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The name continuity principle is related to one of the first basic observations in
several complex variables. It goes back to the work of Hartogs and Cartan–Thullen.
This principle provides us the classical tool for obtaining compulsory analytic contin-
uation in the following sense. There are domains in Cn, n > 1, with the property that
all analytic functions in the domain have analytic extension to a larger domain. The
following classical form of the continuity principle uses continuous families of analytic
discs. We will formulate it only for the case of complex dimension n = 2 and we will
restrict ourselves to this case throughout the paper.

Denote by c ⊂ C2 the set c = {(z1, z2) ∈ C2 : |z1| ≤ 1, z2 = 0} ∪ {(z1, z2) ∈ C2 :
|z1| = 1, z2 ∈ [0, 1]} and by C its convex hull, C = {(z1, z2) ∈ C2 : |z1| ≤ 1, z2 ∈ [0, 1]}.
Note that c is topologically a half-sphere with boundary a circle (equivalently, a closed
disc; for avoiding confusion with analytic discs we prefer to speak about half-spheres).
For a small positive number ǫ we denote by cǫ, respectively,. Cǫ, the corresponding
ǫ-neighbourhoods. Let F : Cǫ → C2 be a locally biholomorphic mapping. The conti-
nuity principle says that any analytic function f in F (cǫ) has analytic continuation to
a neighbourhood of any point in F (Cǫ). (But in general, there is no analytic function
in F (Cǫ) which is an extension of the original function f).

The advantage of the continuity principle is that it is geometric in its nature. It
is well-known that the envelope of holomorphy of a domain D in Cn (the “largest”
Riemann domain over Cn to which all analytic functions in D have analytic extension)
can be obtained by a successive procedure, consisting in gluing to the preceding set
families of immersed analytic discs (Levi-flat 3-balls) F (C) along half-spheres F (c).
Even this simple approach allows to make some statements about the envelope of
holomorphy of some domains.

For further applications, in particular for making guesses concerning envelopes of
holomorphy in more subtle situations, more general and flexible versions of the conti-
nuity principle are helpful. It is not easy to find such more general versions and mis-
takes have been made in the literature. One would like to replace families of immersed
analytic discs by families of Riemann surfaces with boundary (bordered Riemann sur-
faces for short), or, more generally, by families of one-dimensional analytic varieties
with boundary or by 1-chains, provided a suitable condition of semi-continuity of
these objects and their boundaries is given.

Here we will state the version of continuity principle given in [JP].
Start with the following observation (which we explain just for the sake of sim-

plicity only in case the mapping F is injective on Cǫ). Namely, the aforementioned
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procedure of gluing Levi-flat 3-balls along half-spheres (part of their boundaries) is
equivalent to gluing such 3-balls along 2-spheres (their full boundaries).

Indeed, the topological half-sphere F (c) can always be extended to a full (embed-
ded) 2-sphere S which is contained in F (cǫ) and bounds an embedded 3-ball which is
foliated by analytic discs. To see this, consider a copy of c which is translated away
from c by a small constant vector which is transversal to the discs in C. Give this
copy the opposite orientation and join the two copies by a collar consisting of a family
of circles which are parallel translations of the unit circle in the z1-plane. We obtain
a 2-sphere S which bounds a 3-ball consisting of the union of a family of flat discs.
We may assume that the sphere S is contained in cǫ and the related family of discs
is contained in Cǫ. The mapping F takes S to the required 2-sphere S. As in the
classical form of continuity principle any analytic function in a neighbourhood of S

extends analytically to a neighbourhood of the ball.
For many purposes it is more convenient to think about gluing of Levi-flat 3-balls

along their full boundaries.
Consider now the more general situation when the family of analytic discs is

replaced by a family of bordered Riemann surfaces (not necessarily connected) and
the boundaries of the Riemann surfaces constitute an arbitrary oriented connected
closed surface. (By a surface we always mean a real two-dimensional manifold). We
assume that the Levi-flat manifold constituted by the family of Riemann surfaces is
embedded into two-dimensional complex space.

Notice the following abuse of language. Speaking about bordered Riemann sur-
faces and their boundaries we have not necessarily the notion of a manifold with
boundary in mind. We mean any relatively compact open subset of an open Riemann
surface and its boundary in the open Riemann surface. We may take for example any
open planar set and its boundary with respect to Euclidean topology.

The following definition (see [JP]) gives a precise description of the required con-
ditions.

Definition. Let M2 be a two-dimensional Stein manifold. Let h̄ be a smooth
embedded compact three-manifold with boundary contained in M2 such that the open
manifold h is Levi-flat and ∂h is connected. Suppose that h̄ extends to a larger smooth
embedded Levi-flat hypersurface H in M2 the Levi-leaves of which are closed in M2

(but not necessarily connected). Assume that the parameter space of the Levi-leaves
of H is the interval (0, 1). Then h is called a Hartogs manifold.

Thus, as a set, the Hartogs manifold h is the union of connected open Riemann
surfaces embedded into M2. h has the structure of a smooth manifold. Moreover, on
h a smooth function with values in a subset of (0, 1) is given, such that the level sets
of this function are finite unions of connected Riemann surfaces. These level sets are
the Levi-leaves of the Hartogs manifold and the function realizes a parametrization of
the set of Levi-leaves of h. The union of the boundaries of the Levi-leaves constitute
a connected surface. Moreover, it is required, that the Levi-leaves of h extend to
a continuous family of relatively closed (not necessarily connected) one-dimensional
analytic manifolds in a Stein manifold.

It will be convenient to have also the following definition.

Definition. We will say that for a relatively compact Levi-flat 3-dimensional
manifold h in a 2-dimensional Stein manifold the continuity principle holds if for any
analytic function f defined on a neighbourhood of ∂h there exists an analytic (single-
valued) function on a neighbourhood of h that coincides with f on a (possibly smaller)
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neighbourhood of ∂h.

The following theorem is proved in [JP].

Theorem 1. Let M2 be a 2-dimensional Stein manifold. Then the following
holds:

1) Let H be a smooth embedded Levi-flat hypersurface in M2 consisting of the
union over the parameter set (0, 1) of closed (in M2) Levi-leaves. Then any
smooth connected closed surface S ⊂ H bounds a uniquely defined Hartogs
manifold h contained in H.

2) Suppose h is a Hartogs manifold in M2. Then the continuity principle holds
for h.

Note that in theorem 1 we allow situations which do not appear in case the bound-
ary ∂h is contained in the boundary of a pseudoconvex domain. Namely, we allow
bifurcation of the Riemann surfaces which can be described as “drilling holes”. For
example, we may consider a family of analytic discs which bifurcates to a punctured
disc (by removing a point) and then to an annulus. This gives more flexibility for
applications.

Part 1 of the theorem can be reformulated in the following way.
1’) Let H be a smooth embedded Levi-flat hypersurface in a two-dimensional Stein

manifold M2 with closed (in M2) Levi-leaves. If H does not contain circles
transverse to the Levi-foliation then the second homology of H vanishes.

We refer also to the paper [Fo] where it is shown that in general the Hartogs-
Bochner theorem can not be proved by “successively pushing analytic discs”. More
precisely, there is a domain Ω ⊂ C2 with connected boundary such that the following
procedure does not exhaust the domain Ω. Consider a neighbourhood D0 of the
boundary ∂Ω. Starting with D0, subsequent domains Dk are obtained by gluing to
the preceding domain Dk−1 a connected subset of F (Cǫ) (F biholomorphic and ǫ > 0)
along a connected neighbourhood of F (cǫ). At each step gluing is carried out in such
a way that the added set does not leave Ω and does not meet the preceding domain
along more than one connected component. The latter requirement is crucial for
controlling that analytic continuation obtained by this method is single-valued.

Theorem 1 is a method to bypass this difficulty. For instance, the theorem has the
following application. Let Ω ⊂ C2 be a bounded domain. Denote by A(Ω) the space
of analytic functions on Ω which are continuous on the closure Ω. For a compact set
K ⊂ Ω we consider the following notion of hull:

A(Ω)-hull(K) = {z ∈ Ω : |f(z)| ≤ max
K

|f | for all f ∈ A(Ω)}.

Let Ω̃ be the envelope of holomorphy of Ω and let ι : Ω → Ω̃ be the natural embedding.

Theorem 2. Let Ω ⊂ C2 be a bounded domain with smooth connected boundary.
Let K ⊂ ∂Ω be a compact set for which ∂Ω\K is connected and ∂Ω∩A(Ω)-hull(K) =
K. Let D be a connected neighbourhood of ∂Ω\K in Ω which does not meet
A(Ω)-hull(K). Then for each z ∈ Ω\A(Ω)-hull(K) and for each generic g ∈ A(Ω)
with g(z) = 1 and maxK |g| < 1 the analytic manifold Ag = {z ∈ Ω : g(z) = 1} can

be lifted to a Levi-leaf of a Hartogs manifold h in Ω̃ with ∂h ⊂ ιD.

We call the function g with the aforementioned properties generic if 1 is a regular
value for its extension to the envelope of holomorphy Ω̃. Notice that for Ω, K and z

as above such functions always exist (see [JP]). The theorem implies that, given Ω,
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K, D, g, Ag and z as in the statement of the theorem, for any analytic function f

in D there exists an analytic function in a neighbourhood of Ag which coincides with
the previous function on the part of D which is close to ∂Ag. Denote the restriction
of this analytic function to a neighbourhood of z by fg. The following proposition
holds.

Proposition [Jö]. The function fg does not depend on the choice of the generic
function g.

As a corollary we obtain that under the conditions of Theorem 2 analytic functions
in D have single-valued analytic extension to the whole Ω\A(Ω)-hull(K) (see [JP]).
In particular, putting K = ∅ we obtain a proof of the Hartogs-Bochner theorem using
only continuity principle.

As in the example of Fornaess, to carry out the analytic continuation stated in
theorem 2 we leave the set ιΩ and work on Ω̃.

As for the proposition and the mentioned corollary we restrict the analytic contin-
uation obtained in theorem 2 to a suitable neighbourhood of a leaf ιAg of the Hartogs
manifold described in theorem 2. These are sets contained in ιΩ. Analytic extension
to Ω\A(Ω)-hull(K) is carried out by collecting the analytic continuations to subsets
of ιΩ of the form ιAg and controlling that they match together to a single-valued
analytic function. This can be done staying inside the set ιΩ.

Note that in [CS] a version of continuity principle is stated for families of one-
dimensional analytic varieties (even more generally, for holomorphic 1-chains) instead
of Riemann surfaces. The conditions in [CS] allow in particular the aforementioned
“drilling of holes” without further conditions on the analytic varieties. Unfortunately,
in such situations analytic continuation cannot be guaranteed. Theorem 3 below
provides, in particular, a counterexample to the statement in [CS]. A counterexample
to the statement in [CS] was given before by Rosay in the simpler case of C3 ([Ro]).

Our theorem 3 below proves, moreover, the following. The requirement in Theo-
rem 1 that the Levi-leaves of the Levi-flat manifold extend to a continuous family of
closed 1-dimensional complex manifolds in a Stein manifold, can not be omitted. It
will not be even enough to require that they extend to analytic varieties of dimension
one which are closed in a Stein manifold.

Here is another application of Theorem 1.

Corollary. Let (S, ∂S) be a compact surface with boundary, contained in the

unit bidisc D
2

in C2 and attached to a face of the bidisc, i.e. ∂S ⊂ ∂D × D. Suppose
that S is contained in the real hyperplane {(z, w) ∈ C2 : Imw = 0}. If ∂S is a circle
which is not contractible in ∂D×D, then the envelope of holomorphy of ∂D×D∪S is the
closed bidisc. In other words, for any function which is analytic in a neighbourhood of

the latter set there exists an analytic function in a neighbourhood of D
2
which coincides

with the previous function in a (maybe smaller) neighbourhood of ∂D × D ∪ S.
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Fig. 1
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Note that S may have arbitrary genus (see figure 1). For this generality we
pay with the very restrictive condition that the surface is contained in a real hyper-
plane. The corollary complements results of Ivashkovitch-Shevchishin [IS], Chirka-
Rosay [Ch], [CR1], [CR2], and Nemirovski [Ne].

We would like to emphasis here that though the scope of the present topic seems
to be somewhat wider, the interest of the authors in the continuity principle arose
in connection with global problems in CR-geometry. In particular theorem 2 applies
to the problem of analytic extension of continuous CR-functions from parts of non-
pseudoconvex hypersurfaces in C2 (see [JP]). Also, the results in [CS] were motivated
by the problem of analytic extension of CR-functions from hypersurfaces.

Proof of corollary. Let f be an analytic function in a connected neighbourhood
U of ∂D×D∪S. Deforming S slightly inside U we may assume that S ⊂ D×D. The
boundary ∂S of the surface S is an embedded circle, contained in the set ∂D × D ∩
{Imw = 0} = ∂D × (−1, 1). The latter set is an annulus and ∂S is not contractible
in this annulus. Hence ∂S is homologous to the circle ∂D × {1 − ε} for some small
ε > 0. We may assume that the circle is disjoint from ∂S. Attach to S the relatively
compact subset Ω of ∂D × (0, 1) bounded by ∂S and the circle ∂D × {1 − ε}. The
union S ∪ ∂S ∪ Ω is a topological surface contained in {Imw = 0} of the same genus
as S. Its boundary is the flat circle ∂D × {1 − ε}. Smoothen the surface to obtain
a surface S0 ⊂ {Imw = 0} ∩ U with boundary ∂S = ∂D × {1 − ε}. For small δ > 0
the surface Sδ which is a parallel copy of S0 on {Imw = δ} is contained in U . Join
S0 and Sδ by a collar contained in U which consists of the union of flat circles (i.e.
circles contained in complex lines parallel to the first coordinate axis). We obtain a
smooth surface S ⊂ U . The surface S is contained in a smooth Levi-flat hypersurface
the leaves of which are lines parallel to the first coordinate axis.

By theorem 1 S bounds a Hartogs manifold and the function f extends to a
holomorphic function in a neighbourhood of the Hartogs manifold. Being relatively
compact the Hartogs manifold contains the disc D×{1 − ε} . By the classical version
of the continuity principle the function f extends to a holomorphic function in a
neighbourhood of D × D.

Failure of the continuity principle. We will now give the aforementioned
example of failure of continuity principle, namely, we will show that there exists a
smoothly embedded relatively compact Levi-flat hypersurface h in C2 with connected
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boundary ∂h for which the continuity principle fails. More precisely, the following
theorem holds.

Theorem 3. There exists a smooth embedded two-sphere S in C2which bounds a
smooth embedded relatively compact Levi-flat three-ball B with the following properties.

1) B is foliated into schlicht-like Riemann surfaces (i.e. Riemann surfaces that
are equivalent to domains in the complex plane). Each leaf is contained in
an algebraic hypersurface in C2 (but some of the hypersurfaces have singu-
larities and are reducible. In such case the corresponding Riemann surface
is contained in one of the irreducible branches). The algebraic hypersurfaces
form a continuous one-parameter family (in the sense that there are defining
polynomials depending continuously on the parameter).

2) There exists an analytic function in a domain D ⊂ C2 containing S which
does not extend to an analytic function in a neighbourhood of B. Moreover
the projection of the envelope of holomorphy of a small neighbourhood of S

does not cover B.
3) S can be lifted to a two-sphere S contained in a (two-sheeted) pseudoconvex

Riemann domain R over C2. S bounds a Levi-flat three-ball in R which is
foliated into analytic discs. Hence S can be filled by (not necessarily embedded
and disjoint) analytic discs.

Note that by property 1) the three-ball B is contained in the polynomial hull Ŝ

of S. Property 2) shows that the envelope of holomorphy of S does not cover the
polynomial hull Ŝ. Moreover Ŝ has non-empty interior (see below).

In order to contrast theorem 3 to theorem 1 we will first sketch the scheme of
proof of theorem 1 and explain why the effect described in statement 2) of theorem
3 cannot occur if the Riemann surfaces extend to smooth closed complex curves in a
Stein manifold the union of which forms a smooth (not necessarily closed) embedded
real hypersurface. After that we will prove theorem 3.

Scheme of proof of Theorem 1. Let S be as in statement 1 of theorem 1. We
have to prove that S bounds a Hartogs manifold h and statement 2 holds. We may
assume that the parametrization m of leaves of S defines a smooth Morse function m

on S. For all real numbers a > minS m we denote by Sa
j , j = 1, . . . , N, the connected

components of Sa def
= S∩{m < a}. Put Ha = H∩{m < a}. The following proposition

is the key of the proof.

Proposition 1. For each j the set Ha\Sa
j has exactly one connected component

which is relatively compact in M2. This component is denoted by Ba
j and is called a

bowl (more precisely a-bowl). The boundary ∂Ba
j is the union of Sa

j and a subset of the
analytic manifold H∩{m = a}. Each function that is holomorphic in a neighbourhood
of Sa

j extends holomorphically to a neighbourhood of Ba
j ∪ Sa

j .

Here is a sketch of proof of the proposition. Uniqueness of relatively compact
connected components of Ha\Sa

j is based on the fact that the Stein manifold M2

does not contain compact analytic manifolds. Existence of the bowls and analytic
continuation is proved successively for increasing a, passing through critical values.

1) For a > minS m and close to a there is exactly one bowl H ∩ {m < a}.
2) When the parameter increases over regular values a, new slices of the same

topology as the top slices Ba
j ∩ {m = a′}, a′ < a and close to a , will be added to the

bowl. This is possible because the leaves of H are closed manifolds in a Stein manifold.
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Analytic continuation follows from continuity principle applied to a continuous family
of bordered Riemann surfaces of the same topological type.

3) When a goes through a local minimum, a new bowl appears (it may or may
not be a subset of the continuation of a bowl previously existing).

4) For a passing through a local maximum the topology of the top slice changes.
Either a connected component disappears or a hole in the slice disappears.

In both cases 3) and 4) analytic continuation to a neighbourhood of the bowls is
obtained without difficulty.

5) Passing through saddle points is more subtle. In a neighbourhood of a saddle
point the following three cases may occur.

a) Two disjoint local connected components of previous bowls (i.e. connected
components of the intersection of the previous bowls with a neighbourhood of the
saddle point) touch each other at the saddle point and join to a single bowl. Globally
either two bowls may join or some connected component of slices may obtain more
complicated topology. Analytic continuation is straightforward.

b) This case is obtained from a) by inverting the direction of the parameter: A
single local bowl splits into two local connected components of bowls. The number
of bowls is preserved but either the number of connected components of slices in-
creases or the topology of some of the components simplify. Analytic continuation is
straightforward.

c) Two local bowls intersect and their boundaries touch each other at the saddle
point. Then one of the global bowls is contained in the other one. Remove the closure
of the smaller bowl from the larger bowl. This difference of the two bowls continues
as a single bowl.

This is the only case where analytic continuation is more subtle. The argument
is as follows. Denote the critical point by z, put a = m(z) and denote the two
bowls by Ba

1 and Ba
2 . The bowls correspond to connected components Sa

1 and Sa
2

resp. of the sublevel set of S. Sa
1 and Sa

2 meet at the point z and join to a single
component of the sublevel set of S for b > a. Consider an analytic function in
the neighbourhood of Sa

1 ∪ Sa
2 . Its restriction to Sa

j has analytic continuation to a
neighbourhood of Ba

j ∪ Sa
j , j = 1, 2. The obtained analytic functions near the Ba

j

coincide in a neighbourhood of z. Hence the function near the smaller bowl must be
the restriction of the analytic function near the bigger bowl. In particular there is an
analytic function near the difference of the bowls which coincides with the previous
one near both boundary components Sa

1 and Sa
2 . Now analytic continuation to a

neighbourhood of the continuation of the difference of the bowls is obtained in the
standard way.

Theorem 1 is obtained by applying the proposition to values exceeding maxS m.
In this case there will be a single bowl, which will be the desired Hartogs manifold h.
The statement of proposition 1 concerning analytic continuation is just statement 2
of the theorem.

Note that the validity of the statement of theorem 1 is essentially based on the
properties of Hartogs manifolds. First, the existence of the smooth Levi-flat manifold
H which extends h and has closed Levi leaves in a Stein manifold allows to add
slices of the same topology as the top slice (see case 2)) or, respectively, allows to
associate to “drilling of holes” (i.e. to the change of connectivity of the leaves of h)
the appearance of a new bowl inside the continuation of an already existing one (case
3)).

Connectedness of the boundary S = ∂h guarantees that the functions providing
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analytic continuation from a neighbourhood of S = ∂h to respective neighbourhoods
of different nested a-bowls are related. Indeed, case 5c) shows that these functions
coincide on a neighbourhood of the smaller of the a-bowls if suitable continuations
(and reconstructions) of the nested a-bowls have a common boundary point on S.
Since S = ∂h is connected this is the case for any pair of nested a-bowls.

The situation in theorem 3 is different. For the Levi-flat ball B some “drilled
holes” can be filled by bowls only up to some level a and not further. Given an
analytic function in a neighbourhood of S, for nested a-bowls Ba

0 ⊂ Ba
1 corresponding

to sublevel sets Sa
0 and Sa

1 of S the analytic continuation of f from a neighbourhood
of Sa

1 to a neighbourhood of Ba
1 may not coincide with f near Sa

0 . In such case the
function may not possess analytic continuation to a neighbourhood of the difference

Bb
1\B

b
0 for b > a.

Proof of Theorem 3. The sphere S will be the connected sum of two spheres S0

and S1 (i.e. a disc will be removed from each sphere and a two-dimensional handle
will be glued along the circles). Start with the description of S0. Denote coordinates
in C2 by (z, w) = (x + iy, u + iv). S0 will be the graph over a two-sphere in {(z, w) ∈
C2 : Imw = 0} ≃ C × R and will have exactly two elliptic points. More precisely,
consider the following algebraic hypersurfaces Xt = {(z, w) ∈ C2 : (w − t)z = s(t)},
t ∈ R. Here s is a smooth function, s(t) = 0 for |t| ≥ 1 and s(t) > 0 for |t| < 1. The
family Xt is defined by a continuous family of polynomials. The family of analytic
varieties is continuous in the sense of Gromov. For t = ±1 bubbling occurs. The limit
in the Gromov topology of the irreducible curves Xt, |t| < 1, at ±1 consists of the
union of the two irreducible curves {z = 0} and {w = ±1}.

For all t with |t| ≥ 1 the variety Xt is reducible and its irreducible branch X̃t =
{(z, w) ∈ C2 : w = t} is contained in {Imw = 0} . Moreover,

⋃
t≥1 X̃t = {Imw =

0, Rew ≥ 1}, and the respective relation holds for the union over t ≤ −1.
We will require further that |s′(t)| < 1 on R. This condition implies that the

mapping

(z, t) → (z, Re(t +
s(t)

z
)), |z| ≥ 1, t ∈ R,

is a diffeomorphism onto the set {(z, w) ∈ C2 : Imw = 0, |z| ≥ 1} which maps the set

{|z| ≥ 1, |t| ≤ 1} onto the set {|z| ≥ 1, w ∈ [−1, 1]}. Put g(z, t) = (z, t+ s(t)
z

), |z| ≥ 1,
|t| < 1, and g(z, t) = (z, t), z ∈ C, |t| > 1. The mapping g is defined on the set

E
def
= {(z, t) ∈ C×R : |z| ≥ 1, |t| ≤ 1} ∪ {(z, t) ∈ C×R : z ∈ C, |t| > 1}. It maps each

subset of E to a graph over the corresponding subset of {Imw = 0} in C2. Moreover

the full image F
def
= g(E) =

⋃
|t|≤1(Xt ∩ {|z| ≥ 1}) ∪

⋃
|t|>1 X̃t is a smooth Levi-flat

hypersurface in C2, the leaves of which are parts of the algebraic hypersurfaces Xt.
Choose now a smooth sphere S′

0 in E with exactly two elliptic points which is
not homologous to zero in E, e.g. a large round sphere in C × R centered at the
origin. Let S0 ⊂ F be the image of this sphere under the map g and let S̃0 be the
orthogonal projection of S0 onto {Imw = 0}. We may assume that the theorem of

Bedford and Gaveau applies, and hence the polynomial hull Ŝ0 (and also the envelope
of holomorphy) of S0 is a closed three-ball b0, such that the open ball b0 is foliated
by analytic discs. Note that b0 is a graph over the bounded connected component b̃0

of {Imw = 0} \ S̃0. We may also assume that b̃0 × iR is strictly pseudoconvex.
Let S1 ⊂ F be a two-sphere with two elliptic points, which is the graph over a

large sphere S̃1 in {Imw = 0} \ b̃0.
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Given a number ǫ > 0, by the choice of the mapping g the sphere S1 may be chosen
in such a way that for any point (z, w) ∈ S1 the inequality |Imw| < ǫ holds. Indeed,
taking for S̃1 a large round sphere in {Imw = 0} centered at the origin will suffice.

We may again assume that the polynomial hull Ŝ1 (and the envelope of holomorphy
of S1) is equal to a closed three-ball b1 with b1 foliated by analytic discs. Note that
b1 ⊂ {|Imw| < ǫ}.

The union of the two spheres S0 ∪ S1 bounds a spherical shell Ω on F which is
foliated into complex curves, either discs or annuli, and which is therefore contained

in the polynomial hull Ŝ0 ∪ S1 of S0 ∪ S1. The complex curves constituting Ω are
subsets of the set Xt (for |t| < 1) or X̃t (for |t| ≥ 1). Moreover, the part of Ω which
is contained in {|Rew| ≥ 1} is foliated by flat discs or annuli (i.e. by curves along
which w is constant). These discs or annuli, respectively, are also contained in the

polynomial hull Ŝ1.
The leaves of Ω ∩ {|Rew| < 1} are annuli contained in certain Xt with |t| < 1.

They do not extend to analytic discs and therefore intersect each disc of the foliation
of b1 in a (possibly empty) discrete set. Moreover, by boundary uniqueness theorems
for analytic functions the boundary of any disc in the foliation of b1 cannot intersect
some Xt, |t| < 1, along a set of positive linear measure.

Construction of R. Before obtaining the sphere S as connected sum of S0 and
S1 we construct a pseudoconvex Riemann domain R over C2 (see statement 3 of the
theorem) to which we will lift the sphere S.

Start with the following observation. By Sard’s lemma there is a dense open
subset of S1 ∩ {|Rew| < 1}, so that at each point of this set the boundary of the leaf
Xt ∩ Ω which passes through this point intersects transversally the boundary of the
analytic disc of the foliation of b1. (The respective fact also holds for S0 instead of
S1).

This implies by the edge-of-the-wedge theorem [AH] that the polynomial hull

Ŝ0 ∪ S1 of S0 ∪ S1 has non-empty interior.
Further, notice that no point in Ω is contained in Ŝ0 (because these sets are graphs

over disjoint subsets of {Imw = 0}). Choose ǫ > 0 small enough and choose S1 so

that Ŝ1 is contained in {|Imw| < ǫ}. Then there are points in S0 which are contained
in {|Imw| ≥ ǫ}]. This implies that for parameters t in some interval I ⊂ (−1, 1) the

set Xt∩Ω is not contained in Ŝ0∪Ŝ1. Let t0 ∈ I and let γ be a simple curve in Xt0 ∩Ω
which joins a point in S0 with a point in S1. We may assume that γ\{|Imw| < ǫ} is
connected (take for instance for γ a connected component of Xt0 ∩ {Rez = 0} ∩ Ω).
After a small change of the parameter t0 and the curve γ ⊂ Xt0 ∪ Ω we may assume
that the endpoint p of γ on S1 is in the aforementioned open set.

The Riemann domain R is now obtained in the following way. Let U0 be a
bounded (connected) and smoothly bounded strictly pseudoconvex neighbourhood of

Ŝ0, which is close to Ŝ0, and let U1 be a bounded and smoothly bounded strictly
pseudoconvex domain which contains the product of a large ball in {Imw = 0} with

the segment {w ∈ (−iǫ, +iǫ)} and is close to it. We require also that U1 contains Ŝ1.

We may assume that the curve γ1
def
= γ \ (U0 ∪ U1) is connected and meets U0 ∪ U1

only at the endpoints of γ1.
Surround γ1 by a thin cylindrical tube T of varying width (topologically the

product of an open 3-ball with the curve) the closure of which does not meet Xt1

for another parameter t1 ∈ I. The tube T may be chosen disjoint from U0 ∪ U1

and is attached to ∂U0, and to ∂U1, respectively, along 3-balls corresponding to the
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tips of γ1. The resulting set U0 ∪ U1 ∪ T may be lifted to a two-sheeted Riemann
domain R. The tubular neighbourhood T may be chosen in such a way that the
Riemann domain R is pseudoconvex (for example, in the sense that R is a manifold
with boundary and the natural projection π : R → C2 maps the intersection with R
of suitable neighbourhoods of boundary points of R to pseudoconvex domains in C2).

The prescribed procedure of gluing pseudoconvex handles appeared in the litera-
ture first in [Sh]. For a more general approach see [El]. By results of Oka [Ok] and
Grauert [Gr] R is a Stein manifold.

Construction of S. We start with considerations which allow to fulfill the
requirement that the sphere S admits a lift S ⊂ R which is contained in a strictly
pseudoconvex boundary. Let V0 ⊂ U0 be a smoothly bounded strictly pseudoconvex
domain the boundary of which contains S0. We may assume that V0 is contained in
b̃0 × iR.

Similarly, let V1 ⊂ U1 be a smoothly bounded strictly pseudoconvex domain which
contains S1 in its boundary and has the following additional property: The curve γ

meets the closure V1 exactly at the endpoint p of γ on S1.

The latter property can always be achieved in the following way. Take a strictly
pseudoconvex domain containing Ŝ1 and close to Ŝ1. Consider a smooth hypersurface
H which contains S1, is tangent to F at points of S1 close to p and strictly pseudocon-
vex from the side which meets b1 . (Recall that near p the leaves of F are transversal
to the discs of the foliation of b1.) It follows that near p the boundary of V1 is on one
side of the Levi-flat hypersurface F . We assume that the hypersurface H is relatively
closed in the aforementioned strictly pseudoconvex domain and forms a collar around
S1. This collar divides the pseudoconvex domain. Take the connected component
which is pseudoconvex and smoothen its boundary fixing the part close to S1.

By the choice of V0 and V1 the curve γ meets V0 ∪ V1 exactly at the endpoints.
Surround γ by another strictly pseudoconvex handle T glued along three-balls to ∂V0

and ∂V1, respectively. We may choose T so that the union V0∪V1∪T lifts to a strictly
pseudoconvex domain G contained in the Riemann domain R.

Notice that T ∩Ω is glued to S0 and S1, respectively, along two-balls (discs). The
result of the latter (two-dimensional) handle gluing is the required sphere S which
is embedded into C2 (see figure 2, which shows the intersection of S with Rez = 0).
The handle T can be chosen so that S is smooth.
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Fig. 2
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The part of the sphere contained in S0∪S1 contains only elliptic complex tangen-
cies. A point in the remaining part Ω∩∂T is a complex tangency iff at this point ∂T is
tangent to a leaf of Ω. It is now easy to see that possibly after a small perturbation of
∂T the constructed sphere S has the following property: the lift S ⊂ R of S satisfies
the conditions of the theorem of Bedford-Klingenberg [BK]. Part 3 of the theorem is
proved.

The set B of part 1 of theorem 3 equals Ω\T . This set is a three-ball obtained
from a spherical shell by drilling a cylindrical hole around a curve joining the two
boundary components. It is now clear that B has the properties required in assertion
1 of the theorem.

For the proof of assertion 2 of the theorem notice that the natural projection from
R to C2 defines a biholomorphic mapping π from a (connected) neighbourhood of S
in R onto a neighbourhood D of S in C2. Hence the envelope of holomorphy D̃ of D
can be considered as a Riemann domain over the pseudoconvex manifold R and hence
the natural projection π̃ from D̃ to C2 maps D̃ into πR. Since πR = U0∪U1∪T does
not contain Xt1 ∩Ω ⊂ B assertion 2 of the theorem is proved. An analytic function on
D which cannot be extended to an analytic function on a neighbourhood of B can be
obtained from a nowhere extendible analytic function on R by restricting to π−1(D)
and taking the push-forward under π. The theorem is proved.

The authors are grateful to the referee for his critics, suggestions and questions
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which led to a simplification of the proof and a strengthening of the statement of
theorem 3.
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