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Abstract. Let D be a bounded strongly pseudoconvex domain in a Stein manifold, and let Y

be a complex manifold. We show that many classical spaces of maps D̄ → Y which are holomorphic
in D are infinite dimensional complex manifolds which are modeled on locally convex topological
vector spaces (Banach, Hilbert or Fréchet). This holds in particular for Hölder and Sobolev spaces
of holomorphic maps.
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1. Introduction. Given complex manifolds (or complex spaces) X and Y , it is
a natural question whether the space H(X,Y ) of all holomorphic mappings X → Y
is also a complex manifold (resp. a complex space). If X is a compact complex space
without boundary then H(X,Y ) is a finite dimensional complex space which can be
identified with an open subset in the Douady space D(X ×Y ), [2, Theorem 1.5]. The
set of all holomorphic maps from a noncompact manifold in general does not admit
any particularly nice structure.

In §2 of this paper we prove the following results.

Theorem 1.1. Let D be a relatively compact strongly pseudoconvex domain in a
Stein manifold, and let Y be a complex manifold.

(i) The Hölder space Ak,α(D,Y ) = Ck,α(D̄, Y ) ∩ H(D,Y ) is a complex Banach
manifold for every k ∈ Z+ and 0 ≤ α < 1.

(ii) A∞(D,Y ) = C∞(D̄, Y ) ∩H(D,Y ) is a complex Fréchet manifold.

(iii) The Sobolev space Lk,pO (D,Y ) = Lk,p(D̄, Y ) ∩ H(D,Y ) is a complex Banach
manifold for k ∈ N, p ≥ 1 and kp > dimRD (resp. a complex Hilbert manifold
if p = 2).

If L(D,Y ) denotes any of the above manifolds of maps then the tangent space
TfL(D,Y ) at a point f ∈ L(D,Y ) is Lh(D, f

∗TY ), the space of sections of class L(D)
of the complex vector bundle h : f∗TY → D̄. If D is contractible, or if dimD = 1,
then TfL(D,Y ) ≈ L(D,Cm) with m = dimY .

The analogous conclusions hold if D̄ is a compact complex manifold with Stein
interior D and smooth strongly pseudoconvex boundary bD; according to Heunemann
[21] and Ohsawa [31] (see also Catlin [4]) such D̄ embeds as a smoothly bounded
strongly pseudoconvex domain in a Stein manifold.

The special case of Theorem 1.1 (i) with α = 0 was proved recently in [11].
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Before proceeding we recall some of the known results on this subject. If M
is a compact smooth manifold, possibly with boundary, and Y is a smooth manifold
without boundary then the space of Hölder maps Ck,α(M,Y ) (k ∈ Z+, 0 ≤ α < 1), the
space of Sobolev maps Lk,p(M,Y ) (k ∈ N, 1 ≤ p <∞, kp > dimM), as well as many
other natural mapping spaces, are infinite dimensional Banach manifolds (Fréchet if
we consider C∞ maps). For results in this direction (also for sections of smooth fiber
bundles over compact smooth manifolds) see Palais [32, 33], El̆ıasson [12], Krikorian
[25], Penot [34], Riddell [35]; for noncompact source manifolds see also Cantor [3]. The
cited works deal with important foundational questions of nonlinear global analysis
and provide the basic framework for the study of global partial differential operators
and the calculus of variations.

These results do not apply directly in the holomorphic category, the main reason
being that it is much more difficult (and in general impossible) to find holomorphic
tubular neighborhoods. Besides the already mentioned work of Douady and others on
compact complex subspaces of a complex space, we are only aware of a few scattered
results. Ivashkovich and Shevchishin considered certain manifolds of pseudoholo-
morphic maps from Riemann surfaces to almost complex manifolds [23, 24]. Quite
recently, Lempert [29] proved that for a compact smooth manifold M and a complex
manifold Y the space Ck(M,Y ) is an infinite dimensional complex Banach manifold
(Fréchet if k = ∞). It is expected that, like their real counterparts, these generalized
loop spaces could be useful in the study of geometric properties of the target manifold.

Our proof of Theorem 1.1 is based on the following result of possible indepen-
dent interest, concerning the existence of tubular Stein neighborhoods of holomorphic
graphs with continuous boundary values over strongly pseudoconvex Stein domains.

Theorem 1.2. Assume that h : X → S is a holomorphic submersion of a complex
manifold X onto a Stein manifold S, D ⋐ S is a strongly pseudoconvex domain with
C2 boundary in S, and f : D̄ → X is a continuous section of h which is holomorphic
in D.

There exists a holomorphic vector bundle π : E → U over an open set U ⊂ S
containing D̄, and for every open set Ω0 ⊂ X containing f(D̄) there exist a Stein
open set Ω in X with f(D̄) ⊂ Ω ⊂ Ω0 and a biholomorphic map Θ: Ω → Θ(Ω) ⊂ E
which maps the fiber Ωz = h−1(z)∩Ω over any point z ∈ h(Ω) ⊂ U biholomorphically

onto an open convex set Ω̃z = Θ(Ωz) in the fiber Ez = π−1(z).

If Θ is as in Theorem 1.2 then the map g → Θ ◦ g induces an isomorphism
between the space of sections of the restricted submersion XD̄ = h−1(D̄) → D̄ which
are sufficiently uniformly close to f , and the space of sections of the complex vector
bundle ED̄ → D̄ which are close to Θ◦f . For each of the mapping spaces in Theorem
1.1 this provides a local holomorphic chart around an element f , and it is easily seen
that such charts are holomorphically compatible and hence define a complex manifold
structure on the relevant space of sections of XD̄ → D̄. Further details of the proof
of Theorem 1.1 are given in §2.

In the special case when the section f in Theorem 1.2 extends holomorphically to a
neighborhood of D̄, the conclusion of Theorem 1.2 follows by combining Siu’s theorem
[37] (or Schneider’s theorem [36]) with the Docquier-Grauert tubular neighborhood
theorem [9]; in this case Θ can be chosen to map f onto the zero section of E.

The following is an immediate corollary to Theorem 1.2. Examples in §5 show
that the conclusion fails in general for images of holomorphic maps.
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Corollary 1.3. If D ⋐ S are as in Theorem 1.2, Y is a complex manifold
and f : D̄ → Y is a continuous map which is holomorphic in D then the graph Gf =
{(z, f(z)) : z ∈ D̄} admits a basis of open Stein neighborhoods in S × Y .

There are at least two possible ways to prove Theorem 1.2. One approach is
by plurisubharmonic functions and Grauert’s characterization of Stein manifolds [16,
Theorem 2] (I wish to thank the referee for indicating this possibility). To this end
one needs

(i) a strongly plurisubharmonic function ρ in a neighborhood of the compact set
f(D̄) in X , and

(ii) a nonnegative (weakly) plurisubharmonic function τ in a neighborhood of
f(D̄) which vanishes precisely on f(D̄).

For small enough ǫ > 0 the function ρ + 1
ǫ−τ

is then a strongly plurisubharmonic
exhaustion function on Ωǫ = {τ < ǫ} ⊂ X and hence Ωǫ is Stein. Functions ρ and τ
with these properties can be found by classical methods.

We choose to present a different proof which is based on the method of holo-
morphic sprays developed in [10, 11]. This method explicitly produces a holomorphic
vector bundle π : E → U as in Theorem 1.1 whose total space E contains a biholo-
morphic copy of a Stein neighborhood of f(D̄). We give a brief outline; for the details
see Sec. §4.

In [11] the authors constructed a dominating spray with a given central section,
holomorphic over D and continuous over D̄, by successively gluing sprays over small
subsets of D̄. The key ingredient of this construction is a Cartan type splitting lemma
with control up to the boundary [10, Theorem 3.2]; its proof uses a sup-norm bounded
linear solution operator to the ∂̄-equation for (0, 1)-forms on strongly pseudoconvex
domains. Here we work with fiberwise injective holomorphic sprays defined on (not
necessarily trivial) holomorphic vector bundles of class A(D). To a spray over D̄ we
attach finitely many additional sprays over small open sets in S whose union covers
the boundary of D. By improving the splitting lemma (Lemma 3.2 below) we insure
that f(D̄) is contained in the range of the resulting holomorphic spray; the inverse
of this spray is the map Θ in Theorem 1.2. We give a proof of Lemma 3.2 based on
the implicit function theorem in Banach spaces, simpler than the one in [10] where
iteration was used.

For the general theory of Stein manifolds we refer to [17] and [22]; for real analysis
in infinite dimensions see [32], and for complex analysis in infinite dimensions see [8]
and [28].

2. Complex manifolds of holomorphic maps. Let D be a relatively compact
domain with piecewise C1 boundary in Cn. We consider the following function spaces
on D:

(i) For k ∈ Z+ and 0 ≤ α < 1, Ak,α(D) is the Banach space of all functions
D̄ → C in the Hölder class Ck,α(D̄) which are holomorphic in D. When
α = 0 we shall write Ak,0 = Ak and A0 = A.

(ii) A∞(D) = ∩∞
k=0Ak(D) is the Fréchet space consisting of all C∞ function

D̄ → C which are holomorphic in D.
(iii) For k ∈ Z+ and p ≥ 1, Lk,pO (D) is the Banach space (Hilbert if p = 2)

consisting of all holomorphic functions D → C whose partial derivatives of
order ≤ k belong to Lp(D) (with respect to the Lebesgue measure). These
are Sobolev spaces of holomorphic functions on D.
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If L(D) is any of the above function spaces, we denote by L(D,Cm) the locally
convex topological vector space consisting of maps whose components belong to L(D).
In the case (iii) we shall assume kp > 2n, so the Sobolev embedding theorem provides

a continuous (even compact) inclusion map Lk,pO (D) →֒ A(D) (see e.g. Calderon [1]).

Assume now that D is a relatively compact domain with piecewise C1 boundary
in an n-dimensional complex manifold S. Given a complex manifold Y of dimension
m without boundary, one can define the mapping space L(D,Y ) as follows. (See
Lempert [29, §2] for the case when D̄ is a compact smooth manifold and we are
considering the space Ck(D̄, Y ), k ∈ Z+ ∪ {∞}. For the smooth manifold structure
on certain spaces of smooth maps see Palais [32], as well as Cantor [3], El̆ıasson
[12], Krikorian [25], Penot [34], Riddell [35].) Fix a continuous map f : D̄ → Y .

Choose finitely many holomorphic coordinates systems φj : Uj → Ũj ⊂ Cn on S, and

ψj : Wj → W̃j ⊂ Cm on Y , such that f(D̄ ∩ Uj) ⊂ Wj for all j. Also choose open
subsets Vj ⋐ Uj such that D̄ ⊂ ∪jVj and Vj∩D has piecewise C1 boundary for each j.
Then f ∈ L(D,Y ) precisely when for each j the restriction fj of the map ψj ◦ f ◦φ−1

j

to the set φj(D ∩ Vj) ⋐ Ũj belongs to L(φj(D∩Vj),Cm); the definition is independent
of the choices of charts. Further, given an open neighborhood Uj ⊂ L(φj(D∩Vj),Cm)
of fj for every j, the corresponding neighborhood of f in L(D,Y ) consists of all maps
g : D̄ → Y such that g(D ∩ Vj) ⊂Wj and the restriction gj of ψj◦g◦φ−1

j to φj(D ∩ Vj)
belongs to Uj for all j.

Proof of Theorem 1.1. Let L(D,Y ) denote any one of the above spaces; observe
that it is a subset of A(D,Y ). We need to construct holomorphic charts in L(D,Y ).

Given a holomorphic vector bundle π : E → U over an open set U ⊂ S containing
D̄, we denote by Lh(D,E) the space of all section D̄ → ED̄ of h over D̄ which belong

to L(D,E). This is a locally convex topological vector space; Banach for Ak,α or Lk,pO ,

Hilbert for Lk,2O , and Fréchet for A∞.

Fix a map f ∈ L(D,Y ); so f is continuous on D̄ and holomorphic on D. Theorem
1.2 furnishes an open Stein neighborhood Ω ⊂ S×Y of the graph Gf = {(z, f(z)) : z ∈
D̄} and a biholomorphic map Θ: Ω → Ω̃ ⊂ E onto an open set Ω̃ in the total space
of a holomorphic vector bundle π : E → U such that D̄ ⊂ U ⊂ S and π ◦ Θ: Ω → S
is the restriction to Ω of the base projection (z, y) → z. Since Θ is holomorphic in a
neighborhood of Gf , the map

D̄ ∋ z → θ(f)(z) := Θ(z, f(z)) ∈ Ez

is a section of the restricted bundle ED̄ → D̄ which belongs to the space Lh(D,E).
The graph Gg of any g ∈ L(D,Y ) sufficiently near f is also contained in Ω, and
the composition with Θ defines an isomorphism g → θ(g) = Θ(· , g) between an open
neighborhood of f in L(D,Y ) and an open neighborhood of θ(f) in Lh(D,E); we take
θ as a Banach (or Fréchet) chart on L(D,Y ). It is easily verified that the transition
map between any such pair of charts is holomorphic (the argument given in [11] for
A(D,Y ) applies in all cases; for the Sobolev classes see [33, Theorem 9.10]). The
collection of all such charts defines a holomorphic Banach (resp. Fréchet) manifold
structure on L(D,Y ).

The above construction also shows that the tangent space to the manifold L(D,Y )
at a point f ∈ L(D,Y ) can be identified with Lh(D, f

∗TY ), the space of sections
of class L(D) of the complex vector bundle h : f∗TY → D̄ (the pull-back to D̄ of
the tangent bundle TY by the map f). By the Oka-Grauert principle, homotopic
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maps induce isomorphic pull-back bundles (see Leiterer [26] and Heunemann [19]
for the relevant ‘up to the boundary’ version), and hence TfL(D,Y ) is independent
of a point f in a connected component of L(D,Y ) (up to a complex Banach space
isomorphism). Maps belonging to different connected components of L(D,Y ) may
induce nonisomorphic bundles.

If D is contractible, or if dimD = 1 (which means that D is a bordered Riemann
surface) then every A(D)-vector bundle over D̄ is trivial; in this case TfL(D,Y ) ≈
L(D,Cm) with m = dim Y for every f ∈ L(D,Y ).

The above construction is essentially the same as the one of Palais in the C∞

case [32, Ch. 13]. With some additional work it might be possible to introduce the
categorical (axiomatic) approach as in [32] and thereby extend the result to a wider
class of function spaces. Observe that the above proof actually gives the following
more general result.

Theorem 2.1. Assume that h : X → S is a holomorphic submersion of a complex
manifold X onto a Stein manifold S and D ⋐ S is a strongly pseudoconvex domain
with C2 boundary in S. Let L be any of the classes Ak,α, A∞ or Lk,pO (kp > dim RS).
Then the space of sections

Lh(D,X) = {f ∈ L(D,X) : h(f(z)) = z, z ∈ D̄}

is a complex Banach manifold (Fréchet for L = A∞).

Remark 2.2. The method in [11] can be used to obtain the same result in
the more general case when h : X → D̄ is a smooth submersion onto D̄ which is
holomorphic overD; an example is a smooth fiber bundle over D̄ which is holomorphic
over D. However, for holomorphic submersions which extend holomorphically to a
neighborhood of D̄ in S, the above construction is simpler than the one in [11]. Indeed,
we do not need a new splitting lemma for each of the function spaces – we only need
it for the space Ah(D,E) where h : E → D̄ is a complex vector bundle which is
holomorphic over D.

The complex structures introduced above enjoy the following functorial property;
compare with [29, Proposition 2.3] and observe that the proof given there carries over
to our situation as well.

Proposition 2.3. Let D ⋐ S be a strongly pseudoconvex domain in a Stein
manifold S, let Y and Y ′ be complex manifolds, and let Φ: S × Y → Y ′ be a
holomorphic map. Then the induced map Φ∗ : L(D,Y ) → L(D,Y ′) defined by
Φ∗(f)(z) = Φ(z, f(z)) (z ∈ D̄) is holomorphic.

The discussion following Proposition 2.3 in [29] also shows that the functorial
property described in the above proposition characterizes the complex structures un-
der consideration.

These complex structures are functorial also with respect to maps of the source
domains: Given strongly pseudoconvex domains D ⋐ S, D′

⋐ S′ in Stein manifolds
S resp. S′, and given a holomorphic map Ψ: S → S′ satisfying Ψ(D) ⊂ D′, the pull-
back map Ψ∗ : L(D′, Y ) → L(D,Y ) defined by f → f ◦ Ψ is holomorphic (see [29,
Proposition 2.4]). In particular, the evaluation map e : D̄ × L(D,Y ) → Y , e(z, f) =
f(z), is continuous, and is holomorphic in f for a fixed z ∈ D̄ (see the proof of
Proposition 2.5 in [29]). Weaker hypothesis on Ψ may suffice in individual cases.



118 F. FORSTNERIČ

3. A splitting lemma. In this section we prove a splitting lemma for fiberwise
injective holomorphic maps on holomorphic vector bundles with continuous boundary
values. Lemma 3.2 below is the main ingredient in the proof of Theorem 1.2. Although
it is a minor extension of Theorem 3.2 in [10] (which applies to trivial bundles), we
give a simpler proof based on the implicit function theorem.

Definition 3.1. [11, Def. 2.3] A pair of open subsets D0, D1 ⋐ S in a Stein
manifold S is said to be a Cartan pair of class Cℓ (ℓ ≥ 2) if

(i) D0, D1, D = D0∪D1 and D0,1 = D0∩D1 are strongly pseudoconvex domains
with Cℓ boundaries, and

(ii) D0\D1 ∩D1\D0 = ∅ (the separation property).

D1 is a convex bump on D0 if in addition there is a biholomorphic map from an open
neighborhood of D̄1 in S onto an open subset of Cn (n = dimS) which maps D1 and
D0,1 onto strongly convex domains in Cn.

Suppose that D ⋐ S is a strongly pseudoconvex domain in a Stein manifold S
and π : E → D̄ is a continuous complex vector bundle which is holomorphic over
D (an A(D)-vector bundle). Such E embeds as an A(D)-vector subbundle E′ of a
trivial bundle TN = D̄ × CN for a sufficiently large integer N , and for every such
embedding there is a Whitney direct sum decomposition TN = E′ ⊕ E′′ of class
A(D). (These facts follows from Cartan’s Theorem B for A(D)-vector bundles; see
Leiterer [26, 27] and Heunemann [20, 21].) Fix such a decomposition and identify E
with E′. We shall denote the variable in D̄ by z and the variable in CN by t. On
{z} × CN we have a unique decomposition t = t′ ⊕ t′′ ∈ E′

z ⊕ E′′
z which is of class

A(D) with respect to z ∈ D̄. Let |· | denote the standard Euclidean norm on CN , and
let B = {t ∈ C

N : |t| < 1}. For every r > 0 and z ∈ D̄ set

Ez,r = {t = t′ ⊕ 0′′ ∈ Ez : |t| < r} = Ez ∩ rB.

Given a subset K ⊂ D̄ and r > 0 we shall write

(3.1) EK = ∪z∈KEz , EK,r = ∪z∈KEz,r = EK ∩ (K × rB).

Every continuous fiber-preserving mapEK,r → EK is of the form γ(z, t′) = (z, ψ(z, t′))
for z ∈ K and |t′| = |t′ ⊕ 0′′| < r; we shall say that γ is of class A if it is holomorphic
in the interior of its domain. Let id(z, t′) = (z, t′) denote the identity map on E. Set

||γ − id||K,r = sup{|ψ(z, t′) − t′| : z ∈ K, |t′| < r}.

Lemma 3.2. Let D = D0 ∪D1 be a Cartan pair of class C2 in a Stein manifold
S, and let π : E → D̄ be an A(D)-bundle. Set K = D̄0,1 = D̄0 ∩ D̄1. Given numbers
0 < r′ < r and ǫ > 0, there is a number δ > 0 satisfying the following. For every
fiber preserving map γ : EK,r → EK of class A(EK,r) with ||γ− id||K,r < δ there exist
injective fiber preserving maps α : ED̄0,r′

→ ED̄0
, β : ED̄1,r′

→ ED̄1
, of class A on

their respective domains, satisfying ||α− id||D̄0,r
< ǫ, ||β − id||D̄1,r

< ǫ and

γ ◦ α = β on EK,r′ .

If in addition γ preserves the zero section (i.e., γ(z, 0) = (z, 0) for z ∈ K) then α and
β can be chosen to satisfy the same property.
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If the Cartan pair D = D0 ∪ D1 is of class Cℓ, ℓ ≥ 2, then for any integer
l ∈ {0, 1, . . . , ℓ} the analogous result holds with the bundle E and the maps α, β, γ
of class Al on their respective domains (i.e., holomorphic inside and of class Cl up to
the boundary), with Cl estimates.

Proof. We begin with the special case when the bundle E is trivial, E = TN =
D̄ × CN for some N ∈ N. Although in this case the result coincides with Theorem
3.2 in [10], we give a new proof based on the implicit function theorem. (It is similar
to the proof of Proposition 5.2 in [13, p. 141].)

Recall that (γ(z, t) = (z, ψ(z, t)), where ψ : K × rB → CN is close to the map
ψ0(z, t) = t. We denote by Cr (resp. by Γr) the Banach space consisting of all
continuous maps K × rB ∋ (z, t) → ψ(z, t) ∈ CN which are holomorphic in the
interior D0,1 × rB of K × rB and satisfy

||ψ||Cr
= sup

(z,t)∈K×rB

|ψ(z, t)| < +∞,

||ψ||Γr
= sup

(z,t)∈K×rB

(
|ψ(z, t)| + |∂tψ(z, t)|

)
< +∞.

Here, ∂t denotes the partial differential with respect to the variable t ∈ CN , and
|∂tψ(z, t)| is the Euclidean operator norm.

Replacing the number r > 0 in Lemma 3.2 with a slightly smaller number we can
assume (in view of the Cauchy estimates) that ψ belongs to Γr and that ||ψ − ψ0||Γr

is as small as desired, where ψ0(z, t) = t. Fix such r and choose a number r′ with
0 < r′ < r. Let Ar′ (resp. by Br′) denote the Banach space of all continuous maps
D̄0 × r′B → C

N (resp. D̄1 × r′B → C
N ) which are holomorphic in the interior of the

respective set, endowed with the sup-norm. By [10, Lemma 3.4] there exist continuous
linear operators A : Cr′ → Ar′ , B : Cr′ → Br′ satisfying

(3.2) c = A(c) − B(c), c ∈ Cr′ .

The proof in [10] uses a linear solution operator for the ∂̄-equation on the level of
(0, 1)-forms on D satisfying sup-norm estimates, and the variables t are treated as
parameters.

Given ψ ∈ Γr sufficiently near ψ0 and c ∈ Cr′ near 0, we define

Φ(ψ, c)(z, t) = ψ(z, t+ A(c)(z, t)) − (t+ B(c)(z, t)), (z, t) ∈ K × r′B.

It is easily verified that (ψ, c) → Φ(ψ, c) is a C1 (even smooth) map from an open
neighborhood of the point (ψ0, 0) in the Banach space Γr×Cr′ to the Banach space Cr′ .
(Although we are composing maps which are only continuous up to the boundary of
their respective domains in the z-variable, we are inserting A(c) in the second variable
of ψ, and ψ is holomorphic with respect to that variable on a larger domain.)

Since Φ(ψ0, c) = A(c) − B(c) = c by (3.2), the implicit function theorem shows
that in a neighborhood of (ψ0, 0) in Γr × Cr′ we can solve the equation Φ(ψ, c) = 0
on c; that is, there is a C1 map ψ → C(ψ) ∈ Cr′ , defined in an open neighborhood of
ψ0 in Γr and satisfying

(3.3) Φ(ψ, C(ψ)) = 0, C(ψ0) = 0.

Consider the functions

aψ = t+ A ◦ C(ψ) ∈ Ar′ , bψ = t+ B ◦ C(ψ) ∈ Br′ .
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From (3.3) and the definition of Φ we obtain

(3.4) ψ(z, aψ(z, t)) = bψ(z, t), (z, t) ∈ K × r′B.

Setting α(z, t) = (z, aψ(z, t)), β(z, t) = (z, bψ(z, t)), we see that (3.4) gives γ ◦ α = β.
We also get sup-norm estimates on aψ − ψ0 (resp. on bψ − ψ0) on D̄0 × r′B (resp. on
D̄1 × r′B) in terms of ||ψ−ψ0||Γr

. If the latter number is sufficiently small, the maps
aψ and bψ are as close as desired to the map ψ0(z, t) = t and hence, after we shrink r′

slightly and apply again the Cauchy estimates in the t-variable, we can assume that
they are fiberwise injective holomorphic. This proves Lemma 3.2 when E = D̄×C

N .

The case with Cl boundary values is obtained in the same way by using the
appropriate Banach spaces; compare with Theorem 3.2 in [10].

It remains to consider the general case when E is an A(D)-vector subbundle of
TN = D̄ × CN . As before we identify E with its image E′ ⊂ TN and write TN =
E′⊕E′′ (an A(D)-decomposition). Let t = t′⊕t′′ ∈ E′

z⊕E′′
z denote the corresponding

splitting of the fiber variable. We associate to each self-map γ(z, t′) = (z, ψ′(z, t′)) of
E′ the self-map

γ̃(z, t) = (z, ψ(z, t)), ψ(z, t) = ψ′(z, t′) ⊕ t′′

of TN (we added the identity map on the second summand E′′). If ψ′ is sufficiently
close to the map (z, t′) → t′ then ψ is close to the map ψ0(z, t) = t, and the first part
of the Lemma (for the trivial bundle) furnishes CN -valued maps

a(z, t) = a′(z, t) ⊕ a′′(z, t), (z, t) ∈ D̄0 × r′B,

b(z, t) = b′(z, t) ⊕ b′′(z, t), (z, t) ∈ D̄1 × r′B

satisfying ψ(z, a(z, t)) = b(z, t) for (z, t) ∈ K × r′B. Comparing the E′ and the E′′

components of this identity at t′′ = 0 we get

ψ′(z, a′(z, t′)) = b′(z, t′), a′′(z, t′) = b′′(z, t′).

Hence the maps α(z, t′) = (z, a′(z, t′)) and β(z, t′) = (z, b′(z, t′)) satisfy the conclusion
of Lemma 3.2.

4. Proof of Theorem 1.2. Let f : D̄ → X be a continuous section of a holo-
morphic submersion h : X → S such that f is holomorphic in D. Set Σ = f(D̄).
Recall that V T (X) = kerdh is the vertical tangent bundle of X .

By Proposition 4.1 in [11] there exists a map F : D̄×rBN → X of class A(D×rBN )
for some r > 0 and N ∈ N such that for all z ∈ D̄ we have

(i) F ({z} × rBN ) ⊂ Xz = h−1(z),
(ii) F (z, 0) = f(z), and
(iii) the map ∂t|t=0F (z, t) : CN → V Tf(z)X is surjective.

A map F with these properties is called a dominating spray of class A(D) with
the central section F0 = F (· , 0) = f . (We emphasize that the sprays used here are
local with respect to the parameter and should not be confused with the global sprays
used in the Oka-Grauert theory.)

Set E′′
z = ker ∂t|t=0F (z, t) ⊂ CN (z ∈ D̄); this defines an A(D)-subbundle E′′ ⊂

TN := D̄ × CN . By [20] and [27] there exists a complementary A(D)-subbundle
E′ ⊂ TN such that TN = E′ ⊕ E′′. By [19] (see also the Appendix in [10]) we
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can approximate E′ sufficiently well over D̄ by a holomorphic vector subbundle E ⊂
U × CN over an open set U ⊂ S containing D̄ such that TN = ED̄ ⊕ E′′.

Let G denote the restriction of F to ED̄,r = ED̄ ∩ (K × rB) (3.1). Then
∂t′ |t′=0G(z, t′) : Ez → V Tf(z)X is a linear isomorphism for every z ∈ D̄, and by
decreasing r > 0 we can insure that G is injective holomorphic on each fiber; such
G will be called a fiberwise biholomorphic spray. Note that ED̄ is isomorphic to the
bundle V T (X)|Σ; when X = S×Y and Σ is the graph of an A(D,Y )-map f : D̄ → Y ,
the latter bundle is isomorphic to f∗TY .

Lemma 4.1. There exist a number r′ ∈ (0, r), a decreasing sequence of open sets
O1 ⊃ O2 ⊃ · · · in S with ∩∞

s=1Os = D̄, and a sequence of fiberwise biholomorphic
sprays Gs : EOs,r′ → X such that Gs converges to G uniformly on ED̄,r′ as s → ∞
and Σ ⊂ Gs(EOs,r′) for s = 1, 2, . . ..

Proof of Theorem 1.2. Assume Lemma 4.1 for the moment. Let Ω0 ⊂ X be
an open neighborhood of f(D̄). Choose an initial fiberwise biholomorphic spray
G : ED̄,r → X as above such that G(ED̄,r) ⊂ Ω0 (the latter is achieved by decreasing
the number r > 0 if necessary). Let Gs : EOs,r′ → X (s = 1, 2, . . .) be a sequence of
sprays furnished by Lemma 4.1. Set

Ω̃s = EOs,r′ ⊂ E, Ωs = Gs(EOs,r′) ⊂ X, Θs = G−1
s : Ωs → Ω̃s.

If s ∈ N is chosen sufficiently large then Ωs ⊂ Ω0, and for such s the map Θs : Ωs → Ω̃s
satisfies the conclusion of Theorem 1.2.

Proof of Lemma 4.1. We proceed as in the proof of Theorem 5.1 in [11], but
paying close attention to the ranges of the approximating sprays in order to insure
that each of them contains the graph Σ = f(D̄).

Since h : X → S is a holomorphic submersion, there exist for each point x0 ∈ X
open neighborhoods x0 ∈ W ⊂ X , h(x0) ∈ V ⊂ S, and biholomorphic maps φ : V →
Bn ⊂ Cn, Φ: W → Bn × Bm ⊂ Cn × Cm, such that φ(h(x)) = pr1(Φ(x)) for every
x ∈W . Note that

Φ(x) =
(
φ(h(x)), φ′(x)

)
∈ B

n × B
m, x ∈W,

where φ′ = pr2 ◦ Φ. We call such (W,V,Φ) a special coordinate chart on X .

Recall that G : ED̄,r → X is a fiberwise biholomorphic spray over D̄ with the cen-
tral section f . Narasimhan’s lemma on local convexification of a strongly pseudocon-
vex hypersurface gives finitely many special coordinate charts (Wj , Vj ,Φj) on X , with

Φj = (φj ◦ h, φ′j), such that bD ⊂ ∪j0j=1Vj and the following hold for all j = 1, . . . , j0
(for (ii) and (iii) we may have to decrease r > 0):

(i) φj(bD ∩ Vj) is a strongly convex hypersurface in the ball Bn,
(ii) the spray G maps ED̄∩Vj ,r

into Wj , and
(iii) φ′j ◦G(ED̄∩Vj ,r

) ⋐ Bm.

Fix an r > 0 such that the above properties hold and choose a number r′ ∈ (0, r).
Also choose a number c ∈ (0, 1) sufficiently close to 1 such that the open sets Uj =
φ−1
j (cBn) ⋐ Vj (j = 1, . . . , j0) still cover bD.

By a finite induction we shall find strongly pseudoconvex domains D = D0 ⊂
D1 ⊂ · · · ⊂ Dj0 ⋐ U , numbers r = r0 > r1 > · · · > rj0 = r′ and fiberwise biholomor-
phic sprays Gk : ED̄k,rk

→ X of class A (k = 0, 1, . . . , j0), with G0 = G, such that for



122 F. FORSTNERIČ

every k ∈ {1, . . . , j0} the restriction of Gk to ED̄k−1,rk
will approximate Gk−1 in the

sup-norm topology. The domain Dk will be chosen such that

Dk−1 ⊂ Dk ⊂ Dk−1 ∪ Vk, bDk−1 ∩ Uk ⊂ Dk

for k = 1, . . . , j0; that is, we enlarge (bump out) Dk−1 inside Vk so that the part
of bDk−1 which lies in the smaller set Uk is contained in the next domain Dk. As
the Uj’s cover bD, the final domain Dj0 will contain D̄ in its interior, and the spray

G̃ = Gj0 : ED̄j0
,r′ → X will approximate G as close as desired on ED̄,r′ ; in particular,

we shall arrange that Σ = f(D̄) is contained in G̃(ED̄j0
,r′). To keep the induction

going we will also insure at every step that the properties (ii) and (iii) above remain

valid with (D,G) replaced by (Dk, Gk) for all k = 1, . . . , j0. The restriction of G̃ to
the interior EDj0

,r′ can be taken as one of the sprays in the conclusion of the lemma.

The geometric scheme is as in the proof of Theorem 5.1 in [11]. Since all steps
are of the same kind, it suffices to explain how to get the pair (D1, G1) from (D,G) =
(D0, G0). We begin by finding a domain D′

1 ⊂ S with C2 boundary which is a convex
bump on D = D0 (Definition 3.1) and such that U1 ∩ D̄ ⊂ D′

1 ⊂ V1. To do this, we

shall first find a set D̃′
1 ⊂ Bn with suitable properties and then take D′

1 = φ−1
1 (D̃′

1).
Choose a smooth function χ ≥ 0 with compact support on Bn such that χ = 1 on cBn.
Recall that U1 = φ−1

1 (cBn). Let τ : Bn → R be a strongly convex defining function
for the domain φ1(D ∩ V1) ⊂ Bn. Choose a number c′ ∈ (c, 1) close to 1 such that
the hypersurface φ1(bD ∩ V1) = {τ = 0} intersects the sphere {ζ ∈ C

n : |ζ| = c′}
transversely. If δ > 0 is sufficiently small then the set

{ζ ∈ C
n : |ζ| < c′, τ(ζ) < δχ(ζ)}

could serve our purpose, except that it is not smooth along the intersection of the
(convex) hypersurfaces {|ζ| = c′} and {τ = δχ}. By rounding off the corners we get

a strongly convex set D̃′
1 ⊂ Bn such that D′

1 = φ−1
1 (D̃′

1) ⊂ V1 satisfies the desired
properties. (See Fig. 1 which is taken from [11].)

bD

bD ∩ U1 bD′
1

bD1

U1

V1

D ∩D′
1

Fig. 1. The domains D′
1 and D1

Choose numbers r1, r
′
1, r

′′
1 with r′ < r1 < r′1 < r′′1 < r. By using the special

coordinate chart (W1, V1,Φ1) we find an open set V ′
1 ⊂ V1 containing D̄ ∩ V1 (V ′

1 will
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depend on the choice of G′) and a fiberwise biholomorphic sprayG′ : EV̄ ′

1
,r′′

1
→ X with

range in W1 whose restriction to ED̄∩V̄1,r
′′

1
approximates the initial spray G = G0 as

close as desired in the uniform topology. If the approximation is sufficiently close on
EV̄ ′

1
,r′′

1
, there exists a (unique) fiberwise biholomorphic map γ : ED̄∩V̄1,r

′

1
→ E of class

A which is close to the identity map and satisfies the equation

G(z, t) = G′(γ(z, t)) = G′(z, ψ(z, t)), z ∈ D̄ ∩ V̄1, t ∈ Ez,r′
1
.

Applying Lemma 3.2 on the Cartan pair (D,D′
1) we obtain γ ◦ α = β on ED̄∩V̄1,r1

,
where α : ED̄,r1 → E and β : ED̄′

1
,r1

→ E are injective holomorphic maps which
are close to the identity on their respective domains. It follows that the fiberwise
biholomorphic sprays

G ◦ α : ED̄,r1 → X, G′ ◦ β : ED̄′

1
∩V̄ ′

1
,r1

→ X

agree on the intersection of their domains, and hence they define a fiberwise biholo-
morphic spray G1 : ED̄∪(D̄′

1
∩V̄ ′

1
),r1 → X of class A. By construction G1 approximates

G uniformly on ED̄,r1 as close as desired.

It remains to restrict G1 to a suitably chosen strongly pseudoconvex domain
D1 ⋐ S contained in D ∪ (D′

1 ∩ V ′
1) and satisfying the other required properties. We

choose D1 such that it agrees with D outside of V1, while

D ∩ V1 = φ−1
1 ({ζ ∈ B

n : τ(ζ) < ǫχ(ζ)})

for a small ǫ > 0 (Fig. 1). By choosing ǫ sufficiently small (depending on G1) we can
insure that properties (i)–(iii) are satisfied by the pair (D1, G1).

Applying the same procedure to (D1, G1) and the special coordinate chart
(W2, V2,Φ2) we get the next pair (D2, G2). After j0 steps we find a domain Dj0 ⊂ S

containing D̄ and a fiberwise biholomorphic spray G̃ = Gj0 : ED̄j0
,r′ → X which ap-

proximates G as close as desired uniformly on ED̄,r′ . If the approximation is close

enough then the range of G̃ contains Σ.

The sequence Gs in Lemma 4.1 is chosen to consist of sprays G̃ obtained as above,
approximating G ever more closely on ED̄,r′ .

5. Examples and problems. Let D denote the open unit disc in the complex
plane C. Our first example shows that Corollary 1.3 fails in general for maps which
are discontinuous at the boundary.

Example 5.1. There exists a bounded holomorphic function on D such that the
closure of its graph does not have a Stein neighborhood basis in C2.

Indeed, let f ∈ H∞(D) be a bounded holomorphic function on the unit disc such
that supz∈D

|f(z)| = 1 and the cluster set of f at every boundary point eiθ ∈ bD equals
D. (Such functions are easily found by using interpolation theorems for H∞(D), see
[14, Ch. VII].) The closure K of the graph of f in C2 is the union of the graph with
all vertical discs {eiθ}× D̄, θ ∈ R. By the classical argument of Hartogs [18] any open
Stein neighborhood of K in C

2 also contains the unit bidisc.

Problem 5.2. Characterize the bounded holomorphic functions on the disc D

for which the closure of the graph admits a basis of open Stein neighborhoods in C2.
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The next two examples illustrate that Corollary 1.3 fails in general for images (as
opposed to graphs) of maps. See however [10, Theorem 2.1].

Example 5.3. This example was communicated to me by E. L. Stout (private
communication, September 19, 2006):

For every N > 1 there is an A(D)-map D → CN whose image has no Stein
neighborhood basis.

Let E be a Cantor set of length zero contained in bD; then E is a peak-
interpolation set for the disc algebra A(D). Let B denote the unit ball in C

N for
some N > 1. Choose a continuous map f from E onto the sphere bB. There is a map
F = (F1, . . . , FN ) : D̄ → CN , satisfying Fj ∈ A(D) for each j, such that F |E = f and

|F (z)|2 =
∑N

j=1 |Fj(z)|2 < 1 for all z ∈ D\E (Globevnik [15] and Stout [38]). Now let
D′ be a domain in D obtained by moving each of the open arcs of bD\E in just a little,
leaving the end points fixed; so D′ is conformally a disc and bD′ ∩ bD = E. Then
F (D̄′) is a compact set consisting of the sphere bB together with a proper subset of B,
and hence it has no Stein neighborhood basis (any Stein neighborhood also contains
the ball B). It is necessary to pass to a smaller domain D′ ⊂ D because F might take
D onto the ball B which has a basis of Stein neighborhoods.

Example 5.4. This example is a minor modification of the one which was com-
municated to me by J.-P. Rosay on April 6, 2004:

There exists a smooth (C∞) injective map Φ from the closed unit ball B in C5

into C8, that is a holomorphic embedding of the open unit ball, such that Φ( B) has
no basis of Stein neighborhoods.

We proceed as follows. The set

M = {(z1, . . . , z5) ∈ B : z1z2 · · · z5 =
√

5
−5}

is a real four dimensional submanifold of the boundary of B which is complex tangen-
tial to the sphere bB at each point. By Chaumat and Chollet ([5], [6]) every compact
subset of M is a peak interpolation set for A∞(B), the Fréchet algebra of functions
holomorphic on the ball and smooth up to the boundary. Let H be a closed Hartogs
figure in C2:

(ζ1, ζ2) ∈ H ⇐⇒ (|ζ1| ≤ 1 , |ζ2| ≤
1

2
) or (

1

2
≤ |ζ1| ≤ 1 , |ζ2| ≤ 1).

Let H0 be a diffeomorphic copy of H in M (such exists by dimension reasons). Con-
sider a smooth map ϕ : B → C2 that is holomorphic on the open ball and whose
restriction to H0 is a diffeomeorphism from H0 onto H . Also choose a function
h ∈ A∞(B) that is zero on H0 and that vanishes nowhere else on the closed unit ball.
(Such φ and h are obtained by appealing to [5], [6].) Define a map Φ: B → C8 by

Φ(z) = Φ(z1, . . . , z5) = (φ(z), h(z), z1h(z), . . . , z5h(z)).

It is easy to check that Φ is injective on B, it is of maximum rank (immersion) at
every point of B\H0, it maps H0 onto H ⊂ C2 × {0}6, and Φ(z) /∈ C2 × {0}6 if
z ∈ B \H0.

Since Φ( B) contains the Hartogs figure H × {0}6, any open Stein neighborhood
of it will also contain the unit bidisc in C2 × {0}6; as this bidisc is not included in
Φ( B), the latter set has no basis of Stein neighborhoods.
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Problem 5.5. Let K be a compact set with a Stein neighborhood basis in
a complex manifold S. Assume that f : K → Y is a continuous map to a complex
manifold Y which is a uniform limit on K of a sequence of holomorphic maps fj : Vj →
Y defined in open neighborhoods of K.

Does the graph Gf = {(z, f(z)) : z ∈ K} admit a basis of open Stein neighboor-
hoods in S × Y ?

The answer is easily seen to be affirmative if Y = CN and, by the embedding the-
orem, also if Y is a Stein manifold. When K is the closure of a strongly pseudoconvex
domain the answer is given by Corollary 1.3. Another case of interest is the closure
of a weakly pseudoconvex domain D such that K = D̄ admits a Stein neighborhood
basis; the latter condition is necessary as is shown by the worm domain of Diederich
and Fornæss [7].
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