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ON THE FIXED LOCI OF THE CANONICAL SYSTEMS OVER

NORMAL SURFACE SINGULARITIES
∗

KAZUHIRO KONNO†

Abstract. It is shown that the relative canonical linear system over a normal surface singularity
has at most exceptional sets of rational singular points as its fixed part.
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Introduction. In the study of algebraic surfaces of general type, it is often
important to consider the canonical linear system and the rational map associated
to it. In this sense, the fixed part of the canonical system can be regarded as the
“worst” curve on the surface, and one may naturally ask what is its feature and how
to control it. However, not too much is known so far. This is an experiment for a
better understanding of the fixed part, and we consider here the local version of the
problem.

Let (V, o) be a germ of a normal surface singularity and π : X → V its minimal
resolution. For a line bundle L on X with H0(X, L) 6= 0, the fixed part of the
linear system |L| is the biggest effective divisor F supported in π−1(o) such that the
restriction map H0(X, L) → H0(F, L) is the zero map. The fixed part of the canonical
linear system |KX | will be sometimes called the canonical fixed part in this paper.

The purpose of the present article is to show the following:

Main Theorem. Let (V, o) be a normal surface singularity and π : X → V
the minimal resolution. If L is a line bundle on X such that L − KX is nef, then

the fixed part of |L| supports at most exceptional sets of rational singular points.

Furthermore, if (U, p) denotes the rational singular point obtained by contracting a

connected component of the fixed part of |L|, then the multiplicity mult(U, p) and the

embedding dimension embdim(U, p) satisfy

mult(U, p) ≤ 2pf(V, o), embdim(U, p) ≤ 2pf(V, o) + 1

where pf (V, o) denotes the fundamental genus of (V, o), that is, the arithmetic genus

of the fundamental cycle on π−1(o).

When the fixed part supports exceptional sets of rational double points, we can
show that they are necessarily of type A (Corollary 3.3). This suggests that the
singular point obtained by contracting a connected component of the canonical fixed
part is rather special among rational singular points, though we do not know how
to characterize them. We remark that |L| is free from base points if (V, o) itself is a
rational singular point (see, Proposition 2.7 for a slightly stronger assertion). So our
result applies essentially to singularities “of general type”.

On the technical side, one may see that an easy lemma [4, Lemma 2.2.1] plays a
very important rôle throughout the paper. In fact, we give in Sect. 1 a decomposition
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of a numerically 1-connected curve, Theorem 1.1, as an application of it. In Sect. 2,
we prove the Main Theorem in Theorem 2.4 and Proposition 2.6. Our strategy here
is to associate a particular curve, called a loupe, for each fixed component of |L|. It
is the fundamental cycle on its support, with self-intersection number −1, containing
the fixed component as a non-multiple component. In order to find the loupe, we
again use [4, Lemma 2.2.1]. Its decomposition detected by Theorem 1.1 enables us to
argue inductively on the number of fixed components. The proof of Proposition 2.7
referred above is also based on [4, Lemma 2.2.1]. In Sect. 3, we state some further
properties of the loupes and show Corollary 3.3 as an application. In Sect. 4, we
restrict ourselves to (weakly) elliptic singularities [11] in order to clarify, to some
extent, how our method relates to Yau’s elliptic sequence [13]. When the fixed part
corresponds to a rational double point of type A and the biggest loupe contracts to
an elliptic singularity, Theorem 4.1 shows that the associated sequence of loupes is
nothing more than the elliptic sequence.

In a forthcoming paper, we shall study numerically connected curves and treat
the semi-global case, that is, fibers in relatively minimal fibred surfaces.

Acknowledgements. The author thanks Professors Tadashi Tomaru and Mar-
garida Mendes Lopes for their interests and stimulating discussions. He also thanks
the referee for his helpful suggestions and careful reading of the manuscript.

1. A decomposition theorem. Let D =
∑N

i=1 miAi be a divisor on a non-
singular surface X , where Ai is a compact irreducible curve and mi ∈ Z. If all the
mi’s are non-negative, D is called effective. For two divisors D1 and D2, D2 � D1

means that D1 − D2 is effective.
Let D be a non-zero effective divisor. We usually identify it with the correspond-

ing 1-dimensional subscheme of X . We put pa(D) = 1 − χ(D,OD) and call it the
arithmetic genus of D. By the adjunction formula, we have 2pa(D)−2 = D(KX +D).
We say that D is numerically 1-connected if D1D2 > 0 holds for any effective de-
composition D = D1 + D2 with 0 ≺ D1, 0 ≺ D2. A line bundle on D is nef if
it is of non-negative degree on any irreducible components. It is well-known that,
if D is 1-connected, we have h0(D,OD) = 1 and for a nef line bundle L we have
h0(D,−L) 6= 0 if and only if OD(L) ≃ OD. Furthermore, if we have an effective
decomposition D = D1 + D2 with D1D2 = 1 for a numerically 1-connected divisor
D, then D1 and D2 are both numerically 1-connected. For these facts and further
properties of 1-connected curves, we refer the readers to [3, Appendix].

Let L be a line bundle on D. A point on D is called a base point of the linear
system |L| if every section in H0(D, L) vanishes at that point. We denote by Bs|L|
the set of all base points of |L|.

The purpose of the section is to show the following theorem. One can find a
similar result in [8, Theorem 4.1].

Theorem 1.1. Let D be a numerically 1-connected divisor on a non-singular

surface. Assume that an irreducible component A of D is a fixed component of |KD|
and put n = A(D − A). Then A ≃ P1 and, either D = A or there are effective

subdivisors Γi of D (1 ≤ i ≤ n) and a decomposition D = A + Γ1 + · · ·+ Γn enjoying

the following properties:

(1) Γi is numerically 1-connected and AΓi = 1 holds for each i ∈ {1, . . . , n}.
(2) A is not a component of Γi when i ≥ 2.
(3) OΓi+···+Γn

(Γi−1) ≃ OΓi+···+Γn
holds for any i with 2 ≤ i ≤ n.
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Proof. We may assume n > 0, since we clearly have D = A ≃ P1 when n = 0.
We let D1 be a minimal effective divisor such that A � D1 � D and the restriction
map H0(D, KD) → H0(D1, KD) is surjective.

We first claim that D1 6= D. This can be seen as follows. Take any irreducible
component B � D − A and consider the cohomology long exact sequence for

0 → OB(KB) → OD(KD) → OD−B(KD) → 0.

Since H1(B, KB) → H1(D, KD) is dual of the restriction map H0(D,OD) →
H0(B,OB), it is an isomorphism, hence H0(D, KD) → H0(D − B, KD) is surjec-
tive. In particular, we can assume that D1 � D − B by the minimality of D1. Hence
D1 6= D.

We have KD1
− KD = −(D − D1) on D1. Since D is 1-connected, we have

(D − D1)D1 > 0. In particular, we see that KD1
− KD is not nef on D1. Then it

follows from [4, Lemma 2.2.1] that
(a) A is of multiplicity one in D1,
(b) −(D − D1) is nef on D1 − A, and
(c) the image of H0(D1, KD) → H0(A, KD) contains the image of the natural

map H0(A, KD − (D1 − A)) →֒ H0(A, KD).
Since we have assumed that A ⊂ Bs|KD|, the restriction map H0(D, KD) →

H0(A, KD) is the zero map. Hence so is H0(D1, KD) → H0(A, KD) by the choice of
D1. It follows from (c) that H0(A, KD − (D1 − A)) = 0. By the adjunction formula,
we have OA(KD − (D1 − A)) ≃ OA(KA + (D − D1)). Since −(D − D1) is nef on
D1 − A by (b), we have (D − D1)(D1 − A) ≤ 0. So, (D − D1)A > 0, because we
have (D−D1)D1 > 0 by the 1-connectedness of D. Therefore, OA(KD − (D1−A)) is
non-special and we get h0(A, KD−(D1−A)) = pa(A)−1+A(D−D1) by the Riemann-
Roch theorem. Since this has to be zero, we get pa(A) = 0 and A(D−D1) = 1. Then,
(D − D1)(D1 − A) = 0 and it follows from (b) that OD1−A(D − D1) is numerically
trivial. We have shown that A ≃ P1 and D1(D−D1) = 1. Note that the last equality
implies that D1 and D − D1 are also numerically 1-connected.

Take any point p ∈ A not lying on D1 − A. Since A ⊂ Bs|KD|, it follows from
the cohomology long exact sequence for

0 → OD1
(KD − p) → OD1

(KD) → Op → 0

that H0(D1, KD) → Op is zero, and hence H1(D1, KD − p) 6= 0. By the Serre
duality theorem, we get H0(D1, p − (D − D1)) 6= 0. Since OD1

(p − (D − D1)) is
numerically trivial and D1 is 1-connected, we conclude that OD1

(D −D1) ≃ OD1
(p).

In particular, this shows that OD1−A(D − D1) ≃ OD1−A. Furthermore, we have
h0(D1,OD1

(p)) ≥ 2, since the same argument as above shows OD1
(D−D1) ≃ OD1

(p′)
and, hence, OD1

(p) ≃ OD1
(p′) for any other point p′ ∈ A\Supp(D1−A). Then we get

h0(D1, KD1
− p) = h0(D1,OD1

(p))− 2 + pa(D1) ≥ pa(D1) by the Riemann-Roch and
the Serre duality theorems. On the other hand, we clearly have h0(D1, KD1

− p) ≤
h0(D1, KD1

) = pa(D1). In sum, h0(D1, KD1
− p) = h0(D1, KD1

) = pa(D1). This
shows that p is a base point of |KD1

|. Since p ∈ A is general, we conclude that A is
a fixed component of |KD1

|.
Since A ⊂ Bs|KD1

| and D1 is numerically 1-connected, we can repeat the above
argument with the pair (D1, A) instead of (D, A) noting that we have A(D1 − A) =
A(D − A) − A(D − D1) = n − 1. In this way, we can find a sequence of numerically
1-connected divisors

A = Dn � Dn−1 � · · · � D1 � D0 = D
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such that Di−1 −Di is 1-connected, ODi−A(Di−1 −Di) ≃ ODi−A, A(Di−1 −Di) = 1
and A ⊂ Bs|KDi

| for any i, 1 ≤ i ≤ n. If we put Γi = Di−1 − Di, then D =
A + Γ1 + · · ·+ Γn. Note that we have Di −A = Γi+1 + · · ·+ Γn. Hence (3) is nothing
more than ODi−A(Γi) ≃ ODi−A. Since A is of multiplicity one in D1 by (a), we get
(2).

Remark 1.2. (1) The converse holds in the following sense: If A ≃ P1 and D
decomposes as above, then A ⊂ Bs|KD|. See, the proof of [8, Theorem 4.1].

(2) The assertion (3) in Theorem 1.1 implies that OΓj
(Γi) ≃ OΓj

when i < j.
Therefore, (1) and (3) of Theorem 1.1 (without any assumption regarding D) imply
that either Supp(Γi) ∩ Supp(Γj) = ∅ or Γj � Γi when i < j. Indeed, suppose that
Supp(Γi) ∩ Supp(Γj) 6= ∅. Since ΓiΓj = 0, Γi and Γj have a common component.
Put B = gcd(Γi, Γj), Ci = Γi − B and Cj = Γj − B. We have CiCj ≥ 0, since
they have no common components. Assume that Cj 6= 0. Since OΓj

(Γi) ≃ OΓj
, we

have OCj
(Γi) ≃ OCj

and it follows that CiCj + BCj = 0. Hence BCj ≤ 0, which
is impossible since Γj = Cj + B is 1-connected. Therefore, we have Cj = 0 and
Γj = B � Γi. This remark will be used in several places in what follows.

Corollary 1.3. Let D and A be as in Theorem 1.1. Assume furthermore that

KD is nef. Then (D − A)A ≤ pa(D).

Proof. We know A ≃ P1. Put n = A(D − A) and let D = A + Γ1 + · · · + Γn be
the decomposition as in Theorem 1.1. Then it is easy to see that pa(D) = pa(Γ1) +
· · · + pa(Γn) by using the numerical properties AΓi = 1 and ΓiΓj = 0 when i 6= j.
Since KD is nef, we have 0 ≤ deg KD|Γi

= deg KΓi
+ (D − Γi)Γi = deg KΓi

+ 1.
Hence deg KΓi

= 2pa(Γi) − 2 is non-negative, implying pa(Γi) > 0. Then we get
pa(D) ≥ n = A(D − A) as desired.

Let A =
⋃N

i=1 Ai be a connected bunch of irreducible curves Ai. The intersection
form is negative semi-definite on A if and only if there exists an effective (non-zero)
divisor Z supported on A such that −Z is nef on A. The smallest curve among
such Z’s exists and is called the numerical cycle [10]. When the intersection form is
negative definite, it is usually called the fundamental cycle ([1], [2]). It is easy to see
that a numerically 1-connected divisor Z is the numerical cycle (on its support) if −Z
is nef on Z.

Lemma 1.4. Let D be an effective non-zero divisor on a non-singular surface

such that −D is nef on D. Assume that D decomposes as D = A + Γ1 + · · ·+ Γn for

some positive integer n, where A ≺ D is an effective divisor, the Γi’s are 1-connected

divisors satisfying AΓi = 1 for i ≥ 1 and OΓj
(Γi) is numerically trivial for i < j. If

A does not have a common component with Γi, then −Γi and −Γ̃i are both nef on

Γi, where Γ̃i =
∑

j≥i, Γj�Γi
Γj. In particular, Γi is the numerical cycle on its support

provided that A does not have a common component with Γi.

Proof. We remark that ΓiΓj = 0 and, either Γj � Γi or Supp(Γi)∩ Supp(Γj) = ∅
when i < j. Let B be an arbitrary irreducible component of Γi. Note that any Γj

not appearing in Γ̃i is either disjoint from Γi or bigger than Γi, and we have BΓj = 0

for such Γj . Then we have DB = AB + Γ̃iB. Since DB ≤ 0 and AB ≥ 0 by

gcd(A, Γi) = 0, we get Γ̃iB ≤ 0 as wished.
If B is a component of Γj for some j > i, then we have ΓiB = 0, because OΓj

(Γi)
is numerically trivial. Hence we may assume that B is not a component of Γj for any
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j > i. Then ΓjB ≥ 0 for any j > i. We have 0 ≥ Γ̃iB = ΓiB + B
∑

j>i,Γj�Γi
Γj ≥

ΓiB. Therefore, −Γi is nef on Γi. It follows that Γi is the numerical cycle on its
support, since Γi is 1-connected.

Proposition 1.5. Let Z be the fundamental cycle on the exceptional set of a

rational normal surface singularity. If A ≺ Z is an irreducible component, then Z
decomposes as

Z = A + Z1 + · · · + Zn,

where n = A(Z − A), each Zi is a 1-connected divisor, AZi = 1 and,

OZi+···+Zn
(−Zi−1) ≃ OZi+···+Zn

when 2 ≤ i ≤ n. Furthermore, Zi is the funda-

mental cycle on its support when i ≥ 2, and the same is valid for Z1 provided that A
is a non-multiple component of Z.

Proof. We have H1(Z,OZ) = 0 and h0(Z,OZ) = 1. Hence Z is 1-connected.
The restriction map H0(Z, KZ) → H0(A, KZ) is the zero map for the trivial reason.
Hence, by Theorem 1.1, we get the decomposition of Z as wished. The fact that Zi

is the fundamental cycle follows from Lemma 1.4, since A is not a component of Zi

when i ≥ 2, by Theorem 1.1, (2).

Let the situation be as above. We remark that, if A 6� Zi (which holds at least
for i ≥ 2), then Zi has a non-multiple component Ai with AAi = 1 by AZi = 1
and, therefore, Zi also decomposes into a sum of Ai and several numerically disjoint
fundamental cycles similarly as in the statement of Proposition 1.5.

2. Proof of Main Theorem. We return to the situation we are interested in.
Let (V, o) be a germ of a normal surface singularity and π : X → V the minimal
resolution. A non-zero effective (integral) divisor on X whose support is contained in
π−1(o) will be simply called a curve in what follows. Since the intersection form is
negative definite on the exceptional set, we have A2 < 0 and h0(A,OA(A − L)) = 0
for any curve A and a nef line bundle L. The latter implies, via the Serre duality
theorem, that H1(A, L) = 0 for any line bundle L such that L−KX is nef. We denote
by Z the fundamental cycle on π−1(o), that is, the smallest curve such that −Z is nef
on π−1(o). Recall that the restriction map H0(X, L) → H0(Z, L) is surjective when
L−KX is a nef line bundle on X , because we have H1(X, L−Z) = 0 by the Kodaira-
type vanishing theorem (see, e.g., [6]). Therefore, when L−KX is nef, an irreducible
curve E is contained in Bs|L| if and only if the restriction map H0(Z, L) → H0(E, L)
is the zero map.

We sometimes need the following easy lemma (compare this with [7, Lemma 3.2]):

Lemma 2.1. Let ∆ be a curve with ∆2 = −1. Then it is numerically 1-connected.

If ∆′ is another curve with (∆′)2 = −1, then either ∆ and ∆′ are disjoint or one is

a subcurve of the other.

Proof. Let ∆ = ∆1 +∆2 be any effective decomposition, that is, a decomposition
of ∆ into a sum of two curves ∆1, ∆2. Then ∆2 = ∆2

1 + ∆2
2 + 2∆1∆2. Since we

have ∆2
1 < 0, ∆2

2 < 0 and ∆2 = −1, we get ∆1∆2 > 0. Therefore, ∆ is numerically
1-connected.

In order to show the second part, we assume that Supp(∆)∩Supp(∆′) 6= ∅. Since
0 > (∆ + ∆′)2 = −2 + 2∆∆′, we get ∆∆′ ≤ 0. It follows that ∆ and ∆′ have a
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common component. Put C = gcd(∆, ∆′), ∆ = A + C and ∆′ = B + C. We assume
that A 6= 0, B 6= 0 and show that this leads us to a contradiction. Since

0 > (A + B + C)2 = (A + C)2 + (B + C)2 − C2 + 2AB = −2 − C2 + 2AB

we have C2 > 2AB − 2. It follows from C2 < 0 and AB ≥ 0 that C2 = −1 and
AB = 0DThen we get AC + BC ≤ 1 by

0 ≥ ∆∆′ = C2 + (A + B)C + AB = −1 + AC + BC.

On the other hand, it follows from ∆2 = ∆′2 = −1 that A2 + 2AC = B2 + 2BC = 0.
Since A 6= 0 and B 6= 0, we have A2 < 0 and B2 < 0. Hence AC > 0 and BC > 0,
which contradicts AC + BC ≤ 1. Therefore, either A or B must be zero.

The following is the heart of our arguments.

Proposition 2.2. Let L be a line bundle on Z such that L − KX is nef. Let E
be an irreducible curve contained in Bs|L|. Then E ≃ P1 and there exists the smallest

reducible subcurve ∆ = ∆(E, L) � Z with the following properties.

(1) ∆ contains E as a component of multiplicity one and the restriction map

H0(Z, L) → H0(∆, L) is surjective.

(2) ∆ is the fundamental cycle on its support and O∆(L − KX) is numerically

trivial.

(3) E∆ = ∆2 = −1 and O∆(L − KX − ∆) ≃ O∆(p) for any point p ∈ E \
Supp(∆ − E).

(4) E ⊂ Bs|K∆| and ∆ decomposes as ∆ = E + Γ1 + · · ·+ Γn−1, where n = −E2

and the Γi’s are curves with EΓi = −Γ2
i = 1 for i ≥ 1 and OΓi+···+Γn−1

(Γi−1) ≃
OΓi+···+Γn−1

for i ≥ 2.

Proof. This is an analogue of Theorem 1.1. We let ∆ be a minimal curve such that
E � ∆ � Z and the restriction map H0(Z, L) → H0(∆, L) is surjective. If ∆ = E,
then we must have H0(E, L) = 0, since E ⊂ Bs|L|. Then the Riemann-Roch theorem
shows that −h1(E, L) = deg L|E + 1 − pa(E) = (1/2)(KXE − E2) + deg(L − KX)|E ,
which is impossible because E2 < 0, KXE ≥ 0 and deg(L−KX)|E ≥ 0 by the nefness
of L − KX and KX . Therefore, ∆ is reducible. Since K∆ − L = ∆ − (L − KX)
on ∆ and ∆2 < 0, we see that K∆ − L is not nef on ∆. Then it follows from [4,
Lemma 2.2.1] that E is of multiplicity one in ∆, O∆−E(∆ − (L − KX)) is nef and
the image of H0(∆, L) → H0(E, L) contains the subspace coming from H0(E, L −
(∆ − E)). Since O∆−E(∆ − (L − KX)) and L − KX are nef, we obtain (∆ − E)∆ ≥
deg(L − KX)|∆−E ≥ 0. Since E ⊂ Bs|L|, we must have h0(E, L − (∆ − E)) = 0. We
have OE(L − (∆ − E)) ≃ OE(KE + (L − KX) − ∆) and see that it is non-special,
because E∆ < 0 and deg(L − KX)|E ≥ 0. Then we get E ≃ P1, E∆ = −1 and
deg(L − KX)|E = 0 similarly as in the proof of Theorem 1.1. Using ∆2 < 0, we get
∆2 = −1 by E∆ = −1 and (∆ − E)∆ ≥ deg(L − KX)|∆−E ≥ 0. Furthermore, we
see that O∆(L − KX) and O∆−E(∆) are both numerically trivial. Hence ∆ is the
fundamental cycle on its support, because ∆ is 1-connected by Lemma 2.1 and −∆
is nef on Supp(∆).

We now let p ∈ E be any non-singular point of ∆. By using p ∈ Bs|L| and

0 → O∆(L − p) → O∆(L) → Op → 0,

we get H1(∆, L − p) 6= 0. Since O∆(L − p) ≃ O∆(K∆ − ∆ + (L − KX) − p) which
is numerically equivalent to K∆, we get O∆(−∆ + L − KX) ≃ O∆(p) by the 1-
connectedness of ∆. Since p ∈ E can move, we have h0(∆,O∆(p)) ≥ 2 which enables
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us to conclude that p ∈ Bs|K∆| similarly as in the proof of Theorem 1.1. Therefore,
E ⊂ Bs|K∆|. Then we have the decomposition ∆ = E + Γ1 + · · · + Γn−1 as in
Theorem 1.1. Since EΓi = 1, ∆Γi = 0 and ΓiΓj = 0 when j 6= i, we get Γ2

i = −1. By
Lemma 2.1, Γi is numerically 1-connected.

By virtue of Lemma 2.1 and the fact ∆2 = −1, we see that ∆ is not only a
minimal but also the smallest curve with the desired properties.

Definition 2.3. Let L be a line bundle on the fundamental cycle Z with L−KX

nef and E an irreducible curve in Bs|L|. We call the curve ∆ as in Proposition 2.2
the loupe for E (with respect to L).

Now, we are going to show the following theorem which covers the first half of
the Main Theorem in Introduction.

Theorem 2.4. Let (V, o) be a normal surface singular point and π : X → V the

minimal resolution. If L is a line bundle on X such that L − KX is nef on π−1(o),
then the fixed part of |L| supports at most exceptional sets of rational singular points.

Proof. Let E =
⋃

i Ei be a connected bunch of irreducible curves Ei contained in
Bs|L|. We sometimes regard E as a reduced divisor. For each i, we take the loupe
∆i for Ei with respect to L. Since E is connected and ∆2

i = −1, the set {∆i} of
loupes has the biggest element ∆ by Lemma 2.1. Then E � ∆. We let E � E be the
component whose loupe is ∆. Put E2 = −n. By (4) of Proposition 2.2, ∆ decomposes
as ∆ = E+Γ1+· · ·+Γn−1, where Γα is a 1-connected curve satisfying EΓα = −Γ2

α = 1
and OΓα+···+Γn−1

(Γα−1) ≃ OΓα+···+Γn−1
. Recall that the last condition shows either

Supp(Γα) ∩ Supp(Γβ) = ∅ or Γβ � Γα when α < β (see, Remark 1.2). Note that we
cannot have Γα = Γβ when α < β, because ΓαΓβ = 0 and Γ2

α = −1. After changing
the labeling if necessary, we may assume that {E1, . . . , Eℓ} is the set of all irreducible
components of E − E with EEi > 0. For each i ∈ {1, . . . , ℓ}, we denote by α(i) the
smallest one among those indices α’s with Ei � Γα. Then every other Γβ containing
Ei is a subcurve of Γα(i). Since E 6≺ Γα(i) and EΓα(i) = 1, we get EEi = 1 and see that
Ei is the unique component of multiplicity one in Γα(i) which meets E. Furthermore,
we know that Γα(1), . . . , Γα(ℓ) are mutually disjoint, because, otherwise, there would
be two distinct indices i, j with Γα(i) ≺ Γα(j) which would imply Ei = Ej by what we
have just seen. We also remark that, for any Ej � E , Ej 6= E, we can find a unique
Γα(i) such that Ej � Γα(i), because Ej should be connected to E by a path consisting
of curves in E ; we would immediately get a contradiction to that E is connected if
there were no such i. Put Ei = (E − E) ∩ Supp(Γα(i)) for i = 1, . . . , ℓ. Then Ei is
connected and we get the decomposition of E − E into the connected components:
E − E =

⊔ℓ

i=1 Ei.
We denote by ZE the fundamental cycle on E . Let G be the biggest subcurve of

∆ with Supp(G) = E . Then 0 ≥ Ej∆ = EjG + Ej(∆ − G) ≥ EjG for any Ej � E .
This shows that −G is nef on E . It follows ZE � G � ∆. In particular, we know that
E is of multiplicity one in ZE .

Now, we claim that H1(ZE ,OZ
E

) = 0. We argue by induction on the number of
irreducible components. If E is a single curve, then we clearly have ZE = E ≃ P1 and
the assertion follows. We assume that E consists of several irreducible components.
Let Ei be as above. Since the number of irreducible components of Ei is strictly smaller
than that of E , by the hypothesis of the induction, we have H1(ZEi

,OZ
Ei

) = 0 for the
fundamental cycle ZEi

on Ei. This implies that we obtain a rational singular point
by contracting Ei. Hence, if Gi denotes the biggest subcurve of ZE supported on Ei,
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then we also have H1(Gi,OGi
) = 0 (see [1], [2]). Recall that E is of multiplicity one

in ZE . Since ZE − E = G1 + · · · + Gℓ and Supp(Gi) ∩ Supp(Gj) = ∅ when i 6= j,

we get H1(ZE − E,OZ
E
−E) =

⊕ℓ

i=1 H1(Gi,OGi
) = 0. Let η be a section of the line

bundle [∆ − ZE ] defining the curve ∆ − ZE . Since E is not a component of ∆ − ZE ,
η induces an effective divisor on E. The restriction maps and the natural injections
induced by η give us the following commutative diagram.

H0(ZE , KZ
E

) −−−−→ H0(E, KZ
E

)

·η



y



y·η|E

H0(∆, K∆) −−−−→ H0(E, K∆)

Since E ⊂ Bs|K∆|, the map at the bottom row is the zero map. Hence H0(ZE , KZ
E

) →
H0(E, KZ

E

) is also the zero map. Note that its kernel is isomorphic to H0(ZE −
E, KZ

E
−E) whose dual is H1(ZE − E,OZ

E
−E) which is zero as we saw above. It

follows that H0(ZE , KZ
E

) = 0. Then we get H1(ZE ,OZ
E

) = 0 as desired, by the Serre
duality theorem.

This shows that ZE is the fundamental cycle of a rational singular point and
completes the proof of Theorem 2.4.

Remark 2.5. (1) We do not know whether the restriction map H0(Z, L) →
H0(ZE , L) is the zero map or not. This explains a reason why we need a round-about
argument as above.
(2) ∆ and ZE are the fundamental cycles on their respective supports. Since ∆2 = −1
and KX is nef, we have pa(∆) > 0 while we know pa(ZE) = 0. It follows that we have
not only ZE � ∆ but also that E is strictly smaller than Supp(∆). This also shows
that if (V, o) is rational, then |L| has no fixed components.
(3) By Proposition 1.5, ZE decomposes as

ZE = E + Z1 + · · · + Zk,

where k = E(ZE −E), each Zi is the fundamental cycle on its support with EZi = 1
and OZj+···+Zk

(−Zj−1) ≃ OZj+···+Zk
for 2 ≤ j ≤ k. This may be useful to study the

configuration of E . We also remark that EZE ≤ EZE + E(∆ − ZE) = E∆ = −1.

There are three basic invariants of (V, o) (cf. [11]): The geometric genus pg(V, o) =
dim (R1π∗OX)o, the arithmetic genus pa(V, o) = sup{pa(D) | 0 ≺ D, Supp(D) ⊂
π−1(o)} and the fundamental genus pf (V, o) = pa(Z). We have pf (V, o) ≤ pa(V, o) ≤
pg(V, o). Note that the inequalities are strict in many cases. For example, if (V, o)
is a hypersurface singularity defined by x3 + y4 + z12 = 0, then pf = 3, pa = 4 and
pg = 8.

The following completes the proof of the Main Theorem.

Proposition 2.6. Let (V, o) be a normal surface singularity and π : X → V the

minimal resolution. Let L be a line bundle on X such that L−KX is nef and assume

that |L| has a fixed component.

(1) If (U, p) denotes the rational singular point obtained by contracting a con-

nected component of the fixed part of |L|, then the multiplicity mult(U, p) and the

embedding dimension embdim(U, p) satisfy

mult(U, p) ≤ 2pf (V, o), embdim(U, p) ≤ 2pf (V, o) + 1.
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(2) If an irreducible curve E is a fixed component of |L|, then −E2 ≤ pf (V, o)+1.

Proof. (1) We retain the notation and assumptions as in the proof of Theorem 2.4.
E is now the connected component of Bs|L| which produces (U, p). Since ZE is the
fundamental cycle of a rational singularity, it is numerically 1-connected and we have
−Z2

E
= KXZE + 2 by the adjunction formula. Since KX is nef and ZE ≺ ∆, we have

KXZE ≤ KX∆ = 2pa(∆) − 1 by ∆2 = −1. Assume that KXZE = KX∆. Then
∆ − ZE consists of (−2)-curves. Since ∆ is numerically 1-connected, Supp(∆) is a
connected set. Furthermore, we know that E is a proper subset of Supp(∆) (see,
Remark 2.5, (2)). It follows that there exists an irreducible curve A contained in the
closure of Supp(∆) \ E that meets E . On the other hand, since A is a (−2)-curve
and OA(KX) ≃ OA(L) by (2) of Proposition 2.2, any section of L is constant on A,
which should be zero because A meets E . Hence A ⊂ Bs|L|. This contradicts that E
is a connected component of Bs|L|. Therefore, KXZE is strictly smaller than KX∆.
Then we get KXZE ≤ 2pa(∆) − 2 which implies −Z2

E
≤ 2pa(∆). Since ∆ � Z, we

have pa(∆) ≤ pa(Z) = pf (V, o). In sum, we have shown −Z2
E
≤ 2pf (V, o). Now, the

assertion follows from M. Artin’s formulas: mult(U, p) = −Z2
E

and embdim(U, p) =
−Z2

E
+ 1.

(2) We already know that E ≃ P1. Let ∆ be the loupe for E with respect to
L. By Proposition 2.2, it is a numerically 1-connected curve with ∆2 = E∆ = −1
and E ⊂ Bs|K∆|. Furthermore, we know that O∆−E(∆) is numerically trivial. Then
deg K∆|A = deg KX |A + A∆ = deg KX |A ≥ 0 for any irreducible component A of
∆ − E, that is, K∆ is nef on ∆ − E. Recall that E is of multiplicity one in ∆. Then
we can show that (∆− E)E ≤ pa(∆) holds similarly as in the proof of Corollary 1.3.
Therefore, −E2 ≤ pa(∆) + 1 ≤ pf (V, o) + 1.

The bound in (2) is sharp, while (1) may be rather weak when pf (V, o) > 1.
When (V, o) is a rational singular point, Proposition 2.6 implies that |L| is free

from fixed components whenever L−KX is nef. Since KX is nef and H1(Z,OZ) = 0,
the following slightly more general result shows that, in fact, we have Bs|L| = ∅ in
this case.

Proposition 2.7. Let D be an effective non-zero divisor with H1(D,OD) = 0
on a smooth surface. If M is a nef line bundle on D, then the restriction map

H0(D, M) → H0(A, M) is surjective for any irreducible component A of D. In par-

ticular, Bs|M | = ∅ when M is nef.

Proof. First, we notice that H1(D′,OD′) = 0 holds for any effective divisor
D′ with D′ � D, since H1(D,OD) = 0. In particular, we have A ≃ P1. Let ∆ be a
minimal effective divisor with A � ∆ � D such that the restriction map H0(D, M) →
H0(∆, M) is surjective. Since H1(∆,O∆) = 0, we have pa(∆) ≤ 0 and, hence,
deg K∆ = 2pa(∆) − 2 ≤ −2. It follows that K∆ − M is not nef on ∆. By [4,
Lemma 2.2.1], A is of multiplicity one in ∆ and K∆ − M is nef on ∆ − A. Then

deg K∆ = deg K∆|∆−A + deg K∆|A ≥ deg M |∆−A + deg KA + (∆ − A)A

Notice that we have deg K∆ ≤ −2, deg KA = −2 and deg M |∆−A ≥ 0. Then (∆ −
A)A ≤ 0. On the other hand, since A is of multiplicity one in ∆, we have (∆−A)A ≥ 0.
Hence (∆−A)A = 0 and it follows A∩ (∆−A) = ∅. Then H0(∆, M) = H0(A, M)⊕
H0(∆ − A, M) and the restriction H0(∆, M) → H0(A, M) is surjective. Hence we
must have ∆ = A by the minimality of ∆.
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3. Further remarks. Here, we state some properties of loupes not needed for
the proof of Theorem 2.4 for the later use.

Let L be as before a line bundle with L − KX nef. Take an irreducible curve
E ⊂ Bs|L| and let ∆ be the loupe for E with respect to L. Put E2 = −n and let

∆ = E + Γ1 + · · · + Γn−1

be the decomposition of ∆ as in (4) of Proposition 2.2. Then we have
OΓi+···+Γn−1

(Γi−1) ≃ OΓi+···+Γn−1
for i ≥ 2 which implies either Γj ≺ Γi or

Supp(Γi)∩Supp(Γj) = ∅ when i < j. Since E is of multiplicity one in ∆ and EΓi = 1,
each Γi has a unique irreducible component of multiplicity one which intersects E at
a point.

Lemma 3.1. Each Γi is the fundamental cycle on its support and −Γi−
∑

Γj≺Γi
Γj

is nef on Γi. There exists a unique irreducible component Ai � Γi of multiplicity one

such that AiΓi = −1 and CΓi = 0 for any curve with C � Γi − Ai. Furthermore,

Ai 6= Aj for j 6= i, and AiE = 1 holds if and only if Γi is minimal in {Γν}
n−1
ν=1 .

Proof. The first assertion follows from Lemma 1.4. Since Γ2
i = −1 and OΓi

(−Γi)
is nef, one immediately sees that Ai as in the statement exists. When i < j, OΓj

(Γi)
is numerically trivial by Proposition 2.2, (4), and we get AjΓi = 0. Similarly, we get
AiΓj = 0 when j < i. Hence Aj 6= Ai for j 6= i. Let k be the biggest index such
that Γk � Γi. Since O∆−E(∆) is numerically trivial by Proposition 2.2, we obtain
AkE = 1 from 0 = Ak∆ = AkE + AkΓk. It follows that Ak is the unique component
of Γi which meets E.

The following will be useful when we study the configuration of the fixed part by
an inductive argument.

Proposition 3.2. Assume that Γi is minimal in {Γ1, . . . , Γn−1} and let Ai � Γi

be the curve as in the previous lemma. Then OΓi
(L − KX − Γi) ≃ OΓi

(pi), where

pi = Ai ∩ E. Furthermore, Γi is a minimal curve among those curves C with Ai �
C � Z such that H0(X, L) → H0(C, L) is surjective. In particular, Γi is the loupe

for Ai with respect to L, when Ai ⊂ Bs|L|.

Proof. Note that we have OΓi
(Γj) ≃ OΓi

for any j 6= i by the choice of Γi. It
follows OΓi

≃ OΓi
(KX − L + ∆) ≃ OΓi

(KX − L + Γi + E). Hence we get OΓi
(L −

KX − Γi) ≃ OΓi
(pi).

Before showing the second assertion, we notice that the restriction map
H0(∆, L) → H0(Γα, L) is surjective for any α ∈ {1, . . . , n − 1}. To see this, con-
sider the cohomology long exact sequence for

0 → O∆−Γα
(L − Γα) → O∆(L) → OΓα

(L) → 0.

We know that ∆−Γα is numerically 1-connected, because (∆−Γα)Γα = 1. We have
O∆−Γα

(L − Γα) ≃ O∆−Γα
(K∆−Γα

+ L − KX − ∆). Since O∆−Γα
(L − KX − ∆) is

nef of degree one, we get H1(∆ − Γα, L − Γα) = 0. Hence H0(∆, L) → H0(Γα, L) is
surjective.

Let C be any proper subcurve of Γi with Ai � C. Then OΓi−C(L − KX − Γi) ≃
OΓi−C by OΓi

(L − KX − Γi) ≃ OΓi
(pi). It follows that OΓi−C(L − C) ≃ ωΓi−C .

Consider the cohomology long exact sequence for

0 → OΓi−C(L − C) → OΓi
(L) → OC(L) → 0.
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We have h1(Γi − C, L − C) = h1(Γi − C, ωΓi−C) 6= 0 and H1(Γi, L) = 0. Hence the
restriction map H0(Γi, L) → H0(C, L) cannot be surjective. This means that Γi is a
minimal curve with Ai � Γi � Z such that H0(X, L) → H0(Γi, L) is surjective.

Though the following can be shown by using the A-D-E classification and the fact
given in Remark 2.5 that there is a non-multiple component E � ZE with EZE < 0,
we present the proof as an application of Proposition 3.2 for the use in the next
section.

Corollary 3.3. Let (V, o) be a normal surface singularity and π : X → V
the minimal resolution. Take a line bundle L on X such that L − KX is nef. Let

E =
⋃m−1

i=0 Ei be a connected bunch of irreducible curves Ei ⊂ Bs|L|. If the singular

point obtained by contracting E is a rational double point, then it is of type Am.

��
��

��
��

��
��q q q

��
��

��
��

∆m Em−1 Em−2 E1 E0

Fig. 1.

Proof. We know that all the Ei’s are (−2)-curves. Take the loupe ∆i for Ei

with respect to L. Since E2
i = −2, the decomposition of ∆i as in Proposition 2.2 is

of the form Ei + Γi,1. By Proposition 3.2, we can assume that Γi,1 = ∆i+1 for i ∈
{0, . . . , m−2} after changing the ordering of the Ej ’s if necessary. Put ∆m := Γm−1,1.
Then ∆m ≺ · · · ≺ ∆1 ≺ ∆0 and Ei = ∆i −∆i+1 for i ∈ {0, . . . , m− 1}. Furthermore,
we have EiEi+1 = 1 for i ∈ {0, . . . , m − 2} and EiEj = 0 when |i − j| > 1. Hence E
corresponds to the rational double point of type Am, and (a part of) the dual graph
of ∆0 is as in Fig. 1.

In particular, this suggests that we cannot produce an arbitrary rational singular
point by contracting the canonical fixed part.

Finally in this section, we want to emphasize the importance of the study of |K∆|
by showing that |K∆| faithfully inherits information on the base locus of |L|.

Lemma 3.4. For any subcurve C ≺ ∆, the restriction map H0(X, L) → H0(C, L)
is the zero map if and only if so is the map H0(∆, K∆) → H0(C, K∆). Furthermore,

Bs|K∆| = Bs|L| ∩ Supp(∆).

Proof. Recall that the restriction map H0(X, L) → H0(∆, L) is surjective and
O∆(K∆) ≃ O∆(L − p) for a general point p ∈ E by Proposition 2.2. Consider the
commutative diagram

H0(∆, K∆) −−−−→ H0(C, K∆)


y



y

H0(∆, L) −−−−→ H0(C, L),

where the horizontal maps are restrictions and the vertical maps are natural inclusions
induced by O∆(L − p) →֒ O∆(L). Since p ∈ E ⊂ Bs|L|, H0(∆, K∆) → H0(∆, L) is
an isomorphism. Hence the first assertion follows from the above diagram. As to
the second assertion, we only have to note that an isolated base point, if exists, is on
∆ − E.
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4. Weakly elliptic singularities. A normal surface singularity (V, o) is called
a numerically Gorenstein singularity if there exists a curve ZK such that −ZK is
numerically equivalent to KX on π−1(o). Such a curve ZK is called the canonical cycle

and the geometric genus of (V, o) is given by pg(V, o) = h1(ZK ,OZK
) (see e.g., [10]).

A normal surface singularity (V, o) is called an elliptic singularity [11] if pa(V, o) =
1. If an elliptic singularity is numerically Gorenstein, then ZK is a numerically 0-
connected curve, and S.S.T. Yau [13] introduced a sequence {Zi}

n
i=0 of curves with

ZK =
∑n

i=0 Zi, called the elliptic sequence, where the Zi’s are the fundamental cycles
on their respective supports (since we are on the minimal resolution), Zn ≺ Zn−1 ≺
· · · ≺ Z1 ≺ Z0 = Z and Zn is contracted to an elliptic Gorenstein singularity with
pg = 1 (a minimally elliptic singularity). It is shown in [13] that pg(V, o) is at most
n + 1, that is, the length of the elliptic sequence.

Theorem 4.1. Let (V, o) be a normal surface singularity and π : X → V the

minimal resolution. Let L be a line bundle on X such that L−KX is nef, and suppose

that |L| has a fixed component. Then the following hold.

(1) If (V, o) is an elliptic singularity, then the fixed part of |L| supports at most

exceptional sets of rational double points of type A.

(2) Let
⋃m−1

i=0 Ei be a connected component of the fixed part of |L| which supports

the exceptional set of the rational double point of type Am. Take the loupe ∆i for Ei

with respect to L, and change the indices so that ∆m−1 ≺ · · · ≺ ∆1 ≺ ∆0 if necessary.

Suppose that pa(∆0) = 1. Then ∆0 is contracted to an elliptic numerically Gorenstein

singularity and {∆i}
m
i=0 forms its elliptic sequence, where ∆m = ∆0 −

∑m−1
i=0 Ei.

Furthermore, O∆m
(L − KX) ≃ O∆m

(∆m−1).

Proof. The assertion (1) follows from Corollary 3.3, because (U, p) as in Propo-
sition 2.6 should be a rational double point if pa(V, o) = 1. In order to show (2), we
employ the same notation and conventions as in the proof of Corollary 3.3, assuming
now that E is a connected component of the fixed part. Recall that O∆0

(L − KX) is

numerically trivial by Proposition 2.2, (2). By Proposition 3.2, ∆m = ∆0 −
∑m−1

i=0 Ei

inherits nice properties from the preceding ∆i’s: We have ∆2
m = −1 and there exists

a unique irreducible component Em of multiplicity one in ∆m with Em−1Em = 1,
Em∆m = −1 and O∆m

(L − KX − ∆m) ≃ O∆m
(p), where p = Em−1 ∩ Em. We also

know that ∆m is the fundamental cycle on its support.
Suppose that pa(∆0) = 1. By [11] and [5], we obtain an elliptic singularity by

contracting ∆0, since pa(∆0) = 1 and ∆0 is the fundamental cycle. We know that
∆i is the fundamental cycle on its support and O∆i−Ei

(L − KX − ∆i) ≃ O∆i−Ei

for any i ∈ {0, . . . , m}. Since ∆2
i = −1 and KX is nef, we get pa(∆i) ≥ 1 by

0 ≤ KX∆i = 2pa(∆i) − 1. On the other hand, since ∆i is a 1-connected curve,
we have pa(∆i) = h1(∆i,O∆i

) ≤ h1(∆0,O∆0
) = 1. Hence pa(∆i) = 1. Since

∆i = ∆1 − E1 − · · · − Ei−1 and ∆i does not meet E0 + · · · + Ei−2, we have the
following:

Claim 4.2. O∆i
(L − KX − ∆j) ≃ O∆i

when i > j and O∆i
(L − KX − ∆i) ≃

O∆i
(Ei−1) when i > 0.

We remark that Em is not a (−2)-curve, because, otherwise, we have deg L|Em
=

deg KX |Em
= 0 and the property Em−1Em = 1 would imply that Em has to be a

fixed component of |L|, contradicting that E is a connected component. Then Em is
the unique irreducible component of ∆0 which has positive intersection with KX . In
fact, we have KXEm = 1 by KX∆0 = 1.



FIXED LOCI OF THE CANONICAL SYSTEM 461

Claim 4.3. ∆m is numerically 2-connected.

Proof. Let ∆m = A + B be any effective decomposition. We may assume that
Em � A. Then B∆m = 0. Furthermore, we have KXB = 0 which implies that B2

is a negative even integer. Then 0 = ∆mB = AB + B2 ≤ AB − 2. Hence ∆m is
2-connected.

Since ∆m is a 2-connected curve with pa(∆m) = 1, we have ω∆m
≃ O∆m

by [3,
Proposition (A.7)]. This implies that ∆m is the fundamental cycle of an elliptic
Gorenstein singularity with pg = 1 (a minimally elliptic singularity). Now, put ∆̃i =
∆i + ∆i+1 + · · · + ∆m for i ∈ {0, . . . , m}.

Claim 4.4. −∆̃i is numerically equivalent to KX on ∆i for any i ∈ {0, . . . , m}.
Furthermore, O∆i

(KX) ≃ O∆i
(−∆̃i) holds if and only if O∆m

((m − i)(L − KX)) ≃
O∆m

.

Proof. We already know that ω∆m
≃ O∆m

, that is, O∆m
(KX) ≃ O∆m

(−∆m).
This gives us the assertion for i = m.

We may assume that i < m. The fact that −∆̃i is numerically equivalent to
KX on ∆i easily follows from KX∆i = 1 and Claim 4.2, if we note that L − KX is
numerically equivalent to zero on ∆0.

Since ∆i is numerically 1-connected, O∆i
(KX) ≃ O∆i

(−∆̃i) is equivalent to
H0(∆i, KX + ∆̃i) 6= 0. We consider the exact sequence

0 → OEi+···+Em−1
(KX + ∆̃i − ∆m) → O∆i

(KX + ∆̃i) → O∆m
(KX + ∆̃i) → 0.

Since KX +∆̃i −∆m is anti-nef of degree −1 on the numerically 1-connected rational
curve Ei + · · ·+ Em−1, we get Hq(Ei + · · ·+ Em−1, KX + ∆̃i −∆m) = 0 for q = 0, 1.
Hence H0(∆i, KX + ∆̃i) ≃ H0(∆m,O∆m

(KX + ∆̃i)). It follows from Claim 4.2 that

O∆m
(KX + ∆̃i) ≃ O∆m

((m − i)(L − KX) + KX + ∆m) ≃ O∆m
((m − i)(L − KX)).

Therefore, we have O∆i
(KX) ≃ O∆i

(−∆̃i) if and only if O∆m
((m − i)(L − KX)) ≃

O∆m
.

We have shown that ∆̃i is the canonical cycle for the elliptic numerically Gorenstein
singularity (Vi, pi) obtained by contracting ∆i and that {∆j}

m
j=i is the elliptic sequence

for each i with 0 ≤ i ≤ m. We have O∆m
(L) ≃ O∆m

(KX + ∆m−1) by Claim 4.2.
Therefore, we get (2) of Theorem 4.1.

The converse of Theorem 4.1, (2) holds in the following sense.

Proposition 4.5. Let (V, o) be an elliptic numerically Gorenstein singularity

with pg(V, o) ≥ 2 whose fundamental cycle satisfies Z2 = −1 on the minimal resolu-

tion X. Let {Zi}
n
i=0, Z0 = Z, be the elliptic sequence. If L is a line bundle on X

numerically equivalent to KX , then either Bs|L| is one point (which is a non-singular

point of Zn) or it supports the exceptional set of the rational double point of type An.

The latter happens if and only if OZn
(L − KX) ≃ OZn

(Zn−1).

Proof. Since Z2 = −1, the minimal resolution dual graph is classified (see e.g.,
[12] and [9, Proposition 5.13]) which is much similar to one in Fig. 1. We see that
Ci = Zi − Zi+1 is a (−2)-curve for 0 ≤ i ≤ n − 1 and that Zn is the fundamental
cycle of an elliptic Gorenstein singularity with pg = 1. Furthermore, the dual graph
of C0 + · · ·+Cn−1 is of Dynkin type An with Cj−1Cj = 1 for 1 ≤ j ≤ n−1, CiCj = 0
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when |i−j| > 1. We have Cn−1Zn = 1 and the intersection point p = Cn−1∩Supp(Zn)
is a non-singular point of Zn. Since ωZn

≃ OZn
, we have OZn

(KX) ≃ OZn
(−Zn) ≃

OZn
(−Zn−1 + Cn−1). Therefore, OZn

(p) ≃ OZn
(KX + Zn−1).

Note that we have Z2
i = −1 and pa(Zi) = 1 for any i, 0 ≤ i ≤ n. We know

that the restriction map H0(X, L) → H0(Z, L) is surjective and that h0(Zi, L) = 1
for each i with 0 ≤ i ≤ n, since L is numerically equivalent to KX . Consider the
cohomology long exact sequence for

0 → OC0+···+Cn−1
(L − Zn) → OZ(L) → OZn

(L) → 0.

We have H0(C0 + · · · + Cn−1, L − Zn) = 0, since L − Zn is anti-nef of degree −1 on
C0+ · · ·+Cn−1. Hence the restriction map H0(Z, L) → H0(Zn, L) is an isomorphism.
Let s ∈ H0(Z, L) be a non-zero element. Then s|Zn

vanishes exactly at one point
q ∈ Zn which is a non-singular point of Zn, because Zn is numerically 2-connected.
We have OZn

(q) ≃ OZn
(L). Note that s is constant on C0+ · · ·+Cn−1. It follows that

s ∈ H0(Z, L), which vanishes at q, also vanishes on C0+· · ·+Cn−1 if and only if p = q.
By what shown above, we have p = q if and only if OZn

(L) ≃ OZn
(KX + Zn−1).

When L = KX on Zn, the condition OZn
(L) ≃ OZn

(KX + Zn−1) be-
comes OZn

(Zn−1) ≃ OZn
which is equivalent to pg(Vn−1, pn−1) = 2 by [9, 2.20],

where (Vn−1, pn−1) denotes the singularity obtained by contracting Zn−1, and
then (Vn−1, pn−1) is Gorenstein by [9, 3.5]. We have mult(Vn−1, pn−1) = 2 and
embdim(Vn−1, pn−1) = 3 by [9, 5.4].

Corollary 4.6. Let (V, o) be an elliptic numerically Gorenstein singularity with

pg(V, o) ≥ 2 whose fundamental cycle satisfies Z2 = −1 on the minimal resolution X.

Then the fixed part of |KX | supports the exceptional set of the rational double point of

type An if and only if the length of the elliptic sequence is n+1 and pg(Vn−1, pn−1) = 2
holds for the singularity obtained by contracting Zn−1, where {Zi}

n
i=0 denotes the

elliptic sequence.

Example 4.7. Let n be a positive integer and consider two hypersurface singu-
larities respectively defined by the following equations:

(I) z2 = x(x4n+2 + y4), (II) z2 = x6(2n+1) + y3

Both are elliptic singularities and have the same minimal resolution dual graph as in
Fig. 1 with m = 2n and ∆m being a (−1)-elliptic curve. We have pg(V, o) = n + 1 for
(I) and pg(V, o) = 2n + 1 for (II). It can be checked directly that Bs|KX | is one point
when (I) is the case, while it consists of 2n (−2)-curves forming the Dynkin diagram
of type A2n when (II).

5. Appendix (Isolated base points). We have ignored isolated base points
so far. We can say at least the following about them. Although this is very similar
to Theorem 1.1 and Proposition 2.2, we give a proof for the readers’ convenience.

Proposition 5.1. Let (V, o) be a normal surface singularity and π : X → V
the minimal resolution. Let L be a line bundle on X such that L − KX is nef. If

x ∈ Bs|L|, then there exists a subcurve ∆ of Z satisfying:

(1) The restriction H0(Z, L) → H0(∆, L) is surjective.

(2) ∆ is the fundamental cycle on its support, ∆2 = −1 and x is a non-singular

point of ∆.
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(3) L − KX is numerically trivial on ∆ and O∆(L) ≃ ω∆ ⊗O∆(x).

Proof. We take an irreducible component A through x and let ∆ = ∆(A) be a
minimal curve such that A � ∆ � Z and the restriction map H0(Z, L) → H0(∆, L)
is surjective. We see that K∆ − L = ∆ − (L − KX) is not nef on ∆, since L − KX is
nef and ∆2 < 0. It follows from [4, Lemma 2.2.1] that A is of multiplicity one in ∆,
K∆ − L is nef on ∆ − A and the image of H0(Z, L) → H0(A, L) contains the image
of the injection H0(A, L − (∆ − A)) → H0(A, L). Since K∆ − L is not nef on ∆, we
have deg(L − K∆)|A = deg(L − (∆ − A))|A − deg KA > 0. From this, we infer that
H0(∆, L) → H0(∆ − A, L) is surjective. This allows us to assume that there are no
components of ∆−A containing x. In fact, if there is another component B ≺ ∆ with
x ∈ B, then we can argue with B instead of A, since what we have shown implies
that ∆(B) � ∆ − A ≺ ∆ = ∆(A).

Then, since x ∈ Bs|L|, we must have x ∈ Bs|OA(L− (∆−A))|. Since degOA(L−
(∆−A)) > deg KA, we see that x is a non-singular point of A and OA(L−(∆−A)) ≃
OA(KA + x) (see, e.g., [10, p. 113]). The last isomorphism shows that A∆ + 1 =
deg(L−KX)|A ≥ 0. Then 0 > ∆2 = (∆−A)∆ + A∆ ≥ deg(L−KX)|∆−A − 1 ≥ −1.
In sum, we get A∆ = ∆2 = −1 and see that O∆(L − KX) and O∆(∆ + x) are
both numerically trivial. Since H0(∆, L) → Ox is zero, we have H1(∆, L − x) 6= 0
which is equivalent to H0(∆, K∆ − L + x) 6= 0. Since ∆2 = −1, ∆ is numerically
1-connected by Lemma 2.1. Since O∆(K∆−L+x) is numerically trivial, we conclude
that O∆(L) ≃ O∆(K∆ +x). We know that ∆ is the fundamental cycle on its support,
because ∆ is numerically 1-connected and O∆(−∆) is nef.

Lemma 5.2. Let the notation and assumptions be as above. Assume furthermore

that x is an isolated base point of |L|. If pa(∆) = 1, then ∆ is numerically 2-connected.

Proof. Recall that ∆ is a numerically 1-connected curve that is the fundamental
cycle on its support. If ∆ is not 2-connected, then we have an effective decomposition
∆ = ∆1+∆2, ∆1∆2 = 1. In particular, ∆1 and ∆2 are both numerically 1-connected.
Since ∆2 = −1 and pa(∆) = 1, we have KX∆ = 1 which enables us to assume that
KX∆1 = 1, KX∆2 = 0. Since ∆2

1 + ∆2
2 = −3, we have ∆2

1 = −1 and ∆2
2 = −2

for the reason of parity. Hence ∆2 is a connected curve consisting of (−2)-curves,
all with multiplicity one. Recall that L and KX are numerically equivalent on ∆
by Proposition 5.1. It follows that we have O∆2

(L) ≃ O∆2
. This implies that x 6∈

Supp(∆2), because x is an isolated base point of |L|. Then O∆2
(∆) is numerically

trivial, because so is O∆(∆ + x). Hence 0 = ∆2∆ = ∆2(∆1 + ∆2) = 1 − 2 = −1, a
contradiction. Therefore, ∆ is numerically 2-connected.

We obtain an elliptic Gorenstein singularity with pg = 1 by contracting ∆ as
above. So, Lemma 5.2 gives us a clearer picture of Bs|L|, when (V, o) is an elliptic
singularity and L − KX is nef: Bs|L| consists of (−2)-curves forming configurations
of type A and several isolated points lying on the fundamental cycles (with self-
intersection numbers −1) of elliptic Gorenstein singularities with pg = 1.
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