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ON FIRST ORDER CONGRUENCES OF LINES IN P
4 WITH

GENERICALLY NON-REDUCED FUNDAMENTAL SURFACE∗

PIETRO DE POI†

Abstract. In this article we obtain a complete description of the congruences of lines in P
4 of

order one provided that the fundamental surface F is non-reduced (and possibly reducible) at one
of its generic points, and their classification under the hypothesis that (F )red is smooth.
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Introduction. A congruence of d-dimensional linear subspaces in P
n is an irre-

ducible subvariety (“family”) B′ of dimension n − d of the projective Grassmannian
G(d, n). By taking a resolution B of singularities of B′, one can pull back the univer-
sal subbundle on G(d, n), obtaining a smooth P

d-bundle Λ on B, which has dimension
n. Since Λ ⊂ B × P

n, the second projection induces a morphism p : Λ → P
n between

manifolds of the same dimension, and one defines the order of the family as the degree
of p. Geometrically, this is the number of d-planes of the family passing through a
general point in P

n.
The case where B is a surface (n− d = 2), and the order is one, was classified by

Ziv Ran ([Ran86]), extending the classical work of Kummer ([Kum66]) for n = 3 and
order at most two.

The case where n = 4, d = 1 and the order is one was considered by G. Marletta
([Mar09b], [Mar09a]) and, since [De 99], we are trying to complete Marletta’s incom-
plete classification and to bring it up to modern standards. In fact, in [De 99] we
have started the classification of first order congruences of lines in P

4, and the first
two steps of the classification are in in [De 05] and [De 01].

In this article, we study one of the most difficult and exciting cases, namely
when the fundamental surface (see below) of our congruence is non-reduced at one
of its generic points. The study of these cases is not only interesting in its own and
for its applications to projective geometry, but it will also be useful—hopefully—
for mathematical physics, in the theory of systems of conservation laws, see [AF1]
and [AF2]. In particular, the results contained here can be used to classify the three
dimensional Temple systems of conservation laws which are hyperbolic but not strictly
hyperbolic, and so, among other things, can complete the results contained in [AF3].

From now on, we will consider always, for simplicity, d = 1. The set up for
studying congruences of lines is the following: let us denote by R the ramification
divisor of p, and by Φ its schematic image, i.e. the branch locus, which will be called
the focal locus.

We can observe that, if the order is at least two, by the purity of the branch locus,
Φ contains a hypersurface, whereas, if the order is one, the morphism p is birational.
Thus, by Zariski’s main theorem, each component of the focal locus has codimension
two, since it is precisely the locus where the fibre dimension is positive; moreover,
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set-theoretically, Φ coincides with the fundamental locus, i.e. the set of points in P
n

through which there pass infinitely many lines of the congruence.
The pure fundamental locus (∅ 6=)F ⊂ Φ is instead the image under p of the

components of R which surjectively project onto B; this means geometrically that
every line of B intersects each component of F .

If the order is one and n = 4, it can be proven that either dim(Φ) = 0, in which
case B is a star of lines (i.e. the set of lines passing through the point (Φ)red) or
dim(Φ) = 2 (see Theorem 2.2 in [De 04]). In what follows, we shall only consider
congruences of lines in P

4 such that Φ has pure dimension two. In this situation B′

is a three-dimensional subvariety of the trisecant lines to F , by a result of C. Segre
(see Proposition 1.1 below). The cases in which F contains a component of dimension
one is treated in [De 01], while the case in which the pure fundamental locus F is a
(generically) reduced and irreducible surface is in [De 05].

Here we are interested in the cases in which F has some component of dimension
two such that F is nonreduced at the corresponding generic point. F will also be
called fundamental surface and it is either irreducible or reducible. For both these
possibilities we give a precise description.

Classically, congruences of order one in P
4 were treated by G. Marletta in [Mar09b]

for the generically reduced case and in [Mar09a] for the rest. In this paper Marletta’s
classifications are reproved and completed. In particular we deduce the complete list
of these congruences provided that all the reduced components of F are smooth.

This article is structured as follows: after giving, in Section 1, the basic definitions,
we give examples of all the possible congruences with a non-reduced component of the
fundamental locus (finding also a case which is missing in Marletta’s list) in Section 2,
and in Sections 3 and 4 we prove that no other congruence with this characteristic
property can exist. A partial list of these congruences has also been obtained by
A. Oblomkov ([O]). If we suppose that all the components of the reduced locus of the
pure fundamental locus are smooth, we obtain the complete list in Theorem 0.1.

In this theorem and throughout this article we will use the following notation and
conventions: F will be the pure fundamental locus, and moreover we set D := (F1)red,
where F1 is a two-dimensional component of F such that F is nonreduced at the
generic point of F1. If b ∈ B, then Λ(b) ⊂ P

4 is the corresponding line of the
congruence.

Theorem 0.1. If the fundamental surface F of a first order congruence of lines
in P

4 is such that F1 6= ∅ and all the components of (F )red are smooth, then we have
the following possibilities:

1. F (= F1) is irreducible, and we have the following cases:
(a) length(Λ(b) ∩D) = 1, in which case D is a plane and the congruence is

as in Example 1; or
(b) length(Λ(b) ∩D) = 2, D is a rational normal cubic scroll, and the con-

gruence is as in Example 2; or
2. F has two irreducible components, F1 non-reduced and F2 reduced, and we

have the following cases:
(a) D = (F1)red is a plane and F2 is a rational normal cubic scroll, and we

have the following cases:
i. D ∩ F2 is either a line or a conic and the congruence is as in Ex-

ample 4; or
ii. D ∩ F2 is a (smooth) conic and the congruence is as in Example 3;

or
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(b) F2 is a plane, and D = (F1)red is a rational normal cubic scroll; D∩F2 is
a smooth conic, unisecant to D, and the congruence is as in Example 5.

Vice versa a family of lines of dimension three constructed as in each of the cases
of the theorem is a first order congruence in P

4.
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with and suggestions of F. Catanese. I want to thank him, E. Mezzetti and E. Arrondo
for their help in the elaboration of this paper.

I would also like to thank A. A. Oblomkov for the useful discussions on the subject.

1. Notation, definitions and preliminary results. We will work with
schemes and varieties over the complex field C, with standard notation and defin-
itions as in [Har77]. In this article, a variety will always be projective and irreducible.
We refer to [De 01] and [De 03] for general results and references about families of
lines, focal diagrams and congruences, and to [GH78] for notations about Schubert cy-
cles. So, we denote by σa0,a1

the Schubert cycle of the lines in P
4 contained in a fixed

(4 − a1)-dimensional subspace H ⊂ P
4 and which meet a fixed (3 − a0)-dimensional

subspace Π ⊂ H . We recall that a congruence of lines in P
4 is a (flat) family (Λ, B, p)

of lines in P
4 obtained as the pull-back of the universal family under the desingu-

larization of a subvariety B′ of dimension three of the Grassmannian G(1, 4). So,
Λ ⊂ B × P

4 and p is the restriction of the projection p1 : B × P
4 → B to Λ, while

we will denote the restriction of p2 : B × P
4 → P

4 by f . Λb := p−1(b), (b ∈ B) is a
line of the family and f(Λb) =: Λ(b) is a line in P

4. Λ is smooth of dimension three:
therefore we can define the focal divisor R ⊂ Λ as the ramification divisor of f . The
focal locus Φ = f(R) ⊂ P

4, is the scheme theoretic image of R.
In this article, we study the first order congruences of lines, i.e. congruences B for

which through a general point in P
4 there passes only one line of B; or, equivalently,

we can write

(1) [B′] = σ3 + aσ2,1,

where [B′] is the rational equivalence class of B′—as a linear combination of Schubert
cycles of the Grassmannian; so, the class a is the degree of the ruled surface generated
by the lines of the congruence which belong to a general P

3 (i.e. the intersection
number [B′] ·σ2,1). Given a first order congruence B, through a focal point there will
pass infinitely many lines in B, i.e. a focal point is a fundamental point and the focal
locus coincides set-theoretically with the fundamental locus.

An important result, due to Corrado Segre, is the following (see [De 01], Propo-
sition 1 for a proof):

Proposition 1.1 (C. Segre, [Seg88]). On every line Λ(b) ⊂ P
4 of the family, the

focal locus Φ either coincides with the whole Λ(b)—in which case Λ(b) is called focal
line—or is a zero dimensional scheme of Λ(b) of length three.

Let us observe that, if the order is one, the morphism p is birational, thus, by
Zariski main theorem (finite plus birational cover of a normal variety is an isomor-
phism), the focal locus is not a hypersurface, so dim(Φ) ≤ 2. Actually, we have proven
in [De 04] that dim(Φ) = 2 if B is not a star of lines.

Here we are interested in first order congruences of lines in P
4 for which the focal

locus Φ has pure dimension two, so the “important” component of Φ is the fundamental
2-locus (see [De 01], [De 03] and [De 04]), which is characterized by the fact that it is
formed by the components of Φ of pure dimension two such that the general line of the
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congruence meets it in a zero dimensional scheme (see [De 01], Proposition 2). The
fundamental 2-locus will be called pure fundamental locus or, in what follows, simply
fundamental surface and it will be indicated with F (For the other “non-important”
components of Φ, i.e. the parasitic planes, see [De 05]).

In the rest of the paper, we need more notation. To a first order congruence B
we associate:

• the hypersurface VΠ in P
4 given by the lines of B which intersect a general

plane Π ⊂ P
4. So, deg(VΠ) = 1 + a, where a is the class of B (see (1));

• the surface ΣH—of degree a—of the lines of B contained in a general hy-
perplane H ; we can think of it as the image of the P

1-bundle over the curve
ΓH ⊂ B, obtained by pulling back the intersection of B′ with the Schubert
variety of the lines contained in H .

• we set also CH := (F )red ∩H(⊂ ΣH).

Remark. First of all we note that Sing(ΣH) ⊂ CH , since through a singular point
P of the surface there pass more than a line of the congruence (possibly infinitely near).
Besides, for the generality of H and dimensional reasons, ΣH cannot be contained in
F .

Lemma 1.2. Let D be a surface in P
4 and P a smooth point in D such that, for

a general point Q in D, the tangent planes TP,D and TQ,D do not span P
4. Then the

surface D is degenerate.

Proof. Take projective coordinates such that the local parametrization of D at
P is F := (1 : x : y : f(x, y) : g(x, y)), where f, g vanish of order ≥ 2 for x = y = 0.
Our statement is that the 6 vectors e0, e1, e2 and F, Fx, Fy have rank (at most) 4.
This simply means that the three vectors (f, g), (fx, gx), (fy, gy) have rank (at most)
1, and implies that the map (x : y) 7→ (f : g) has constant image in P

1. Without loss
of generality we may then assume g ≡ 0, hence D is degenerate.

Proposition 1.3. The congruence B of the tangent lines to a surface D ⊂ P
4

cannot have order one.

Proof. First we note that if D is a cone, B has order zero. Moreover, D is
contained in the focal locus F of B. If P ∈ TP1,D ∩ TP2,D, then P ∈ F , since two
lines pass through it.

We cannot have dim(TP1,D ∩ TP2,D) = 1 by the preceding lemma, so we suppose
that TP1,D ∩ TP2,D =: Q is a point and that B is a first order congruence. Now, if
dim(TP,D ∩F ) = 0 for the general P ∈ D, then Q ∈ (TP,D ∩F ), since TP,D ∩TP ′,D ∈
TP,D ∩ F as P ′ varies in D. Therefore Q is fixed; but then the dual variety D∗

would be degenerate, and D would be a cone (this argument holds only on a field of
characteristic zero).

Instead dim(TP,D ∩ F ) = 1 means that there is a family of dimension two of
planes curves contained in F . But the surfaces with this property in P

4 are classified
in C. Segre’s Theorem (see [MP97], Theorem 4 for a modern proof) and they are the
projected Veronese surface, the rational normal smooth cubic scroll and the cones. If
D is this surface, we conclude by observing that couples of tangent planes to either
the Veronese surface or the cubic ruled surface do not meet in a point in D.

Otherwise, there is another nondegenerate (if it is degenerate, also D is degener-
ate) surface D′ ⊂ F which is in the list of C. Segre’s Theorem, and the congruence
B is given by the lines which are tangent to B and these lines moreover meet D′.
In particular, on every line r of B, the three foci of r are a double point in D and
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a single point in D′. D′ cannot be a cone, since again D∗ would be degenerate; in
fact all the tangent planes would pass through the vertex of D′. Then D′ is either
the projected Veronese surface or the cubic scroll, and in both these cases the plane
curves are irreducible conics C ⊂ TP,D. We recall that the lines of B contained in
TP,D form the pencil of lines through the point P ∈ D, P

1
P . But if C ⊂ TP,D is the

conic, and ℓP ∈ P
1
P , then either the two points ℓP ∩C are focal, but then ℓP ⊂ F and

therefore every line in B is focal, or only one of the two points is focal for ℓP . But
then, we would obtain a regular map from P

1
P
∼= P

1 to C which is injective not but
surjective.

Corollary 1.4. ΣH does not contain a component SH which is the surface of
the tangents to a curve C.

Proof. If it were so, C ⊂ CH and then B would be given by the family of tangent
lines to D = (F1)red.

Lemma 1.5. ΣH does not contain a component SH which is a cone.

Proof. If every SH would be a cone, since this cone spans the hyperplane H , we
would have ∞4 such cones, whence ∞5 pairs (SH , L), where L is a line of the cone
SH . Since such a line L belongs to ∞2 hyperplanes, it follows that we get in this way
∞3 lines, hence the whole congruence of lines.

Consider the irreducible variety S image of the rational map H → VH . We know
that dim(S) ≤ 2, hence a general V = VH is a vertex of at least ∞2 cones, and a
fortiori there are at least ∞2 lines of the congruence which pass through V . Hence
we obtain that S is a 1-dimensional component of the focal locus, which is excluded
by our assumption.

Lemma 1.6. ΣH does not contain a component SH which is a quadric.

Proof. If SH is a quadric, it must be smooth, by the preceding lemma.
If SH is a smooth quadric, only one of the two families of lines contained in it can

be contained in B, otherwise SH ⊂ F , and this is absurd by varying H .
Let ℓ be a line of the congruence contained in SH . If ℓ′ is another general line

of the congruence not contained in H , the hyperplane H ′ := ℓ′ℓ determines another
quadric SH′ . By construction, SH∩SH′ = ℓ∪ℓ′′, and ℓ′∩ℓ′′ 6= ∅; therefore ℓ′ intersects
SH , which is absurd since every line of B should intersect SH . This again implies
SH ⊂ F , the same contradiction.

2. The examples. Since the congruences we are studying are rather complicated
to construct, we first give some examples describing them, and afterwards we will show
that these examples exhaust all the possible congruences.

Remark. We observe first that if a component of the focal locus is contained
set-theoretically in a hyperplane H , then the lines of the congruence contained in H
form a first order congruence. Therefore a way of constructing congruences in P

4 (or
in general in P

n) is to reverse this by considering a one-dimensional linear system of
hyperplanes in P

4 such that in each of them there is a first order congruence of lines
in P

3, and such that these congruences vary algebraically.

Then, we start recalling the classification of first order congruences in P
3: we

follow the notation used in [De 04]: let ℓ be a fixed line in P
3, then P

1
ℓ is the set of the

planes containing ℓ. Let φ be a general nonconstant morphism from P
1
ℓ to ℓ and let Π

be a general element in P
1
ℓ . We define P

1
φ(Π),Π as the pencil of lines passing through

the point φ(Π) and contained in Π.
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If B is a first order congruence of lines in P
3 with focal locus F , then

1. P := Fred is a point and B is the star of lines passing through P ; or
2. F is a rational normal curve in P

3 and B is the family of secant lines of F ; or
3. ℓ := Fred is a line, and the congruence is ∪Π∈P

1
ℓ

P
1
φ(Π),Π; or

4. F = F1∪F2 where F1 is a line and F2 is a rational curve, such that length(F1∩
F2) = deg(F2) − 1 and B is the family of lines meeting F1 and F2.

In order to state the examples of congruences in P
4, we need some more notations:

• if H ⊂ P
4 is a linear space, H∗ denotes its dual, i.e. the linear space of the

hyperplanes in H ; if K ⊂ H is another subspace, we set K∨
H := {Π ∈ H∗ |

Π ⊃ K} ⊂ H∗ (or simply K∨ if H = P
4) i.e. K∨

H is the projective dual
subspace of K in H ; k will denote an element in K∨

H ;
• |C| denotes the complete linear system associated to the divisor C;
• a general (rational) map from X to Y will be denoted by φX,Y ;
• if X,Y ⊂ P

4, J(X,Y ) ⊂ G(1, 4) is J(X,Y ) := {ℓ ∈ G(1, 4) | ℓ ∩ X 6= ∅ 6=
ℓ∩ Y }; X and 〈X〉 are, respectively, the (Zariski) closure and the span of X .

• We recall that we set D := (F1)red, where F1 is the component of F which is
non-reduced.

• Finally, in the case in which F = F1 ∩F2 is also reducible, we denote CH,1 :=
(F1)red ∩H and CH,2 := F2 ∩H , so CH = CH,1 ∪ CH,2. ki is the algebraic
multiplicity of CH,i in ΣH .

Example 1. Let us see how to construct a congruence of lines in P
4 from the

case (3) in P
3, with set-theoretically linear focal locus, i.e. D := Fred is a plane. We

want to follow the remark above, so we need a pencil of hyperplanes, and therefore we
have to fix a plane D ⊂ P

4, so that the pencil is D∨. Now, for every element d ∈ D∨,
we have to find a line ℓd ⊂ D, in order to construct the congruence of lines in d ∼= P

3.
Since we do not want (embedded) components of dimension one, we suppose that the
line ℓd is not the same for all the elements in D∨. In brief, we have fixed a morphism
φ := φD∨,D∗ .

Now, we have to construct a congruence in every d ∈ D∨, as in case (3), and
therefore we have to fix a morphism ψd := φφ(d)∨

d
,φ(d); moreover, we are in the algebraic

category, and so we assume that we have an algebraic family of morphisms {ψd}d∈D∨.
Now it is clear that our congruence in P

4 is formed by the lines of the pencils
(ψd(h))∨h as h varies in φ(d)∨d and d in D∨, i.e.

B = ∪d∈D∨ ∪h∈φ(d)∨
d

(ψd(h))∨h ;

an easy calculation (or one can see Theorem 8, case 3 of [De 01] where this con-
gruence is also introduced) shows that the bidegree of Λ is (1, d1d2m + 1), where
d1 := deg(φ), d2 := deg(ψd) and m := deg(φ(D∨)) and if r is the general line in D,
then deg(f−1(r)) = d1d2m.

We note that we could construct more first order congruences if we associate to d
a general line in P

4 (and not contained in D). Actually, in this case the reduced focal
locus D := Fred is a ruled surface and it is easy to show that B is given by a family of
secant lines to D, and in fact this case is contemplated in the example which follows.

Example 2. We will see now how to construct a first order congruence of lines
B such that it is a subfamily of the secant lines to the reduced locus D := (F )red. Let
us suppose that D is a rational normal cubic scroll in P

4, i.e. either a non-degenerate
cone or a rational normal (smooth) scroll of type (1, 2). In order to do so, let us
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consider a curve C0 which is either the zero section (see Proposition V.2.8 of [Har77])
if the scroll is smooth, i.e. an irreducible conic, or a pair of lines if D is a cubic
cone, and then let us fix a map φ|C0|,F which associates to the curve C ∈ |C0| a point
PC := φ|C0|,F (C) ∈ C; then we define a congruence as

B := ∪C∈|C0|(PC)∨
〈C〉

;

it is clearly a first order congruence of lines and moreover, if k = deg(φ|C0|,F ) then
the class of B is 2k.

If we want to obtain congruences of lines in P
4 from case (4), we have in fact many

possibilities, since we may suppose either that the line or the rational curve is in the
non-reduced locus. In particular, we will see that in Example 3 we have the case of
the curve (a conic, indeed), and in Example 4 the line; in both cases the non-reduced
locus is a plane.

Example 3. So, let us first suppose that D := (F1)red is a plane, and that the
rational curves of case (4) are conics contained in D. Then, we also suppose that F2

is a non-degenerate rational scroll of type (1, d) and by what we are supposing, the
ruling lines must be the lines of case (4); therefore, D ∩ F2 is a unisecant curve (of
degree d) in F2. Now, let |H1| ∼= P

1 be the linear system of the lines of the ruling
in F2 and |C2| the linear system of conics in D; then the congruence is defined as
follows: fix a morphism φ := φ|H1|,|(|C2) such that φ|H1|,|C2|(ℓ) ∩ ℓ 6= ∅; then we set

B := ∪ℓ∈|H1| ∪r∈J(ℓ,φ
|H1|,|C2|

(ℓ)) r;

we also have that k1 = (d + 1) deg(φ) deg(Im(φ)), k2 = 2, and so a = 2 +
deg(F2) deg(φ) deg(Im(φ)).

Example 4. Again, let us first suppose that D := (F1)red is a plane, but now we
suppose that in it there are contained the lines of case (4). Now, we suppose also that
F2 is a non-degenerate rational surface with sectional genus zero (i.e. either a rational
scroll or the projected Veronese surface); let d ∈ D∨ and let |H1| be the corresponding
linear system of the curves H1 := (F2 ∩ d) \D; then the congruence is given in this
way: fix a morphism φ := φ|H1|,D∗ such that length(φ|H1|,D∗(C2)∩C2) = deg(C2)−1;
then we set

B := ∪C2∈|H1| ∪r∈J(C2,φ
|H1|,D∗ (C2)) r;

we have also that k1 = deg(F2) deg(φ) deg(Im(φ)) and k2 = 1, and so a = 1 +
deg(F2) deg(φ) deg(Im(φ)).

In the last example the focal locus is reducible, and the non-reduced component
will be a rational ruled surface. Also this, as Example 1, is obtained from case (3) in
P

3:

Example 5. Now F2 is a plane, suppose that D = (F1)red is a non-degenerate
rational scroll of type (1, c) and that D ∩ F2 is a unisecant curve in D of degree c.
Let |H1| ∼= P

1 be the linear system of the lines of the ruling in D; the congruence is
obtained in the following way: ∀L ∈ |H1|, fix a morphism ψ := φL∨

〈L,F2〉

,L; then we set

B := ∪L∈|H1| ∪l∈L∨

〈L,F2〉

ψ(l)∨l ;

we have also that k1 = deg(ψ) and k2 = c+ 1, and so a = deg(D) + deg(ψ).
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3. The case of an irreducible fundamental surface. We start considering
the case in which F is irreducible; since we are interested in the cases in which F is
non-reduced at a generic point, we have two possibilities: either the general line Λ(b)
intersects F in a fat point of length three, or it intersects F in two points, one of
which is a fat point of length two and the other is a simple point.

3.1. The case in which length(Λ(b) ∩ (F )red) = 1. If the general line of the
congruence intersects F in only a fat point, we can prove the following:

Theorem 3.1. With notation as in the introduction, if length(Λ(b) ∩ D) = 1,
then D is a plane and the congruence is given in as in Example 1.

Vice versa a family of lines constructed in this way is a first order congruence.

Proof. Let us consider the surface ΣH of degree a associated to a general hyper-
plane H ; it contains the curve CH with some algebraic multiplicity, say k.

If L ⊂ ΣH is a (general) line, and l ∈ L∨
H a general plane, then l ∩ ΣH = L ∪ C,

where C is a curve of degree a − 1, with a point of multiplicity k − 1 in L ∩ F . C
intersects L in only another point, i.e. the sole point in which l is tangent to the
irreducible component SL of ΣH which contains L. We recall in fact that a general
tangent plane to a surface S is tangent at only one point in S but in the case in which
S is a surface of tangents to a curve or a cone (see [Zak93]), and SL can be neither a
surface of tangents to a curve nor a cone, by Corollary 1.4, and Lemmas 1.5 and 1.6;
therefore we have that a = k + 1.

I claim now that CH is a plane curve. Indeed, observe first that any (bi)secant
line to CH through a general point in L meets ΣH in at least k+k+1 points counting
multiplicities. Since ΣH has degree a = k + 1 < 2k + 1, it follows that such a line is
contained in ΣH . If CH is not a plane curve, it follows that through a general point of
it there pass at least two lines of it (the line L and one of the bisecant lines mentioned
above). But it is well known that a ruled surface with such a property is necessary a
quadric surface, which contradicts Lemma 1.6.

Therefore F is a degenerate surface; actually, it must be a plane: in fact, if P is a
general point in 〈CH〉, then through it there passes only one line ℓP of the congruence,
and its focal point ℓP ∩D is contained in CH .

By Theorem 8 of [De 01], in which we classified all first order congruences in P
4

whose fundamental locus is set-theoretically linear, we finish the proof.

3.2. The case in which length(Λ(b) ∩ (F )red) = 2. Of these congruences we
give a complete classification in the following

Theorem 3.2. If B is a first order congruence of lines given by a subfamily of
the secant lines to the reduced locus D := (F )red of its pure fundamental locus F , then
D is a non-degenerate cubic scroll in P

4 and the congruence is given as in Example 2.
Vice versa a B constructed in this way is a first order congruence such that

length(Λ(b) ∩D) = 2.

Proof. Let us consider the surface ΣH of degree a associated to a general hyper-
plane H ; it contains the curve CH with some (algebraic) multiplicity, say k′.

As in the proof of the preceding theorem, we fix L ⊂ ΣH , and l ∈ L∨
H . Then

l ∩ ΣH = L ∪ C, where C is a curve of degree a − 1, with two points of multiplicity
k′−1 in L∩F . As before, C intersects L in only another point, by Corollary 1.4, and
Lemmas 1.5 and 1.6 and a = 2k′.

In this case, CH must be a twisted cubic: in fact, we recall that the twisted cubic
is the sole irreducible curve with only one apparent double point, and so if CH is not
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the twisted cubic, the secant lines to CH passing through a point P ∈ L which are
distinct from L are contained in ΣH , by degree reasons, and so ΣH must be a quadric,
contradicting Lemma 1.6. Therefore we have only a secant line to CH through P , L,
and CH can only be a twisted cubic and (F )red a rational normal scroll of degree three
in P

4. We recall that the planes of the conics in the cubic scrolls cover P
4: therefore

the lines of the congruence contained in one of these planes can be a congruence of
order one and we are in the case of the assertion of the theorem, or it is a finite set.
But the last case cannot occur: in fact, every secant line determines in a unique way
a conic in the scroll, so we would have that dim(B) = 2.

k′ = deg(φ|C0|,F ) := k since k′ is the degree of the cone of the lines in B through
a general point in the scroll. So, by what we said above, k = k′ and a = 2k.

Vice versa, it is easy to see that a congruence constructed in such a way, has
order one.

Remark. We note that the case of the cone in the preceding theorem was not
considered by G. Marletta in [Mar09a].

Moreover, the only possible smooth surface in Theorem 3.2 is the rational normal
cubic scroll in P

4, so we have done case (1b) of Theorem 0.1.

4. The case of a reducible and non-reduced fundamental surface. Now
we consider the case in which F is reducible but not (generically) reduced; we have
only one possibility: the general line Λ(b) intersects a component F1 of F in a fat
point of length two, and so F1 is non-reduced, and the other component F2 (which is
reduced) of F in a simple point.

We recall we have denoted CH,1 := (F1)red ∩ H and CH,2 := F2 ∩ H , so CH =
CH,1 ∪ CH,2 and ki is the algebraic multiplicity of CH,i in ΣH .

We start with

Lemma 4.1. Either D := (F1)red or F2 is a plane. Moreover, the class of the
congruence is a = k1 + k2.

Proof. As in the proof of the preceding two theorems, we fix L ⊂ ΣH , and l ∈ L∨
H .

Then l ∩ΣH = L∪C, where C is a curve of degree a− 1, with a point of multiplicity
k1−1 and a point of multiplicity k2−1 in L∩F . C intersects L in only another point,
by Corollary 1.4, and Lemmas 1.5 and 1.6, and a = k1 + k2. Reasoning as before,
through a general point in L there will not pass another joining line CH,1 and CH,2,
and so these lines generate a first order congruence in H . Then, since all the first
order congruences of lines in P

3 are classified (see, for example, [De 04] Theorem 0.1),
we have that one of these curves is a line.

Proposition 4.2. Let B be a first order congruence with non-reduced and re-
ducible fundamental locus F , whose non-reduced component is F1 and the other is F2.
Then we have the following possibilities:

1. D := (F1)red is a plane, and we have the following cases:
(a) F2 is a non-degenerate rational scroll of type (1, d) and D ∩ F2 is a

unisecant line in F2 and the congruence is as in Example 3; or
(b) F2 is a non-degenerate rational surface with sectional genus zero (i.e.

either a rational scroll or the projected Veronese surface) and the con-
gruence is as in Example 4; or

2. F2 is a plane, and D = (F1)red is a non-degenerate rational scroll of type
(1, c), D ∩ F2 is a unisecant curve in D of degree c and the congruence is as
in Example 5.
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Proof. As we observed in the remark in Section 2, if we have a linear component
in the pure fundamental locus, then the lines of B contained in a general hyperplane
containing this component give a first order congruence in P

3. So, if F2 is this plane,
the congruence induced in an f2 ∈ F∨

2 has a non-reduced line as a fundamental locus,
given by F1 ∩ f2 (see for example Theorem 0.1, case (1b) of [De 04]), from which we
obtain case (2).

If instead D = (F1)red is a plane, then the congruence induced in a d ∈ D∨ is
a congruence with two fundamental curves, L and C, L is a line and if deg(C) = c,
then length(C ∩ L) = c − 1 (Theorem 0.1, case (2) of [De 04]). If L ⊂ F2, we have
case (1a), while if L ⊂ (F1)red we have case (1b).

The calculations of k1 and k2 are immediate once one remembers that these
numbers are the degrees of the cones of the lines of B passing through a general point
in, respectively, F1 and F2. The class follows from Lemma 4.1.

From this, we easily obtain Theorem 0.1, case (2).
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