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ON THE QUANTIZATION OF POLYGON SPACES∗

L. CHARLES†

Abstract. Moduli spaces of polygons have been studied since the nineties for their topological
and symplectic properties. Under generic assumptions, these are symplectic manifolds with natural
global action-angle coordinates. This paper is concerned with the quantization of these manifolds and
of their action coordinates. Applying the geometric quantization procedure, one is lead to consider
invariant subspaces of a tensor product of irreducible representations of SU(2). These quantum
spaces admit natural sets of commuting observables. We prove that these operators form a semi-
classical integrable system, in the sense that they are Toeplitz operators with principal symbol the
square of the action coordinates. As a consequence, the quantum spaces admit bases whose vectors
concentrate on the Lagrangian submanifolds of constant action. The coefficients of the change of
basis matrices can be estimated in terms of geometric quantities. We recover this way the already
known asymptotics of the classical 6j-symbols.
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Symplectic reduction, 6j-symbol, Canonical base.
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1. Introduction. Given an n-tuple ℓ = (ℓ1, . . . , ℓn) of positive numbers, the
polygon space Mℓ consists of the spatial n-sided polygons with side lengths equal
to the ℓi, up to isometries. When ℓ satisfies a generic assumption, Mℓ is a compact
Kähler manifold. These moduli spaces have been studied in several papers since the
nineties for their topology and symplectic properties [14], [11], [15] and [8]. Among
other things, Kapovich and Millson discovered in [14] a remarkable action-angle coor-
dinate system. Considering the triangulation in figure 1, the actions are defined as the
lengths of the internal edges and the angles as the dihedral angles between the faces
adjacent to the internal edges. More generally, given any decomposition of a n-sided
polygon into triangles obtained by connecting the vertices, one defines a canonical
action-angle coordinate system.

The main subject of this paper is the quantum counterpart of these coordinate
systems. Assuming that the lengths ℓi are integral, one may apply the geometric
quantization procedure to the polygon space Mℓ. The quantum space is defined as
the space of holomorphic sections of a prequantization line bundle with base Mℓ. Let
Vm be the (m + 1)-dimensional irreducible representation of SU(2) and consider the
invariant subspace Hℓ of the tensor product of the Vℓi

:

Hℓ :=
(

Vℓ1 ⊗ Vℓ2 ⊗ . . . ⊗ Vℓn

)SU(2)
.

Then the quantum space associated to Mℓ is isomorphic to Hℓ. If we replace the
prequantum bundle by its k-th power and twist it by a half-form bundle, we obtain a
quantum space isomorphic to Hkℓ−1. The semi-classical limit is defined as the limit
k → ∞, the parameter k corresponding to the inverse of the Planck constant.

The usual tools of microlocal analysis have been introduced in the context of
compact Kähler manifolds and may be applied to the quantization of the polygon
spaces. In particular there exists a class of operators, called Toeplitz operators, which
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Fig. 1. Action-angle coordinates (λi, θi)i=1,...,n−3.

plays a role similar to the class of pseudo-differential operators with small parameter
([2], [3]). Also relevant to this paper are the Lagrangian sections ([1], [4]). These
are families of sections which in the semiclassical limit concentrate on a Lagrangian
submanifold in a precise way. They are similar to the usual Lagrangian distributions
of microlocal analysis.

Let us return to the vector space Hℓ. Since the Littlewood-Richardson coefficients
of SU(2) are 0 or 1, to each bracketing of the product Vℓ1 ⊗ . . . ⊗ Vℓn

corresponds a
decomposition of Hℓ into a direct sum of lines. By using concrete irreducible repre-
sentations, we can even introduce well-defined bases of Hℓ. In particular, the classical
6j-symbols are defined as the coefficients of the change of basis matrix between basis
coming from ((Vℓ1 ⊗ Vℓ2) ⊗ Vℓ3) ⊗ Vℓ4 and (Vℓ1 ⊗ (Vℓ2 ⊗ Vℓ3)) ⊗ Vℓ4 .

For each way of placing bracket, we will define a family (Hi,ℓ)i=1,...,n−3 of mu-
tually commuting operators of Hℓ whose joint eigenspaces are the summand of the
associated decomposition. Our main result says that the sequences (Hi,kℓ−1)k are
Toeplitz operators of Mℓ, cf. theorem 3.2. Further, their principal symbols are the
squares of the actions of a canonical coordinate system defined as above. For instance,
the parenthesising

((. . . ((Vℓ1 ⊗ Vℓ2) ⊗ Vℓ3) . . .) ⊗ Vℓn−1) ⊗ Vℓn

corresponds to the angle coordinates defined in figure 1.
Families of pseudodifferential operators whose principal symbols form an inte-

grable system have been the subject of many works, cf. [21] and references therein.
Their joint spectrum can be computed in terms of the geometry of the integrable sys-
tem by the Bohr-Sommerfeld conditions and their joint eigenstates are Lagrangian
functions. These results have been extended to semi-classical integrable systems
of Toeplitz operators in [4] and [5] and can therefore be applied to the operators
(Hi,kℓ−1)k. In this case, the Bohr-Sommerfeld conditions are not so interesting be-
cause their joint spectrum can easily be computed explicitely. On the other hand, it
is a non-trivial result that the joint eigenspaces are generated by Lagrangian sections
associated to the Lagrangian submanifolds of constant action. We prove this and also
compute the symbol of these Lagrangian sections, cf. theorem 5.2.

As a consequence, we deduce the surprising formula of Roberts [17] which re-
lates the asymptotics of 6j-symbols to the geometry of the tetrahedron, cf. theorem
7.1. As a matter of fact, the scalar product of two Lagrangian sections can be esti-



ON THE QUANTIZATION OF POLYGON SPACES 111

mated in terms of their symbols when the associated Lagrangian manifolds intersect
transversally.

Our main motivation to study the quantization of polygon spaces, besides be-
ing a natural application of our previous works, is the similarity with topological
quantum field theory (TQFT). In this case we consider instead of Mℓ the moduli
space of flat SU(2)-principal bundles on a surface Σ with prescribed holonomy on
the boundary. This moduli space admits natural Lagrangian fibrations associated to
each decomposition of Σ into pairs of pants [13]. The quantum space is the space of
conformal blocks of Σ and its dimension is given by the famous Verlinde formula. The
manifestation of the Lagrangian fibration at the quantum level has been considered
in several papers. Jeffrey and Weitsmann showed in [13] that the number of fibres
satisfying a Bohr-Sommerfeld condition is given by the Verlinde formula. Taylor and
Woodward conjectured in [19] that some bases of the quantum space of the four-holed
two-sphere consist of Lagrangian sections. They deduced the asymptotics of the quan-
tum 6j-symbols. Their heuristic argument was an inspiration for our estimation of
the classical 6j-symbol.

Also, in the TQFT context, some operators called multicurve operators, play an
important role. In particular, the operators associated to the curves of a decomposi-
tion into pair of pants pairwise commute and have one-dimensional joint eigenspaces.
We conjecture that the multicurve operators are Toeplitz operators with principal
symbol a holonomy function. Several pieces of evidence support this: the symbols
of the product and of the commutators are given at first order by the usual product
and the Poisson bracket [20]. Furthermore the trace of the operator is equivalent in
the semiclassical limit to the average of its symbol [16]. We hope that our method
could also apply to this context or at least that our results could clarify what we can
expect.

The article is organized as follows. Section 2 is devoted to algebraic preliminaries.
We introduce the decompositions of Hℓ as a direct sum of lines and the associated
famillies of mutually commuting operators. Next section concerns the geometric quan-
tization of the polygon spaces. Applying the ”quantization commutes with reduction”
theorem of Guillemin and Sternberg [9], we prove that it is isomorphic to Hℓ. We
also state the central result that the sequences (Hi,kℓ−1) are Toeplitz operators. The
main part of the proof is postponed to the last section of the paper. Section 4 is
devoted to the symplectic geometry of the polygon spaces. Generalizing the result of
[14], we associate to any triangle decomposition an action-angle coordinate system.
We also describe carefully the image of the action coordinates and the associated
torus actions. In section 5, we deduce that the joint eigenstates of the (Hi,kℓ−1) are
Lagrangian sections. We also state the Bohr-Sommerfeld conditions. Section 6 is
concerned with the asymptotics of the scalar product of two Lagrangian sections. At
first order, it is given by a geometric pairing between the symbols of the Lagrangian
sections. This is then applied in section 7 to estimate the classical 6j-symbols. The
main part of the proof was already understood by Woodward and Taylor [19], except
for the delicate phase determination. In the last section we consider the symplectic
reduction of Toeplitz operators. We compute the principal and subprincipal symbols
of a reduced Toeplitz operator. These subprincipal estimates are the most difficult
results of the paper.

Acknowledgment. I would like to thank Julien Marché for many helpful dis-
cussions and his interest in this work.
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2. On the space Hℓ.

2.1. Outline of the following sections. In section 2.2, we introduce some
notations and a class of graphs called admissible graphs. To each admissible graph
will be associated a set of action coordinates of the polygon space Mℓ and also a
set of mutually commuting operators of the Hilbert space Hℓ. So these graphs will
be used to relate the choice of a parenthesising of the product Vℓ1 ⊗ . . . ⊗ Vℓn

with
the choice of a decomposition of a polygon into triangles. In the analogy with the
moduli space of connections and the topological quantum field theory, the admissible
graphs correspond to the graphs associated to the decomposition into pairs of pants
of a surface.

In section 2.3 we explain how each parenthesising of Vℓ1 ⊗ . . . ⊗ Vℓn
leads to a

decomposition of Hℓ as a direct sum of lines. In the next section we define for each
admissible graph a set of mutually commuting operators of Hℓ. Their joint spectrum
is explicitly computed and their joint eigenspaces are the lines of the decomposition
associated to a particular parenthesising. In the last section we show a first rela-
tionship between the spaces Hℓ and the polygons, namely that the existence of a
non-vanishing vector in Hℓ is equivalent to a parity condition and the existence of a
n-sided polygon with side lengths ℓ1, . . . , ℓn.

2.2. Notations. Our normalisation for the invariant scalar product of su(2) is

〈ξ, η〉 = −1

2
tr(ξη),

where we identify su(2) with the space of skew-Hermitian endomorphisms of C2. As
in the introduction, for any non-negative integer m, we denote by Vm the irreducible
representation of SU(2) with spin m/2, i.e. the dimension of Vm is m + 1. For any
n-tuple ℓ = (ℓi)i=1,...,n of non-negative integers, Hℓ is the vector space

Hℓ := Inv
(

Vℓ1 ⊗ Vℓ2 ⊗ . . . ⊗ Vℓn

)

.(1)

Let us introduce some notations regarding graphs. We say that a graph Γ is
admissible if it is connected, acyclic and trivalent. Edges with only one endpoint are
permitted and called half-edges. The other edges have two endpoints and are called
internal edges. We denote by Eint(Γ) the set of internal edges, by Ehalf(Γ) the set
of half-edges and by E(Γ) = Eint(Γ) ∪ Ehalf(Γ) the set of edges. We always assume
that the half-edges are numbered. Abusing notations, we often identify Ehalf(Γ) with
{1, . . . , n}, where n is the number of half-edges.

A coloring of Γ is an assignment of a non-negative integer to each edge of Γ. We
say that three non-negative integers m, ℓ and p satisfy the Clebsch-Gordan condition
CG(p, ℓ, m) if the following holds

p + ℓ + m ∈ 2Z, p 6 ℓ + m, ℓ 6 m + p, m 6 ℓ + p.(2)

A coloring of Γ is called admissible if for any vertex t, the colors of the edges incident
to t satisfy the Clebsch-Gordan condition.

2.3. Natural decompositions of Hℓ. Let us recall that the multiplicity spaces
of SU(2) are one or zero-dimensional according to the Clebsch-Gordan condition (3),

dim HomSU(2)(Vk, Vℓ ⊗ Vm) =

{

1 if CG(k, ℓ, m) holds

0 otherwise
.
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((Vℓ1 ⊗ Vℓ2) ⊗ Vℓ3) ⊗ Vℓ4 , (Vℓ1 ⊗ (Vℓ2 ⊗ Vℓ3)) ⊗ Vℓ4 , (Vℓ1 ⊗ Vℓ2) ⊗ (Vℓ3 ⊗ Vℓ4)

Fig. 2. The graphs associated to various parenthesisings

So the decomposition into isotypical spaces of the tensor product of two irreducible
representation is given by

Vℓ ⊗ Vm =
⊕

k

HomSU(2)(Vk, Vℓ ⊗ Vm) ⊗ Vk =
⊕

k /CG(k,ℓ,m)

Vk.(3)

Given a parenthesising of the tensor product of n irreducible representations, one may
decompose the full product into irreducible representations by applying (3) (n − 1)
times in the order prescribed by the brackets. As instance

Vℓ1 ⊗ (Vℓ2 ⊗ (Vℓ3 ⊗ Vℓ4)) =
⊕

m1/ CG(m1,ℓ3,ℓ4)

Vℓ1 ⊗ (Vℓ2 ⊗ Vm1)

=
⊕

m1,m2 / CG(m1,ℓ3,ℓ4)
&CG(m2,ℓ2,m1)

Vℓ1 ⊗ Vm2 =
⊕

m1,m2,m3 / CG(m1,ℓ3,ℓ4)
CG(m2,ℓ2,m1) & CG(m3,ℓ1,m2)

Vm3 .

Then taking the invariant part we obtain a decomposition into a direct sum of lines.
In the previous example, we obtain

(Vℓ1 ⊗ (Vℓ2 ⊗ (Vℓ3 ⊗ Vℓ4)))
SU(2) =

⊕

m1,m2 / CG(m1,ℓ3,ℓ4)
CG(m2,ℓ2,m1) & CG(0,ℓ1,m2)

V0

=
⊕

m1 / CG(m1,ℓ3,ℓ4)
CG(ℓ1,ℓ2,m1)

V0

because CG(0, ℓ1, m2) is equivalent to ℓ1 = m2. In general let us show that the
lines of the decomposition are naturally indexed by admissible colorings of a certain
admissible graph. First one associates to each parenthesising of a product of n factors,
a tree with n leaves, n− 2 trivalent vertices and one bivalent vertex (called the root),
cf. figure 2 for a few examples.

A coloring of such a tree is the assignment of an integer to each edge. It is
admissible if the colors of the edges incident to the root are equal and if furthermore
at each trivalent vertex, the colors of the incident edges satisfy the Clebsch-Gordan
condition. Now given a parenthesising and the associated tree, it is clear that the
summands of the decomposition coming from the parenthesising are indexed by the
admissible colorings of the tree such that the edge incident to the k-th leave is colored
by ℓk.
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Fig. 3. A tree and its associated admissible graph

Finally given a tree as above, let us consider the admissible graph obtained by
removing the leaves and the root and by merging the two edges incident to the root,
cf. as instance figure 3. Observe that the admissible colorings of the graph are in
one-to-one correspondence with the admissible colorings of the tree. To summarize
we have proven the following

Proposition 2.1. Let n > 3 and ℓ be a n-tuple of non-negative integers. For
any way of parenthesizing the product Vℓ1 ⊗ . . .⊗Vℓn

, there exists an admissible graph
Γ with n half-edges and a decomposition into a sum of lines

Hℓ =
⊕

Dϕ

where ϕ runs over the colorings of Γ such that ϕ(i) = ℓi for any half-edge i.

Observe that different parenthesisings may be associated to the same graph. As
we will see in the next section not only the indexing set but also the summands Dϕ

of the decomposition depend only on the graph Γ.

2.4. A complete set of observables. Recall first that the Casimir operator Q
of a representation ρ of SU(2) on a finite dimensional vector space V is the self-adjoint
operator V → V defined by

Q = −(ρ(ξ1)
2 + ρ(ξ2)

2 + ρ(ξ3)
2)(4)

where (ξ1, ξ2, ξ3) is an orthogonal base of su(2). Its eigenspaces are the isotypical
subspaces of V , the eigenvalue 4j(j+1) corresponding to the spin j isotypical subspace.

The following lemma will be useful in the sequel. Consider a representation ρ1×ρ2

of SU(2) × SU(2) on a finite dimensional vector space V . Denote by ρ the SU(2)-
representation on V by the diagonal inclusion ρ(g) = ρ1(g) × ρ2(g).

Lemma 2.1. The Casimir operators Q1 and Q2 of the representations ρ1 and ρ2

commute with ρ. Furthermore the restrictions of Q1 and Q2 to the ρ-invariant part
of V coincide.

Proof. To check this, it suffices to decompose V as the sum of isotypical subspaces
for the product representation ρ1×ρ2. Indeed Q1 and Q2 preserve this decomposition
and act by multiplication by a(a+2) and b(b+2) respectively on the Va⊗Vb-isotypical
subspace. Furthermore, it follows from (3) that the ρ-invariant part of the Va ⊗ Vb-
isotypical subspace is trivial if a 6= b.
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For any subset I of {1, . . . , n}, let ρI,ℓ be the representation of SU(2) in the tensor
product Vℓ1 ⊗ . . . ⊗ Vℓn

given by

ρI,ℓ(g)(v1 ⊗ . . . ⊗ vn) = w1 ⊗ . . . ⊗ wn, where wi =

{

g.vi if i ∈ I

vi otherwise.

In particular ρ{1,...,n},ℓ is the diagonal representation whose invariant subspace is Hℓ.
By the previous lemma, the Casimir operator QI,ℓ of ρI,ℓ preserves the subspace Hℓ.
Furthermore the restrictions of QI,ℓ and QIc,ℓ to Hℓ coincide.

Consider now an admissible graph Γ with n half-edges. Let a be an internal edge
of Γ. Assume a is directed and consider the set I(a) of half-edges which are connected
to the initial vertex of a by a path which does not contain the terminal vertex of a.
We define the operator

Ha,ℓ : Hℓ → Hℓ(5)

as the restriction of QI(a),ℓ to Hℓ. If we change the direction of a, we replace I(a)
by its complementary subset. So the operator Ha,ℓ is defined independently of the
orientation of the edge.

Theorem 2.1. Let n > 4. Let Γ be an admissible graph with n half-edges. Let ℓ
be a n-tuple of non-negative integers. Then the operators Ha,ℓ, a ∈ Eint(Γ), mutually
commute. The joint eigenvalues of these operators are the (n − 3)-tuples

(

ϕ(a)(ϕ(a) + 2)
)

a∈Eint(Γ)

where ϕ runs over the admissible colorings of Γ such that ϕ(i) = ℓi for any half-edge
i. Each joint eigenvalue is simple.

Furthermore if Γ is the graph associated to a parenthesising of Vℓ1 ⊗ . . . ⊗ Vℓn
as

in proposition 2.1, the joint eigenspace associated to the coloring ϕ is the line Dϕ of
proposition 2.1.

Proof. To prove that Ha,ℓ and Hb,ℓ commute for any internal edges a and b,
we use that these operators do not depend on the direction of the edges. Changing
these directions if necessary, we may assume that I(a) and I(b) are disjoint. Then the
representations ρI(a),ℓ and ρI(b),ℓ commute. So their Casimir operators also commute.

Observe that for any permutation σ of {1, . . . , n}, the canonical isomorphism

Vℓ1 ⊗ . . . ⊗ Vℓn
→ Vℓσ(1)

⊗ . . . ⊗ Vℓσ(n)

intertwins QI(a),ℓ with Qσ(I(a)),σ(ℓ) where σ(ℓ) = (ℓσ(1), . . . , ℓσ(n)). Hence it is suffi-
cient to prove the first part of the theorem for one order of the half-edges. It is easily
seen that the graph Γ endowed with an appropriate order of the half-edges is induced
by a parenthesising of the product Vℓ1 ⊗ . . . ⊗ Vℓn

. So it suffices to show that each
summand Dϕ of the associated decomposition is the joint eigenspace of the (Ha,ℓ)
with joint eigenvalue (ϕ(a)(ϕ(a) + 2)).

To see this, one considers first the tree associated to the parenthesising and orient
each edge from the leaves to the root. Then one may associate a representation ρI(a),ℓ

to each internal edge a of the tree exactly as we did for admissible graphs. Recall
that to define the summands Dϕ, we first express Vℓ1 ⊗ . . . ⊗ Vℓn

as a direct sum
of irreducible representations by decomposing the partial products with (3). This
amounts to decompose Vℓ1 ⊗ . . .⊗ Vℓn

with respect to the isotypical subspaces of the
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Fig. 5. The triangulation associated to Γn

ρI(a),ℓ and ρ{1,...,n},ℓ, the last one for the root. Equivalently one considers the direct
sum of the joint eigenspaces of the associated Casimir operators QI(a),ℓ and Q{1,...,n},ℓ.
Then we take the invariant part which is the kernel of Q{1,...,n},ℓ. To conclude observe
that the operators QI(a),ℓ associated to the internal edges of the tree are the same as
the ones associated to the internal edges of Γ.

2.5. On the non-triviality of Hℓ. Since it is preferable to know whether Hℓ

is trivial, we prove the following

Proposition 2.2. Let n > 1 and ℓ be a n-tuple of non-negative integers. Then
Hℓ is not trivial if and only if the sum ℓ1 + . . . + ℓn is even and there exists a n-sided
planar polygon with side lengths ℓ1, . . . , ℓn.

Furthermore the existence of a planar polygon with side lengths ℓ1, . . . , ℓn is
equivalent to the inequalities ℓj 6 1

2 (ℓ1 + . . . + ℓn) for j = 1, . . . , n.

Proof. If n = 1, 2, 3, the result is easily proved. For n > 3, consider the graph Γn

in figure 4. By proposition 2.1, the non-triviality of Hℓ is equivalent to the existence
of a coloring ϕ of Γn such that ϕ(i) = ℓi for any i. If such a coloring exists, by
summing the parity conditions (2) at each vertex we obtain that the sum of the ℓi is
even. Furthermore the inequalities in (2) are equivalent to the existence of a triangle
with side lengths k, ℓ, m. Given a coloring of Γ, one can patch together the triangles
associated to the various vertices as in figure 5. One obtains a n-sided polygon with
the required side lengths.

For the converse, we may assume without restriction that the lengths ℓi do not
vanish. Then the proof is by induction on n. For n > 3, consider a (n + 1)-tuple (ℓi)
satisfying the parity condition and assume that there exists a family of vectors (vi)
with lengths |vi| = ℓi and such that the sum v1 + . . .+ vn+1 vanishes. Then it suffices
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to prove that we can choose these vectors in such a way that

ℓ′n = |vn + vn+1|

is integral and ℓ′n + ℓn + ℓn+1 is even. Indeed, if it is the case, one may apply the
induction assumption to (ℓ1, . . . , ℓn−1, ℓ

′
n) and we get a admissible coloring ϕ of the

graph Γn with ϕ(i) = ℓi for i = 1, . . . , n − 1 and ϕ(n) = ℓ′n. Then we extend this
coloring to an admissible coloring of Γn+1 by assigning ℓn and ℓn+1 to the n-th and
(n + 1)-th half-edges.

Let us prove the existence of the vi satisfying the extra condition. The minimum
and maximum values of |vn + vn+1| when vn and vn+1 run over the circles of radius
ℓn and ℓn+1 are

m = |ℓn − ℓn+1|, M = ℓn + ℓn+1.

Similarly if |vi| = ℓi for i = 1, . . . , n−1, the minimum and maximum of |v1+. . .+vn−1|
are

m′ = max(2L − (ℓ1 + . . . + ℓn−1), 0), M ′ = ℓ1 + . . . + ℓn−1

where L is the maximum of ℓ1, . . . , ℓn−1. Observe also that m < M and m′ < M ′

because the lengths ℓi are positive.
Then the existence of the family (vi) such that v1 + . . . + vn+1 = 0 is equivalent

to the existence of a length ℓ′n ∈ [m, M ] ∩ [m′, M ′]. We have to prove that if this
intersection is non-empty then it contains an integer ℓ′n such that ℓ′n + ℓn + ℓn+1 is
even. Since the endpoints m, M , m′ and M ′ are all integral, if [m, M ] ∩ [m′, M ′] is
not empty, it contains at least two consecutive integers or it consists of one point. In
this last case, one has M = m′ or m = M ′, hence ℓ′n = m or M which is integral and
satisfies the parity condition.

3. Semi-classical properties of Hℓ. Applying the geometric quantization pro-
cedure, we give a geometric construction of the spaces Hℓ. We recall the general
setting in a first section and explain in the next one how the spaces Hℓ are viewed as
quantization of polygon spaces. In the following sections, we define Toeplitz operators
and then prove that the operators Ha,ℓ introduced previously are Toeplitz operators.

3.1. Geometric quantization. Consider a compact connected symplectic man-
ifold (M, ω). Assume that it is endowed with:

• a Kähler structure whose fundamental form is ω,
• a prequantization bundle L → M , that is a holomorphic Hermitian line

bundle whose Chern curvature is 1
i ω,

• a half-form bundle δ → M , that is a square root of the canonical bundle of
M .

The quantum space associated to these data is the space of holomorphic sections of
L ⊗ δ that we denote by H0(M, L ⊗ δ). It has the scalar product

(Ψ1, Ψ2) =

∫

M

(Ψ1(x), Ψ2(x))Lx⊗δx
µM (x)

induced by the metric of L ⊗ δ and the Liouville measure µM = ωn/n!.
Consider a Hamiltonian action of a Lie group G on M with momentum µ : M →

g
∗. By definition, the momentum is equivariant and satisfies

dµξ + ω(ξ#, .) = 0, ∀ξ ∈ g
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where ξ# is the infinitesimal vector field of M associated to ξ. We assume that the
action lifts to the prequantization bundle in such a way that the infinitesimal action
on the sections of L is

∇L
ξ# + iµξ ∀ξ ∈ g.(6)

Furthermore we assume that the action on M preserves the complex structure and
lifts to the half-form bundle. With these assumptions, the group G acts naturally on
H0(M, L ⊗ δ), the infinitesimal action being given by the Kostant-Souriau operators

iµξ + ∇L
ξ# ⊗ id + id⊗Lξ# , ∀ξ ∈ g.(7)

Here L is the Lie derivative of half-forms.
All the irreducible representations of compact Lie groups may be obtained in

this way. Starting from the irreducible representations of SU(2), we will construct
the tensor product Vℓ1 ⊗ . . . ⊗ Vℓn

and its invariant subspace as quantum spaces
associated to some symplectic manifolds.

3.2. Geometric realization of the space Hℓ. Consider the tautological bun-
dle O(−1) of the projective complex line P1(C) and let O(m) = O(−1)−m. These are
SU(2)-bundles with base P1(C). For any integer m > 1, the induced SU(2)-action on
the holomorphic sections of

O(m) ⊗O(−1) → P
1(C)

is the irreducible representation Vm−1. Denote by ωFS the Fubiny-Study form of
P1(C). Then O(m) is a prequantization bundle with curvature 1

i mωFS . Furthermore
O(−1) is the unique half-form bundle of P

1(C). The SU(2)-action satisfies all the
general properties stated below. Its momentum

µm : P
1(C) → (su(2))∗

is an embedding whose image is the coadjoint orbit with symplectic volume 2πm.
With our normalization of the scalar product, this coadjoint orbit is the sphere S2

m

with radius m centered at the origin. In the following we identify (P1(C), mωFS) with
S2

m.
Next we consider the product S2

ℓ1
× . . .×S2

ℓn
with the prequantization bundle and

the half-form bundle:

O(ℓ1) ⊠ . . . ⊠ O(ℓn), O(−1) ⊠ . . . ⊠ O(−1).(8)

The associated quantum space is the tensor product Vℓ1−1⊗ . . .⊗Vℓn−1. The diagonal
action of SU(2) is Hamiltonian with momentum

µ = π∗
1µℓ1 + π∗

2µℓ2 + . . . + π∗
nµℓn

,

where πi is the projection from Sℓ1 × . . .×Sℓn
onto the i-th factor. It satisfies all the

previous assumptions.
The invariant subspace of Vℓ1−1 ⊗ . . . ⊗ Vℓn−1 is the Hilbert space Hℓ−1 we in-

troduced previously. It follows from the ”quantization commutes with reduction”
theorem proved in [9] that Hℓ−1 is the quantum space associated with the symplectic
quotient Mℓ of S2

ℓ1
× . . . × S2

ℓn
by SU(2). More precisely we assume that

ℓj 6 1
2 (ℓ1 + . . . + ℓn), j = 1, . . . , n,(9)
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and

ℓ1 ± ℓ2 ± . . . ± ℓn 6= 0(10)

for any possible choice of signs. The first assumption is equivalent to the non-
emptyness of Mℓ. The second one is to ensure that the quotient does not have any
singularity. Indeed, (10) holds if and only if the SU(2)-action on the null set {µ = 0}
factorizes through a free SO(3)-action. So under this assumption the quotient Mℓ is
a manifold. It inherits by reduction a Kähler structure. We assume furthermore that

ℓ1 + . . . + ℓn ∈ 2Z and n ∈ 2Z.(11)

Then the diagonal SU(2)-action on the line bundles (8) factors through a SO(3)-
action. The quotients of the restriction at {µ = 0} of these bundles are genuine line
bundles with base Mℓ, that we denote by Lℓ and δℓ respectively. Lℓ has a natural
structure of prequantization bundle and δℓ is a half-form bundle. The restrictions at
{µ = 0} of the invariant sections descend to the quotient Mℓ. This defines a map

Hℓ−1 → H0(Mℓ, Lℓ ⊗ δℓ)

which is a vector space isomorphism. Additional details on this construction will be
recalled in section 8.1. Applying the same construction to the power of the prequan-
tization bundle, we obtain the following theorem.

Theorem 3.1. Let n > 4 and ℓ = (ℓ1, . . . , ℓn) be a family of positive integers
satisfying (9), (10) and (11). Then for any positive integer k, we have a natural
vector space isomorphism

Vk,ℓ : Hkℓ−1 → H0(Mℓ, L
k
ℓ ⊗ δℓ).

Since the maps Vk,ℓ do not necessarily preserve the scalar product, we will also
consider the unitary operators Vk,ℓ(V

∗
k,ℓVk,ℓ)

−1/2. The asymptotic results we prove in
this paper are in the limit k → ∞.

Remark 3.1. In the case where assumption (10) does not hold, one can still
identify the Hilbert space Hkℓ−1 with a space of holomorphic sections on a Kähler
analytic space [18]. We will not consider this case because the theory of Toeplitz
operators has not been developed for singular spaces. The assumption (11) is not
really necessary. Actually we could extend our results to the sequences

Hkℓ−1+m, k = 1, 2, . . .

where ℓ and m are any multi-indices satisfying (10). Recall that Hϕ is a trivial vector
space when |ϕ| = ϕ(1) + . . . + ϕ(n) is odd. Assume that |ℓ| and n are even. then we
may consider without restriction that |m| is even too. Let K → Mℓ be the quotient
bundle of the restriction at {µ = 0} of O(m1)⊠ . . .⊠O(mn). We have an isomorphism

Hkℓ−1+m ≃ H0(Mℓ, L
k
ℓ ⊗ K ⊗ δℓ).

Then we can apply the methods used in this paper as it is explained in [5] and [7].
When |ℓ| is even whereas n and |m| are odd, we can not define globally the bundles K
and δℓ. But their tensor product is still perfectly defined. When |ℓ| is odd, by doing
the parameter change k = 2k′ + 1 or k = 2k′, we are reduced to the previous cases.
Here to avoid the complications due to the auxiliary bundle K, we consider uniquely
the spaces Hkℓ−1 under the assumption that |ℓ| and n are even.
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3.3. Toeplitz operators. Let (M, ω) be a compact Kähler manifold with a
prequantization bundle L and a half-form bundle δ. For any integer k and any function
f ∈ C∞(M), we consider the rescaled Kostant-Souriau operator (cf. (7))

Pk(f) = f +
1

ik

(

∇Lk

X ⊗ id + id⊗Lδ
X

)

: C∞(M, Lk ⊗ δ) → C∞(M, Lk ⊗ δ)

where X is the Hamiltonian vector field of f . These operators do not necessarily
preserve the subspace of holomorphic sections. Let us consider H0(M, Lk ⊗ δ) as a
subspace of the space of L2-sections. Assume this last space is endowed with the
scalar product induced by the metrics of L, δ and the Liouville form. Introduce the
orthogonal projector Πk onto H0(M, Lk ⊗ δ). Then a Toeplitz operator is defined as
a family of operators

(

Tk := ΠkPk(f(·, k)) + Rk : H0(M, Lk ⊗ δ) → H0(M, Lk ⊗ δ)
)

k=1,2,...

where (f(·, k)) is a sequence of C∞(M) which admits an asymptotic expansion

f(·, k) = f0 + k−1f1 + k−2f2 + . . .

for the C∞-topology with f0, f1 . . . ∈ C∞(M). Furthermore (Rk) is any operator such
that ‖Rk‖ = O(k−∞). As a result the coefficients fℓ are determined by (Tk). We call
f0 the principal symbol of (Tk) and f1 its subprincipal symbol.

3.4. The Casimir operators. Consider now the symplectic quotient Mℓ and
its quantization as in section 3.2. For any subset I of {1, . . . , n}, we denote by qI,ℓ

the function

qI,ℓ :=
∣

∣

∣

∑

i∈I

π∗
i µℓi

∣

∣

∣

2

∈ C∞(S2
ℓ1 × . . . × S2

ℓn
).(12)

It is invariant and descends to a function hI,ℓ of C∞(Mℓ). Recall that we defined in
section 2.4 a Casimir operator QI,ℓ which acts on the space Hℓ and that we introduced
in section 3.2 isomorphisms Vk from Hkℓ−1 to H0(Mℓ, L

k
ℓ ⊗ δℓ). A central result of

the paper is the following theorem.

Theorem 3.2. Let n > 4 and ℓ = (ℓ1, . . . , ℓn) be a family of positive integers
satisfying (9), (10) and (11). For any subset I of {1, . . . , n}, the sequence

( 1

k2
VkQI,kℓ−1V

−1
k : H0(Mℓ, L

k
ℓ ⊗ δℓ) → H0(Mℓ, L

k
ℓ ⊗ δℓ)

)

k=1,2,...

is a Toeplitz operator with principal symbol hI,ℓ and vanishing subprincipal symbol.

Let us sketch the proof. First it follows from the results of [2] that the product
of two Toeplitz operators (Tk) and (Sk) is a Toeplitz operators. The principal and
subprincipal symbols f0, f1 of (TkSk) may be computed in terms of the symbols g0, g1

of (Tk) and h0, h1 of (Sk)

f0 = g0h0, f1 = g0h1 + h0g1 +
1

2i
{f0, g0},

cf. [5] for a proof of the second formula. Second, in the case of a Hamiltonian action G
with momentum µ which satisfies all the assumptions of section 3.1, the infinitesimal
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action of ξ ∈ g on H0(M, Lk ⊗ δ) is the Kostant-Souriau operator ikP(µξ). Since it
preserves H0(M, Lk ⊗ δ), the sequence (P(µξ))k is a Toeplitz operator. Its principal
symbol is µξ and its subprincipal symbol vanishes.

Using these two general facts, we deduce from the expression (4) of the Casimir
operator that the sequence

( 1

k2
QI,kℓ−1 : Vkℓ1−1 ⊗ . . . ⊗ Vkℓn−1 → Vkℓ1−1 ⊗ . . . ⊗ Vkℓn−1

)

k=1,2,...

is a Toeplitz operator of S2
ℓ1
× . . .×S2

ℓn
. With our normalization for the scalar product

of su(2), its principal symbol is qI,ℓ. Its subprincipal symbol vanishes.
The last step of the proof is the symplectic reduction from S2

ℓ1
× . . .×S2

ℓn
to Mℓ.

We will show in part 8 that any invariant Toeplitz operator of a Hamiltonian space
(M, G) descends to a Toeplitz operator of the quotient M//G. This result was already
proved in [6] for torus action and the proof given there extends directly to the case
of a compact Lie group. But it does not give any control on the subprincipal symbol.
So we propose another proof and we will show that the principal and subprincipal
symbols descend to the principal and subprincipal symbols of the reduced Toeplitz
operator. The precise statement is the corollary 8.1, which implies theorem 3.2.

4. On the symplectic geometry of polygon spaces. Let n > 3 and
(ℓ1, . . . , ℓn) be a family of positive numbers, not necessarily integral. We assume
that

ℓj <
1

2
(ℓ1 + . . . + ℓn)(13)

for any j = 1, . . . , n. Recall that S2
ℓ is the sphere of su(2)∗ with radius ℓ. It is the

coadjoint orbit with symplectic volume 2πℓ. Consider the symplectic quotient

Mℓ =
{

(x1, . . . , xn) ∈ S2
ℓ1 × . . . × S2

ℓn
/ x1 + . . . + xn = 0

}

/SU(2).

Since we do not assume (10), Mℓ may have some singularities. They form a finite set
Σℓ consisting of the classes [(x1, . . . , xn)] such that all the xi belong to the same line.
Mℓ \ Σℓ is a symplectic manifold of dimension 2(n − 3). It is non-empty because of
the inequalities (13).

In section 4.1, we associate to each admissible graph an integrable system of
Mℓ and give its properties. The motivation is to obtain next the best description
of the joint eigenstates of the operators (Ha,ℓ). In section 4.2, we make clear the
relationship with the decomposition of polygons into triangles. We also introduce
natural action-angle coordinates of the integrable system. The proofs of the various
results are postponed to the next sections.

4.1. An integrable system. Let Γ be an admissible graph with n half-edges.
Assume that the internal edges are oriented. Then for any internal edge a, denote
by I(a) the set of half-edges which are connected to the initial vertex of a by a path
which doesn’t contain the terminal vertex of a. Introduce the length function λa of
Mℓ defined by

λa([x1, . . . , xn]) =
∣

∣

∑

i∈I(a)

xi

∣

∣

and denote by ha the square of λa. Observe that λa is defined independently of the
direction of a. Using this, it is easy to see that the Poisson bracket {ha, hb} = 0
vanishes for any two internal edges.
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Denote by M∗
ℓ,Γ the subset of Mℓ \ Σℓ where none of the functions λa vanishes.

The functions λa are smooth on M∗
ℓ,Γ and they mutually Poisson commute. To

describe the joint image of the λa, we introduce some more notations.
Let us denote by E(Γ) the set of edges of Γ. Let ∆(Γ) be the convex polyhedron

of R
E(Γ) which consists of the (2n− 3)-tuples (da) of non-negative real numbers such

that for any three mutually distinct edges a, b and c incident to the same vertex, da,
db and dc are the lengths of an Euclidean triangle, that is the inequalities |da − db| 6

dc 6 da + db hold. Let ∆(ℓ, Γ) be the convex polyhedron of REint(Γ)

∆(ℓ, Γ) = {(da)a∈Eint(Γ)/ (ℓi, da)i∈Ehalf (Γ),a∈Eint(Γ) ∈ ∆(Γ)}.

The following theorem will be proved in section 4.3.

Theorem 4.1. Let n > 4 and let Γ be an admissible graph with n half-edges. Let
(ℓi)i=1,...,n be a family of positive real numbers satisfying (13). The image of the map

λ : Mℓ → R
Eint(Γ), x → (λa(x))

is the polyhedron ∆(ℓ, Γ). The fibers of λ are connected. Denote by Int(∆(ℓ, Γ)) the
interior of ∆(ℓ, Γ). Then the set

Mreg
ℓ,Γ := λ−1(Int∆(ℓ, Γ))

is open and dense in Mℓ and included in M∗
ℓ,Γ. For any x ∈ Mreg

ℓ,Γ, the differentials
dxλa, a ∈ Eint(Γ), are linearly independent.

This result is strongly related to theorem 2.1 about the spectrum of the operators
(Ha). The admissible colorings of the graph Γ are particular points of the polyhedron
∆(Γ). The relationship between a color ϕ(a) and the eigenvalue ϕ(a)(ϕ(a) + 1) is
similar to the relationship between λa and its square ha. These analogies will be made
more precise in part 5.2 where we shall state the Bohr-Sommerfeld conditions. To
prepare the description of the joint eigenstates of the (Ha,ℓ) as Lagrangian sections, we
explain now how the Hamiltonian flow of the λa defines a torus action. The following
result is proved in section 4.4

Theorem 4.2. Under the same assumptions as theorem 4.1, the Hamiltonian
flows on M∗

ℓ,Γ of the 1
2λa, a ∈ Eint(Γ), mutually commute and are 2π-periodical.

Consequently they define a torus action

T
Eint(Γ) ×M∗

ℓ,Γ → M∗
ℓ,Γ.

This action is free over Mreg
ℓ,Γ. The fibres of λ in Mreg

λ,Γ are the torus orbits.

As we will see in the next section, there exist natural angle functions which form
together with the 1

2λa an action-angle coordinate system. When the ℓi are integers
and satisfy the condition (11), there exist other remarkable action coordinates γa

associated to the prequantum bundle Lℓ. They are defined modulo Z by the condition
that e2iπγa(x) is the holonomy in Lℓ of the loop

t ∈ [0, π] → Φa,t(x)

where Φa,t is the Hamiltonian flow of λa at time t. We will prove in part 4.5 the
following

Proposition 4.1. For any internal edge a, we have γa = 1
2

(

λa +
∑

i∈I(a) ℓi

)

.
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Fig. 6. Triangulation

4.2. Bending flows and action-angle coordinates. Consider first a polygon
with n sides numbered from 1 to n. Let us cut the polygon into n − 2 triangles by
connecting the vertices with n− 3 straight lines. To this triangulation is associated a
admissible graph Γ defined as follows. The half-edges of Γ are the sides of the polygon.
The internal edges are the straight lines connecting the vertices of the polygon. The
vertices of Γ are the triangles. The edges incident to a vertex are the sides of the
triangle, cf. figure 6. It is easily seen that this graph is admissible. Furthermore any
admissible graph may be obtained in this way.

In the following, we consider a triangulation of a n-sided polygon P with its
associated admissible graph Γ. We assume that the sides of the polygon are numbered
in the apparent order. Then to each n-tuple x = (x1, . . . , xn) of su

∗(2) we associate
the polygon P (x) with vertices 0, x1, x1 + x2, . . . , x1 + . . . + xn−1. So each class
[x1, . . . , xn] of Mℓ represents a polygons of su

∗(2) up to isometry. The triangulation
of P induces a triangulation of P (x1, . . . , xn). Observe that for each internal edge a
of Γ, λa(x) is the length of a internal edge of the triangulation. This explains that
the image of λ is the polyhedron ∆(ℓ, Γ) as asserted in theorem 4.1. Indeed to each
vertex of Γ corresponds a face of the triangulation and related triangle inequalities.

In the proof of theorem 4.2, we shall show that the Hamiltonian flow of λa at
time t maps x = [x1, . . . , xn] ∈ M∗

ℓ into Φa(x, t) = [z1, . . . , zn] where

zi =

{

Adg xi if i ∈ I(a)

xi otherwise
, with g = exp

( t

λa(x)

∑

i∈I(a)

xi

)

.

Here we identified su(2) and su(2)∗ by using the invariant scalar product introduced
above. Considering the previous interpretation of Mℓ, these flows are bendings along
the internal edges of the triangulation.

Now for any internal edge a, introduce a coordinate

θa : Mreg
ℓ,Γ → R/2πZ

which measures the dihedral angle between the two faces adjacent to the internal edge
of the triangulation associated to a. More precisely, we require that θa = 0 or π when



124 L. CHARLES

these faces are coplanar and that θa(Φa(x, t)) = θa + t.

Theorem 4.3. The subspace Pℓ of Mℓ \Σℓ which consists of classes of n-tuples
of coplanar vectors, is a closed Lagrangian submanifold. Consequently, the family
1
2λa, θa, a ∈ Eint(Γ), is an action-angle coordinate system, that is the symplectic form
is given by

ω =
∑

a∈Eint(Γ)

d(1
2λa) ∧ dθa

on Mreg
ℓ,Γ.

This theorem was proved in [14] for the graph Γn and its associated triangulation
given in figures 4 and 5.

Proof. It is easily seen that Pℓ is a (n − 3)-dimensional submanifold of Mℓ \
Σℓ. Let R be a reflexion of su

∗(2). Consider the involution Ψ of Mℓ \ Σℓ which
sends [x1, . . . , xn] into [R(x1), . . . , R(xn)]. It transforms the symplectic form into its
opposite. Pℓ being the fixed point set of Ψ, it is a Lagrangian submanifold.

4.3. Proof of theorem 4.1. Let H be the subspace of (su(2))n

H := {(xi) ∈ (su(2))n/ x1 + . . . + xn = 0}.(14)

Denote by E(Γ) the set of edges of Γ and introduce the map λ : H → R
E(Γ) whose

components are

λa(x) =

{

∣

∣

∑

i∈I(a)xi

∣

∣ if a is an internal edge,

|xa| if a is an half-edge.
(15)

Recall that ∆(Γ) is the convex polyhedron of RE(Γ) consisting of the (da) such that
for any three edges a, b, and c mutually distinct and incident to the same vertex, da,
db and dc satisfy the triangle inequalities.

Theorem 4.4. The image of λ is the set ∆(Γ). The fibres of λ are connected.
Furthermore the interior points of ∆(Γ) are regular values of λ.

The interior of ∆(Γ) consists of the (da)a∈E(Γ) such that the strict triangle in-
equalities

|da − db| < dc < da + db

hold at each vertex. So the functions λa do not vanish and are smooth on
λ−1(Int(∆(Γ))).

Before the proof, let us deduce theorem 4.1 from 4.4. We immediately have that
the image of λ is the polyhedron ∆(ℓ, Γ) and that its fibre are connected. Next it is
easily checked that the interior of ∆(ℓ, Γ) is the set of (da)a∈Eint(Γ) such that (da, ℓi)
belongs to Int(∆). So theorem 4.4 implies that the differentials of the λa are linearly
independent over λ−1(Int∆(ℓ, Γ)). It remains to show the density of λ−1(Int ∆(ℓ, Γ)),
which follows from proposition 4.2.

Proof of theorem 4.4. The proof is by induction on the number of half-edges. The
result is easily proved for the graph with three monovalent vertices. Observe that
in this case the fibers of λ are the orbits of the diagonal SU(2)-action. Furthermore
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(x1, x2, x3) is a regular point of h if the triangle with vertices 0, x1, x1 + x2 is non-
degenerate.

Let n > 3. Consider an admissible graph Γ with (n+1) half-edges. Then Γ admits
a vertex v incident to two half-edges and an internal edge. To see this, consider the
graph obtained from Γ by deleting all the half-edges. This new graph being a tree,
it has at least two monovalent vertices, these vertices satisfy the property. Next we
order the half-edges of Γ in such a way that the two ones incident to v are the n-th
and (n + 1)-th. Denote by a the internal edge incident to v. Changing the directions
of the internal edges if necessary, we may assume that

I(a) = {n, n + 1}, I(a) ⊂ {1, . . . , n − 1}.

Let Γ′ be the graph obtained from Γ by removing the vertex v and the n-th and
(n + 1)-th half-edges. Denote by λ′ and λ′′ the maps associated respectively to Γ′

and the graph Γ′′ with three monovalent vertices. Then the induction is based on the
simple observation that λ(x) = d if and only if

λ′(x1, . . . , xn−1,−y) = d|E(Γ′) and λ′′(y, xn, xn+1) = (|y|, dn, dn+1)

where y = x1 + . . . + xn−1. As a first consequence, we immediately deduce that the
image of λ is ∆(Γ) if we already know that the images of λ′ and λ′′ are the polyhedra
∆(Γ′) and ∆(Γ′′).

Let us prove that the fibers of λ are connected. Let x0 and x1 be such that
λ(x0) = λ(x1). Denote by x′ the (n − 1)-tuple (x1, . . . xn−1) and by y the sum
x1 + . . . + xn−1. Assuming the fibers of λ′ are connected, there exists a path

t → (x′t,−yt)

from (x′0,−y0) to (x′1,−y1) remaining in the same fiber of λ′. Since |yt| is constant,
there exists a path t → gt in SU(2) such that gty0 = yt. Then the path

t → (x′t, gtx0
n, gtx0

n+1)

connects x0 with (x′1, g1x0
n, g1x0

n+1) and takes its value in a single fiber of λ. Next
since

λ′′(−g1(x0
n + x0

n+1), g
1x0

n, g1x0
n+1) = λ′′(−(x1

n + x1
n+1), x

1
n, x1

n+1),

there exists a path

t → (−(zt
n + zt

n+1), z
t
n, zt

n+1)

which connects these two points by remaining in the same fiber of λ′′. Furthermore
since g1(x0

n + x0
n+1) = y1 = x1

n + x1
n+1, one may choose this path in such a way that

(zt
n + zt

n+1) is constant. Finally the path

t → (x′1, zt
n, zt

n+1)

connects (x′1, g1x0
n, g1x0

n+1) with x1 and this ends the proof of the connectedness.
Let us prove that the interior points of ∆(Γ) are regular values of λ. Assume

that the result is satisfied for the function λ′ associated to Γ′. Let x0 be such that its
image belongs to the interior of ∆(Γ). Then one has to prove that the map

(su(2))n+1 → R
E(Γ) × su(2), x → (λ(x), x1 + . . . + xn+1)
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is submersive at x0, where λ is the obvious extension of λ from H to (su(2))n+1.
Consider the isomorphism

Ψ : (su(2))n+1 → H ′ × H ′′, x → (x′,−y), (−(xn + xn+1), xn, xn+1).

Here we denote as previously by x′ the (n− 1)-tuple (x1, . . . xn−1) and by y the sum
x1 + . . . + xn−1. Then one has

λ′
a ◦ Ψ = λa, ∀a ∈ E(Γ′) and λ′′ ◦ Ψ = (λa, λn, λn+1).

By induction assumption, λ′ is submersive at (x′0,−y0). Hence it suffices to prove
that the map

H ′′ → R
2 × su(2), (−(xn + xn+1), xn, xn+1) → (|xn|, |xn+1|, xn + xn+1)

is submersive at (−(x0
n+x0

n+1), x
0
n, x0

n+1). This is true because λ(x0) being an interior
point of ∆(Γ), the triangle with vertices 0, x0

n and x0
n + x0

n+1 is non-degenerate. This
ends the proof of the theorem.

For any n-tuple ℓ of positive numbers, denote by Pℓ the subset of H ,

Pℓ :=
(

S2
ℓ1 × . . . × S2

ℓn

)

∩ H,

so that Mℓ is the quotient of Pℓ by SU(2).

Proposition 4.2. If ℓ satisfies (13), then λ−1(∆(Γ)) ∩ Pℓ is dense in Pℓ.

Proof. Again the proof is by induction on the number of half-edges. Introduce the
graphs Γ, Γ′ and Γ′′ as in the proof of theorem 4.4 and assume the result is satisfied
for Γ′ and for any ℓ satisfying the inequalities (13).

Let ℓ be a (n + 1)-tuple satisfying (13). Let Σ̃ℓ be the set of (x1, . . . , xn+1) ∈ Pℓ

such that the xi are mutually colinear. It is easily deduced from (13) that Pℓ \ Σ̃ℓ is
dense in Pℓ.

Next we consider the set Q consisting of the (x1, . . . , xn+1) ∈ Pℓ\Σ̃ℓ such that the
lengths ℓ′n = |xn + xn+1| satisfy the two following conditions. First (ℓ1, . . . , ℓn−1, ℓ

′
n)

satisfies the inequalities (13) and second ℓ′n, ℓn, ℓn+1 satisfy the strict triangle inequal-
ities. One proves that Q is dense in Pℓ \ Σ̃ℓ. To do this observe that the inequalities
(13) are satisfied as soon as there is no equality and this can happen only for a finite
number of ℓ′n. For any x0 ∈ Pℓ \ Σ̃ℓ, one has to find points in Q arbitrarily close to x0.
This can be proved by considering separetly the case where x0

1, . . . , x
0
n−1 are mutually

colinear. If there are not, one concludes by using that the map

Sℓ1 × . . . × Sℓn−1 → su(2)∗

if submersive at (x0
1, . . . , x

0
n−1).

The last step is to prove the density of λ−1(∆(Γ)) ∩ Pℓ in Q. This follows from
the induction assumption.

4.4. Proof of theorem 4.2. The Hamiltonian flow of the λa is easily described
applying the following general result. Let (M, ω) be a symplectic manifold with a
Hamiltonian action of a Lie group G. Assume that the Lie algebra g has an invariant
scalar product, which we use to identify g and g

∗. Denote by µ the momentum of
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the action and let M∗ be the open set {µ 6= 0} of M . One easily checks the following
proposition.

Proposition 4.3. The Hamiltonian flow of |µ| ∈ C∞(M∗) at time t is given by

Φt(x) = exp
(

t
µ(x)

|µ(x)|
)

.x, ∀x ∈ M∗.

Let I be a subset of {1, . . . , n}. Consider the Hamiltonian action of SU(2) on
S2

ℓ1
× . . . × S2

ℓn
with momentum

µI(x1, . . . , xn) =
∑

i∈I

xi.(16)

By the previous proposition, the flow ρI,t of |µI | at time t sends (x1, . . . , xn) into the
n-tuple (y1, . . . , yn) given by

yi =

{

Adg xi if i ∈ I,

xi otherwise,
with g = exp

(

t
µI(x)

|µI(x)|
)

.

We apply this to the set I(a) associated to an internal edge a. The function |µI(a)|
is invariant by the diagonal action and descends to the function λa. Hence the flows
ρI(a),t lifts the Hamiltonian flow of λa. Furthermore, with our normalization,

exp(ξ) = 1 ⇔ |ξ| ∈ 2πN, ∀ξ ∈ su(2).

Since the coadjoint action factorizes through a SO(3)-action, the flow of the λa is
π-periodical and this proves the first part of theorem 4.2. Next by theorem 4.1, the
torus orbits in Mreg

ℓ,Γ and the fibers of λ have the same dimension. Furthermore the

fibers are connected. Hence the fibers in Mreg
ℓ,Γ are the torus orbits. It remains to

prove that the torus action is free in Mreg
ℓ,Γ.

Let H be the subspace defined in (14). Let us extend the action ρI,t on H \
{∑i∈I xi 6= 0} in the obvious way. We will consider the actions ρI(a),t altogether.
Here we can not choose the orientations of the internal edges in such a way that the
sets I(a) are mutually disjoint. So the action of ρI(a),t and ρI(b),t do not necessarily
commute. Let a1, . . . , an−3 be the internal edges of Γ. The following proposition
completes the proof of theorem 4.2.

Proposition 4.4. For any x ∈ H such that λ(x) ∈ Int∆(Γ) and for any (ti) ∈
R

n−3, if there exists g ∈ SU(2) such that

ρI(a1),t1(ρI(a2),t2(. . . (ρI(an−3),tn−3
(x)) . . .)) = g.x

then t1 ≡ . . . ≡ tn ≡ 0 modulo π.

Proof. Again the proof is by induction on the number of half-edges. Introduce the
graphs Γ, Γ′ and Γ′′ as in the proof of theorem 4.4 and assume the result is satisfied
for Γ′. Since the various circle actions mutually commute modulo the diagonal action
of SU(2), the result is independent of the order of the internal edges. Observe also
that

ρI,t(x) = g(x, t).ρIc,t(x).



128 L. CHARLES

So the result does not depend on the direction of the internal edge. So we may
assume that an−2 is the internal edge of Γ incident to the n-th and (n + 1)-th half-
edges. We may also assume that I(an−2) = {n, n + 1} and I(ak) ⊂ {1, . . . , n− 1} for
k = 1, . . . , n − 3. Let x ∈ λ−1(Int∆(Γ)) such that

ρI(a1),t1(ρI(a2),t2(. . . (ρI(an−2),tn−2
(x)) . . .)) = g.x.

This implies that

ρI(a1),t1(ρI(a2),t2(. . . (ρI(an−3),tn−3
(x′,−y)) . . .)) = g.(x′,−y)(17)

where x′ = (x1, . . . , xn−1) and y = x1 + . . . + xn−1. Furthermore

exp
(

tn−2
xn + xn+1

|xn + xn+1|
)

.(xn, xn+1) = g.(xn, xn+1).(18)

By the induction assumption, one has that t1 ≡ . . . ≡ tn−3 ≡ 0 modulo π. Conse-
quently, (17) reads as

(x1, . . . , xn−1) = g.(x1, . . . , xn−1)

If g 6= ± id, this implies that the vectors x1, . . . , xn−1 are colinear and this contradicts
the fact that λ(x) ∈ Int(∆(Γ)). So g = ± id. Finally since xn and xn+1 are not
colinear, equation (18) implies that tn−2 ≡ 0 modulo π.

4.5. Computation of the holonomies. Extending the proposition 4.3 to the
prequantum case, we can also compute the actions γa. Assume that (M, ω) admits a
prequantization bundle L → M with curvature 1

i ω and that the action of G lifts to
L satisfying the usual assumption (6).

Proposition 4.5. For any x ∈ M∗ and u ∈ Lx, one has

e−it|µ(x)|Tt.u = exp
(

t
µ(x)

|µ(x)|
)

.u

where Tt.u ∈ LΦt(x) is the parallel transport of u along the path s ∈ [0, t] → Φs(x).

To deduce proposition 4.1, we apply this result at time π to the Hamiltonian
action with momentum µI(a),t introduced in (16). Be careful that the action on the
prequantization bundle factorizes through a SO(3)-action only if

∑

i∈I(a) ℓi is even.

5. Semi-classical properties of the joint eigenstates. Let Γ be an admis-
sible graph with n half-edges and let (ℓi)i=1,...,n be a family of positive integers. For
any integer k > 1, we defined in section 2.4 a family

{Ha,kℓ−1; a ∈ Eint(Γ)}

of mutually commuting operators of Hkℓ−1. For any joint eigenvalue E = (Ea) ∈
REint(Γ) of the operators k−2Ha,kℓ−1, introduce a unitary eigenvector ΨE,k

1

k2
Ha,kℓ−1ΨE,k = EaΨE,k, ∀a ∈ Eint(Γ).

Assume furthermore that ℓ satisfies assumptions (9), (10) and (11). Then by theorem
3.1, Hkℓ−1 is isomorphic to H0(Mℓ, L

k
ℓ ⊗ δℓ) and by theorem 3.2 the sequence

Ta =
( 1

k2
VkHa,kℓ−1V

−1
k

)

k=1,2,...
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is a Toeplitz operator with principal symbol

ha =
∣

∣

∑

i∈I(a)

xi

∣

∣

2
.

As a consequence we can describe precisely the eigenstates ΨE,k in the semi-classical
limit. This is done in section 5.1. Section 5.2 is devoted to the Bohr-Sommerfeld
conditions.

5.1. Eigenstates of the Ha. First the eigenstates are microlocalised on the
level sets of the joint principal symbol h := (ha) : Mℓ → REint(Γ). Introduce the
closed subset

Λ := {(x, E)/ h(x) = E}

of Mℓ × REint(Γ).

Theorem 5.1. For any (x, E) /∈ Λ, there exist neighborhoods U of x in Mℓ and
V of E in REint(Γ) and a sequence (CN ) of positive real numbers such that

|VkΨE,k(y)| 6 CNk−N

for any integers k and N , any y ∈ U and any joint eigenvalue E ∈ V . The same
result holds if we replace Vk by Vk(V ∗

k Vk)−
1
2 .

Next since the family (ha) is an integrable system as stated in theorem 4.1, we
can determine modulo O(k−∞) the eigenvectors ΨE,k on a neighborhood of the the
level set h−1(E) when E is regular value of h.

Consider as in theorem 4.1 the regular set Mreg
ℓ,Γ = λ−1(Int∆(ℓ, Γ)). To describe

uniformly the various eigenstates, introduce the submanifold

Λreg := Λ ∩ (Mreg
ℓ,Γ × R

Eint(Γ))

of Mℓ × REint(Γ). Denote by L and δ the pull-backs of the bundles Lℓ and δℓ by the
projection Mℓ × REint(Γ) → Mℓ.

Let x ∈ Mreg. Then E = h(x) is a regular value of h and h−1(E) is a Lagrangian
torus described in theorem 4.2. Let us introduce the isomorphism

ϕx : δ2
x → ∧top,0(T ∗

xM) → ∧top(Txh−1(E)) ⊗ C.(19)

Here the first arrow is the isomorphism making δ a square root of the canonical bundle
and the second arrow is the restriction from TxM to Txh−1(E). Finally denote by
µE the volume element of h−1(E) which is invariant by the torus action generated by
the λa and normalised by

∫

h−1(E)

µE = 1.(20)

Since there is no prefered orientation of h−1(E), µE is uniquely defined up to a sign.

Theorem 5.2. For any (x, E) ∈ Λreg, there exist neighborhoods U of x in Mreg
ℓ,Γ

and V of E in REint(Γ), a section F of L → U × V , a sequence (g(·, k))k of sections
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of δ → U × V , a sequence (Dk) of complex numbers and a sequence (CN ) of posi-
tive numbers such that for any integer k, any integer N , any y ∈ U and any joint
eigenvalue E ∈ V ,

∣

∣

∣
VkΨE,k(y) − Dk

( k

2π

)
dim M

8

F k(y, E)g(y, E, k)
∣

∣

∣
6 CNk−N .(21)

Furthermore
1. |Dk| = 1 + O(k−∞)
2. For any E, the restriction of F to h−1(E)×{E} is flat with a constant unitary

norm, ∂F vanishes to any order along Λreg and for all x /∈ Λ, |F (x)| < 1.
3. the sequence (g(·, k))k admits an asymptotic expansion

g(y, E, k) = g0(y, E) + k−1g1(y, E) + k−2g2(y, E) + . . .

for the C∞ topology, where each coefficient gi ∈ C∞(U ×V, δ) is such that ∂gi

vanishes to any order along Λreg.
4. the restriction of the first coefficient g0 to Λreg is such that

ϕy

(

(g0(x, E))⊗2
)

= µE(y), ∀(y, E) ∈ Λreg

where ϕy and µE are defined in (19) and (20).

The same result holds if we replace Vk by Vk(V ∗
k Vk)−

1
2 .

This follows from section 3 of [4] and section 3 of [5]. In the following remarks,
we discuss the various components of the result and how it should be modified in the
case where the subprincipal symbols do not vanish.

Remark 5.1. The estimations (21) are controlled by the restrictions of F and
the gi to Λreg. More precisely consider a section F̃ of L → U × V and a sequence
(g̃(·, k)) of sections of δ → U × V which satisfy conditions 2. and 3. of theorem 5.2,
then the equalities

F |Λreg = F̃ |Λreg and gi|Λreg = g̃i|Λreg for i = 1, . . . , N

imply that

F̃ k(x, E)g̃(x, E, k) = F k(x, E)g(x, E, k) + O(k−N−1)

uniformly on any compact set of U × V .

Remark 5.2. The restriction of F to Λreg is determined up to a factor f(E) by
the condition that it is flat along h−1(E)×{E} for any E. Equivalently, this condition
may be written as

∇L
Xa

F = 0 on Λreg, ∀a ∈ Eint(Γ)

where Xa is the Hamiltonian vector field of ha. In a similar way the function g0

satisfies the transport equations

Lδ
Xa

g0 = 0 on Λreg, ∀a ∈ Eint(Γ).(22)

Furthermore the sections F and g0 are normalized in condition 2. and 4. in such
a way that |Dk| = 1 + O(k−1). This follows from theorem 3.2 of [5] and condition
(20).
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Remark 5.3. If the subprincipal symbols h1
a of the Ta had not vanished, we

should replace the transport equations (22) by

Lδ
Xa

g0 + ih1
ag0 = 0 on Λreg, ∀a ∈ Eint(Γ).

5.2. Bohr-Sommerfeld conditions. Bohr-Sommerfeld conditions are the con-
ditions to patch together the sections

F k(·, E)g0(·, E)

of theorem 5.2 modulo an error O(k
dim M

8 −1). By remarks 5.1 and 5.2, this can be
achieved if and only if the restriction to h−1(E) of the bundle Lk

ℓ ⊗ δℓ is trivial as a
flat bundle. Here we consider the flat structure of

δℓ → h−1(E)

defined in such a way that the local sections g0(·, E) satisfying condition 4. of theorem
5.2 are flat. The flat structure of

Lk
ℓ → h−1(E)

is the one induced by the connection of the prequantum bundle. It is flat because the
curvature of L is the symplectic form and h−1(E) is Lagrangian.

For any internal edge a of Γ, consider an integral curve of the hamiltonian flow of
ha in h−1(E). The family of these curves is a base of the first group of homology of
h−1(E). One deduces the holonomy of these curves from proposition 4.1. We obtain
the Bohr-Sommerfeld conditions.

Proposition 5.1. The restriction to h−1(E) of the bundle Lk
ℓ ⊗ δℓ is a trivial

flat bundle if and only if

k

2

(

E
1
2
a +

∑

i∈I(a)

ℓi

)

+
1

2
ǫa(E) ∈ Z, ∀a ∈ Eint(Γ)(23)

where ǫa(E) is equal to 0 or 1 according to whether the restriction of δℓ to the integral
curve of ha is trivial or not.

The indices ǫa(E) replace the Maslov indices for the usual Bohr-Sommerfeld con-
ditions. It is proved in section 3 of [4] (cf. also section 3 of [5]) that for any couple
(E, k) which satisfies the Bohr-Sommerfeld condition, there exists a joint eigenvalue
Ẽ(E, k) of the operators Ta such that

Ẽ(E, k) = E + O(k−2).

Let us compare this with the description of the spectrum of the Ha,kℓ−1 given in
theorem 2.1. The joint eigenvalues are indexed by the admissible colorings ϕ of Γ
such that ϕ(i) = kℓi − 1 for any half-edge i. Observe that the parity conditions
satisfied at each vertex are alltogether equivalent to

ϕ(1) + ϕ(2) + . . . + ϕ(n) ∈ 2Z(24)
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and

ϕ(a) +
∑

i∈I(a)

ϕ(i) ∈ 2Z(25)

for any internal edge a of Γ. Here the equation (24) is satisfied because ϕ(i) = kℓi −1
and we assumed (11). Comparing the Bohr-Sommerfeld conditions (23) with the
equations (25), we obtain the following

Proposition 5.2. ǫa = #I(a) + 1 mod 2Z.

Furthermore, if (E, k) satisfies the Bohr-Sommerfeld condition, then

Ẽ(E, k) = E − k−2

and Ẽ(E, k) is the joint eigenvalue associated to the coloring ϕ of Γ defined by ϕ(a) =
kλa − 1.

6. Scalar product of Lagrangian sections. In this part we compute the
asymptotics of the scalar product of two Lagrangian sections. The first section is
devoted to algebraic preliminaries.

6.1. A half-form pairing. Consider a symplectic vector space (E2n, ω) with a
compatible positive complex structure J . Given two transversal Lagrangian subspaces
Γ1 and Γ2, one has a sesquilinear non-degenerate pairing

(

∧nΓ∗
1 ⊗ C

)

×
(

∧nΓ∗
2 ⊗ C

)

→ C, α, β → in(2−n)(π∗
1α ∧ π∗

2β)/ωn

where π1 (resp. π2) is the projection from E onto Γ1 (resp. Γ2) with kernel Γ2 (resp.
Γ1). Next for i = 1 or 2, the restriction from E to Γi is an isomorphism

∧n,0E∗ → ∧nΓ∗
i ⊗ C.

Composing these maps with the previous pairing, we obtain a non-degenerate
sesquilinear pairing

(·, ·)Γ1,Γ2 : ∧n,0E∗ × ∧n,0E∗ → C.

We will consider a square root of this pairing. To remove the sign ambiguity, let us
compare it with the usual Hermitian product of the line ∧n,0E∗

(α, β) = in(2−n)α ∧ β/ωn.

Recall that for any endomorphism A of JΓ1 which is symmetric with respect to the
scalar product ω(X, JY ), the graph of the map JA : JΓ1 → Γ1 is a Lagrangian sub-
space of E = JΓ1 ⊕ Γ1. This defines a bijective correspondence between the set of
Lagrangian subspaces transversal to Γ1 and the affine space of symmetric endomor-
phisms of JΓ1. One checks the following lemma with a straightforward computation.

Lemma 6.1. Let A : JΓ1 → JΓ1 be the endomorphism associated to Γ2. Then

(α, β)Γ1,Γ2 = 2−n det(1 − iA)(α, β)

for any α, β ∈ ∧n,0E∗.
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In particular the pairing induced by the couple (Γ1, JΓ1) is the same as the
Hermitian product up to a factor 2−n.

Let us consider a one-dimensional Hermitian line δ with an isomorphism ϕ :
δ⊗2 → ∧n,0E∗. Then one defines the sesquilinear pairing of δ by

(α, β)Γ1,Γ2 =
√

(ϕ(α2), ϕ(β2))Γ1,Γ2 , ∀α ∈ δ, ∀β ∈ δ.

The square root is determined in such a way that the pairing depends continuously on
Γ1 and Γ2 and coincides with the scalar product up to a factor 2−n/2 when Γ2 = JΓ1.
Since the set of Lagrangian transversal to Γ1 is affine, the square root is well-defined.

6.2. Asymptotics of scalar product of Lagrangian section. Let (M2n, ω)
be a Kähler manifold with a prequantization bundle L and a half-form bundle δ. Let
Γ1 and Γ2 be two Lagrangian submanifolds. For i = 1 or 2, consider a sequence

F k
i ai(·, k) ∈ C∞(M, Lk ⊗ δ), k = 1, 2, . . .

where
• Fi is a section of L such that its restriction at Γi is flat of norm 1, ∂Fi vanishes

at infinite order along Γi and |Fi(x)| < 1 if x /∈ Γi.
• ai(·, k) is a sequence of C∞(M, δ) which admits full asymptotic expansion for

the C∞ topology

ai(·, k) = ai,0 + k−1ai,1 + k−2ai,2 + . . .

with coefficients ai,ℓ in C∞(M, δ).
Recall that the scalar product of two sections of Lk ⊗ δ is defined by

(Ψ1, Ψ2) =

∫

M

(Ψ1(x), Ψ2(x))Lk
x⊗δx

µM (x)

where µM is the Liouville measure ωn/n!.

Theorem 6.1. Assume the intersection of Γ1 and Γ2 is transversal and consists
of a single point y, then

(

F k
1 a1(·, k), F k

2 a2(·, k)
)

∼
(2π

k

)n
(

F1(y), F2(y)
)k

Ly

(

a1,0(y), a2,0(y)
)

TyΓ1,TyΓ2

where (·, ·)TyΓ1,TyΓ2 is the sesquilinear pairing δy × δy → C defined in section 6.1.

Proof. Let us write (F1(x), F2(x))Lx
= eiϕ(x). One has to estimate

∫

M

eikϕ(x)(a1(x, k), a2(x, k))δx
µM (x).(26)

This will be an application of the stationnary phase lemma. First since |Fi(x)| < 1 if
x /∈ Γi, the imaginary part of ϕ(x) is positive if x /∈ Γ1 ∩ Γ2. Next to compute the
derivatives of the function ϕ, let us recall the content of lemma 4.2 of [5]. One has

∇LFi =
1

i
αi ⊗ Fi(27)

where αi is a 1-form vanishing along Γi. Furthermore for any vector fields X and Y ,
one has at x ∈ Γi,

LX〈αi, Y 〉(x) = ω(qiX(x), Y (x))(28)
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where qi is the projection of TxM ⊗C onto T 0,1
x M with kernel TxΓi⊗C. One deduces

from (27) that

dϕ = α2 − α1.

So the point y ∈ Γ1 ∩ Γ2 is a critical point of ϕ and one computes the Hessian at y
by using (28):

Hess ϕ(X, Y ) = LX

(

(α2 − α1)(Y )
)

= ω(q2X − q1X, Y )

= −iω(J(q2 + q1)X, Y )

= ig((q2 + q1)X, Y )(29)

where g is the metric g(X, Y ) = ω(X, JY ). At the third line, we used that q2X ∈
T 1,0

y M = ker(Jy − i) whereas q1X ∈ T 0,1
y M = ker(Jy + i). Since the intersection of Γ1

and Γ2 is transverse, the Hessian is non-degenerate. Then stationnary phase lemma
(cf. [12] chapter 7.7) leads the following equivalent for the integral (26)

(2π

k

)n

eikϕ(y) det−
1
2
[

−i Hessϕ(∂xj
, ∂xk

)(y)
]

j,k=1,...,2n

(

a1,0(y), a2,0(y)
)

δy
ρ(y)

where x1, . . . , x2n are local coordinates at y and ρ(y) is such that

µM (y) = ρ(y)dx1 ∧ . . . ∧ dx2n.

Here the square root of the determinant is determined on the space of symmetric
complex matrices with a positive real part in such a way that it is positive on the
subset of real matrices. The Liouville measure ωn/n! is also the Riemannian measure
of g, so that

ρ(y) = det
1
2
[

g(∂xj
, ∂xk

)(y)
]

j,k=1,...,2n
.

Then it follows from (29) that

det
[

−i Hessϕ(∂xj
, ∂xk

)(y)
]

j,k=1,...,2n
ρ−2(y) = det(q2 + q1).

Finally the determinant of q2+q1 is easily computed in terms of the map A : JTyΓ1 →
JTyΓ1 such that TyΓ2 is the graph of JA : JTyΓ1 → TyΓ1. One has

det(q2 + q1) =
2n

det(1 − iA)
.

Comparing with lemma 6.1, we get the final result.

7. Asymptotics of 6j-symbols. Assume that n = 4 and choose (ℓi)i=1,...,4

satisfying condition (10) and (11). The moduli space

Mℓ = (S2
ℓ1 × S2

ℓ2 × S2
ℓ3 × S2

ℓ4)//SU(2)

is a 2-dimensional sphere. Let Γ be the left graph of figure 7. Denote by Hkℓ−1 the
operator associated to its internal edge and by h ∈ C∞(Mℓ) the associated symbol

h([u1, u2, u3, u4]) = |u1 + u2|2, (u1, u2, u3, u4) ∈ S2
ℓ1 × . . . × S2

ℓ4 .
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Fig. 7. The graphs Γ and Γ′

Then h(Mℓ) = [m, M ] where

m = max(|ℓ1 − ℓ2|, |ℓ3 − ℓ4|), M = min(ℓ1 + ℓ2, ℓ3 + ℓ4).

The fibres of h are circles except for the two singular ones h−1(m) and h−1(M) which
consist of one point.

Consider now the right graph Γ′ of figure 7 and denote by H ′
kℓ−1 and h′ the asso-

ciated operator and symbol. Introduce two orthonormal bases (ΨE,k)E and (Ψ′
E,k)E

of eigenvectors of Hkℓ−1 and H ′
kℓ−1 respectively.

1

k2
Hkℓ−1ΨE,k = EΨE,k,

1

k2
H ′

kℓ−1Ψ
′
E,k = EΨ′

E,k.

By the results of part 5.1 these eigenvectors are Lagrangian sections associated to the
level sets of h and h′. From this one can deduce the asymptotics of the scalar product

(ΨE,k, Ψ′
E′,k)

when h−1(E) and h′−1(E′) intersect transversally, by applying theorem 6.1.

7.1. The result. Assume first that h−1(E0) and h′−1(E′
0) do not intersect. Then

it follows from theorem 5.1 that there exist neighborhoods V and V ′ of E0 and E′
0

respectively and a sequence (CN ) such that

|(ΨE,k, Ψ′
E′,k)| 6 CNk−N , ∀N, ∀k

and for any eigenvalues E ∈ Sp(k−2Hkℓ−1) ∩ V and E′ ∈ Sp(k−2H ′
kℓ−1) ∩ V ′.

Next to understand better the possible configurations of the level sets of h and
h′, it is useful to think of Mℓ as a space of tetrahedra, the point [u1, u2, u3, u4]
representing the tetrahedron x of su(2) with vertices

0, u1, u1 + u2, u1 + u2 + u3.

Furthermore two tetrahedra are identified if there are related by an orientation-
preserving isometry. The lengths of the edges of the tetrahedron x are

√

h(x),
√

h′(x), ℓ1, ℓ2, ℓ3 and ℓ4.

The subset C of coplanar tetrahedra is an embedded circle. It contains the four points
where h and h′ attain their maximum and minimum. At the other points of C, the
fibres of h and h′ are tangent. Outside of this circle, the fibres intersect transversally,
cf. figure 8.
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Fig. 8. The two fibrations and the circle C

Hence if
√

E,
√

E′, ℓ1, ℓ2, ℓ3 and ℓ4 are the edge lengths of a non-degenerate tetra-
hedron τ , then h−1(E) and h′−1(E′) intersect transversally at two points represented
by τ and its mirror image τ̄ . Denote by V (E, E′) the volume of these tetrahedra and
by θ(E, E′) the sum

θ(E, E′) = α
√

E + α′
√

E′ +
∑

i=1,...,4

αiℓi(30)

where α, α′, α1, α2, α3 and α4 are the exterior dihedral angles (the exterior dihedral
angle at an edge is the angle in [0, π] between the outward normal vectors of the faces
meeting at the edge).

Theorem 7.1. Assume that
√

E0,
√

E′
0, ℓ1, ℓ2, ℓ3 and ℓ4 are the edge lengths

of a non-degenerate tetrahedron. Then there exist neighborhoods V and V ′ of E0 and
E′

0 respectively such that for every k and for any eigenvalues E ∈ Sp(k−2Hkℓ−1) ∩ V
and E′ ∈ Sp(k−2H ′

kℓ−1) ∩ V ′, one has

(ΨE,k, Ψ′
E′,k) = Ck,E,E′

√

2

3π
k− 1

2
(EE′)

1
4

V (E, E′)
1
2

cos
(

kθ(E, E′)/2 + π/4
)

+ O(k− 3
2 )

where the O is uniform with respect to E and E′ and the Ck,E,E′ are complex numbers
of modulus 1.

This result is proved in part 7.2. The volume V (E, E′) and the function θ(E, E′)
appear in the computation of a holonomy and a symplectic product, as it was already
understood in [19].

The 6j-symbols are defined in terms of this scalar product by a minor renormal-
isation

{

kℓ1 − 1 kℓ2 − 1 kℓ − 1
kℓ3 − 1 kℓ4 − 1 kℓ′ − 1

}

= (−1)k(ℓ1+ℓ2+ℓ3+ℓ4)/2
(ΨE,k, Ψ′

E′,k)

k
√

ℓℓ′
,
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τ τ̄

γ

γ′

Fig. 9. The domain D(E, E′)

with E = ℓ2 − k−2 and E′ = ℓ′2 − k−2. Here we assume that the bases (ΨE,k) and
(Ψ′

E′,k) are suitably defined and not only up to a phase factor. If ℓ, ℓ′, ℓ1, ℓ2, ℓ3 and
ℓ4 are the edge lengths of a non degenerate tetrahedron, we obtain

{

kℓ1 − 1 kℓ2 − 1 kℓ − 1
kℓ3 − 1 kℓ4 − 1 kℓ′ − 1

}

∼
√

2

3π
k− 3

2 V (ℓ2, ℓ′2)−
1
2 cos

(

kθ(ℓ2, ℓ′2)/2 + π/4
)

up to a phase factor, which is in agreement with the result of Roberts in [17].

7.2. Proof of theorem 7.1. Consider a non-degenerate tetrahedron τ with
edge lengths

√
E,

√
E′, ℓ1, ℓ2, ℓ3 and ℓ4. Denote by τ̄ its mirror image. Then the

circle h−1(E) is the union of two segments delimited by τ and τ̄ . On one of these
segments, h′ takes larger value than E′ = h′(τ) = h′(τ̄ ). We shall denote it by γ and
orientate it according to the Hamiltonian flow of h. Consider in the same way the
oriented segment γ′ ⊂ h′−1(E′). Then interchanging τ and τ̄ if necessary, one has

∂γ = τ̄ − τ and ∂γ′ = τ − τ̄ .

Furthermore γ ∪ γ′ divides the sphere Mℓ in two domains. Let D(E, E′) be the one
which does not contain h−1(E)\γ and h′−1(E′)\γ′, cf. figure 9. We oriente it in such
a way that the the symplectic area

∫

D(E,E′) ω is positive. The oriented boundary of

D(E, E′) is then −γ ∪ −γ′.
Then adapting the results of [19] on spherical tetrahedra to the simpler Euclidean

case, we prove the following

Proposition 7.1. The symplectic area of D(E, E′) is

A(E, E′) = −θ(E, E′) + π(ℓ1 + ℓ2 + ℓ3 + ℓ4)

and

ω(X, X ′)|τ = −ω(X, X ′)|τ̄ = 3
V (E, E′)√

EE′

where X and X ′ are the Hamiltonian vector fields of 1
2

√
h and 1

2

√
h′ respectively and

θ(E, E′) has been defined in (30).

By theorem 5.2, modifying the Lagrangian sections ΨE,k and Ψ′
E′,k′ by phase

factors if necessary, one has on a neighborhood of D(E, E′),

ΨE,k =
( k

2π

)
1
4

F k(E, ·)g(E, ·, k) + O(k−∞),

Ψ′
E,k =

( k

2π

)
1
4

F ′k(E, ·)g′(E, ·, k) + O(k−∞).
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Then by theorem 6.1, one has

(ΨE,k, ΨE′,k) ∼
(2π

k

)
1
2

∑

x=τ,τ̄

(

F (E, x), F ′(E′, x)
)k

Lx

(

g0(E, x), g′0(E
′, x)

)

E,E′,x
.(31)

Here (·, ·)E,E′,x is the sesquilinear pairing of δx defined on part 6.1 with the La-
grangian subspaces Txh−1(E) and Txh′−1(E′) of TxMℓ. Denote by ϕ the isomorphism
between δ2

x and ∧1,0T ∗
xMℓ. By definition of the pairing one has

(s, s′)2E,E′,x = i
ϕ(s2)(e) ϕ(s′2)(e′)

ω(e, e′)
, ∀ s, s′ ∈ δx(32)

for any nonvanishing vectors e ∈ Txh−1(E) and e′ ∈ Txh′−1(E′). It follows from
condition 4. of theorem 5.2 that for x = τ or τ̄ , one has

ϕ(g2
0(E, x))(X(x)) = ϕ(g′20 (E′, x))(X ′(x)) =

1

2π
(33)

where X and X ′ are the Hamiltonian vector fields of 1
2

√
h and 1

2

√
h′. Then we deduce

from (32) that

(

g0(E, x), g′0(E
′, x)

)

E,E′,x
=

1

2π

eiπ/4

√

ω(X, X ′)|x
(34)

with the suitable determination of the square root. So we deduce from the second
part of proposition 7.1 that both terms of the sum in equation (31) has the same
modulus. We will prove that their phase difference is

k
(

θ(E, E′) − π(ℓ1 + ℓ2 + ℓ3 + ℓ4)
)

+ π/2.

Taking into account that ℓ1 + ℓ2 + ℓ3 + ℓ4 is an even integer, this will end the proof
of theorem 7.1.

Since F (E, ·) and F ′(E′, ·) are flat along γ and γ′ respectively, one has
(

F (E, τ̄ ), F ′(E′, τ̄ )
)

Lτ
= H(E, E′)

(

F (E, τ), F ′(E′, τ)
)

Lτ̄

where H(E, E′) ∈ C is the holonomy of L along γ ∪γ′. Since L has curvature 1
i ω and

−(γ ∪ γ′) is the boundary of D(E, E′), one has

H(E, E′) = exp(−iA(E, E′))

where A(E, E′) is the symplectic area computed in proposition 7.1. Furthermore it
follows from equation (34) that

(

g0(E, τ̄ ), g′0(E
′, τ̄ )

)

E,E′,τ̄
= e±iπ/2

(

g0(E, τ), g′0(E
′, τ)

)

E,E′,τ
.

It happens that the undetermined sign is positive and the proof relies uniquely on the
configuration of the level sets, as they appear in figure 9.

To see this, trivialise the tangent bundle of Mℓ on a neighborhood of D(E, E′)
in such a way that the vector fields X/

√

ω(X, JX) and JX/
√

ω(X, JX) are send to
constant vectors that we denote by e and f . The symplectic and complex structures
are constant in this trivialisation

ω(e, f) = 1, Je = f.
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h−1(E)

θ(1/3)

θ(1)

θ(2/3)

h′−1(E′)

θ(0)

Fig. 10. the angle θ

Trivialise also the half-form bundle, in such a way that the constant half-form s
squares to e∗ + if∗, where (e∗, f∗) is the dual base of (e, f). Then one may explicitely
compute the sesquilinear pairing associated to the Lagrangian lines generated by e
and fθ = (cos θ)f − (sin θ)e. By formula (32) we have

(s, s)2Re,Rfθ
=

e−iθ

cos θ
.

Choosing the determination of the square root as in part 6.1, we obtain for θ ∈
(−π/2, π/2),

(s, s)Re,Rfθ
=

e−iθ/2

√
cos θ

.(35)

Next introduce a parametrisation x(t) of γ with x(0) = τ and x(1) = τ̄ . Then

X(x(t)) = |X(x(t))| e

where |X | =
√

ω(X, JX). And modifying the sign of g0 if necessary, one deduce from
equation (33) that

g0(E, x(t)) =
(

2π|X(x(t))|
)− 1

2 s.(36)

Parametrize −γ′ by y(t) with y(0) = τ and y(1) = τ̄ . Then the configuration (cf.
figure 10) of the level sets of h and h′ implies that

X ′(y(t)) = r(t)
(

(cos θ(t))e + (sin θ(t))f
)

where r is a positive function and θ takes its values in (0, 2π) with θ(0) ∈ (0, π) and
θ(1) ∈ (π, 2π). By equation (33)

g′0(E
′, y(t)) =

(

2πr(t)
)− 1

2 e−iθ(t)/2s.(37)

Finally the angle between the lines generated by X(τ) and X ′(τ) being θ(0) − π/2,
we deduce from equations (35), (36) and (37) that

(g0(E, τ), g′0(E
′, τ))E,E′,τ =

e−i( θ(0)
2 −π

4 )

√

cos(θ(0) − π/2)
.

ei θ(0)
2

2π
√

|X(τ)| r(0)

=
eiπ/4

2π

(

cos(θ(0) − π/2) |X(τ)| |X ′(τ)|
)− 1

2

.
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In the same way we obtain that

(g0(E, τ̄ ), g′0(E
′, τ̄))E,E′,τ̄ =

e−i( θ(1)
2 − 3π

4 )

√

cos(θ(1) − 3π/2)
.

ei θ(1)
2

2π
√

|X(τ)| r(1)

=
ei3π/4

2π

(

cos(θ(1) − 3π/2) |X(τ̄ )| |X ′(τ̄ )|
)− 1

2

.

So the phase difference between the two pairings is π/2.

8. Semi-classical reduction with subprincipal estimates.

8.1. Quantum reduction. Let (M, ω) be a connected compact Kähler manifold
(M, ω) with a prequantization bundle L → M with curvature 1

i ω and a half-form
bundle (δ, ϕ). Here we denote by ϕ the line bundle isomorphism δ2 → ∧top,0T ∗M .
By assumption it preserves both the Hermitian and holomorphic structures. Let G
be a compact connected Lie group acting on M in a Hamiltonian way. Denote by
µ : M → g

∗ the moment map. We assume that the action lifts to the prequantization
bundle in such a way that the infinitesimal action on sections of L is given by

∇ξ# + iµξ, ∀ξ ∈ g.

We assume furthermore that the action preserves the complex structure and lifts to
the half-form bundle in such a way that ϕ is equivariant. Under these assumptions,
the group G acts naturally on the space H0(M, Lk ⊗ δ) for any positive integer k, the
infinitesimal action being given by the Kostant-Souriau operators (7). We denote by

H0
G(M, Lk ⊗ δ)

the G-invariant subspace.
Suppose that G acts freely on the zero-set P := µ−1(0). Then 0 is a regular value

of the moment, P is a coisotropic submanifold of M and its characteristic distribution
is the tangent space to the orbits. So the quotient

Mr := P/G

is a symplectic manifold. Consider the quotient Lr of the restriction of L to P
by the G-action. Since the action preserves the connection of L and is by parallel
transport over P , Lr inherits a connection. Its curvature is 1

i ωr where ωr is the
reduced symplectic form.

To define the complex structure on the symplectic quotient, introduce the com-
plexification GC of G. It is a complex connected Lie group containing G as a maximal
compact subgroup. The Lie algebra of GC is the complexification of g and the Cartan
decomposition is the diffeomorphism

GC ≃ exp(ig)G.

Furthermore the set exp(ig) is diffeomorphic to the vector space g, the diffeomorphism
being the exponential map.

The G-action extends to a holomorphic action of GC whose infinitesimal action
is given by

ξ# + Jη#, ∀ξ + iη ∈ g ⊕ ig = g ⊗ C.
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The saturated set Ms := GC.P of the zero set of µ is called the stable set. Since the
vector field Jξ# is the Riemannian gradient of µξ for any vector ξ, Ms is an open set
diffeomorphic to g × P , the diffeomorphism being

g × P → Ms, (ξ, x) → exp(iξ).x.(38)

Furthermore the action of G on P being free, the action of GC on Ms is also free.
Finally the injection of P into M induces a diffeomorphism

P/G ≃ Ms/GC.

In this way the symplectic quotient inherits a complex structure. It is compatible
with the symplectic form and Mr becomes a Kähler manifold.

Similarly the G-action on the prequantization bundle and the half-form bundle
can be analytically continued to holomorphic actions of the complexified group GC.
We have a natural identification between Lr and the quotient by GC of the restriction
of L to the stable set. Hence Lr inherits a holomorphic structure, it is compatible
with the connection. We define δr as the quotient by GC of the restriction of δ to Ms.
This is a holomorphic line bundle on Mr. The holomorphic G-invariant sections of
Lk ⊗ δ are also invariant under the complexified action. This defines a natural map

Vk : H0
G(M, Lk ⊗ δ) → H0(Mr, L

k
r ⊗ δr).(39)

Theorem 8.1 (Guillemin-Sternberg). When k is sufficiently large, Vk is an
isomorphism.

The condition on k is due to the presence of the half-form bundle. It does not
appear in theorem 3.1 because in this case the half-form bundle is a power of the
prequantum bundle.

The theorem says that the GC-equivariant holomorphic sections of Lk ⊗ δ over
the stable set extend uniquely into GC-equivariant holomorphic sections over M . This
follows from the non-trivial fact that the complementary of the stable set is contained
in a complex submanifold of codimension > 1. Furthermore the GC-equivariant sec-
tions of Lk ⊗ δ → Ms are bounded when k is sufficiently large. In the next section we
will prove an explicit estimate that we will use in the sequel.

8.2. Estimates of the equivariant sections. Introduce a norm ‖.‖ on the Lie
algebra g.

Proposition 8.1. There exists C1, C2 > 0 such that for any integer k and any
GC-equivariant section Ψ of Lk ⊗ δ → Ms, one has

‖Ψ(exp(iξ).x)‖2 6 eC1‖ξ‖−kC2‖ξ‖2‖Ψ(x)‖2, ∀x ∈ P, ∀ξ ∈ g

where we denote by ‖ · ‖ the pointwise norm of Lk ⊗ δ.

Proof. We start by estimating ‖ exp(iξ).u‖ in terms of ‖u‖ for any u ∈ δ. Intro-
duce the smooth function r on g × M

r(ξ, x) :=
d

dt

∣

∣

∣

t=0

‖ exp(itξ).u‖2

‖u‖2
, where u ∈ δx.

We have

d

dt
‖ exp(itξ).u‖2 = r(ξ, exp(itξ).x)‖ exp(itξ).u‖2.
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Let C1 be the supremum of |r| on the compact set {‖ξ‖ = 1}×M . Then by integrating
the previous equality we get for ‖ξ‖ = 1 that

‖ exp(itξ).u‖2 6 eC1|t|‖u‖2.

Let us now estimate ‖ exp(iξ).u‖ in terms of ‖u‖ for any u ∈ L. First we have

d

dt

∣

∣

∣

t=0

‖ exp(itξ).u‖2

‖u‖2
= 2µξ(x), if u ∈ Lx.

This follows from the fact that the infinitesimal action of iξ ∈ g ⊗ C on the sections
of L is ∇Jξ# − µξ. Furthermore since Jξ# is the gradient of µξ, we have

d

dt
µξ(exp(itξ).x) = −g(ξ#, ξ#)(exp(itξ).x)

where g is the Riemannian metric g(X, Y ) = ω(X, JY ) of M . Let C2 be the infimum
of g(ξ#, ξ#)(x) on the compact {‖ξ‖ = 1}×M . By integrating, we obtain for ‖ξ‖ = 1

µξ(exp(itξ).x) 6 µξ(x) − C2t.

Integrating again we obtain for x ∈ P (and consequently µξ(x) = 0) that

‖ exp(itξ).u‖2 6 e−C2t2‖u‖2, ∀ u ∈ Lx.

This ends the proof.

8.3. The reduced half-form bundle. In this part we define the isomorphism
ϕr : δ2

r → ∧top,0T ∗Mr which makes δr a half-form bundle. Recall that the isomor-
phism δ → ∧top,0T ∗M was denoted by ϕ. Let πs be the projection from the stable
set Ms onto the quotient Mr = Ms/GC. Introduce the bundle over Ms

E = (ker(πs)⋆ ⊗ C) ∩ T 1,0Ms.

One has an exact sequence

0 → E → T 1,0Ms → π∗
sT 1,0Mr → 0,

Consider an invariant metric (., .) on the Lie algebra g and an orthonormal base (ξi)
of g. Define the section of ∧topE

γ =
1

2ℓ
(ξ#

1 − iJξ#
1 ) ∧ . . . ∧ (ξ#

ℓ − iJξ#
ℓ ).(40)

This section γ does not depend on the choice of the base (ξi). It does not vanish,
is holomorphic and GC-equivariant. The contraction by γ defines an GC-equivariant
isomorphism

∧top,0T ∗Ms → π∗
s ∧top,0 T ∗Mr.

By composing with ϕ, we obtain an isomorphism from δ⊗2 to π∗
s ∧top,0 T ∗Mr which

descends into

ϕr : δ⊗2
r → ∧top,0T ∗Mr
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In other words, for any u ∈ δ, one has

ι(γ)ϕ(u2) = π∗
sϕr([u]2).(41)

Observe that ϕr is a holomorphic map.
We endow δr with the metric such that ϕr becomes an isomorphism of Hermitian

bundle. We have to be careful that the projection from δ|Ms
onto δr does not preserve

the metrics, even when it is restricted to the zero set of the moment map. For any
u, v ∈ δx with x in the zero level set,

(u, v)δx
= ‖γ(x)‖−1 ([u], [v])δr,x

.(42)

And a straightforward computation gives the pointwise norm of γ

‖γ(x)‖ = 2−ℓ/2 det
1
2
[

g(ξ#
i , ξ#

j )
]

i,j=1,...,ℓ
(x)

where g is the metric ω(X, JY ). From now on, we assume that the invariant metric of
g is chosen so that the Riemannian volume of G is 1. This implies that the Guillemin-
Sternberg isomorphism rescaled by a factor (2π/k)ℓ/4 is asymptotically unitary as was
proved in [10]. This follows also from the next results, cf. the remark after theorem
8.4.

8.4. A class of Fourier integral operators. We denote by π the projection
from the zero set P of the moment map onto the quotient Mr = P/G. Let us
introduce some datas associated to the symplectic reduction M//G. First consider
the submanifold

Λ := {(x, π(x)), x ∈ P} ⊂ M × Mr.

Denote by M−
r the manifold Mr endowed with the symplectic form −ωr. Then Λ is a

Lagrangian submanifold of M ×M−
r called the moment Lagrangian. Next one defines

a section t of L ⊠ Lr over Λ by

t(x, π(x)) = u ⊗ [u]

if x ∈ P and u ∈ Lx is a unitary vector. This section is flat and unitary. In a similar
way consider the section tδ of δ ⊠ δ̄r defined on Λ by

tδ(x, π(x)) = u ⊗ [u](43)

if x ∈ P , u ∈ δx and [u] ∈ δr,x is a unitary vector.
Next we define a space F of Fourier integral operators associated to (Λ, t, tδ).

First let us introduce the Schwartz kernel of an operator Hr,k → Hk where

Hk := H0(M, Lk ⊗ δ), Hr,k := H0(Mr, L
k
r ⊗ δr).

The scalar product of Hr,k gives us an isomorphism

End(Hr,k,Hk) ≃ Hk ⊗Hr,k.

The latter space can be regarded as the space of holomorphic sections of

(Lk ⊗ δ) ⊠ (L̄k
r ⊗ δr) → M × M r,
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where Mr is the manifold Mr endowed with the conjugate complex structure. The
section associated in this way to an operator is its Schwartz kernel.

Consider a sequence (Qk) such that for every k, Qk is an operator Hr,k → Hk.
We say that (Qk) is a Fourier integral operator of F if the sequence of Schwartz kernel
satisfies

Qk(x, y) =
( k

2π

)nr+ ℓ
4

F k(x, y)f(x, y, k) + O(k−∞)(44)

where
• F is a section of L ⊠ L̄r → M × M̄r such that ‖F (x, z)‖ < 1 if (x, z) /∈ Λ,

F (x, z) = t(x, z), ∀(x, z) ∈ Λ

and ∂̄F ≡ 0 modulo a section vanishing to any order along Λ.
• f(., k) is a sequence of sections of δ⊠δ̄r → M×M̄r which admits an asymptotic

expansion in the C∞ topology of the form

f(., k) = f0 + k−1f1 + k−2f2 + ...

whose coefficients satisfy ∂̄fi ≡ 0 modulo a section vanishing to any order
along Λ.

Furthermore nr is the complex dimension of Mr and ℓ is the dimension of G.
Let us define the principal symbol of (Qk) to be the function g ∈ C∞(P ) such

that the restriction to Λ of the leading term f0 of the previous asymptotic expansion
is

f0(x, z) = g(x)tδ(x, z), ∀(x, z) ∈ Λ.

Denote by σ : F → C∞(P ) the principal symbol map. Let F1 be the space of Fourier
integral operator of order 1, that is (Tk) ∈ F1 if and only if (kTk) ∈ F . The next
result was proved in [4].

Theorem 8.2. The sequence 0 → F1 → F σ−→ C∞(P ) → 0 is exact.

8.5. Semiclassical properties of the reduction. Introduce the inverse of the
Guillemin-Sternberg isomorphism (39)

Wk : H0(Mr, L
k
r ⊗ δr) → H0

G(M, Lk ⊗ δ).

Recall that we denote by ℓ the dimension of G.

Theorem 8.3. The sequence
((

k
2π

)
ℓ
4 Wk

)

is an Fourier integral operator of F
whose principal symbol is the constant function equal to 1.

We defined Toeplitz operator in section 3.3 with their principal and subprincipal
symbols. In the following theorems we consider Toeplitz operators on M and the
reduced space Mr.

Theorem 8.4. Let (Qk) and (Rk) be Fourier integral of F with symbol fQ and
fR respectively. Then (Q∗

kRk) is a Toeplitz operator of Mr. Its principal symbol is
the function g ∈ C∞(Mr) given by

g(z) =

∫

Pz

fQ(x)fR(x) µPz
(x), ∀z ∈ Mr
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where µPz
is the G-invariant measure of Pz = π−1(z) normalized by

∫

Pz
µPz

= 1.

As a consequence of both theorems,
((

k
2π

)
ℓ
2 W ∗

k Wk

)

is a Toeplitz operator with
principal symbol 1. Hence its uniform norm is equivalent to 1 as k tends to ∞. In
other words, the Guillemin-Sternberg isomorphism rescaled by a factor (2π/k)ℓ/4 is
asymptotically unitary, as it was already proved in [10]. Our final result is about the
composition of Toeplitz operators with Fourier integral operators.

Theorem 8.5. Let (Qk) be a Fourier integral operator of F . Let (Sk) and (Tk) be
Toeplitz operators of M and Mr respectively with principal symbols f0 and g0. Then
the sequence (SkQkTk) is a Fourier integral operator of F with symbol

(j∗f0)σ(Q)(π∗g0)

where j is the injection P → M and π the projection P → Mr. Assume furthermore
that f0 is G-invariant and j∗f0 = π∗g0, then

SkQk − QkTk = k−1Rk

where (Rk) is a Fourier integral operator of F with symbol

σ(Rk) = (j∗f1 − π∗g1 + 1
iLX)σ(Q)

where f1 and g1 are the subprincipal symbols of (Sk) and (Tk) respectively and X is
the restriction to P of the Hamiltonian vector field of f0.

The previous theorem are proved in the following sections. Before let us deduce
the result about the reduction of Toeplitz operators. Introduce the isomorphism of
Hilbert spaces:

Uk = Wk(W ∗
k Wk)−

1
2 : H0(Mr, L

k
r ⊗ δr) → H0

G(M, Lk ⊗ δ).

As already noted,
(

( k
2π )ℓ/2W ∗

k Wk

)

is a Toeplitz operator with principal symbol the

constant function equal to 1. So the same holds for (( k
2π )−ℓ/4(W ∗

k Wk

)−1/2
). Then

theorem 8.5 implies that (Uk) is a Fourier integral operator of F with symbol the
constant function equal to 1.

Corollary 8.1. Let (Sk) be a Toeplitz operator of M with principal symbol f0.
Then (U∗

k SkUk) is a Toeplitz operator of Mr whose principal symbol g0 is given by

g0(z) =

∫

Pz

f0(x)µPz
(x)

If furthermore f0 is G-invariant, then the subprincipal symbol is

g1(z) =

∫

Pz

f1(x)µPz
(x)

where f1 is the subprincipal symbol of (Sk).

The computation of the principal symbol is an immediate consequence of the
previous theorems. To compute the subprincipal term, introduce a Toeplitz operator
(Tk) of Mr whose principal symbol is the function g0 defined by the integral in the
statement of the corollary. Then by theorem 8.5, one has SkUk−UkTk = k−1Rk where
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(Rk) is a Fourier integral operator with symbol i∗f1−π∗g1 and g1 is the subprincipal
symbol of (Tk). Assume that g1 is equal to the second integral in statement of the
corollary so that the symbol of (Rk) vanishes. Composing with U∗

k , it comes that

U∗
kSkUk − Tk = k−1U∗

kRk.

By theorem 8.4, (U∗
kRk) is a Toeplitz operator with vanishing principal symbol. Hence

(U∗
kSkUk) and (Tk) have the same principal and subprincipal symbols.

8.6. Proof of theorem 8.3. The proof relies on some properties of Toeplitz
operators proved in [3] that we recall now. First the Schwartz kernel of a Toeplitz
operator is described in a similarly way as the one of a Fourier integral operators in
section 8.4. The Schwartz kernel of a Toeplitz operator (Tk) of Mr is a sequence of
holomorphic sections of

(Lk
r ⊗ δr) ⊠ (L̄k

r ⊗ δr) → Mr × M r,

of the form

( k

2π

)nr

Ek
r (x, y)f(x, y, k) + O(k−∞),(45)

where nr is the complex dimension of Mr, Er and f(·, k) satisfy similar assumptions to
those of section 8.4 with the moment Lagrangian replaced by the diagonal. Precisely,
Er is a section of Lr ⊠ L̄r → Mr × M r whose restriction to the diagonal satisfies

Er(x, x) = u ⊗ ū

for any unitary vector u ∈ Lr,x. Furthermore ∂̄Er vanishes to any order along the
diagonal and outside the diagonal one has ‖Er(x, y)‖ < 1. (f(·, k)) is a sequence of
sections of δr ⊠ δr → Mr × M r which admits an asymptotic expansion in the C∞

topology of the form

f(., k) = f0 + k−1f1 + k−2f2 + ...

whose coefficients satisfy ∂̄fi ≡ 0 modulo a section vanishing to any order along the
diagonal. Finally we recover the principal symbol h of the operator (Tk) from the first
coefficient f0 by

f0(x, x) = h(x)tr(x, x).

Here tr is the section of δr ⊠ δr over the diagonal of M2
r such that

tr(x, x) = u ⊠ u(46)

if u is a unitary vector of δr,x.

Lemma 8.1. Let (Tk) be a Toeplitz operator of Mr with symbol h. Then

( k

2π

)
ℓ
4

WkTk

is a Fourier integral operator of F with symbol π∗h, where π is the projection P → Mr.

Theorem 8.3 follows.
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Proof. Recall that we denote by πs the projection from the stable set Ms onto
Mr. By definition of the Guillemin-Sternberg isomorphism, the Schwartz kernel of
WkTk over Ms × M is the pull-back of the Schwartz kernel of Tk by the projection
πs × id. The result follows by comparing (44) and (45). We deduce from proposition
8.1, that the Schwartz kernel of WkTk and its successive derivatives are O(k−∞) on
the complementary set of Λ. Next observe that we can choose the sections Er and F
in such a way that

(πs ⊠ id)∗Er = F(47)

and the final result follows easily.

8.7. Proof of theorem 8.4. The Schwartz kernel of Q∗
kRk is given by the

following integral

( k

2π

)2nr+ ℓ
2

∫

M

F
k
(y, z1).F

k(y, z2)f(y, z1, z2, k) µM (y)(48)

where f(·, k) admits an asymptotic expansion in inverse power of k. The leading order
satisfies

f(x, z, z, k) = fQ(x)fR(x) tδ(x, z).tδ(x, z) + O(k−1)

for any (x, z) in the moment Lagrangian, where fQ and fR are the symbols of (Qk)
and (Rk) respectively. We deduce from (42), (43) and (46) that

f(x, z, z, k) = fQ(x)fR(x)2
ℓ
2 det−

1
2 [g(ξ#

i , ξ#
j )](x) tr(z, z) + O(k−1).(49)

Let us compute (48). First, since the pointwise norm of F is smaller than 1 outside Λ,
by modifying the integral by a O(k−∞) if necessary, we may assume that the support
of f is a compact subset of Mr ×Ms×Mr. So we just integrate on the stable set. Let
us identify Ms with g×P by the diffeomorphism (38). We will integrate successively
on g, then on the fiber of π : P → Mr and finally on Mr. To do that, we write the
Liouville measure on the stable set in the following way.

Lemma 8.2. We have over g × P

µM (ξ, x) = δ(ξ, x)µP (x)|dt1...dtℓ|(ξ)

where µP is the invariant measure of P whose push-forward by the projection P →
Mr is the Liouville measure µMr

of Mr, t1, . . . , tℓ are linear coordinates of g in a
orthogonal base ξ1, . . . , ξℓ and δ ∈ C∞(g × P ) satisfies

δ(0, x) = det[g(ξ#
i , ξ#

j )](x), ∀x ∈ P.

This follows from the fact that the Riemannian volume of G is 1 (cf. lemma 4.20
of [6] for a proof). Furthermore we deduce from (47) that for y = exp(iξ).x with
x ∈ P , one has

F
k
(y, z1).F

k(y, z2) = e−kϕ(ξ,x)F
k
(x, z1).F

k(x, z2)

with

ϕ(ξ, x) = − ln
(‖ exp(iξ).u‖2

‖u‖2

)

, if u ∈ Lx.
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By the Fubini theorem, the integral (48) is equal to

( k

2π

)2nr
∫

Mr

E
k

r (z, z1).E
k
r (z, z2)f

′′(z, z1, z2, k) µMr
(z)(50)

where f ′′ is the function of M3
r given by

f ′′(z, z1, z2, k) =

∫

Pz

f ′(x, z1, z2) µPz
(x)

with µPz
the G-invariant measure of Pz with total volume 1. And f ′ is the function

of P × M2
r given by

f ′(x, z1, z2, k) =
( k

2π

)
ℓ
2

∫

g

e−kϕ(ξ,x)f(exp(iξ).x, z1, z2, k)δ(ξ, x)|dt1...dtℓ|(ξ).

We estimate this integral by the stationary phase lemma. As we already saw in the
proof of proposition 8.1, we have

∂tiϕ(ξ, x) = −2µξi

(exp(iξ).x)

and the critical set of ϕ is {0} × P . The second derivatives are

∂tj ∂tiϕ(0, x) = 2g(ξ#
i , ξ#

j )(x).(51)

Since this matrix is non-degenerate, f ′ has an asymptotic expansion in power of k−1

with coefficients in C∞(P × M2
r ). The first order term is given by

f ′(x, z1, z2, k) =f(x, z1, z2, k)δ(0, x) det−
1
2 [∂tj ∂tiϕ(0, x)] + O(k−1).

By (51) and lemma 8.2, it follows that

f ′(x, z1, z2, k) =f(x, z1, z2, k)2−
ℓ
2 det

1
2 [g(ξ#

i , ξ#
j )](x) + O(k−1).

By (49), we obtain for any (x, z) in the momentum Lagrangian Λ that

f ′(x, z, z, k) = fQ(x)fR(x) µPz
(x) tr(z, z) + O(k−1).

Consequently

f ′′(z, z, z, k) =

∫

Pz

fQ(x)fR(x) µPz
(x) tr(z, z) + O(k−1).

To end the proof we have to compute the integral (50). We recognize the integral
corresponding to the composition of two Toeplitz operators (cf. [3]). So we obtain
the Schwartz kernel of a Toeplitz operator whose principal symbol is the function g
such that

f ′′(z, z, z, k) = g(z)tr(z, z) + O(k−1)

which completes the proof.
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8.8. Proof of theorem 8.5. Let us sketch the proof. Consider a Fourier in-
tegral operator (Qk) ∈ F and two Toeplitz operators (Sk) and (Tk) of M and Mr

respectively. Then the Schwartz kernel of SkQk is the image of the Schwartz kernel
of Qk by the map

Sk ⊗ id : Hk ⊗Hr,k → Hk ⊗Hr,k.

Similarly the Schwartz kernel of Qk is sent into the Schwartz kernel of QkTk by

id⊗T ∗
k : Hk ⊗Hr,k → Hk ⊗Hr,k

(Sk ⊗ id) and (id⊗T ∗
k ) are Toeplitz operators of M × M r. The Schwartz kernel of

(Qk) is a Lagrangian section of M × M r associated to the moment Lagrangian in
the same way the eigenstates in section 5.1 are Lagrangian sections associated to the
fiber of the integrable system. So we are reduced to consider the action of a Toeplitz
operator on a Lagrangian section. This gives another Lagrangian section and in the
favorable cases the subprincipal terms may be computed as it was explained in the
paper [5], theorems 3.3 and 3.4. This will prove the theorem.

Let us apply this program. We denote by p and pr the projection from M × Mr

onto the first and second factor. Let f0, f1 and g0, g1 be the principal and subprincipal
symbols of (Sk) and (Tk). Then it is easily seen that the principal and subprincipal
symbols of (Sk ⊗ id) (resp. (id⊗T ∗

k )) are p∗f0 and p∗f1 (resp. p∗rg0 and p∗rg1).

We denote by (Q̃k) the sequence of the Schwartz kernels of (Qk). Let h ∈ C∞(P )
be the symbol of the Fourier integral operator (Qk). Then the symbol of the La-
grangian section (Q̃k) is the section σ of δ ⊠ δr → Λ given by

(x, z) ∈ Λ → σ(x, z) = h(x)tδ(x, z)

where tδ has been introduced in the beginning of section 8.4.
Consider a Toeplitz operator (Ok) of M × Mr with principal symbol e0. Then

by theorem 3.3 of [5] the symbol of (OkQ̃k) is the product of σ by the restriction of
e0 to the moment Lagrangian Λ. Applying this with the operator Ok = Sk ⊗ T ∗

k , we
deduce the first part of theorem 8.5. Indeed, since

Sk ⊗ T ∗
k = (Sk ⊗ id) ◦ (id⊗T ∗

k ),

the principal symbol of (Ok) is (p∗f0)(p
∗
rg0). Identifying C∞(Λ) with C∞(P ), the

restriction of this symbol to the moment Lagrangian becomes (j∗f0)(π
∗f1), where j

is the injection P → M and π is the projection P → Mr. So the symbol of the
Fourier integral operator (SkQkTk) is (j∗f0)(π

∗f1)h. This proves the first assertion
in theorem 8.5.

The proof of the second one is the difficult part. Assume that the restriction
of the principal symbol e0 to the moment Lagrangian vanishes. Then the symbol of
(Ok.Q̃k) vanishes and (kOkQ̃k) is another Lagrangian section. By theorem 3.4 of [5],
its symbol is equal to

(

i∗e1 +
1

i
Lδ⊠δr

X

)

σ.(52)

Here e1 is the subprincipal symbol of (Ok) and i∗e1 its restriction to the momentum
Lagrangian Λ. Since e0 is constant over the Lagrangian manifold Λ, its Hamiltonian
vector field is tangent to Λ. X is defined as the restriction to Λ of this Hamiltonian
vector field.
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Finally the Lie derivative Lδ⊠δr

X has the following sense. On the one hand, δ⊠δr is
naturally a half-form bundle of M×Mr. Recall that we denoted by ϕ the isomorphism
δ2 → ∧top,0T ∗M and by ϕr the isomorphism δ2

r → ∧top,0T ∗Mr. Then the map

ϕ2
⊠ ϕr

2 : δ2
⊠ δr

2 → ∧top,0T ∗M ⊠ ∧top,0T ∗Mr ≃ ∧top,0T ∗(M × Mr)

is an isomorphism of Hermitian holomorphic bundles. On the other hand the moment
Lagrangian Λ being a Lagrangian submanifold of M × M−

r , the pull-back by the
embedding i : Λ → M × Mr induces an isomorphism

i∗ : i∗(∧top,0T ∗(M × Mr)) → ∧topT ∗Λ ⊗ C.

Let ϕΛ be the composition of these isomorphisms

ϕΛ : i∗(δ ⊠ δr)
2 → ∧topT ∗Λ ⊗ C.

The Lie derivative Lδ⊠δr

X is then defined as the first order differential operator such
that for any section s of i∗(δ ⊠ δr) → Λ, one has

LXϕΛ(s2) = 2ϕΛ(s ⊗ Lδ⊠δr

X s).

Actually we already considered such a Lie derivative in remark 5.2.
Let us apply this to the operator Ok = Sk ⊗ id− id⊗T ∗

k . Its principal symbol is
e0 = p∗f0 − p∗rg0. Assume that f0 is G-invariant and that π∗g0 = j∗f0. Then the
restriction of e0 to Λ vanishes. One has to compute the sum (52). First,

e1(x, z) = f1(z) − g1(x), ∀(x, z) ∈ Λ.

Second, identifying the momentum Lagrangian Λ with the zero level set P , the re-
striction X of the Hamiltonian vector field of e0 to Λ becomes the restriction Y of
the Hamiltonian vector field of f0 to P . Then we will prove that

(Lδ⊠δ
X σ)(x, z) = (LY h)(x).tδ(x), ∀(x, z) ∈ Λ(53)

and theorem 8.5 follows directly. To show (53), we compute ϕΛ(t2δ).

Lemma 8.3. By identifying the momentum Lagrangian Λ with P , ϕΛ(t2δ) is the
volume element of P such that

ι(γR)ϕΛ(t2δ) = inr(nr−2)π∗ω∧nr
r

where nr is the complex dimension of Mr, γR is the multivector ξ#
1 ∧ . . . ∧ ξ#

ℓ with
(ξi) an orthogonal base of g.

From this we deduce that the Lie derivative with respect to X of ϕΛ(t2δ) vanishes
and consequently the same holds for the Lie derivative of tδ, which proves (53).

Proof. By definition of tδ, if x is a point of P and u ∈ δx is such that the norm
of [u] is equal to 1, then

tδ(x, π(x)) = u ⊗ [u].

By identifying the momentum Lagrangian with P , one has

ϕΛ(t2δ) = j∗ϕ(u2) ∧ π∗ϕr([u]2),
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consequently,

ι(γR)ϕΛ(t2δ) = j∗(ι(γR)ϕ(u2)) ∧ π∗ϕr([u]2).

Since ϕ(u2) ∈ ∧top,0T ∗M , we have

ι(γR)ϕ(u2) = ι(γ)ϕ(u2)

where γ is the multivector defined in (40). Next by definition (41) of ϕr, we obtain
that

ι(γR)ϕ(u2) = π∗
sϕr([u]2).

Since π = πs ◦ j, it follows that

j∗(ι(γR)ϕ(u2)) = π∗ϕr([u]2).

Hence,

ι(γR)ϕΛ(t2δ) = π∗
(

ϕr([u]2) ∧ ϕr([u]2)
)

.

Because [u] is unitary, ϕr([u]2) is also of norm 1, we conclude.
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