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0. Introduction. In this paper, we prove a generalization of a theorem of S.Y.
Cheng on the upper bound of the bottom of the L2 spectrum for a complete Rie-
mannian manifold. In [C], Cheng proved a comparison theorem for the first Dirichlet
eigenvalue of a geodesic ball. By taking the radius of the ball to infinity, he obtained an
estimate for the bottom of the L2 spectrum. In particular, he showed that if Mn is an
n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from
below by −(n− 1)K for some constant K > 0, then the bottom of the L2 spectrum,
λ1(M), is bounded by

λ1(M) ≤
(n− 1)2K

4
.

This upper bound of λ1(M) is sharp as it is achieved by the hyperbolic space form
Hn. Observe that Cheng’s theorem can be stated in the following equivalent form.

Cheng’s Theorem. Let Mn be a complete Riemannian manifold of dimension

n. If λ1(M) > 0 and there exists a constant A ≥ 0 such that the Ricci curvature of M
satisfies

(0.1) RicM ≥ −Aλ1(M),

then A must be bounded by

A ≥
4

n− 1
.

In a previous paper [LW] of the authors, they consider complete Riemannian
manifolds on which there is a nontrivial weight function ρ(x) ≥ 0 for all x ∈M , such
that, the weighted Poincaré inequality

∫

M

|∇φ|2 dV ≥

∫

M

ρ φ2 dV

is valid for all functions φ ∈ C∞
c (M). Note that if λ1(M) > 0 then λ1(M) can be used

as a weight function by the variational characterization of λ1(M), namely,

inf
φ∈C∞

c
(M)

∫

M
|∇φ|2 dV

∫

M
φ2 dV

= λ1(M).

With this point of view, a weight function ρ can be thought of as a pointwise gener-
alization of λ1(M). It was pointed out in [LW] that manifolds possessing a weighted
Poincaré inequality is equivalent to being nonparabolic - those admitting a positive
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Green’s function for the Laplacian. The main purpose of the short note is to prove the
following generalization of Cheng’s theorem for manifolds with a weighted Poincaré
inequality.

Theorem 1. Let Mn be a complete Riemannian manifold of dimension n. Sup-

pose there is a nontrivial weight function ρ(x) ≥ 0 such that the weighted Poincaré

inequality
∫

M

|∇φ|2(x) dV ≥

∫

M

φ2(x) ρ(x) dV

holds for all test function φ ∈ C∞
c (M). Assume that the Ricci curvature of M is

bounded below by

RicM (x) ≥ −Aρ

for some constant A ≥ 0. If, in addition, there exists 1
2 < α ≤ 1 such that the

conformal metric ρ2α ds2 is complete, then A must be bounded by

A ≥
4

n− 1
.

Let us remark that when ρ = λ1(M), the metric λ1(M)2α ds2 is complete for all
α > 0, hence Theorem 1 is exactly Cheng’s theorem stated as above. Moreover, we
observe that on Rn for n ≥ 3, the function

ρ(x) =
(n− 2)2

4
r−2(x),

where r(x) is the Euclidean distance to the origin, is a weight function. The condition
on the completeness of the conformal metric ρ2α ds2 is equivalent to the condition

∫ ∞

1

r−2α dr = ∞,

hence the conformal metric is complete if and only if α ≤ 1
2 . In this case, since

the inequality between the Ricci curvature and the weight function is automatically
satisfied for all A ≥ 0, this indicates that the condition on the completeness of the
ρ2α ds2 is necessary and sharp.

1. Prelimaries. The proof of Theorem 1 is motivated by the work of X. Cheng
[Cg], where she proved that a manifold satisfying the hypothesis of Theorem 1 with
A < 4

n−1 must have only one end. Her approach was different from the authors in

[LW] where they also proved various versions of structural theorems for manifolds with
property Pρ. These are manifolds with a weight function ρ such that the conformal
metric ds2ρ = ρ ds2 is complete. The first part of our argument pretty much follows
that of Cheng and so we will refer the reader to [Cg] for some of the detailed but
direct computation.

Let Mn be an n-dimensional Riemannian manifold with the metric given by ds2.
Suppose u is a positive function defined on M. We define the new conformal metric
by

˜ds2 = u2 ds2.

We will recall some of the computations on a conformal change of metrics. Let {ωi}
be an orthonormal coframe defined on M with respect to ds2. Then {ω̃i = uωi} is an
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orthonormal coframe with respect to ˜ds2. The connection 1-forms with respect to ds2

and ˜ds2 are related by

(1.1) ω̃ij = ωij − (log u)j ωi + (log u)i ωj .

The curvature tensors with respect to ds2 and ˜ds2 are related by

1

2
R̃ijkℓ ω̃ℓ ∧ ω̃k =

1

2
u−2Rijkℓ ω̃ℓ ∧ ω̃k − u−2 (log u)jk ω̃k ∧ ω̃i + u−2 (log u)ik ω̃k ∧ ω̃j

+ u−2 |∇(log u)|2 ω̃i ∧ ω̃j − u−2 (log u)k (log u)i ω̃k ∧ ω̃j

− u−2 (log u)k (log u)j ω̃i ∧ ω̃k,

(1.2)

where (log u)jk denotes the Hessian of log u in the direction of ej and ek with respect
to the metric ds2.

The sectional curvatures and Ricci curvatures are then related by

(1.3) u2 K̃(ẽi, ẽj) = K(ei, ej)− |∇(log u)|2 +(log u)2i +(log u)2j − (log u)ii − (log u)jj ,

and

(1.4) u2 R̃icii = Ricii−(n−2)|∇(logu)|2+(n−2)(logu)2i −∆(log u)−(n−2)(logu)ii.

Let N ⊂M be a minimal submanifold of dimension d < n with respect to the ˜ds2

metric. We choose an adapted orthonormal frame so that {e1, . . . , ed} are tangent to
N and {ed+1, . . . , en} are normal to N. In particular, {ẽν = u−1eν | ν = d + 1, . . . n}

are unit normal vectors to N with respect to ˜ds2. The second fundamental forms hν
αβ

and h̃ν
αβ corresponding to the metrics ds2 and ˜ds2, respectively, in the direction of eν

and ẽν are given by
h̃ν

αβ = u−1 hν
αβ + u−1 (log u)ν δαβ,

for 1 ≤ α, β ≤ d. The minimality condition implies that

Hν = (log u)ν

where Hν is the mean curvature in the direction of ν with respect to the metric ds2.

If we further assume that N is stable in the ˜ds2 metric, then the stability inequal-
ity asserts that, for any normal vector field T =

∑

ν φ
ν ẽν , we have

0 ≤ −

∫

N

{∑

ν

∑

α, β

φν (h̃ν
αβ)2 +

∑

ν,µ

∑

α

φν φµ 〈R̃ẽα ẽν
ẽµ, ẽα〉

}
d̃V

+

∫

N

{∑

α

∑

ν

(
∑

µ

φµ 〈∇̃ẽα
ẽµ, ẽν〉

)2

+
∑

ν

|∇̃Nφν |2
}
d̃V ,

(1.5)

where ∇̃N denotes the gradient on N with respect to the induced metric from ˜ds2.
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2. Proof of Theorem 1.

Proof. Now let us consider the case when N = γ is a stable geodesic. The second
variation formula (1.5) asserts that

∫

γ

∑

ν

|∇̃γφν |2 d̃s ≥

∫

γ

∑

ν,µ

φν φµ 〈R̃ẽ1 ẽν
ẽµ, ẽ1〉 d̃s−

∫

γ

∑

ν

(
∑

µ

φµ 〈∇̃ẽ1
ẽµ, ẽν〉

)2

d̃s.

By choosing orthonormal frame {e2, . . . , en} so that they are parallel along the ge-
odesic, and for each eν , by choosing φµ = 0 when µ 6= ν and φν = φ, the above
inequality yields

∫

γ

|∇̃γφ|2 d̃s ≥

∫

γ

φ2 K̃(ẽ1, ẽν) d̃s−

∫

γ

φ2
∑

ν

〈∇̃ẽ1
ẽν , ẽν〉

2 d̃s

=

∫

γ

φ2 u−1
(
K(e1, eν) − |∇(log u)|2 + (log u)21 + (log u)2ν

−(log u)11 − (log u)νν) ds,

for all ν. Summing over all 2 ≤ ν ≤ n, we obtain

(n− 1)

∫

γ

u−1 |∇γφ|2 ds ≥

∫

γ

φ2 u−1 Ric11 ds− (n− 1)

∫

γ

φ2 u−1 |∇(log u)|2 ds

+ (n− 1)

∫

γ

φ2 u−1 (log u)21 ds+

∫

γ

φ2 u−1
∑

ν

(log u)2ν ds

− (n− 1)

∫

γ

φ2 u−1 (log u)11 ds−

∫

γ

φ2 u−1
∑

ν

(log u)νν ds

=

∫

γ

φ2 u−1 Ric11 ds− (n− 2)

∫

γ

φ2 u−1 |∇(log u)|2 ds

+ (n− 2)

∫

γ

φ2 u−1 (log u)21 ds− (n− 2)

∫

γ

φ2 u−1 (log u)11 ds

−

∫

γ

φ2 u−1 ∆(log u) ds.

(2.1)

The fact γ is a geodesic with respect to the metric ˜ds2 together with (1.1) implies that

(log u)11 = (log u)′′ −∇e1
e1(log u)

= (log u)′′ −
∑

ν

(log u)2ν

= (log u)′′ − |∇(log u)|2 + ((log u)′)2,

where prime denotes differentiating with respect to ∂
∂s

= e1. Hence, we have

∫

γ

φ2 u−1 (log u)11 ds

= 2

∫

γ

φ2 u−1 (log u)21 ds− 2

∫

γ

φu−1 φ1 (log u)1 ds−

∫

γ

φ2 u−1 |∇(log u)|2 ds.

(2.2)
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Using the assumption that M admits the weighted Poincaré inequality

∫

M

|∇φ|2 dV ≥

∫

M

φ2 ρ dV

for the weight function ρ, there exists a positive solution v to the equation

(∆ + ρ)v = 0.

Letting u = vk, we have

∆(log u) = −kρ− k−1|∇(log u)|2

Substituting this and (2.2) into (2.1), we have

(n− 1)

∫

γ

u−1 (φ′)2 ds

≥

∫

γ

φ2 u−1 (Ric11 + kρ) ds+ k−1

∫

γ

φ2 u−1 |∇(log u)|2 ds

− (n− 2)

∫

γ

φ2 u−1 ((log u)′)2 ds+ 2(n− 2)

∫

γ

φu−1 φ1 (log u)′ ds.

Setting φ = u
1

2 ψ, we conclude that

(n− 1)

∫

γ

(ψ′)2 ds ≥

∫

γ

ψ2 (Ric11 + kρ) ds+ k−1

∫

γ

ψ2 |∇(log u)|2 ds

+ (n− 3)

∫

γ

ψ ψ1 (log u)′ ds−
n− 1

4

∫

γ

ψ2 ((log u)′)2 ds.

(2.3)

Also, let γ be a geodesic ray, with respect to the metric ˜ds2, emanating from a
fixed point p ∈ M to an end of M . Let us parametrize γ : [0,∞) → M by arc-length
with respect to the metric ds2. According to (2.3) and the Schwarz inequality, we have

2

∫ ∞

0

(ψ′)2 ds ≥

∫ ∞

0

ψ2 (k −A)ρ ds+ k−1

∫ ∞

0

ψ2 |∇(log u)|2 ds

+ (n− 3)

∫ ∞

0

ψ ψ′ (log u)′ ds−
n− 1

4

∫ ∞

0

ψ2 (log u)21 ds

≥

∫ ∞

0

ψ2 (k −A)ρ ds+ k−1

∫ ∞

0

ψ2 |∇(log u)|2 ds

−
(n− 3)2

4ǫ

∫ ∞

0

(ψ′)2 ds−

(
n− 1

4
+ ǫ

)∫ ∞

0

ψ2 ((log u)′)2 ds,

(2.4)

for any ǫ > 0. If we choose ǫ = k−1 − n−1
4 , inequality (2.4) can then be written as

(2.5)

(

2 +
(n− 3)2

4k−1 − (n− 1)

)∫ ∞

0

(ψ′)2 ds ≥ (k −A)

∫ ∞

0

ψ2 ρ ds.
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Assuming that A < 4
n−1 , we can choose A < k < 4

n−1 to ensure that the coefficients

on both sides are positive. In particular, by taking ψ = s
1

2 η with

η(s) =






s for 0 ≤ s ≤ 1

1 for 1 ≤ s ≤ R

2R− s

R
for R ≤ s ≤ 2R

0 for 2R ≤ s,

we conclude that
∫ ∞

0

(ψ′)2 ds =

∫ 1

0

(ψ′)2 +

∫ 2R

R

s (η′)2 ds+

∫ 2R

R

η η′ ds+
1

4

∫ 2R

1

s−1 η2 ds

≤
33

16
+

1

4
log(2R),

for R > 1. Hence (2.5) can be written as

(2.6) C1 + C2 logR ≥

∫ R

1

s ρ ds.

On the other hand, for 1
2 < α ≤ 1, the Schwarz inequality and (2.6) assert that

∫ 2R

R

ρα ds ≤

(∫ 2R

R

s ρ ds

)α (∫ 2R

R

s−
α

1−α ds

)1−α

=

(∫ 2R

R

s ρ ds

)α
(

R
1−2α

1−α − (2R)
1−2α

1−α

)1−α
(

1 − α− 1

2α− 1

)1−α

≤ C3 (logR)αR1−2α.

Therefore
∫ ∞

1

ρα ds =

∞∑

i=0

∫ 2i+1

2i

ρα ds

≤ C3

∞∑

i=0

(log 2i)α 2(1−2α)i

≤ C4

∞∑

i=0

iα 2(1−2α)i

<∞.

In particular, this gives a contradiction if the metric ρ2α ds2 is complete.
The following corollary slightly strengthens the aforementioned result of X. Cheng

in [Cg].

Corollary 2. Let Mn be a complete Riemannian manifold of dimension n.

Suppose there is a nontrivial weight function ρ(x) ≥ 0 such that the weighted Poincaré

inequality
∫

M

|∇φ|2(x) dV ≥

∫

M

φ2(x) ρ(x) dV
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holds for all test function φ ∈ C∞
c (M). Assume that there exists a constant

A <
4

n− 1
,

such that, the Ricci curvature of M is bounded below by:

(1) either RicM (x) ≥ −Aρ and ρ > 0;

(2) or RicM (x) > −Aρ.

Then M must have only one end and is simply connected at infinity.

Proof. Note that if M has a stable geodesic segment γ with respect to the ˜ds2

metric that can be parametrized by γ : (−∞,∞) → M in arc-length with respect to
ds2, then (2.5) will imply that along γ it must satisfy the weighted Poincaré inequality
with weight function ρ(γ(s)). Hence the real line is nonparabolic, which is an obvious
contradiction. In particular, this rules out the possibility of M having two ends.

To see that M is simply connected at infinity, we consider any curve τ(t) param-
eterized by t ∈ (−∞,∞) satisfying

lim
t→∞

τ(t) = ∞

and

lim
t→−∞

τ(t) = ∞.

One should take the point of view that τ is a curve in M̄ = M ∪M∞ with based point
M∞, where M̄ is the one-point compactification of M . Assuming that π1(M,M∞) 6=
{1}, let [τ ] be a nontrivial class in π1(M,M∞). For any curve τ ∈ [τ ], we let γt be

a minimal geodesic with respect to ˜ds2 joining the points τ(−t) to τ(t), which is in
the same homotopy class of τ |[−t,t]. Since [τ ] is nontrivial, there exists a sequence
of ti → ∞ such that γti

∩ Bp(R) 6= ∅. Indeed, if not, then the curves given by
ηt = τ |(∞,−t] ∪ γt ∪ τ |[t,∞) will not intersect Bp(R) for t sufficiently large. This will
imply that ηt →M∞ and [τ ] is trivial. So a subsequence of the curves ηt will converge
to some limiting curve γ ∈ [τ ]. Moreover, γ will be a stable geodesic because it is the
limit of minimal geodesics in Bp(R) for all R. Hence, we produced a stable geodesic γ
in M which gives a contradiction.

Let us point out that the above argument is valid if we only assume the weighted
Poincaré inequality only holds outside some compact set of M . This strengthened
version of Theorem 1 is a generalization of the statement that if RicM ≥ −(n− 1)K
on M \D, then the bottom of the essential spectrum of M is bounded from above by
(n−1)2K

4 .

Theorem 3. Let Mn be a complete Riemannian manifold. Suppose there exists

a compact set D and a weight function ρ defined on M \D such that
∫

M\D

|∇φ|2 ≥

∫

M\D

ρ φ2

for all functions φ ∈ C∞
c (M \D). Assume that the Ricci curvature of M is bounded

below by

RicM (x) ≥ −Aρ
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on M \D for some constant A ≥ 0. If there exists 1
2 < α ≤ 1 such that the conformal

metric ρ2α ds2 is complete, then

A ≥
4

n− 1
.

The same type of argument also give the following corollary.

Corollary 4. Let M3 be a complete Riemannian manifold of dimension 3.

Suppose there is a nontrivial weight function ρ(x) ≥ 0 such that the weighted Poincaré

inequality ∫

M

|∇φ|2(x) dV ≥

∫

M

φ2(x) ρ(x) dV

holds for all test function φ ∈ C∞
c (M). Assume that the Ricci curvature of M is

bounded below by

RicM (x) ≥ −
4

n− 1
ρ+ ρ̄

for some nonnegative function ρ̄. Then the conformal metric ρ̄2α ds2 cannot be com-

plete for any α > 1
2 .

Proof. When n = 3, by setting k = 4
n−1 , (2.3) becomes

2

∫

γ

(ψ′)2 ds ≥

∫

γ

ψ2 ρ̄ ds.

The proof of the theorem now applies to this case.
An example of the corollary is the hyperbolic 3-space, H3, whose Ricci curvature

is −2. In this case, we know that λ1 = 1, hence it is a weight function. We also know
that it is not a maximal weight function since

1 + 2(coth r − 1)

and
1

4
sinh−4 r

(∫ r

0

sinh−2 t dt

)−2

are also weight functions. The corollary implies that if there is a weight function
ρ = 1 + ρ̄, then ρ̄ cannot be too large in the sense that the metric ρ̄2α ds2 cannot be
complete. This is certainly the case for the above two weight functions. The corollary
also implies that if we deform the metric on H3 while maintaining the condition λ1 = 1,
then the Ricci curvature of the new metric cannot be too much smaller than −1.
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