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LOCAL HARNACK ESTIMATE FOR YAMABE FLOW ON LOCALLY

CONFORMALLY FLAT MANIFOLDS
∗

SHOUWEN FANG†

Abstract. In this paper, we first prove the local derivative estimate of curvature under Yamabe
flow, and then by using it obtain the local Harnack estimate of Yamabe flow on locally conformally
flat manifolds, under the condition −m(t)gab ≤ Rab ≤ Mgab, where 0 ≤ m(t) ≤ M and m′(t) ≥

(4n + 1)m(t)M , on t ∈ [0, r2]. As a corollary, we get a sharp derivative estimate of scalar curvature
in some directions.
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1. Introduction. The Harnack estimate of geometry flow is also called Li-Yau-
Hamilton inequality. R.Hamilton made important work on the Harnack estimate
of Ricci flow and mean curvature flow. Recently he has found the local Harnack

estimate of Ricci flow under the curvature condition −m(t)
2 (gacgbd−gadgbc) ≤ Rabcd ≤

M
2 (gacgbd − gadgbc), where 0 ≤ m(t) ≤ M . It can be used to prove the second step

of the proof of the Theorem7.1.1 in [1]. That was his report on the fourth ICCM in
December 2007. Jie Wang got the local Harnack estimate of mean curvature flow by
using the same method in [4]. The Harnack inequality of Yamabe flow was first proved
by Chow on compact locally conformally flat manifolds with positive Ricci curvature
in [2]. HuiLing Gu obtained the same inequality for complete locally conformally flat
manifolds with nonnegative Ricci curvature in [3]. Does the local Harnack estimate
also hold for the Yamabe flow ? We give an affirmative answer in this paper in the
class of locally conformally flat manifolds.

Let (Mn, g0) be a smooth complete locally conformally flat n-dimensional mani-
fold. The Yamabe flow is given by

{
∂
∂t

g(x, t) = −R(x, t)g(x, t)

g(x, 0) = g0(x)
(1.1)

for x ∈ Mn, t ≥ 0, and where R is the scalar curvature of g.
Let 0 ≤ r ≤ θ/

√
M , where constant θ depending only on the dimension n will

be obtained in Theorem 2.1. Let O ∈ Mn, Br(O, t) is a geodesic ball centered at O,
with radius r at time t. Set d = dt(x, O) is the geodesic distance function from O to
x w.r.t. gij(t).

Through out the paper, we denote the curvature condition

(⋆)







(1) − m(t)gab(t) ≤ Rab(t) ≤ Mgab(t)

(2) 0 ≤ m(t) ≤ M on t ∈ [0, r2]

(3) m′(t) ≥ (4n + 1)mM on t ∈ [0, r2]

.

Our main result is the following theorem:
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Theorem 1.1. Suppose (Mn, g(x, t)) is a smooth complete locally conformally

flat n-dimensional manifold for t ∈ [0, r2], the curvature satisfies the condition (⋆) on

Br(O, t) × [0, r2], then at ∀ (x, t) ∈ B r

2
(O, t) × [0, r2], ∀ V ∈ TxMn, we can find

some constant B > 0, depending only on n, such that the following local Harnack

estimate holds,

∂tR + nm(t)R + ∇R(V ) +
1

2(n − 1)
(Rab + m(t)gab)VaVb

+ BM(M +
r2

(r2 − 4d2)2
+

1

t
) ≥ 0.

As a corollary we get a sharp gradient estimate of scalar curvature.

Corollary 1.1. Under the same conditions as Theorem 1.1, at point (O, r2),

we have

(1) |∇R(V )|2 ≤ C1M
2(Rab + m(t)gab)VaVb, M ≥ 1

(2) |∇R(V )|2 ≤ C2(Rab + m(t)gab)VaVb, 0 < M < 1
(3) ∇R(V ) = 0, if [∂tR + nm(t)R + BM(1 + 1

r2 + 1
t
)](O, r2) = 0 or (Rab +

m(t)gab)VaVb(O, r2) = 0
where C1 and C2 depend only on n.

The paper is organized as follows. In Section 2, we obtain the local derivative
estimate of curvature under the Yamabe flow. In Section 3 and 4, we compute the
evolution equation of the Harnack quantity, find a good positive term in the equation,
and then estimate another extra term. The proofs of Theorem 1.1 and its corollary
will be given in Section 5.

2. Local derivative estimate of curvature. In this section we will obtain the
local derivative estimate of curvature as Ricci flow. Let Mn be a smooth complete n-
dimensional manifold. Under the Yamabe flow (1.1), we give the evolution equations
of curvature as follows.

Lemma 2.1. If (Mn, g) is locally conformally flat manifold, then

(1) ∂tRijkl = (n− 1)△Rijkl −RRijkl + 1
(n−2)2 (Bikgjl +Bjlgik −Bilgjk −Bjkgil),

(2) ∂tRij = (n − 1)△Rij + 1
n−2Bij ,

(3) ∂tR = (n − 1)△R + R2,

where Bij = (n − 1) |Ric|
2
gij + nRRij − n(n − 1)R2

ij − R2gij.

The proof of Lemma 2.1 can be found in [3] and [2]. The third equation also holds
without the locally conformally flat condition. Let us denote the Ricci curvature or
curvature tensor by Rm and denote by A ∗B any tensor product of two tensor A and
B. We can get the following result from Lemma 2.1.

Lemma 2.2. If (Mn, g) is locally conformally flat manifold, then for ∀ k ∈ Z,

k ≥ 0 we have

(1).
∂

∂t
(∇kRm) = (n − 1)△(∇kRm) +

∑

i+j=k

∇iRm ∗ ∇jRm,

(2).
∂

∂t
(
∣
∣∇kRm

∣
∣
2
) = (n − 1)△

∣
∣∇kRm

∣
∣
2
− 2(n − 1)

∣
∣∇k+1Rm

∣
∣
2

+
∑

i+j=k

∇kRm ∗ ∇iRm ∗ ∇jRm.
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The proof is just direct calculation by induction. By using a cutoff argument as
Ricci flow, we will get a local derivative estimate of curvature.

Theorem 2.1. There exist positive constant θ, Ck, k = 1, 2, · · · , depending only

on the dimension with the following property. Suppose that the curvature of a complete

locally conformally flat solution to the Yamabe flow is bounded

|Rm| < M on U × [0, θ/M ],

where U is an open set of the manifold. Assume that the closed ball Br(p, 0) is

contained in U and the time t ≤ θ/M . Then we can estimate the covariant derivative

of the curvature at (p,t) by

|∇Rm(p, t)|
2
≤ C1M

2(
1

r2
+

1

t
+ M),

and the kth covariant derivative of the curvature at (p,t) by

∣
∣∇kRm(p, t)

∣
∣
2
≤ CkM2(

1

r2k
+

1

tk
+ Mk).

Proof. Without loss of generality, we may assume the exponential map at p at
time t=0 is injective on the ball of radius r. From the Lemma 2.2, we get the following
inequalities

∂

∂t
(|Rm|

2
) ≤ (n − 1)△(|Rm|

2
) − 2(n − 1) |∇Rm|

2
+ C |Rm|

3

∂

∂t
(|∇Rm|

2
) ≤ (n − 1)△|∇Rm|

2
− 2(n − 1)

∣
∣∇2Rm

∣
∣
2
+ C |Rm| |∇Rm|

2

for some constant C depending only on the dimension n.

In Ricci flow we have the similar inequalities with the above ones. Thus the rest of
argument is similar with Ricci flow in [1]. We need only to make a little corresponding
change and the theorem follows.

3. Good extra term. In this section, we will derive the evolution equation of
the basic Harnack expression under the Yamabe flow (1.1), then find a good positive
term in the evolution equation.

Let {Ea}, (a = 1, 2, ..., n) be an orthonormal frame locally, where Ea = Ei
a

∂
∂xi is

tangent to M . To keep the vectors orthonormal and tangent to M under the Yamabe
flow, we let

∂

∂t
Ea =

1

2
REa.

We can write the components of tensors in terms of the moving frame, for example
Rab = R(Ea, Eb) or in local coordinates, Rab = RijE

i
aEj

b . We always denote indices
a, b, c . . . under orthonormal frame, and i, j, k . . . under local coordinates.

For convenience, now we take covariant derivatives under the moving orthonormal
frame, for example ∇aVb = Ei

aEj
b∇iVj . Then the Laplacian is ∆ =

∑

a ∇a∇a. We
define the operator � = ∂t − (n − 1)△.
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Definition 3.1. We let

Xa =
1

2
∇aR +

1

2(n − 1)
RabVb, Yab = ∇aVb − Rgab,

Wab = (n − 1)∇a∇bR + ∇aRbcVc + RRab,

Z = ∂tR + Va∇aR +
1

2(n − 1)
RabVaVb, W = ∂tR +

1

2
∇aRVa,

Ua = �Va −
(n − 1)(n − 2)

2
∇aR −

n

2
RabVb + RVa.

Now we can take the computation directly.

Theorem 3.1. For any locally conformally flat solution to the Yamabe flow and

any vector field V , we have:

�Z = RZ + 2XaUa + AabVaVb − RabYcaYcb − 2WabYab,

where Aab = 1
2(n−1)(n−2)Bab + 1

2(n−1) (nR2
ab − RRab).

Proof. The computation is not difficult and we can refer to [2] for more details,

�Z = 3RZ − R3 +
1

2(n − 1)(n − 2)
BabVaVb −

1

2(n − 1)
RRabVaVb

−
(n − 1)(n − 2)

2
|∇R|2 − (n − 1)Rab∇aRVb + ∇aR�Va +

RabVb�Va

n − 1
−Rab∇cVa∇cVb − 2∇cRab∇cVaVb − 2(n − 1)∇a∇bR∇aVb

= 3RZ − RabYcaYcb − 2[RRab + (n − 1)∇a∇bR + ∇aRbcVc]∇aVb

+∇aR(�Va −
(n − 1)(n − 2)

2
∇aR −

n

2
RabVb) +

1

n − 1
RabVb(�Va

−
(n − 1)(n − 2)

2
∇aR) + AabVaVb −

n

2(n − 1)
R2

abVaVb

= 3RZ − RabYcaYcb − 2WabYab − 2RW + 2XaUa − 2RXaVa + AabVaVb

= RZ + 2XaUa + AabVaVb − RabYcaYcb − 2WabYab.

We now replace the Yab with Ỹab = Yab + Ẽab. Then

�Z = RZ + 2XaUa + AabVaVb − RabỸcaỸcb − 2WabỸab + 2RabẼcaỸcb

+2WabẼab − RabẼcaẼcb. (3.1)

We set Ẽab = R−1
bc Wac. So

−2WabỸab + 2RabẼcaỸcb = −2WabỸab + 2RabR
−1
ad WcdỸcb = 0,

and

2WabẼab − RabẼcaẼcb = 2R−1
bc WacWab − RabR

−1
ad WcdR

−1
be Wce

= R−1
bc WacWab.

When we add a function ϕ(x, t) to Z, we can get the following evolution equation

�(Z + ϕ) = R(Z + ϕ) + 2XaUa + AabVaVb −RabỸcaỸcb + (�ϕ + R−1
bc WacWab − Rϕ).

When 0 ≤ Rab ≤ Mgab, we have R−1
bc WacWab ≥ 1

M
WabWab. So it is just the good

positive term to make �ϕ + R−1
bc WacWab − Rϕ positive. We will show the details in

Section 5.
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4. Estimate of another extra term. In fact, the Harnack inequality of Chow
holds for the complete locally conformally flat manifolds with nonnegative Ricci cur-
vature in [3]. However, in this paper the Ricci curvature satisfies the condition (⋆).
In order to make the similar argument with Chow [2], we need to add one positive
term to the Ricci curvature such that it become nonnegative. So the quantities of
Definition 3.1 will need to make a corresponding change and the evolution equation
of the basic Harnack expression will have another extra term. We denote it by CNS.
In this section we will obtain its lower bound.

Firstly, we change the quantities in Definition 3.1 as follows.

Definition 4.1. We let

R̃ab = Rab + m(t)gab, R̃ = R + nm(t),

X̃a =
1

2
∇aR +

1

2(n − 1)
R̃abVb, Ỹab = ∇aVb − Rgab + Ẽab,

W̃ab = (n − 1)∇a∇bR + ∇aRbcVc + RR̃ab,

Z̃ = ∂tR + Va∇aR +
1

2(n − 1)
R̃abVaVb + nm(t)R,

W̃ = ∂tR +
1

2
∇aRVa + nm(t)R,

Ũa = �Va −
(n − 1)(n − 2)

2
∇aR −

n

2
R̃abVb + R̃Va.

where Ẽab will be defined later.

Recalling the evolution equation (3.1) of Z in Section 3, we hope �Z̃ have the
following form

�Z̃ = RZ̃ + 2X̃aŨa + ÃabVaVb − R̃abỸcaỸcb − 2W̃abỸab + 2R̃abẼcaỸcb

+2W̃abẼab − R̃abẼcaẼcb + CNS. (4.1)

where Ãab = 1
2(n−1)(n−2) B̃ab + 1

2(n−1) (nR̃ab

2
− R̃R̃ab) and B̃ab = (n − 1)

∣
∣
∣R̃ab

∣
∣
∣

2

gab +

nR̃R̃ab − n(n − 1)R̃ab

2
− R̃2gab.

Lemma 4.1. If the Ricci curvature satisfies Rab ≥ −mgab on Mn, then

Aab ≥ 0.

Proof. For ∀ p ∈ M , and ∀ V ∈ TpM , we know ÃabVaVb ≥ 0 from [2]. By simple

calculating, we have (Aab − Ãab)VaVb = 0. Thus the lemma holds.
So from (3.1)(4.1) and the proof of Lemma 4.1, we get

CNS = �(Z̃ − Z) + R(Z − Z̃) + 2(XaUa − X̃aŨa) + (R̃ab − Rab)ỸcaỸcb

+2Ỹab(W̃ab − Wab) + 2(Rab − R̃ab)ẼcaỸcb + 2Ẽab(Wab − W̃ab)

+(R̃ab − Rab)ẼcaẼcb. (4.2)

Proposition 4.1. Suppose (Mn, g(x, t)) satisfies the same conditions as Theo-

rem 1.1, then at ∀ (x, t) ∈ B r

2
(O, t) × [0, r2], ∀ V ∈ TxMn, we have

CNS ≥ −CM2(
1

r2
+

1

t
+ M),
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where C depends only on the dimension n.

Proof. From (4.2), we have the following estimate at (x, t) ∈ B r

2
(O, t)× [0, r2] for

∀ V ∈ TxMn, by using the curvature condition (⋆) and Theorem 2.1.

CNS = n(m′(t) − mR)R +
|V |2

2(n − 1)
(m′(t) − 3mR − nm2) − mVa∇aR

≥ n(m′(t) − nmM)R +
|V |2

2(n − 1)
(m′(t) − (4n + 1)mM) −

n − 1

2
|∇R|2

≥ −CM2(
1

r2
+

1

t
+ M).

5. The local Harnack estimate. In this section we will first give the proof of
Theorem 1.1, and then prove Corollary 1.1 by using the local Harnack estimate.

If we add some fucntion ϕ(x, t) to Z̃, and set Ẽab = R̃bc

−1
W̃ac, then we get the

equality

�(Z̃ + ϕ) = R(Z̃ + ϕ) + 2X̃aŨa + ÃabVaVb − R̃abỸcaỸcb + R̃bc

−1
W̃abW̃ac

+CNS + �ϕ − Rϕ.

If −m(t)gab(t) ≤ Rab(t) ≤ Mgab(t), then Ãab ≥ 0 and 0 ≤ R̃ab ≤ (M + m(t))gab,

so R̃ab

−1
≥ 1

M+m(t)gab.

So

R̃bc

−1
W̃abW̃ac ≥

1

M + m(t)
W̃abW̃ab

=
1

M + m(t)
|W̃ab +

ϕ

n
gab|

2 −
2

M + m(t)
(W̃ + ϕ)

ϕ

n

+
1

M + m(t)

ϕ2

n
.

Then we have

�(Z̃ + ϕ) ≥ R(Z̃ + ϕ) + 2X̃aŨa − R̃abỸcaỸcb +
1

M + m(t)
|W̃ab +

ϕ

n
gab|

2

−
2

M + m(t)
(W̃ + ϕ)

ϕ

n
+ (�ϕ +

1

M + m(t)

ϕ2

n
− Rϕ + CNS).

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Let ϕ = BM(M + r2

(r2−4d2)2 + 1
t
), where B will be chosen

later. We see ϕ = +∞ at B r

2
(O, 0) ∪ ∂B r

2
(O, t), t ∈ [0, r2]. If Z̃ + ϕ first attain

zero in B r

2
(O, t) × [0, r2] at (x0, t0) for some vector V , then it must be (x0, t0) ∈

int(B r

2
(O, t)) × (0, r2]. And we know

0 =
∂(Z̃ + ϕ)(V + sṼ )

∂s
|s=0 = 2

∑

a

X̃aṼa, for ∀ Ṽ ∈ Tx0
Mn.

So we get X̃a = 0. On the other hand, we have Z̃ + ϕ − X̃aVa = W̃ + ϕ = 0. We
extend V to one vector field in space-time such that Ỹab = 0, and then by Proposition
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4.1 at the point we get

�(Z̃ + ϕ) ≥ �ϕ +
1

M + m(t)

ϕ2

n
− Rϕ − CM2(

1

r2
+

1

t
+ M)

≥ −
C

BM
ϕ2 −

C

BM
ϕ2 +

1

2M

ϕ2

n
−

C

BM
ϕ2 −

C

B2M
ϕ2

≥ −
C

BM
ϕ2 +

1

2M

ϕ2

n
−

C

B2M
ϕ2

=
ϕ2

2nMB2
(B2 − 2nBC − 2nC)

> 0.

The second inequality holds by the standard Laplacian comparison theorem and
d ≤ r

2 ≤ θ

2
√

M
. The last inequality holds when we choose B > nC +

√
n2C2 + 2nC.

So this is a contradiction. We complete the proof of the theorem.
Now we can prove the corollary.

Proof of Corollary 1.1. At (O, t), for ∀ V ∈ TOMn, by Theorem 1.1 we have

∂tR + nm(t)R + ∇R(V ) +
1

2(n − 1)
(Rab + m(t)gab)VaVb + BM(

1

r2
+

1

t
+ M) ≥ 0.

Then if V = 0, we get ∂tR + nm(t)R + BM( 1
r2 + 1

t
+ M) ≥ 0. Meanwhile for ∀

λ ∈ R, we also have

λ2

2(n − 1)
(Rab + m(t)gab)VaVb + λ∇R(V ) + ∂tR + nm(t)R + BM(

1

r2
+

1

t
+ M) ≥ 0.

Thus we obtain

|∇R(V )|2 ≤
2

n − 1
(Rab + m(t)gab)VaVb[∂tR + nm(t)R + BM(

1

r2
+

1

t
+ M)].

By Theorem 2.1 and the curvature condition (⋆), at (O, r2) we know

∂tR + nm(t)R + BM(
1

r2
+

1

t
+ M)

= (n − 1)∆R + R2 + nm(r2)R + BM(
2

r2
+ M))

≤ CM(
2

r2
+ M) + CM2 + BM(

2

r2
+ M)

≤ C1M
2 + C2M .

So for M ≥ 1,

|∇R(V )|2 ≤ C1M
2(Rab + m(t)gab)VaVb;

and for 0 < M < 1 ,

|∇R(V )|2 ≤ C2(Rab + m(t)gab)VaVb.

It is clear for the third case.
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6. Remark. 1. The local Harnack inequality can not be got from gradient

estimate directly. Set Va = −R̃ab

−1
∇bR, then

∇R(V ) +
1

2(n − 1)
R̃abVaVb = −

2n − 3

2(n − 1)
R̃ab

−1
∇aR∇bR,

We know BM(M + r2

(r2−4d2)2 + 1
t
) can control ∂tR+nm(t)R by gradient estimates,

but −∞ ≤ −R̃ab

−1
≤ − 1

M+m(t)gab, so the lower bound of −R̃ab

−1
∇aR∇bR can’t be

found.
2. It is hard to get the local Harnack inequaliy directly without using the good

extra term.
3. The additive term nm(t)R is used to make the calculation easier, but it is not

the only way, one can also add something else.
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