
(v1, v2) ∈ V1 × V2.

If both αi 6= 0 and 〈ηℓi,j , v2〉Hδi
6= 0, then, applying (3.6) for two distinct t1 6= 0

and t2 6= 0, we see that both vectors (βℓ
i,j , 0) and (0, βℓ

i,j) belong to V1 × V2 which

implies that
[

∂
∂λk

Φ̃t
a(Pi, δi, αi)

]
(v1, v2) belongs to V1 × V2. Therefore the first partial

derivative of Φ̃t
a leaves invariant any closed invariant subspace V1×V2 for ∂

∂λk
πPi,δi,αi

,
i.e

[ ∂

∂λk
Φ̃t

a(i, δi, αi)
]
V1 × V2 ⊂ V1 × V2.

Next let (V1 × V2)× (V3 × V4) be a closed invariant subspace of
∂2

∂λk∂λr
πPi,δi,αi

.

Using the same argument as above we show that
∂2

∂λk∂λr
Φt leaves the subspace
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(V1 × V2)× (V3 × V4) invariant, i.e
(
〈ηℓij , v1〉Hδi

+ 2tαi,r〈ηℓij , v2〉Hδi
+ 2tαi,k〈ηℓij , v3〉Hδi

+4t2αi,kαi,r〈ηℓij , v4〉Hδi
+ 2tδjk〈ηℓij , v4〉Hδi

)(
(βℓ

ij , 0), (0, 0)
)

+
(
〈ηℓij , v2〉Hδi

+ 2tαi,k〈ηℓij , v4〉Hδi

)(
(0, βℓ

ij), (0, 0)
)

+
(
〈ηℓij , v3〉Hδi

+ 2tαi,r〈ηℓij , v4〉Hδi

)(
(0, 0), (βℓ

ij , 0)
)

+ 〈ηℓij , v4〉Hδi

(
(0, 0), (0, βℓ

ij)
)

∈ (V1 × V2)× (V3 × V4),

for all ((v1, v2), (v3, v4)) ∈ (V1×V2)× (V3×V4), α ∈ a⋆ and t > 0. On the other hand,
we have, by definition

∂2

∂λk∂λr

Φ̃t
a((v1, v2), (v3, v4))

=
((

ξtδi ⋆ (1̂− ζa)
)
(αi)〈ηℓ

ij , v1〉Hδi
+

∂

∂λr

(
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓ

ij , v2〉Hδi

+
∂

∂λk

(
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓ

ij , v3〉Hδi

+
∂2

∂λk∂λr

(
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓ

ij , v4〉Hδi

)(
(βℓ

ij , 0), (0, 0)
)

+
((

ξtδi ⋆ (1̂− ζa)
)
(αi)〈ηℓ

ij , v2〉Hδi
+

∂

∂λk

(
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓ

ij , v4〉Hδi

)(
(0, βℓ

ij), (0, 0)
)

+
((

ξtδi ⋆ (1̂− ζa)
)
(αi)〈ηℓ

ij , v3〉Hδi
+

∂

∂λr

(
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓ

ij , v4〉Hδi

)(
(0, 0), (βℓ

ij , 0)
)

+
(
〈ηℓ

ij , v3〉Hδi
+ 2tαi,r〈ηℓ

ij , v4〉Hδi

)(
(0, 0), (βℓ

ij , 0)
)

+
(
ξtδi ⋆ (1̂− ζa)

)
(αi)〈ηℓ

ij , v4〉Hδi

(
(0, 0), (0, βℓ

ij)
)

Then, as in the case of the degree one above, by considering different values of αi and
t, we deduce that

∂2

∂λk∂λr
Φt(Pi, δi, αi)((v1, v2), (v3, v4)) ∈ (V1 × V2)× (V3 × V4)

=⇒ ∂2

∂λk∂λr
Φ̃t

a(Pi, δi, αi)((v1, v2), (v3, v4)) ∈ (V1 × V2)× (V3 × V4).

In a similar way, if W is a closed invariant subspace for the successive partial

derivative
∂|q|

∂λq1j1 · · ·∂λ
qp
jp

πδ,λ of πδ,λ, we show that the successive partial derivative

∂|q|

∂λq1j1 · · · ∂λ
qp
jp

Φt leaves W invariant. And so does the corresponding derivative of Φ̃t
a

[ ∂|q|

∂λq1j1 · · · ∂λ
qp
jp

Φ̃t
a

]
W ⊂W.

In other words, the map Φ̃t
a satisfies intertwining condition (i), when Pi is a minimal

parabolic subgroup of G in P(A). It should be noted that the fact both ηℓi,j and β
ℓ
i,j do
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not depend on αi and t is essential in our arguments. Therefore, by Proposition 2.26,
the map Φ̃t

a actually satisfies both Delorme’s intertwining conditions (i) and (ii). In

particular, the global map Φ̃t
a belongs to Delorme’s Paley-Wiener space PWRǫ

(G,K)
defined in (2.25). We apply Delorme’s Paley-Wiener theorem to see that there exists
a complex-valued function µ on G which is supported in the closed ball in G of radius

Rǫ =
1

1 + ǫ
|| a || and center the neutral element such that

∑

i

∑

δi∈M̂i(σ
j
ℓ
)

1

|Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

Tr
(
πPi,δi,

√
−1νi

(a) ◦ φ̃ti,a(δi,
√
−1νi)

)
cδi(

√
−1νi)dνi

= µ(a−1)

= 0.

Step 3: we estimate the term in (3.3) involving Φt
a. Recall that φti,a(δi, αi) =

(ξtδi ⋆ ζ̂a)(αi) η
ℓ
i,j ⊗ βℓ

i,j so that, writing ϕt(νi) = e−t||νi||2 , (3.3) implies that

| 〈pℓ,j,⊥t (a)η , β〉Λℓs |

= |
∑

i

∑

δi∈M̂i(σ
j
ℓ
)

1

|Wi |
1

dim(V j
ℓ )

×
∫

a⋆
i,0

〈πPi,δi,
√
−1νi

(a)ηℓi,j , β
ℓ
i,j〉Hδi

(ξδi ⋆ ζ̂a)(
√
−1νi)cδi (

√
−1νi)dνi |

≤ B1e
−tλℓ(G/K)Φ0(a) || η ||Λℓs|| β ||Λℓs sup

i

∫

a⋆
i,0

| (ϕt ⋆ ζ̂a)(νi) |2 (1+ || νi ||2)Nidνi

(by (2.8), (2.18) and the Cauchy-Schwartz inequality)

≤ B2e
−tλℓ(G/K)Φ0(a) || η ||Λℓs|| β ||Λℓs sup

i

(∫

a⋆
i,0

∑

|q|≤Ni

| (Dqϕ̂tζa)(z) |2 dz
) 1

2

(
by equivalence with the Sobolev norm, where

Dq =
∂|q|

∂xq11 · · · ∂xqpp
and | q |= q1 + · · ·+ qp

)

= B2e
−tλℓ(G/K)Φ0(a) || η ||Λℓs|| β ||Λℓs sup

i

(∫

||z||≥ 1
1+ǫ

||a||

∑

|q|≤Ni

| (Dqϕ̂tζa)(z) |2 dz
) 1

2

≤ B3e
−tλℓ(G/K)Φ0(a) || η ||Λℓs|| β ||Λℓs e

− ||a||2
4(1+ǫ)2t if t > 1

(
since ϕ̂t(z) = (2t)−

dim(ai,0)

2 e−
||z||2

4t

)

and therefore

(3.7) || pℓ,j,⊥t (a) ||End(Λℓs)≤ bǫ,je
−tλℓ(G/K)Φ0(a)e

− ||a||2
4(1+ǫ)2t

for some positive constant bǫ,j depending on both ǫ and j. Similarly we have

| 〈pℓ,j,⊥t (a)η , β〉Λℓs |(3.8)

≤ B4e
−tλℓ(G/K)Φ0(a) || η ||Λℓs|| β ||Λℓs sup

i

∫

a⋆
i,0

e−t||νi||2cδi(
√
−1νi)dνi.
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Now recall from (2.8) that there is a polynomial Pδi such that cδi ≤ Pδi . Writing
Pδi =

∑
k≥0 akν

k
i , we have

∫

a⋆
i,0

e−t||νi||2Pδi(νi)dνi

=
∑

k≥0

ak

∫

a⋆
i,0

e−t||νi||2νki dνi

=
∑

k≥0

ak

∫

||νi||=1

νki dνi

∫ +∞

0

e−tr2rk+dimR(ai,0)−1dr

(using spherical coordinates)

= t−
dimR(ai,0)

2

∑

k≥0

t−
k
2 ak

∫

||νi||=1

νki dνi

∫ +∞

0

e−r2rk+dimR(ai,0)−1dr.

Then we deduce from (3.8) that

(3.9) || pℓ,j,⊥t (a) ||End(Λℓs)≤ B5e
−tλℓ(G/K)t−

z+r
2 Φ0(a) if t > 1

where z = infi

{
order of zero of cδi at νi = 0, δi ∈ M̂i(σℓ)

}
and r =

infi

{
dimR(ai,0) > 0

}
. Combining (3.7) and (3.9) we obtain

|| pℓ,j,⊥t (a) ||End(Λℓs) = || pℓ,j,⊥t (a) ||1−
ǫ
2

End(Λℓs)
|| pℓ,j,⊥t (a) ||

ǫ
2

End(Λℓs)

≤ cǫ,je
−tλℓ(G/K)Φ0(a)e

− 1− ǫ
2

(1+ǫ)2
||a||2

4t t−
ǫ
2

z+r
2 if t > 1

for some positive constant cǫ,j depending on both ǫ and j.

When G has an empty discrete series, i.e rkC(G) > rkC(K), the positive integer
r equals rkC(G)− rkC(K) and the previous theorem may be restated as follows.

Corollary 3.10. Under the assumptions of Theorem 3.1, if G does not have
discrete series representations then, for all ǫ ∈]0, 1[, there exist two positive numbers
Aǫ and aǫ such that

(3.11) || pℓ,⊥t (g) ||End(Λℓs)≤ aǫe
−tλℓ(G/K)Φ0(g)e

− 1−ǫ

(1+2ǫ)2
||g||2

4t t−ǫ
z+rkC(G)−rkC(K)

2

for all g ∈ G and t ∈ R satisfying || g ||> Aǫ and t > 1.

If G has an empty discrete series and is such that z = 0 (as it is the case for
the hyperbolic groups G = SOe(2n + 1, 1), with n ≥ 1), the exponent of t in the
estimate (3.11) has a nice geometric meaning. Indeed, in this case the (positive)
integer rkC(G)−rkC(K) is the ℓth Novikov-Shubin invariant aℓ(Γ\G/K) of the locally
symmetric space Γ\G/K, where Γ is a torsion free discrete subgroup of G of finite
covolume (see (1.1)).

4. Estimates for the resolvent.

Theorem 4.1. Let G be a non compact connected semisimple real Lie group
with finite center and K a maximal compact subgroup of G. For a complex number
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µ with real part Re(µ) and imaginary part Im(µ) satisfying either Im(µ) 6= 0 or
Re(µ) < λℓ(G/K), define the positive number

τµ,ℓ(G/K) =

√√√√√λℓ(G/K)− Re(µ) +

√(
λℓ(G/K)− Re(µ)

)2

+ Im(µ)2

2
.

Then, for all ǫ ∈]0, 1[, there exist two positive numbers bǫ and Bǫ such that

(4.2) || (∆ℓ − µ)−1(g) ||≤ bǫΦ0(g)e
−(1−ǫ)τµ,ℓ(G/K)||g||

for all g ∈ G satisfying || g ||> Bǫ.

Proof. We follow the same strategy (and notation) as in the proof of the above
theorem. Throughout the proof the symbols Bj and Cj will denote positive real
numbers.

Step 1: Write Rℓ
µ for the resolvent operator (∆ℓ −µ)−1 of ∆ℓ. For ǫ0 > 0 define

Rℓ
µ,ǫ0 = Rℓ

µ ⋆ P
ℓ
ǫ0 , and the following functions

φǫ01,i(νi) = e−ǫ0||νi||2 , φǫ02,i(νi) =
1

−ωPi,δi,
√
−1νi

− µ
,

and φǫ00,i(νi) = φǫ02,i(νi)e
ǫ0ωPi,δi,

√−1νi .

Then we have, for all a ∈ exp(a+) and η, β ∈ V j
ℓ

〈Rℓ
µ,ǫ0(a)η , β〉Λℓs

=
∑

i

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

φǫ00,i(νi)〈Ψ
ℓ,j
δi,νi

(a)η , β〉Λℓscδi (
√
−1νi)dνi

=
∑

i

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

Tr
(
πPi,δi,

√
−1νi ◦ φ

ǫ0
i (δi,

√
−1νi)

)
cδi(

√
−1νi)dνi

where φǫ0i (δi, αi) = φǫ00,i(νi)η
ℓ
i,j ⊗ βℓ

i,j

=
∑

i

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )

∫

a⋆
i,0

Tr
(
πPi,δi,

√
−1νi

◦ φǫ0i,a(δi,
√
−1νi)

)
cδi(

√
−1νi)dνi

using Delorme Theorem with φǫ0i,a(δi, αi) =
(
φǫ00,i ⋆ ζa

)
(νi)η

ℓ
i,j ⊗ βℓ

i,j

and ζa is defined as in the proof of Theorem 3.1 above,

=
∑

i

∑

δi∈M̂i(σ
j
ℓ
)

1

| Wi |
1

dim(V j
ℓ )
eǫ0

(
||char(δi)||2−||ρi||2

)

×
∫

a⋆
i,0

〈πPi,δi,
√
−1νi

(a)ηℓi,j , β
ℓ
i,j〉Hδi

(ϕǫ0 ⋆ ζ̂a)(νi)cδi(
√
−1νi)dνi

where ϕǫ0 = ϕǫ0
1,iϕ2,i
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so that

| 〈Rℓ
µ,ǫ0(a)η , β〉Λℓs |

≤ B1e
−ǫ0λℓ(G/K)Φ0(a) || η ||Λℓs|| β ||Λℓs sup

i

∫

a⋆
i,0

| (ϕǫ0 ⋆ ζ̂a)(νi) |2 (1+ || νi ||2)Nidνi

(
by (2.8), (2.18) and the Cauchy-Schwartz inequality

)

≤ B2e
−ǫ0λℓ(G/K)Φ0(a) sup

i

( ∫

a⋆
i,0

∑

|k1|+|k2|≤Ni

| (Dk1(ϕ̂ǫ0
1,i ⋆ ϕ̂2,i)D

k2ζa)(z) |2 dz
) 1

2

(
by equivalence with the Sobolev norm, where

Dq =
∂|q|

∂xq1

1 · · · ∂xqp
qp

and | q |= q1 + · · ·+ qp
)
.

(4.3)

Step 2: Recall that ϕ̂ǫ0
1,i(z) = (2ǫ0)

− dim(ai,0)

2 e
− ||z||2

4ǫ0 . Define the following family
of complex numbers {τi} by

τ2i =|| char(δi) ||2 − || ρi ||2 +µ.

Note that our assumptions on µ implies that the imaginary part of τi is positive. We
deduce that

(4.4) ϕ̂2,i(z) =
√
−1

π

4
(|| z ||− dim(ai,0)+2

(
τi || z ||

) dim(ai,0)

2 −1
H

(1)
dim(ai,0)

2 −1
(τi || z ||)

where H
(1)
α denotes the Bessel-Neumann function (see p. 65 of [29]). Indeed assume

that τi =
√
−1ri is imaginary with ri > 0, then

ϕ̂2,i(z) =

∫

a⋆
i,0

e
√
−1〈z ,νi〉

|| νi ||2 +r2i
dνi

=

∫

a⋆
i,0

e
√
−1〈z ,νi〉

∫ +∞

0

e−t
(
||νi||2+r2i

)
dtdνi

=

∫ +∞

0

e−tr2i

∫

a⋆
i,0

e−t||νi||2e
√
−1〈z ,νi〉dνidt

= 2−
dim(ai,0)

2

∫ +∞

0

e−tr2i t−
dim(ai,0)

2 e−
||z||2

4t dt

=
( ri
|| z ||

) dim(ai,0)

2 −1
K dim(ai,0)

2 −1
(ri || z ||)

(
where Kα denotes the modified Bessel function, see p. 85 of [29]

)
,

=
√
−1

π

4

(√−1ri
|| z ||

) dim(ai,0)

2 −1
H

(1)
dim(ai,0)

2 −1
(
√
−1ri || z ||)

=
√
−1

π

4
|| z ||− dim(ai,0)+2

(√
−1ri || z ||

) dim(ai,0)

2 −1
H

(1)
dim(ai,0)

2 −1
(
√
−1ri || z ||),

since (see p. 67 of [29])

(4.5) Kα(z) =
1

2

√
−1πe

√
−1π

2 αH(1)
α (ze−

√
−1π

2 ).
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Now (4.4) follows by analytic continuation.

Step 3: We shall prove that there exists a positive constant Ai that does not
depend on ǫ0 so that

(4.6) | (Dk1(ϕ̂ǫ0
1,i ⋆ ϕ̂2,i)(z) |≤ Aie

−Im(τi)||z||

for || z || sufficiently large. Indeed fix a smooth function ζ such that ζ(z) = 1 if
|| z ||> 1 and ζ(z) = 0 if z belongs to some neighborhood of 0. Write

(4.7) ϕ̂2,i = ϕ̂1
2,i + ϕ̂2

2,i

where ϕ̂1
2,i = (1− ζ)ϕ̂2,i and ϕ̂

2
2,i = ζϕ̂2,i. It turns out that

Dk1 ϕ̂ǫ0
1,i(z − y) = Pk1(z − y)e−

||z−y||2
4ǫ0

where Pk1(z − y) is a polynomial in z − y with term of highest degree equal to

(2ǫ0)
−|k1|−

dim(ai,0)

2 (z1 − y1)
k1
1 · · · (zdim(ai,0) − ydim(ai,0))

k
dim(ai,0)

1 with | k1 |= k11 + · · ·+
k
dim(ai,0)
1 . We obtain successively

sup
||y||≤1

| Dk1 ϕ̂ǫ0
1,i(z − y) |

≤ 2−
dim(ai,0)

2 ǫ
−|k1|−

dim(ai,0)

2
0 || z |||k1| e−

(||z||−1)2

4ǫ0

(
since 2 || z ||≥|| z − y ||≥|| z || −1 for || z || sufficiently large

)

≤ 2−
dim(ai,0)

2 || z ||−|k1| ǫ
−|k1|−

dim(ai,0)

2
0 || z ||2|k1| e−

||z||2
16ǫ0

(
since || z || −1 ≥ || z ||

2
for || z ||≥ 2

)

≤ 2−|k1|−
dim(ai,0)

2 ǫ
−|k1|−

dim(ai,0)

2
0 || z ||2|k1| e−

||z||2
16ǫ0

(
for || z ||≥ 2

)

= 2−|k1|−
dim(ai,0)

2 w|k1|e−
w
32 ǫ

−dim(ai,0)

2
0 e

− ||z||2
32ǫ0

(
writing w =

|| z ||2
ǫ0

)

≤ B12
−|k1|−

dim(ai,0)

2 ǫ
− dim(ai,0)

2
0 e−

||z||2
32ǫ0

(
for some positive number B1 that does not depend on ǫ0

)

= B12
−|k1|−

dim(ai,0)

2 ǫ
− dim(ai,0)

2
0 e−

||z||2
64ǫ0 e−

||z||2
64ǫ0

≤ B22
−|k1|−

dim(ai,0)

2 e
− ||z||2

64ǫ0

(
for some positive number B2 that does not depend on ǫ0 and for || z ||≥ 1

)

≤ B22
−|k1|−

dim(ai,0)

2 (4r)−
dim(ai,0)

2 e−||z||2

(
for ǫ0 sufficiently small

)
.
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In particular we have, for || z ||≥ Im(τi)

| (Dk1 (ϕ̂ǫ0
1,i ⋆ ϕ̂

1
2,i)(z) | = | (Dk1(ϕ̂ǫ0

1,i) ⋆ ϕ̂
1
2,i)(z) |

≤ sup
||y||≤1

| Dk1ϕ̂ǫ0
1,i(z − y) |

∫

||y||≤1

| ϕ̂1
2,i)(z) | dy

≤ B3e
−Im(τi)||z||(4.8) (

for some positive number B3 that does not depend on ǫ0
)
.

Step 4: We turn now to Dk1(ϕ̂ǫ0
1,i ⋆ ϕ̂

2
2,i). Combining the following relation

satisfied by the modified Bessel functions (see p. 67 of [29])

( d

zdz

)m
[z−γKγ(z)] = (−1)mz−γ−mKγ+m(z), m = 1, 2, 3, · · ·

along with (4.4), (4.5) and the asymptotics of Kγ given on p. 139 of [29], we see that
there exists a positive number C1 such that

| (Dk1 ϕ̂2
2,i)(z) |=| (Dk1ζϕ̂2,i)(z) |≤ C1e

−Im(τi)||z||

for || z || sufficiently large. Hence one has

| Dk1(ϕ̂ǫ0
1,i ⋆ ϕ̂

2
2,i)(z) | = | ϕ̂ǫ0

1,i ⋆ (D
k1 ϕ̂2

2,i)(z) |

≤ C1

∫

a⋆
i,0

(2ǫ0)
− dim(ai,0)

2 e−Im(τi)||z−y||e−
||y||2
4ǫ0 dy

= C12
dim(ai,0)

2

(∫

||z||≥||2√ǫ0w||
e−Im(τi)||z−2

√
ǫ0w||e−||w||2dw

+

∫

||z||≤||2√ǫ0w||
e−Im(τi)||z−2

√
ǫ0w||e−||w||2dw

)

(
writing w =

y

2
√
ǫ0

)
.

Now we have

∫

||z||≥||2√ǫ0w||
e−Im(τi)||z−2

√
ǫ0w||e−||w||2dw

≤ e−Im(τi)||z||
∫

||z||≥||2√ǫ0w||
eIm(τi)||2

√
ǫ0w||e−||w||2dw

≤ e−Im(τi)||z||
∫

a⋆
i,0

eIm(τi)||u||e−
||u||2
4ǫ0 2− dim(ai,0)ǫ

− dim(ai,0)

2
0 du

(
writing u = 2

√
ǫ0w

)

= e−Im(τi)||z||
∫

||u||≥Im(τi)

eIm(τi)||u||e−
||u||2
4ǫ0 2− dim(ai,0)ǫ

− dim(ai,0)

2
0 du

+ e−Im(τi)||z||
∫

||u||≤Im(τi)

eIm(τi)||u||e−
||u||2
4ǫ0 2− dim(ai,0)ǫ

− dim(ai,0)

2
0 du
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with

∫

||u||≥Im(τi)

eIm(τi)||u||e−
||u||2
4ǫ0 2−dim(ai,0)ǫ

−dim(ai,0)

2
0 du

=

∫

||u||≥Im(τi)

eIm(τi)||u||e−
||u||2
8ǫ0 2−dim(ai,0)ǫ

−dim(ai,0)

2
0 e

− ||u||2
8ǫ0 du

≤ sup
||u||≥Im(τi)

e(Im(τi)−||u||)||u||
∫

a⋆
i,0

2− dim(ai,0)ǫ
−dim(ai,0)

2
0 e−

||u||2
8ǫ0 du

= sup
||u||≥Im(τi)

e(Im(τi)−||u||)||u||
∫

a⋆
i,0

2
dim(ai,0)

2 e−||w||2dw

(
writing u = 2

3
2
√
ǫ0w

)

≤ C2

and

∫

||u||≤Im(τi)

eIm(τi)||u||e−
||u||2
4ǫ0 2−dim(ai,0)ǫ

−dim(ai,0)

2
0 du

≤ e(Im(τi))
2

∫

a⋆
i,0

2− dim(ai,0)ǫ
−dim(ai,0)

2
0 e

− ||u||2
8ǫ0 du

= e(Im(τi))
2

∫

a⋆
i,0

e−||v||2dv

(
writing u = 2

√
ǫ0v

)

≤ C3

so that

∫

||z||≥||2√ǫ0w||
e−Im(τi)||z−2

√
ǫ0w||e−||w||2dw ≤ C4e

−Im(τi)||z||

for || z || sufficiently large. On the other hand, we have

∫

||z||≤||2√ǫ0w||
e−Im(τi)||z−2

√
ǫ0w||e−||w||2dw

≤ e−Im(τi)||z||
∫

||z||≤||2√ǫ0w||
e2Im(τi)(||z||−||√ǫ0w||)e−||w||2dw

≤ e−Im(τi)||z||e2Im(τi)||z||e−
||z||2

4

≤ C4e
−Im(τi)||z||

and thus

(4.9) | (Dk1(ϕ̂ǫ0
1,i ⋆ ϕ̂

2
2,i)(z) |≤ C5e

−Im(τi)||z||

for || z || sufficiently large. Now (4.6) follows from (4.7), (4.8) and (4.9).
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Step 5: Finally we deduce that

( ∫

a⋆
i,0

| (Dk1(ϕ̂ǫ0
1,i ⋆ ϕ̂2,i)D

k2ζa(z) |2 dz
) 1

2

≤
(
Ai

∫

||z||≥ ||a||
1+ǫ

e−2Im(τi)||z||dz
) 1

2

= A
1
2
i

(∫

||z||≥ ||a||
1+ǫ

e−2(1−ǫ)Im(τi)||z||e−2ǫIm(τi)||z||dz
) 1

2

≤ A
1
2

i e
− 1−ǫ

1+ǫ
Im(τi)||a||

( ∫

||z||≥ ||a||
1+ǫ

e−2ǫIm(τi)||z||dz
) 1

2

= Dǫ,ie
− 1−ǫ

1+ǫ
Im(τi)||a||

(
for some positive number Dǫ,i depending on ǫ

)

≤ Dǫ,ie
−(1−2ǫ)Im(τi)||a||.

In particular, for || a || sufficiently large, (4.3) can be rewritten as follows

| 〈Rℓ
µ,ǫ0η , β〉 | ≤ B2e

−ǫ0λℓ(G/K)Φ0(a) sup
i
Dǫ,ie

−(1−2ǫ)Im(τi)||a||

≤ Dǫe
−ǫ0λℓ(G/K)Φ0(a)e

−(1−2ǫ)||a||infi{Im(τi)}

(for some positive number Dǫ depending on ǫ).

The theorem follows by taking the limit ǫ0 → 0, since Dǫ does not depend on ǫ0, and
by observing that

Im(τi) =

√

√

√

√

√

|| ρi ||2 − || char(δi) ||2 −Re(µ) +

√

(

|| ρi ||2 − || char(δi) ||2 −Re(µ)
)2

+ Im(µ)2

2
.

5. L2+ǫ-estimate for the resolvent of ∆̃ℓ. We start with some properties of
the resolvent. Let Γ be a torsion free discrete subgroup of G. The resolvent operator
Rℓ

µ = (∆ℓ − µ)−1 (resp. R̃ℓ
ν = (∆̃ℓ − ν)−1), where µ (resp. ν) is a complex number

in the resolvent set of ∆ℓ (resp. ∆̃ℓ), is a kernel operator. Given a positive integer k,
define (whenever the integrals converge) the maps

(g1, g2) ∈ G×G 7→ Rℓ
µ,k(g1, g2) =

1

(k − 1)!

∫ +∞

0

tk−1eµtpℓt(g1, g2)dt

and

(ġ1, ġ2) ∈ Γ\G× Γ\G 7→ R̃ℓ
ν,k(ġ1, ġ2) =

1

(k − 1)!

∫ +∞

0

tk−1eνtp̃ℓt(ġ1, ġ2)dt.

When k = 1, we shall simply write Rℓ
µ and R̃ℓ

ν in stead of Rℓ
µ,1 and R̃ℓ

ν,1 so that

R̃ℓ
ν(ġ1, ġ2) =

∑

γ∈Γ

Rℓ
ν(g

−1
1 γg2).

In the case of functions, i.e when ℓ = 0, write Sµ for the resolvent (∆0 − µ)−1 of the
Laplacian ∆0 on G/K. The following estimate of Sµ, for || g ||> 1 and µ real such
that 0 ≤ µ <|| ρa0 ||2 is due to Anker and Ji (Theorem 4.2.2 in [3]):

(5.1) Sµ(g) ≍ CµΦ0(g)e
−||g||

√
||ρa0 ||2−µ
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for some positive constant Cµ. Here f1 ≍ f2 means that there exist two real numbers

C and C′ such that 0 < C ≤ f1(g)

f2(g)
≤ C′ for || g ||> 1. We will denote by S̃ν the

resolvent (∆̃0 − ν)−1 of the Laplacian ∆̃0 on Γ\G/K so that

Sν(ġ1, ġ2) =
∑

γ∈Γ

Sν(g
−1
1 γg2).

The following two propositions are well known, however we were not able to find a
precise reference for their proofs. Therefore, for the convenience of the reader, we
shall provide a proof.

Proposition 5.2. (1) Assume k is a positive integer and µ a negative real
number. Let 1 ≤ p ≤ +∞ be an integer and write p′ for the conjugate of p, i.e
1

p
+

1

p′
= 1. Then we have

(i) Rℓ
µ,k(g, ·), for all g ∈ G, belongs to Lp(G/K, End(Λℓs)) outside any ball cen-

tered at g with finite radius, provided µ+ αℓ −
|| ρa0 ||2

p′
< 0.

(ii) If dimR(G/K) ≥ 2kp′, then Rℓ
µ,k(g, ·) belongs to Lp(G/K, End(Λℓs)).

(2) Assume µ is a complex number such that: Im(µ) 6= 0 or Re(µ) < λℓ(G/K).
Then, outside any ball centered at the origin with finite radius, we have

(i) Rℓ
µ(·, e) belongs to C∞(G/K, End(Λℓs)),

(ii) there exist a positive real number Cµ and a continuous function φµ, both
depending on µ, such that for all g ∈ G satisfying 0 <|| g ||< 1:

|| Rℓ
µ(g, e) ||End(Λℓs) ≤

Cµ

|| g ||dimR(G/K)−2
+ φµ(g), if dimR(G/K) ≥ 3

|| Rℓ
µ(g, e) ||End(Λℓs) ≤ Cµ log(|| g ||) + φµ(g), if dimR(G/K) = 2.

Proof. Throughout the proof Aj will denote a positive real number. Let us start
with the large time behavior. We have

||
∫ +∞

1

tk−1eµtpℓt(g)dt ||End(Λℓs) ≤
∫ +∞

1

tk−1eµt || pℓt(g) ||End(Λℓs) dt

≤ A1

∫ +∞

1

tk−1e(µ+αℓ)tht(g)dt by (2.38).

Next, one has

|| ht ||L1(G/K) = 1

|| ht ||L∞(G/K) ≤ A2t
− 1

2 rkR(G)−|Σ++|e−||ρa0 ||
2t by (2.37).

Writing

1

p
=

1− θ

1
+

θ

∞
for θ ∈ [0, 1], we deduce, by interpolation, that

|| ht ||Lp(G/K)≤|| ht ||θL∞(G/K)=|| ht ||
1
p′
L∞(G/K)≤ A3t

− rkR(G)+2|Σ++|
2p′ e

− ||ρa0 ||2

p′ t
.
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Therefore

||
∫ +∞

1

tk−1eµtpℓtdt ||Lp(G/K,End(Λℓs))≤ A3

∫ +∞

1

t
k−1− rkR(G)+2|Σ++|

2p′ e
(µ+αℓ−

||ρa0 ||2

p′ )t
dt

is finite if µ+ αℓ −
|| ρa0 ||2

p′
< 0 or if µ+ αℓ −

|| ρa0 ||2
p′

= 0 and

rkR(G) + 2 | Σ++ |> 2kp′. Observe that the function

g 7→
∫ +∞

1

tk−1e(µ+αℓ)tht(g)dt

is bounded and continuous provided µ+ αℓ− || ρa0 ||2< 0, which is the case if

µ+ αℓ −
|| ρa0 ||2

p′
< 0.

Similarly, we have

||
∫ 1

0

tk−1eµtpℓt(g)dt ||End(Λℓs) ≤
∫ 1

0

tk−1eµt || pℓt(g) ||End(Λℓs) dt

≤ A4

∫ 1

0

tk−1e(µ+αℓ)tht(g)dt by (2.38)

≤ A5

∫ 1

0

tk−1− 1
2 dimR(G/K)e−

||g||2
4t dt by (2.36)(5.3)

and, by interpolation,

||
∫ 1

0

tk−1eµtpℓtdt ||Lp(G/K,End(Λℓs))≤ A6

∫ 1

0

t
k−1− 1

2p′ dimR(G/K)
dt

which is finite if dimR(G/K) < 2kp′. This proves (1)(i) and (1)(ii).

We now turn to (2). We shall use the previous assertion. Fix a real number µ0

such that µ0 + αℓ < 0 and Rℓ
µ0
(·, e) is smooth outside any ball centered at the origin

with finite radius. Iterating the basic relation

Rℓ
µ = Rℓ

µ0
+ (µ− µ0)R

ℓ
µ0

◦Rℓ
µ,

we deduce that for all positive integer N

(5.4) Rℓ
µ = (µ− µ0)

NRℓ
µ0,N ◦Rℓ

µ +
N∑

j=1

(µ− µ0)
jRℓ

µ0,j .

Let {Xi} be a basis of g0. ChooseN even and sufficiently large so that bothRℓ
µ0,

N
2
(·, e)

and L(Xj)
qRℓ

µ0,
N
2
(·, e) are L2 on any ball centered at the origin with finite radius.

Then, since Rℓ
µ is a bounded operator on L2(G/K,Λℓs), we see that the convolution

product Rℓ
µ0,

N
2
(·, e) ⋆Rℓ

µ(·, e) is square integrable on any ball centered at the origin

with finite radius, so that

L(Xj)
q
(
Rℓ

µ0,N (·, e) ⋆Rℓ
µ(·, e)

)
=

(
L(Xj)

qRℓ
µ0,

N
2
(·, e)

)
⋆
(
Rℓ

µ0,
N
2
⋆Rℓ

µ(·, e)
)
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is continuous on such neighborhoods. The identity (5.4) implies that L(Xj)
qRℓ

µ(·, e)
is continuous which proves (2)(i). Finally, from (5.3), we see that

||
∫ 1

0

tk−1eµtpℓt(g)dt ||End(Λℓs)

≤ A6

∫ 1

0

t
k−1− 1

2p′ dimR(G/K)
e
− ||g||2

4p′t dt

≤ A7(p) || g ||2k−1−dimR(G/K) if dimR(G/K) ≥ 2k + 1

for some positive real number A8(p) depending on p (after the change of variable

u = ||g||2
4p′t ). Now (2)(ii) follows by taking k = 1, with the obvious modification if

dimR(G/K) = 2.

Proposition 5.5. (1) Assume that k and p are positive integers with

k >
1

4
dimR(G/K), and µ is a real number satisfying µ + αℓ < 0. Let g be an el-

ement of G. Then, outside any ball centered at ġ with finite radius, R̃ℓ
µ,k(ġ, ·) belongs

to Lp(Γ\G/K, End(Λℓs)) and, there exists a positive real number A(g) depending on
g such that

|| R̃ℓ
µ,k(ġ, ·) ||Lp(Γ\G/K,End(Λℓs))≤ A(g)

(
inf

{
1;
δ(ġ)

2

})k−1−( p−1
2p )(dimR(G/K)−1)

.

where δ(ġ) denotes the injectivity radius of Γ\G/K at ġ.

(2) Assume q ≥ 1 and µ is a complex number satisfying Im(µ) 6= 0 or Re(µ) <
βℓ(Γ\G/K). Then

(i) R̃ℓ
µ,q(ġ, ·) is well defined, and

(ii) R̃ℓ
µ,q(ġ, ·) belongs to L2(Γ\G/K, End(Λℓs)).

Proof. Throughout the proof Aj will denote a positive real number. First we
have:

|| R̃ℓ
µ,k(ġ1, ·) ||Lp(Γ\G/K,End(Λℓs))

≤
∫ +∞

0

tk−1eµt || p̃ℓt(ġ1, ·) ||Lp(Γ\G/K,End(Λℓs)) dt

≤ A1

∫ +∞

0

tk−1e(µ+αℓ)t || h̃t(ġ1, ·) ||Lp(Γ\G) dt by (2.38).
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Next, by the semigroup property of the heat kernel, we have

|| h̃t(ġ1, ·) ||L1(Γ\G/K) =

∫

Γ\G
h̃t(ġ1, ġ2)dν(ġ2)

=

∫

Γ\G

∑

γ∈Γ

ht(g
−1
1 γg2)dν(ġ2)

=

∫

G

ht(g1, g2)dg2

= 1

|| h̃t(ġ1, ·) ||L∞(Γ\G/K) = sup
ġ2

h̃t(ġ1, ġ2)

= h̃t(ġ1, ġ1)

= || h̃ t
2
(ġ1, ·) ||2L2(Γ\G/K)

≤ || H̃ t
2− 1

2
||2L2→L2 || h̃ 1

2
(ġ1, ·) ||2L2(Γ\G/K) for t > 1.

Writing p ≥ 1 as

1

p
=

1− θ

1
+

θ

∞ for θ ∈ [0, 1[,

we deduce that

|| h̃t(ġ1, ·) ||Lp(Γ\G/K) ≤ h̃θt (ġ1, ġ1)

≤ e−θβ0(Γ\G/K)th̃θ1(ġ1, ġ1) if t > 1

so that

|| R̃k
µ(ġ1, ·) ||Lp(Γ\G/K,End(Λℓs))≤ A1

∫ +∞

0

tk−1e(µ+αℓ)th̃θt (ġ1, ġ1)dt.

Hence we have
∫ +∞

0

tk−1e(µ+αℓ−θβ0(Γ\G/K))th̃θ1(ġ1, ġ1)dt

≤ A2

∫ inf{1; δ(ġ1)

2 }

0

tk−1− θ
2 (dimR(G/K)+1)dt

(by Theorem 6 of [15])

≤ A3

(
inf

{
1;
δ(ġ1)

2

})k−1−( p−1
2p )(dimR(G/K)+1)

(since k ≥ 1

4
dimR(G/K) + 1)

and
∫ +∞

inf{1; δ(ġ1)
2 }

tk−1e(µ+αℓ)th̃θt (ġ1, ġ1)dt

≤ A4

∫ +∞

inf{1; δ(ġ1)

2 }
tk−1e(µ+αℓ)t || H̃ t

2− 1
2
||2θL2→L2 || h̃ 1

2
(ġ1, ·) ||2θL2(Γ\G/K) dt

≤ A5(g1) a positive real number depending on g1
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which proves (1). For (2), we shall first consider the case where q = 1. If µ0 is a real
number satisfying µ0 + αℓ < 0, then

||
∫

Γ\G
R̃ℓ

µ0
(ġ1, ġ2)f(ġ2)dġ2 ||End(Λℓs) = ||

∫

Γ\G
R̃ℓ

µ0,a(ġ1, ġ2)(∆̃ℓ,ġ2 − µ
)a−1

f(ġ2)dġ2 ||

≤ C(f) || R̃ℓ
µ0,a(ġ1, ·) ||L2(Γ\G/K,Λℓs)

for some positive constant depending on f . Choosing an integer a ≥ 1+ 1
4 dimR(G/K),

we deduce from (1) that R̃ℓ
µ0
(ġ1, ·) is well defined outside any ball centered at ġ

with finite radius. The same argument shows that R̃ℓ
µ0,k

is well defined on such
neighborhoods for all k ≥ 1. Next similarly to (5.4), we have

(5.6) R̃ℓ
µ = (µ− µ0)

N R̃ℓ
µ0,N ◦ R̃ℓ

µ +
N∑

j=1

(µ− µ0)
jR̃ℓ

µ0,j .

On the other hand, by the semigroup property of the heat kernel, one has

R̃ℓ
µ(ġ2, ·)R̃ℓ

µ0,N (ġ1, ·) =
∫

Γ\G
R̃ℓ

µ0,N(ġ1, ġ3) ◦ R̃ℓ
µ(ġ3, ġ2)dġ3

=

∫

Γ\G
R̃ℓ

µ0,
N
2
(ġ1, ġ4)

∫

Γ\G
R̃ℓ

µ(ġ3, ġ2) ◦ R̃ℓ
µ0,

N
2
(ġ4, ġ3)dġ3dġ4.

Fix ġ4 and choose an even integer N sufficiently large such that ġ3 7→ R̃ℓ
µ0,

N
2

(ġ4, ġ3)

belongs to L2(Γ\G/K, End(Λℓs)) (by (1)). Then

∫

Γ\G
R̃ℓ

µ(ġ3, ġ2) ◦ R̃ℓ
µ0,

N
2
(ġ4, ġ3)dġ3 = R̃ℓ

µ(ġ2, ·)R̃ℓ
µ0,

N
2
(ġ4, ·) ∈ L2(Γ\G/K, End(Λℓs)),

since R̃ℓ
µ is a bounded operator on L2(Γ\G/K,Λℓs), and (5.6) implies that R̃ℓ

µ(ġ1, ·) is
square integrable outside any ball centered at ġ with finite radius. Actually the same
argument shows that ġ2 7→ ∆̃a

ℓ,ġ2

(
R̃1

µ ◦ R̃N
µ0

)
(ġ1, ġ2) belongs to L

2(Γ\G/K, End(Λℓs))

for all integer a ≥ 1, so that R̃ℓ
µ◦R̃ℓ

µ0,N
is C∞ outside any ball centered at ġ with finite

radius. Applying (5.6) we deduce that R̃ℓ
µ is C∞ on such neighborhoods. This proves

(2)(i)(ii) for q = 1. The case where q ≥ 2 follows by induction from the following
formula

(5.7) R̃ℓ
µ,q =

q∑

j=0

Cj
q (µ− µ0)

NjR̃ℓ
µ0,Nj ◦ R̃ℓ

µ,j ◦
[ N∑

r=1

(µ− µ0)
rR̃ℓ

µ0,r

]q−j

.

Remark 5.8. If Γ is of finite covolume in G, we may assume that the injectivity

radius is small enough so that Min
{
1;
δ(ġ1)

2

}
=
δ(ġ1)

2
. In this case, the assertion (1)

of the previous proposition can be restated as follows. R̃ℓ
µ,k is Lp outside the diagonal

of Γ\G/K for all integers k >
1

4
dimR(G/K) and p ≥ 1, and real numbers µ < −αℓ.

The assertion (2) may be restated accordingly.
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Theorem 5.9. Let G be a non compact connected semisimple real Lie group
with finite center, K a maximal compact subgroup of G and Γ a torsion free discrete
subgroup of G with finite covolume. Fix an element g in G. Then for all complex
number µ with positive imaginary part, there exists a positive number ǫ such that

R̃ℓ
µ,k(ġ, ·) ∈ L2+ǫ(Γ\G/K, End(Λℓs)), for all integer k >

1

4
dimR(G/K).

Proof. Throughout the proof Cj will denote a positive real number.
Step 1: Let us decompose the Hilbert space L2(Γ\G/K,Λℓs) as follows

L2(Γ\G/K,Λℓs) = Ker(∆̃ℓ)⊕Ker(∆̃ℓ)
⊥

where Ker(∆̃ℓ) denotes the space of square integrable harmonic ℓ-forms and Ker(∆̃ℓ)
⊥

its orthogonal complement. By a result of A. Borel and H. Garland [9], Ker(∆̃ℓ) is
finite dimensional for all ℓ when Γ is of finite covolume. So we may write the orthogonal
projection Tℓ : L

2(Γ\G/K,Λℓs) → Ker(∆̃ℓ) on Ker(∆̃ℓ) as

Tℓ =
∑

j

〈ϕj , ·〉ϕj

where {ϕj} is some orthonormal basis of Ker(∆̃ℓ).
Step 2: By Lemma 2 of [23], there exists a positive number ǫ0 such that

ϕj ∈ L2+ǫ(Γ\G/K,Λℓs) ∀ǫ ∈ [0, ǫ0[.

It turns out that Tℓ is a bounded operator on L2+ǫ(Γ\G/K,Λℓs) for all ǫ ∈ [0, ǫ0[.

Indeed let f ∈ L2+ǫ(Γ\G/K,Λℓs) and write ǫ′ for the conjugate
2 + ǫ

1 + ǫ
of 2 + ǫ. Since

Γ has finite covolume in G, the Hölder inequality implies that

ϕj ∈ Lq(Γ\G/K,Λℓs) ∀q ∈ [1, 2].

In particular, ϕj ∈ Lǫ′(Γ\G/K,Λℓs) and 〈ϕj , f〉 ∈ L1(Γ\G/K). Observe that Tℓ is

also a bounded operator on Lǫ′(Γ\G/K,Λℓs) by selfadjointness.
Step 3: Let w be a complex number with positive imaginary part. Fix a real

number c ∈]0, 1[ and let Bc be the ball of radius c centered at the origin. We have
∫

||g0||>Bc

|| Rℓ
w(g, g0) ||End(Λℓs) dg0

≤ bc

∫

||a+(g0)||>Bc

Φ0(a
+(g0))e

−(1−c)τw,ℓ(G/K)||a+(g0)||dg0 by (4.2)

≤ C1

∫

||a+(g0)||>Bc

(
Πα∈Σ++

(
1 + α(a+(g0))

))
e−ρa0(a

+(g0))e−(1−c)τw,ℓ(G/K)||a+(g0)||dg0

by (2.19)

≤ C2

∫

a
+
0

(
Πα∈Σ++

(
1 + α(X)

))
eρa0(X)−(1−c)τw,ℓ(G/K)||X||dX

by integration formula (Prop. 5.28 of [20]).

The latter integral is finite if

ρa0(X) < (1− c)τw,ℓ(G/K) || X ||, ∀X ∈ a+0

⇔ τw,ℓ(G/K) >
1

1− c
ρa0(Y ), ∀Y ∈ a+0 , || Y ||= 1

⇔ λℓ(G/K)− Re(w) +

√(
λℓ(G/K)− Re(w)

)2
+ Im(w)2 >

2

(1− c)2
ρ2max
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where ρmax is the positive real number defined by

ρmax = sup
{
ρa0(Y ) | Y ∈ a+0 , || Y ||= 1

}
.

Moreover, Proposition 5.2 (2)(ii) shows that the integral
∫

||g0||≤Bc

|| Rℓ
w(g, g0) ||End(Λℓs) dg0

is finite for all complex number w with positive imaginary part. On the other hand,
observe that for all φ ∈ L2(Γ\G/K,Λℓs), one has

|| (R̃ℓ
wφ)(ġ) ||Λℓs = ||

∫

Γ\G
R̃ℓ

w(ġ, ġ0)φ(ġ0)dġ0 ||Λℓs

= ||
∫

Γ\G

∑

γ∈Γ

Rℓ
w(g

−1γg0)φ(ġ0)dġ0 ||Λℓs

≤ || φ ||L1(Γ\G/K,Λℓs)

∫

Γ\G

∑

γ∈Γ

|| Rℓ
w(g

−1γg0) ||End(Λℓs) dġ0

= || φ ||L1(Γ\G/K,Λℓs)

∫

G

|| Rℓ
w(g, g0) ||End(Λℓs) dg0.

Thus R̃ℓ
w is a bounded operator on L1(Γ\G/K,Λℓs) if

Im(w)2 >
( 2

(1− c)2
ρ2max −

(
λℓ(G/K)− Re(w)

))2

−
(
λℓ(G/K)− Re(w)

)2

.

Recall that, by definition, R̃ℓ
w is a bounded operator on L2(Γ\G/K,Λℓs) if Im(w) > 0.

Step 4: Let e0 be the smallest non zero eigenvalue of ∆̃ℓ and z a complex number.
Then R̃ℓ

z+e0 ◦
(
1l− Tℓ

)
is a bounded operator L2(Γ\G/K,Λℓs) if Im(z) > 0, and, from

the previous step, R̃ℓ
z+e0 is bounded on L1(Γ\G/K,Λℓs) if

Im(z)2 >
( 2

(1− c)2
ρ2max −

(
λℓ(G/K)− e0 − Re(z)

))2

−
(
λℓ(G/K)− e0 − Re(z)

)2

.

Therefore, for all f ∈ Lǫ′(Γ\G/K,Λℓs), one has

|| R̃ℓ
z+e0 ◦

(
1l− Tℓ

)
f ||Lǫ′ (Γ\G/K,Λℓs) ≤ C3 ||

(
1l− Tℓ

)
f ||Lǫ′ (Γ\G/K,Λℓs)

≤ || f ||Lǫ′(Γ\G/K,Λℓs)

i.e R̃ℓ
z+e0 ◦

(
1l− Tℓ

)
is a bounded operator Lǫ′(Γ\G/K,Λℓs). Now, using the Stein

interpolation theorem (Theorem V.4.1 in [35]), we deduce that R̃ℓ
z+e0 ◦

(
1l− Tℓ

)
is a

bounded operator on Lp(Γ\G/K,Λℓs) for ǫ′ ≤ p ≤ 2 and Im(z) satisfying

Im(z) > θ

√( 2

(1− c)2
ρ2max −

(
λℓ(G/K) − e0 − Re(z)

))2

−
(
λℓ(G/K) − e0 − Re(z)

)2

where
1

p
=

1− θ

ǫ′
+
θ

2
with θ ∈ [0, 1] and c ∈]0, 1[. Finally, observing that

((
∆̃ℓ − e0 − z

)−1 ◦ Tℓ
)
(f) = − 1

z + e0
Tℓ(f) ∀f ∈ Lp(Γ\G/K,Λℓs)
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and writing

(
∆̃ℓ − e0 − z

)−1
=

(
∆̃ℓ − e0 − z

)−1 ◦ Tℓ +
(
∆̃ℓ − e0 − z

)−1 ◦
(
1l− Tℓ

)
,

we see that R̃ℓ
z+e0 is a bounded operator on Lp(Γ\G/K,Λℓs). In particular, R̃ℓ

z+e0 is

bounded on Lp(Γ\G/K,Λℓs).

Step 5: Let µ0 be a real number satisfying µ0+αℓ < 0 and µ a complex number
with Im(µ) > 0. Recall that, from formulas (5.4) and (5.7), one has

R̃ℓ
µ,k =

k∑

j=0

Cj
k(µ− µ0)

NjR̃ℓ
µ0,Nj ◦ R̃ℓ

µ,j ◦
[ N∑

r=1

(µ− µ0)
rR̃ℓ

µ0,r

]k−j

where the generic term is of the form R̃ℓ
µ0,Nj ◦ R̃ℓ

µ,j ◦ R̃ℓ
µ0,r(k−j). Then it is enough

to consider the case where j = r = 1. By the semigroup property, we have

R̃ℓ
µ(ġ1, ·)R̃ℓ

µ0,k+N−1(ġ2, ·) =
∫

Γ\G
R̃ℓ

µ(ġ1, ġ3) ◦ R̃ℓ
µ0,k+N−1(ġ3, ġ2)dġ3.

But, by proposition 5.5(1), we know that R̃ℓ
µ0,k(ġ1, ·) is Lq outside any ball centered at

ġ1 with finite radius, for all q ≥ 2. Therefore R̃ℓ
µ,k(ġ1, ·) is Lp on such neighborhoods

if Im(µ) satisfies the condition

Im(µ) > θ

√( 2

(1− c)2
ρ2max −

(
λℓ(G/K)− Re(µ)

))2

−
(
λℓ(G/K)− Re(µ)

)2

.

Finally, in the case where

0 < Im(µ) ≤ θ

√( 2

(1− c)2
ρ2max −

(
λℓ(G/K)− Re(µ)

))2

−
(
λℓ(G/K)− Re(µ)

)2

we apply the previous result, replacing θ by θ′ with

0 < θ′ < Im(µ)
[( 2

(1− c)2
ρ2max −

(
λℓ(G/K)− Re(µ)

))2

−
(
λℓ(G/K)− Re(µ)

)2]− 1
2

and
1

p
=

1− θ′

ǫ′
+
θ′

2
.

Remark 5.10. Using the same argument as above, one can show that the resol-
vent Rℓ

µ of ∆ℓ is a bounded operator on Lq(G/K,Λℓs) for q ≥ 2 and

Im(µ) > θ

√( 2

(1 − c)2
ρ2max −

(
λℓ(G/K)− Re(µ)

))2

−
(
λℓ(G/K)− Re(µ)

)2

.

where q =
2

1− θ
with θ ∈ [0, 1[ and c ∈]0, 1[.
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6. Lower bounds for the bottom of the spectrum of ∆̃ℓ and L2-

cohomology of Γ\G/K.

Theorem 6.1. Let G be a non compact connected semisimple real Lie group
with finite center, K a maximal compact subgroup of G and Γ a torsion free discrete
subgroup of G. We assume that Γ is of infinite covolume in G and that the bottom of
the spectrum of ∆ℓ does not vanish. Then we have

(i) if δ(Γ) ≤ ρmin then βℓ(Γ\G/K) ≥ λℓ(G/K),
(ii) if ρmin ≤ δ(Γ) ≤ || ρa0 || +

√
λℓ(G/K) then βℓ(Γ\G/K) ≥ λℓ(G/K)−

(
δ(Γ)−

ρmin

)2
, and

(iii) if | δ(Γ)− ρmin |≤ || ρa0 || < δ(Γ) and λℓ(G/K) ≥
(
δ(Γ)− ρmin

)2
then

βℓ(Γ\G/K) ≥ λℓ(G/K)−
(
δ(Γ)− ρmin

)2
.

Proof. Throughout the proof the symbols Bj will denote positive real numbers.
Let θ be a smooth function on G defined by θ(g) = 1 for || g ||≤ 1 and θ(g) = 0 for
|| g || sufficiently large. For a real number µ < λℓ(G/K), decompose the kernel Rℓ

µ of
the resolvent (∆ℓ − µ)−1 as follows

Rℓ
µ = Rℓ,1

µ +Rℓ,2
µ

where Rℓ,1
µ = θRℓ

µ and Rℓ,2
µ = (1− θ)Rℓ

µ. Accordingly the kernel R̃ℓ
µ of the resolvent

(∆̃ℓ − µ)−1 decomposes as

(6.2) R̃ℓ
µ = R̃ℓ,1

µ + R̃ℓ,2
µ .

Now we have, using (2.39)
∫

Γ\G
|| R̃ℓ,1

µ (ġ1, ġ2) ||End(Λℓs) dġ2 =

∫

Γ\G
||
∑

γ∈Γ

Rℓ,1
µ (g−1

1 γg2) ||End(Λℓs) dġ2

=

∫

Γ\G

∑

γ∈Γ

|| Rℓ,1
µ (g−1

1 γg2) ||End(Λℓs) dġ2

=

∫

G

|| Rℓ,1
µ (g1, g2) ||End(Λℓs) dg2.

Since Rℓ,1
µ is integrable on the unit ball of G, by Proposition 5.2 (2)(ii), we deduce

that, for all φ in L2(Γ\G/K,Λℓs)

(6.3) || R̃ℓ,1
µ φ ||L2(Γ\G/K,Λℓs)≤ B1 || φ ||L2(Γ\G/K,Λℓs) .

Next choose a real number µǫ such that

|| ρa0 ||2 −(1− ǫ)2(λℓ(G/K)− µ) ≤ µǫ ≤ || ρa0 ||2

for some ǫ ∈]0, 1[. Then, combining Theorem 4.1 and (5.1), there exists a positive
constant Cµǫ

, depending on ǫ, such that

Rℓ,2
µ (g, ·) ≤ Cµǫ

Sµǫ
(g, ·) for || g || sufficiently large.

In particular we have

R̃ℓ,2
µ (ġ1, ġ2) =

∑

γ∈Γ

Rℓ,2
µ (g−1

1 γg2)

≤ Cµǫ

∑

γ∈Γ

Sµǫ
(g−1

1 γg2)

= Cµǫ
S̃µǫ

(ġ1, ġ2)
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so that

|| (R̃ℓ,2
µ φ)(ġ1) ||Λℓs = ||

∫

Γ\G
R̃ℓ,2

µ (ġ1, ġ2)φ(ġ2)dν(ġ2) ||Λℓs

≤ Cµǫ

∫

Γ\G
S̃µǫ

(ġ1, ġ2) || φ(ġ2) ||Λℓs dν(ġ2).

Now, by the assertion (i) of Leuzinger’s theorem (see Section 2.11), we know that S̃µǫ

is bounded on L2(Γ\G/K), so that

(6.4) || R̃ℓ,2
µ φ ||L2(Γ\G/K,Λℓs)≤ B2 || φ ||L2(Γ\G/K,Λℓs) .

Finally, we deduce, from (6.2), (6.3) and (6.4), that Rℓ
µ is bounded on L2(Γ\G/K,Λℓs)

|| Rℓ
µφ ||L2(Γ\G/K,Λℓs)≤ B3 || φ ||L2(Γ\G/K,Λℓs) .

Therefore βℓ(Γ\G/K) ≥ λℓ(G/K), which proves (i). The proof of (ii) and (iii) is very
similar.

For (ii) we choose µ < λℓ(G/K)−
(
δ(Γ)− ρmin

)2
and

|| ρa0 ||2 −(1− ǫ)2(λℓ(G/K)− µ) ≤ µǫ ≤ || ρa0 ||2 −
(
δ(Γ)− ρmin

)2
.

For (iii) we choose µ < λℓ(G/K)−
(
δ(Γ)− ρmin

)2
and

|| ρa0 ||2 −(1− ǫ)2(λℓ(G/K)−µ) ≤ µǫ ≤ sup
{
0; || ρa0 ||2 −

(
δ(Γ)− ρmin

)2}
.

Corollary 6.5. Under the assumptions of the previous theorem, the (reduced
or unreduced) L2-cohomology group of degree ℓ of Γ\G/K vanishes in the following
cases:

(i) δ(Γ) ≤ ρmin,
(ii) ρmin ≤ δ(Γ) ≤ || ρa0 || +

√
λℓ(G/K) and

√
λℓ(G/K) > δ(Γ)− ρmin, and

(iii) | δ(Γ)− ρmin |≤ || ρa0 || < δ(Γ) and
√
λℓ(G/K) >| δ(Γ)− ρmin |.

In particular, in these cases, the kernel of ∆̃ℓ is reduced to {0}.
Proof. We deduce from the previous theorem that, in each case (i)-(ii)-(iii), any

square integrable closed ℓ-form on Γ\G/K is exact. In other words, the unreduced
L2-cohomology group H(ℓ)(Γ\G/K) of degree ℓ is trivial, and therefore the reduced

L2-cohomology group H
(ℓ)

(Γ\G/K) vanishes as well.

Finally, to sum up, we can say that using algebraic and analytic tools from rep-
resentation theory of semisimple Lie groups, we obtained estimates for large time be-
havior of the heat kernel for dfferential forms on symmetric spaces of the type G/K,
where G is a non compact connected semisimple Lie group with finite center and K
a maximal compact subgroup of G (Theorem 3.1). Then, combining these estimates
with some techniques from the theory of special functions, we deduced estimates for
the resolvent of the form Laplacian on G/K (Theorem 4.1). As a byproduct, we ob-

tained L2+ǫ-estimates for the resolvent of the form Laplacian ∆̃ℓ on locally symmetric
spaces Γ\G/K when Γ is a torsion free discrete subgroup of G with finite covolume
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(Theorem 5.9). The latter estimates play an important role in the theory of “Eisen-
stein transforms” and the Langlands’ decomposition of L2(Γ\G/K) (see Theorems 4.2
and 4.7 in [30]). As an application of these L2+ǫ-estimates, we derived lower bounds

for the bottom of the spectrum of ∆̃ℓ when Γ has infinite covolume (Theorem 6.1) and
a vanishing criterion for L2-cohomology of Γ\G/K (Corollary 6.5). We also mention
that, after our results were announced in [25], G. Carron posted a preprint on his
webpage in which he proves, using techniques rather different from ours, analogous
estimates for the Green kernel and the heat kernel for Laplacian-type operators on
symmetric spaces [12].

Appendix A. On the computation of λℓ(G/K).

A.1. The complex case. Let G be a connected complex semisimple Lie group
and K a compact real form of G. If b0 is a maximal abelian subspace in the Lie
algebra k0 of K then the complexification of b0 +

√
−1b0 is a Cartan subalgebra of g.

Write ∆ = ∆(g, h) for the set of g-roots relative to h. If we define the following real
number

Cℓ(G) = sup{||< Q >b0 ||2 | Q ⊂ ∆, sup{0; ℓ− rkC(G)} ≤| Q |≤ ℓ}

where < Q >b0 denotes the restriction to b0 of the sum of elements in the subset Q
and | Q | is the number of elements in Q, then we have

λℓ(G/K) =
1

12
dimR(G/K)− Cℓ(G).

A.2. The real case. We consider the Hermitian spaces G/K =
SOe(2, n)/SO(2) × SO(n) with n ≥ 2. Recall from Section 2, if πPi,δi,

√
−1νi

is
the principal series representation associated with a cuspidal parabolic subgroup
Pi = MiAiNi of G, δi a discrete series representation of Mi and νi a linear
form on ai,0, then the Casimir operator of G acts on the (smooth vectors of the)
πPi,δi,

√
−1νi

as the scalar operator ωPi,δi,
√
−1νi

Id where ωPi,δi,
√
−1νi

is the real num-

ber || char(δi) ||2 − || νi ||2 − || ρi ||2 defined by (2.4). In particular, to compute the
numbers λℓ(G/K), defined by (2.31), we may assume that νi = 0. If λ is the minimal
Mi ∩ K-type of δi then the infinitesimal character char(δi) of δi is given by (see p.
310 of [20]):

char(δi) = λ− ρ(mi) + 2ρ(mi ∩ k)

where ρ(mi) (resp. ρ(mi∩k)) is the half sum of positive roots ofmi (resp. mi∩k) relative
to ti. Here ti is a Cartan subalgebra of m such that hi = ti⊕ai is a Cartan subalgebra
of g. Under the Cayley transform, hi becomes a compact Cartan subalgebra of g,
and the roots in ∆i transform accordingly (see p. 417 of [20]). Note that when Mi

is compact then δi is just a highest weight representation with highest weight λ and
infinitesimal character λ+ ρ(mi).

1) G/K = SOe(2, 2n)/SO(2)× SO(2n), n ≥ 1.
By Hodge isomorphism λℓ(SOe(2, 2n)/SO(2) × SO(2n)) =
λ4n−ℓ(SOe(2, 2n)/SO(2) × SO(2n)) for 0 ≤ ℓ ≤ 4n, so we may restrict our
attention to 0 ≤ ℓ ≤ 2n.
Up to a conjugacy, we need only to consider the minimal parabolic withMi =
M =M ∩K ≃ SO(2n− 2). Using branching laws for SO(2n) → SO(2n− 1)
and SO(2n− 1) → SO(2n− 2) (Theorems 8.1.3 and 8.1.4 of [17]) along with
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the explicit decomposition of the isotropy representation for the Hermitian
groups given in [31], one finds that

n = 1: λℓ(SOe(2, 2n)/SO(2)× SO(2n)) =
1

4
for ℓ = 0, 1, 2.

n = 2: λ0(SOe(2, 2n)/SO(2)× SO(2n)) =
5

8
,

λ1(SOe(2, 2n)/SO(2)× SO(2n)) =
1

2
,

λℓ(SOe(2, 2n)/SO(2)× SO(2n)) =
1

8
for ℓ = 2, 3, 4.

n ≥ 3: λ0(SOe(2, 2n)/SO(2)× SO(2n)) =
2n2 − 2n+ 1

4n
,

λ1(SOe(2, 2n)/SO(2)× SO(2n)) =
2n2 − 4n+ 4

4n
,

λ2(SOe(2, 2n)/SO(2)× SO(2n)) =
2n2 − 6n+ 5

4n
,

λℓ(SOe(2, 2n)/SO(2)× SO(2n)) =
1

4n

(
2n2 +

1

2
+
ℓ(ℓ− 4n)

2

)
for ℓ ≥ 3

and ℓ odd,

λℓ(SOe(2, 2n)/SO(2)× SO(2n)) =
1

4n

(
2n2 + 2n+ 1 +

ℓ(ℓ− 4n− 2)

2

)

for ℓ ≥ 4 and ℓ even.

2) G/K = SOe(2, 2n+ 1)/SO(2)× SO(2n+ 1), n ≥ 1.

Again λℓ(SOe(2, 2n + 1)/SO(2) × SO(2n + 1)) = λ4n+2−ℓ(SOe(2, 2n +
1)/SO(2) × SO(2n + 1)) for 0 ≤ ℓ ≤ 4n + 2, by Hodge isomorphism, so
we may restrict our attention to 0 ≤ ℓ ≤ 2n+ 1.
Now we need to consider two parabolic subgroups P1 and P2 with M1 =
M1∩K ≃ SO(2n−1) andM2 ≃ SOe(1, 2n),M2∩K ≃ SO(2n). In particular,
using branching laws for SO(2n+ 1) → SO(2n) and SO(2n) → SO(2n− 1)
(Theorems 8.1.3 and 8.1.4 of [17]), one finds that

n = 1: λ0(SOe(2, 2n+ 1)/SO(2)× SO(2n+ 1)) =
3

8
,

λℓ(SOe(2, 2n+ 1)/SO(2)× SO(2n+ 1)) =
1

24
for ℓ = 1, 2, 3.

n ≥ 2: λ0(SOe(2, 2n+ 1)/SO(2)× SO(2n+ 1)) =
8n2 + 1

16n+ 8
,

λ1(SOe(2, 2n+ 1)/SO(2)× SO(2n+ 1)) =
8n2 − 8n+ 9

16n+ 8
,

λ2(SOe(2, 2n+ 1)/SO(2)× SO(2n+ 1)) =
8n2 − 16n+ 9

16n+ 8
,

λℓ(SOe(2, 2n+ 1)/SO(2) × SO(2n+ 1)) =
1

4n+ 2

(
2n2 +

1

4
+

ℓ(ℓ− 4n)

2

)

for ℓ ≤ 2n, ℓ even,
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λℓ(SOe(2, 2n+ 1)/SO(2) × SO(2n+ 1)) =
1

4n+ 2

(
2n2 +

7

4
+

ℓ(ℓ− 4n)

2

)

for ℓ < 2n− 1, ℓ odd,

λℓ(SOe(2, 2n+ 1)/SO(2) × SO(2n+ 1)) =
1

16n + 8
for ℓ = 2n− 1, 2n+ 1.
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[2] G. Alexopoulos et N. Lohoué, On the large time behavior of heat kernels on Lie groups,
Duke Math. J., 120 (2003), pp. 311–351.

[3] J.-P. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric

spaces, Geom. Funct. Anal., 9 (1999), pp. 1035–1091.
[4] I. G. Avramidi, Heat Kernel and Quantum Gravity, Springer Verlag, 2000.
[5] E. van den Ban and S. Souaifi, A comparison of Paley-Wiener theorems for real reductive

groups, preprint.
[6] D. Barbasch and H. Moscovici, L2-index and the Selberg trace formula, J. Funct. Analysis,

53 (1983), pp. 151–201.
[7] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Spinger Verlag,

1991.
[8] A. Borel, The L2-cohomology of negatively curved Riemannian symmetric spaces, Ann. Acad.

Scient. Fenn. Series A. I. Math., 10 (1985), pp. 95–105.
[9] A. Borel and H. Garland, Laplacian and the discrete spectrum of an arithmetic group,

Amer. J. Math., 105 (1983), pp. 309–335.
[10] A. Borel and N. R. Wallach, Continuous cohomology, discrete subgroups, and represen-

tations of reductive groups, Annals of mathematics studies, Princeton University Press,
1980.

[11] R. Camporesi, The Helgason-Fourier transform for homogeneous vector bundles over Rie-

mannian symmetric spaces, Pacific J. Math., 179 (1997), pp. 263–300.
[12] G. Carron, Estimée du noyau de Green et de la chaleur sur les espaces symétriques, preprint

2007. Available at http://www.math.sciences.univ-nantes.fr/ carron/publication.html
[13] G. Carron and E. Pedon, On the differential form spectrum of hyperbolic manifods, Ann. Sc.

Norm. Super. Pisa Cl. Sci., 3 (2004), pp. 705–747.
[14] T. Coulhon, L. Saloff-Coste and N. T. Varopoulos, Analysis and geometry on groups,

Cambridge Tracts in Mathematics, Vol. 100, Cambridge University Press, 1992.
[15] S. Y. Cheng, P. Li, Peter and S. T. Yau, On the upper estimate of the heat kernel of a

complete Riemannian manifold, Amer. J. Math., 103 (1981), pp. 1021–1063.
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[22] N. Lohoué, Estimation des projecteurs de de Rham-Hodge de certaines variétés Riemanni-

ennes non compactes, Math. Nachr., 279 (2006), pp. 272–298.
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