ASIAN J. MATH. (© 2007 International Press
Vol. 11, No. 1, pp. 089-102, March 2007 007

THE X-VARIETIES FOR CR MAPPINGS BETWEEN
HYPERQUADRICS*

JOHN P. D’ANGELOT

Dedicated to Salah Baouendi as his seventieth birthday approaches

Key words. CR mappings, hermitian forms, unit sphere, hyperquadrics, proper holomorphic
mappings, X-variety

AMS subject classifications. 32V15, 32H35, 32H99, 32105

0. Introduction. Let M and M’ denote smooth CR submanifolds of complex
Euclidean spaces of possibly different dimensions. One of the most basic problems
in CR geometry is to relate properties of the collection of smooth CR mappings f :
M — M’ to the geometries of M and M’. See the monograph [BER] for the complete
theory of CR mappings and references.

Perhaps the simplest question about CR mappings is whether, given M and M’,
there exist any nonconstant smooth CR mappings between M and M’. For spheres
and hyperquadrics there are many examples; as the target dimension increases the
dimension of the moduli space of examples is unbounded above. A CR mapping f
is a solution of a first order system of partial differential equations, but the informa-
tion that f(M) C M is a nonlinear condition on f. When M and M’ are spheres
or hyperquadrics, the approach in this paper eliminates the nonlinear aspect of the
problem.

This paper considers CR mappings between hyperquadrics, including spheres as
a special case. We are interested in the structure of CR mappings from a given
hyperquadric to hyperquadrics in all possible target dimensions. Placing restrictions
on the dimension of the target and on the signature then places restrictions on the
possible mappings. In Section 1 we study a certain variety Xy naturally associated
with a holomorphic mapping f such that f(M) C M’, and we use it to partially address
the issue of the complexity of rational mappings taking M to M’. Homogenization
plays a crucial role in our study; the variety X is easier to understand when f is
homogeneous. In Section 2 we further analyze the homogeneous case, generalizing
work done by the author for spheres [D2], [D3].

The complexity question is interesting and quite difficult even when M and M’
are spheres. Write ||z||2 for the squared Euclidean norm in all dimensions. Let M
denote the unit sphere given by {z : ||z||2 = 1} in C" and M’ the unit sphere in
CN. For n > 2, Forsteneric [F1] proved that a smooth (infinitely differentiable) CR
mapping between spheres must be the restriction of a rational mapping to the sphere.
See also [CS]. The degree of a rational mapping provides one measure of its complexity.

When 1 = n < N, there is no restriction on the degree of a rational mapping
sending the circle to a sphere. For n > 2, Forstneric [F1] also found a crude bound on
the degree of the rational mapping (from sphere to sphere) in terms of the dimensions
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n and N. A sharp bound is not known. When N < n, the only smooth CR mappings
between M and M’ are constant, and thus of degree 0. Whenn < N < 2n—2, the only
smooth CR mappings between M and M’ are linear fractional transformations [Fal],
and hence of degree at most 1. When N = 2n — 1 there are mappings of degree 2, and
forn > 3 and N = 2n — 1, the degree is at most 2. Whenn =2 and 3 =N =2n — 1,
the maximum degree is 3. [Fa2]. When n = 2, and the components of f are assumed to
be monomials, the degree is at most 2N — 3, and this result is sharp. [DKR]. See also
[D3], [F2], [H], and [HJ] for related results concerning mappings between spheres and
see [BH], [EHZ1], and [EHZ2]| for generalizations to mappings between hyperquadrics.

Rational CR mappings between spheres become more complicated when the tar-
get dimension N increases while the domain dimension n remains fixed. When n is
fixed, for example, the degree of possible rational examples tends to infinity as N does.
The author ([D3]), based on work with Catlin ([CD1], [CD2]) proved the following re-
sult which strongly illustrates how the complexity of possible mappings grows with
N.

THEOREM 0. Let f = % be a rational mapping from C™ (minus the zero set of
q) to CK such that ||f(2)||2 < 1 when ||z||2 < 1. Then there exist an integer L and a
polynomial g : C* — CL such that

=Ll =1 (1)
q
when ||z]]2 = 1.

In particular the dimension of the moduli space of smooth CR mappings between
spheres tends to infinity as the target dimension tends to infinity. If we allow the
target dimension to be arbitrary, then we can do almost whatever we want as long
as we stay in the rational category. For a fixed target dimension the degree of f is
controlled (although establishing a sharp bound is an open problem) by the dimension
of the target sphere.

The following simple examples reveal a basic difference between the sphere and
other hyperquadrics, by showing that even more examples are possible. Let Q(a,b)
denote the hyperquadric in Cat? defined by the equation

212 4 oo+ 2a]? = [0t ]2 = oo — |zags]? = 1. @)

In this notation the sphere S2n—1 is also the hyperquadric Q(n,0). We give two
examples involving an arbitrary holomorphic function h on C2. Define f : C2 — C*
by

f(z1,22) = (21, h(21, 22), 22, h(21, 22)). 3)
It is evident that f(Q(1,1)) C Q(2,2). Next define g : C2 — C* by

9(z1,22) = (1, 21h(21, 22), 22h(21, 22), h(z1, 22)). (4)

Then ¢(Q(2,0)) C Q(3,1). In each case we cannot control the complexity of the
mapping by some measure such as the degree of a rational function, because h is
arbitrary. The examples have one difference. The mapping f has linearly dependent
components, and hence the phenomenon (the lack of control of h) seems to be an
artifact of linear dependence. The mapping g, however, has linearly independent
components (unless h is constant), and yet we still have no control on h.
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In each of these two cases, the number of negative eigenvalues in the defining
equation of the target hyperquadric exceeds the number of negative eigenvalues in the
defining equation of the domain hyperquadric. See [BH] for a super-rigidity result for
mappings between hyperquadrics when this number is not allowed to increase. One
could also eliminate such mappings from consideration by placing additional geometric
assumptions such as transversality conditions on the mappings allowed.

Some general properties of mappings between hyperquadrics do closely mimic
those of mappings between spheres. In Theorem 2 from Section 2 we find all homoge-
neous polynomial mappings (with minimal target dimension) between hyperquadrics.
We also provide a simple method for generating polynomial mappings between hyper-
quadrics. This method plays a key role in the study of polynomial mappings between
spheres. See [D1, D2, D3].

In this paper we will approach the issue of complexity by studying a certain
variety Xy associated with a holomorphic mapping f which restricts to a CR mapping
between real-analytic hypersurfaces. For spheres this variety plays an important role
in Forstneric’s proof of rationality [F1]. An efficient method for computing X for
spheres appears in [D4] and is recalled and generalized in this paper.

Let M and M’ be real-analytic real hypersurfaces in complex Euclidean spaces,
with local defining equations p = 0 near a point p € M and p’ = 0 near a point
p' € M’. Let f be a holomorphic mapping, defined in a neighborhood of p, with
f(p) =p', such that f(M) C M’. The definition of X will be given in terms of p and
p'; the form of the definition makes it obvious that X; does not depend on the choice
of defining equations.

Suppose f is holomorphic and f(M) C M’. We then have the crucial equation

p(F(),TE) =0  when p(=,%) =0. (5)

Polarizing (5) as usual we obtain

p(F(=), @) =0 when p(z7) = 0. (6)

Many authors have used (6) to provide reflection principles. See for example [DF],
[DW], [Lal, [P], and [W]. The variety X is obtained by generalizing (6).

Definition of X;. Let M C C” and M’ C CV be real-analytic real hyper-
surfaces, and let U be a neighborhood of p € M. Suppose f : U C C*» — CN is
holomorphic and f(M) C M’. Let p and p’ be local defining equations near p and
f(p). The X-variety X is the subset of Domain(f) x Target(f) defined by

Xy ={(w,Q): p'(f(2),¢) =0  when p(z,w) = 0}. (7)

By (6) it follows that X7 contains the graph of f. In general X, is a larger set;
we can use properties of X to obtain some understanding of the complexity of f.

We note one subtle point before we go on. When M is a hyperquadric, p(z,w) =
(z,w) — 1, where (,) denotes a sesquilinear Hermitian form. The condition (z,w) =1
is vacuous when w = 0, and thus pairs (0, ) are not included in X . It seems that they
should be included, and therefore one should extend the definition of X to include 0.
The idea amounts to including the hyperplane at infinity when one works projectively.
The formula in Theorem 1 for X makes sense when w = 0. At the end of Section 1
we use Theorem 1 to define the extended variety Yy so as to include the case w = 0.
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Then Y} is an algebraic variety naturally associated with f, and Yy contains the graph
of f.

Let L(CN, H(n,d)) denote the vector space of linear transformations from C¥ to
the space of homogeneous polynomials of degree d in n variables. Theorem 1, our main
result, exhibits a polynomial mapping w — C(w) € L(CV, H(n,d)) which determines
X . The matrix of C(w) can be computed explicitly and easily, thus making Theorem
1 easy to use.

THEOREM 1. Let {,) denote both a nondegenerate Hermitian form on C™ and
one on CN. Let M denote the hyperquadric in C™ defined by {z : (z,z) = 1}, and let
M’ be the hyperquadric in CN defined by {¢ : (¢, {) = 1}. Let f be a rational function
such that f(M) C M'. Let d denote the degree of the numerator of f when f is reduced
to lowest terms. Then there is a polynomial mapping w — C(w) € L(CN, H(n,d))
such that

X ={(w,{): (= f(w) + Kernel(C(w))}. (8)

An immediate corollary of Theorem 1 is that X is an affine space. A corollary
of the proof is that X; is an affine bundle whenever f is a homogeneous polynomial
mapping. We provide examples to show, even in the polynomial case, that X need
not be the graph of f, need not be a bundle, and so on. We also provide examples
where the kernel of C(w) is trivial for all w, and hence X is the graph of f, even
though f itself is rather complicated. We also compute X; and Yy for some mappings
invariant under finite unitary groups.

In Section 2 we consider homogeneous mappings. We determine the homogeneous
polynomial mappings between hyperquadrics. We see in particular, for any homoge-
neous polynomial mapping of degree d mapping a hyperquadric to a hyperquadric,
that the coefficient vectors of the monomials of degree d are linearly independent.
This result provides the minimum target dimension for such maps. See Theorem 2
and Corollary 5. We provide an elementary procedure for writing down many map-
pings between hyperquadrics. In the special case of spheres we show that the homoge-
neous mappings can be characterized as extremals in terms of the volumes of proper
holomorphic images of balls.

This paper is dedicated to Salah Baouendi, whose work in CR Geometry has
profoundly influenced the author in many ways. He would also like to acknowledge
Franc Forstneric and Peter Ebenfelt for useful comments on ideas related to this paper.

The author acknowledges support from NSF grant DMS 05-00765.

1. Computation of the X-variety for mappings between hyper-
quadrics. Let M and M’ denote real-analytic hypersurfaces. We recall from the
introduction the definition of Xy when f is a holomorphic mapping which maps M
into M.

DEFINITION 1. Let U be a neighborhood of p € C". Suppose f: U Cc C* — CN
is holomorphic and f(M) C M’. Let p and p’ be local defining equations near p and
f(p). The X-variety X is the subset of Domain(f) x Target(f) defined by

Xp={(w.Q): p'(f(2),() =0  when p(z,w)=0}. (9)

To understand this definition and to anticipate Theorem 1, we begin by calculat-

ing X, for a linear mapping from C” to CV such that ||L(z)|| = 1 when ||z|| = 1.
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Such an L must be injective. Since the dimensions need not be equal, L is not neces-
sarily unitary. In Example 1 (,) denotes the usual Euclidean inner product, although
afterwards we will let (,) denote an arbitrary nondegenerate, not necessarily positive
definite, Hermitian form.

EXAMPLE 1. ([D4]). X = {(w,() : ¢ = L(w) 4+ Kernel(L*)}. To verify this fact,
combine (9) and (6) using p’ = (,) — 1 to obtain

X ={(w,{) : (L(2),{ — L(w)) =0 when (z,w)=1}. (10)

Introducing the adjoint L* we obtain

X ={(w,{): {2z, L*({ — L(w))) =0 when {(z,w)=1}. (11)

Since both equations in (11) are homogeneous in z, (11) can hold only if its first
equation holds for all z. Hence for w # 0, (w, () € X, if and only if

L*(C — L(w)) = 0. (12)

Formula (12) is the famous equation for least squares regression, arising from seeking
the minimum distance of a given vector to the image of L. In our context (12) shows
that X is an affine bundle. For each w, the fibre over w is L(w) 4+ Kernel(L*); the
dimension does not vary with w, Furthermore, since L* is injective here if and only if
L is equi-dimensional and unitary, it follows that X, equals the graph of L if and only
if L is an equi-dimensional mapping. The fibre dimension of X; measures precisely
the excess in target dimension.

In Example 1 it is natural to define the fibre over w = 0 also to be the kernel of
L+*. This comment presages Definition 2 of the extended variety Yz. We see, for all
(w, ¢), that (w,¢) € Yz if and only if (12) holds.

The ideas of Example 1 generalize significantly. The main difference will be that
the fibre over w will change from point to point. We will compute X; and study its
properties whenever f is a rational mapping between non-degenerate hyperquadrics.
Thus we write (,) to denote a nondegenerate Hermitian form on CX for some unspec-
ified K. The nondegeneracy condition is of course that (¢, u) = 0 for all ¢ implies
1 = 0. By elementary linear algebra one can always choose coordinates such that

(GO =GP+ o+ Cal? = [Cat1? = oo = [Catal?, (13)

and a + b= K. Thus Q(a,b) is the level set given by {¢ : ((,() = 1}.

Let H(n,d) denote the complex vector space of homogeneous polynomials of
degree d in n variables. One can think of H(n,d) as the space of sections of the d-th
tensor power of the hyperplane section bundle over complex projective space Pj,_1,
but we will not require this interpretation here. Let L(CN, H(n,d)) denote the vector
space of linear mappings from CV to H(n,d). After choosing bases we can think of
elements of L(CN, H(n,d)) as matrices with N columns and (”Jrjfl) TOWS.

We are now ready to compute Xy.

THEOREM 1. Let {, ) denote both a nondegenerate Hermitian form on C™ and
one on CN. Let M denote the hyperquadric in C™ defined by {z : (z,z) = 1}, and let
M’ be the hyperquadric in CN defined by {¢ : (¢,¢) = 1}. Let f be a rational function
such that f(M) C M’'. Let d denote the degree of the numerator of f when f is reduced
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to lowest terms. Then there is a polynomial mapping w — C(w) € L(CN, H(n,d))
such that

Xp={(w,¢) : ¢ = f(w) + Kernel(C(w))}. (14)

Proof. By (9) we have

Xy =A{w, Q) : {f(2),0) = (f(2), f(w)) when (z,w) = 1}.

By linearity of the form we have

Xy ={(w, Q) : {f(2),{ = f(w)) = 0 when (z,w) = 1}. (15)

We are assuming that f = q is rational, and we may assume that f is reduced to
lowest terms. Write d for the degree of p. In case M and M’ are spheres, it is easy to
see that the degree of p must be at least the degree of q.

We multiply the equation in (15) by ¢(z) to obtain

Xy =A{(w, Q) : {p(2),¢ = f(w)) = 0 when (z,w) = 1}. (16)

We may write p = Z?:u pj, where each p; is homogeneous of degree j. Define a
homogeneous polynomial Ty, : C* — CN by

d
To(z) =) p;(2)(z,w)d-3. (17)
Jj=v
Since (z,w) =1 in (16), we can rewrite (16) using (17). We obtain

Xy =A{(w,¢) : (Tw(2),¢ = f(w)) = 0 when (z,w) = 1}. (18)
We define C'(w) by the formula:

Cw)(1)(2) = (Tw(2), p)- (19)

It is evident that p +— C(w)(u) is linear in p, and that its output is a homogeneous
polynomial of degree d in z.
Fix w # 0. By (18) and (19) the homogeneous polynomial

2= (Tw(2),( = f(w)) = Cw)(¢ = f(w))(2) (20)

vanishes on (z,w) = 1. For A # 0, we see from homogeneity that the polynomial in
(20) vanishes when (z,w) = A. By continuity it vanishes for all z. For w # 0, we
conclude that (w, () € Xy if and only if

Clw)(¢ = f(w)) = 0. (21)
Thus (w,() € Xy if and only if ¢ — f(w) is in the kernel of C(w), and hence (14)
holds. O

Theorem 1 has several immediate corollaries. In each of these corollaries we
assume the hypotheses from the theorem without stating them explicitly. It is useful
also because the computations can be done so easily. In the case of spheres [D4]
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provides an integral formula for C(w). Before turning to the corollaries we note
that the formula for C(w) depends only upon the numerator of f. This superficially
strange fact becomes sensible when one realizes that the numerator determines the
denominator.

COROLLARY 1. Xy is an affine space.

COROLLARY 2. Xy equals the graph of f if and only if C(w) is injective for all
w (here w # 0). Also, X is an affine bundle if and only if the kernel of C(w) has
constant dimension.

COROLLARY 3. If f is homogeneous, then C(w) is independent of w, and conse-
quently Xy is an affine bundle. If also the target dimension is minimal, then Xy is
the graph of f. If f is not homogeneous, then C(w) depends on w. In this case X is
generally not a bundle, but for some f it is a bundle.

Proof. Tt follows from (17) and (19) that the map w — C(w) is a polynomial in w
of degree equal to d—v, where d is the degree of the numerator p of f and v is the order
of vanishing of p. In particular when f is homogeneous, C(w) is independent of w,
and its kernel is independent of w, and hence X is an affine bundle. It is not hard to
see that the target dimension N is minimal for a homogeneous polynomial mapping
of degree d precisely when N = ("+571). See Theorem 2. In this case the map
C(w) is an isomorphism, and thus its kernel is trivial. When f is not homogeneous,
C(w) depends on w, and examples below show that both possibilities occur even for

polynomial f. O

COROLLARY 4. Let f : C*» — CN be a polynomial mapping of degree d, and
suppose f(M) Cc M'. If N > ("+3_1), then Xy strictly contains the graph of f.
Furthermore, for each w, the dimension of the fibre over w is at least N — ("+§71).

Proof. The image of C(w) is a subspace of H(n,d), and hence its dimension is at
most ("+g_1). By elementary linear algebra we obtain

dim(Kernel(C(w))) = N — dim(Image(C(w))) > N — (n +3_ 1). O (22)

Since the nullity of a linear mapping depends lower semi-continuously on param-
eters, the dimension of the fibre of Xy over w depends lower-semi-continuously on w.
Thus the exceptional points are where the fibre dimension increases. Since the entries
of the matrix C(w) are polynomials in w, we see also that X is itself an algebraic
variety defined by the system of polynomial equations

C(w)(q(w)¢ — p(w)) =0, (23)
where f = %.
We next give some examples which illustrate some of the possibilities for X.

EXAMPLE 2. Put f(z1,22) = (21,2122,2123,23). Then f maps the sphere S3
to the sphere S7. This mapping results from applying two restricted tensor product
operations. See Section 2 and [D3]. We find X by finding C'(w) and using Theorem
1. After homogenizing and choosing bases we obtain
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w? 0 0 0
o 2w1 wo W1 0 0

Clw) = w3 wz 1 0 (24)
0 0 0 1

It is evident that the kernel is trivial for w; # 0, and hence the fibre over such w
is simply f(w). For wy = 0, however, the kernel is two-dimensional, with basis given
by (1,0, —w3,0) and (0,1, —ws, 0).

EXAMPLE 3. Here we map the sphere Q(2,0) in C2 to the sphere Q(5,0) in C5.
With f defined by (25), it is easy to check that f(Q(2,0)) C Q(5,0).

f(2) = (24,2232, V62223, 22123, 23). (25)

The mapping f is invariant under the cyclic unitary group G of order four generated
by multiplication by ¢, and it thus induces a CR mapping from S3/G to S9. This
example should be contrasted with Example 4, where a different representation of a
cyclic group of order four yields a rather different result. Using Corollary 3, we obtain

C(w):

10 0 00
02 0 00

Cw)y=[0 0 v6 0 0 (26)
00 0 20
00 0 01

From (26) we see that X is the graph of f. Nothing unusual happens at w = 0.
EXAMPLE 4. Here we map the sphere Q(2,0) in C2 to the hyperquadric Q(3,1)
in C4. Define f by (27):
f(Z) = (Zilv Zga 221225 \/52%25) (27)

Here f is invariant under the cyclic unitary group I' of order four generated by
(21,22) > (iz1,—i22). Then f(S3) C Q(3,1), and f induces a CR mapping from
S3/T to Q(3,1). Using Theorem 1 we compute the matrix C'(w), obtaining

10 0 0
00 2uw? 0

Cw)=|0 0 4wiws —V2|. (28)
0 0 2uw? 0
01 0 0

From (28) it is evident that Xy is the graph of f; the only point where the kernel
of C(w) is not trivial is the origin, which is excluded from the discussion because the
equation (z,w) = 1 is vacuous for w = 0.

We next consider the special point w = 0 in the case of mappings between hyper-
quadrics, leading to the definition of the extended variety Y;. Because the condition
(z,w) =1 is vacuous when w = 0, the point w = 0 is not considered in the definition
of X¢. On the other hand, C(w) (as a matrix of polynomials in w) makes perfectly
good sense at w = 0. We therefore extend the variety X by including also the points

(0, £(0) + Kernel(C(0)). (29)
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For clarity we write Y} for the resulting union.

DEFINITION 2. Assume the set-up from Theorem 1. The extended variety Y7 is
the subset of Domain(f) x Target(f) defined by

¥y = {(w,0) : ¢ = f(w) + Kemel(C(w)}. (30)
By Theorem 1, Yy = X[ U (0, f(0) + Kernel(C(0))).

We can easily interpret the new fibre. By the proof of Theorem 1, the matrix
C(0) has maximum rank if and only if the highest order part (terms of order d) of the
numerator p of f includes all monomials of degree d. In order that Y; be a bundle,
the dimension of the fibre over w = 0 must be the same as at other points. For this
to hold it is necessary that the highest order part of p contain all monomials of that
degree. In Example 4, although X is the graph of f, Yy is not the graph of f. The
fibre over w = 0 is one-dimensional.

We summarize these remarks in the next proposition.

PROPOSITION 1. Let f = % be a rational mapping such that f(M) C M’ for non-
degenerate hyperquadrics. Define C(w) by (19). The algebraic subvariety Yy defined
by (81) then extends the definition of X to include the exceptional point w = 0.

Yy ={(w, () : C(w)(g(w)¢ — p(w)) = 0}. (31)

EXAMPLE 5. Define f : C2 — C5 by f(z1,22) = (27, V/52722,V52123,23). Then
f(S3) C S7. We compute C(w) and hence Y.

1 0 0 0
0 V5w 0 0
10 V5w Vhw? 0
Cw=1o "0 9/Buws 0 (32)
0 0 VEw: 0
0 0 0 1

From (32) it follows that the fibre over w is f(w), at all points except w = 0, where the
fibre is two-dimensional. Thus Xy is the graph of f, whereas Y is not. The mapping
f is group-invariant under a cyclic unitary group of order five, and thus f induces a
map from a Lens space to a sphere.

We close this section with a rational example. This example is interesting partly
because it maps Q(1,1) to the sphere Q(2,0). Also any point where w; = 0 must be
excluded because f is not holomorphic there.

EXAMPLE 6. Let f(z) = (%, 22). Then f is holomorphic near Q(1,1). Further-

more f(Q(1,1)) C Q(2,0) since |%|2 +|2[> =1 on |21]> — |22[> = 1. Using Theorem
1 we compute C'(w) to obtain
o w1 O
C(w) = <—w2 1> .

The kernel of C'(w) is trivial except where wi = 0, but such points are not in the
domain of f. Thus Xy is the graph of f.
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2. Homogeneous mappings between hyperquadrics. In this section we
consider the homogeneous case in more detail. In Theorem 2 we determine all ho-
mogeneous polynomial mappings f between hyperquadrics and with minimal target
dimension. It follows from Corollary 3 that Y; equals the graph of f in this case.

Let (,) be a nondegenerate Hermitian form on C¥; there are integers a,b and
coordinates such that

a a+b
CO= 1G> G2 (33)
j=1 j=a+1

We let U(a,b) denote the group of linear transformations L : CN — CN preserving
the form in (33). Thus L € U(a,b) if and only if (L, Ln) = (¢, n) for all ¢ and 7.

We begin with a simple way to construct homogeneous polynomial mappings
f : C* — CN sguch that (f(z), f(z)) = 1 (for an appropriate Hermitian form) on
(z,z) = 1. Given the form (z,w) on C™ and a positive integer d, the expression (z, w)4
is a Hermitian symmetric bihomogeneous polynomial. There are unique nonnegative
integers a and b and (not unique) linearly independent homogeneous polynomials A;
and B; of degree d for which we can write

a a+b
(zw)d =" Aj(2)A;(w) = > By(2)Bj(w). (34)
j=1 Jj=a+1

The right-hand side of (34) can be written (f(z), f(w)) with (,) as in (33) for the
homogeneous polynomial mapping f = A@® B. Then (f(z), f(w)) =1 on (z,w) = 1.
This naive idea combines with linear algebra to provide all homogeneous examples.

We mention in passing that when the form on Cn is positive definite, the form
in (34) will also be positive definite and thus b = 0. In general the form in (34) will
have many negative eigenvalues. For n > 2 this number b must grow as d grows. The

next result generalizes a result for the sphere ([D2], [R]) that plays a crucial role in
[D1] and [D3].

THEOREM 2. Let (,) denote nondegenerate Hermitian forms on both C" and
CN. Let f : C* — CN be a homogeneous polynomial mapping of degree d such that
(f(2), f(2)) =1 whenever (z,z) = 1. Then, for all z and w,

(f(2), f(w)) = (z,w)?. (35)

Also, N > ("+§71). Furthermore, if g and f both satisfy these hypotheses and N =
(n+2171); then there is an L € U(a,b) such that g = Lf. Finally, write

flz)= Z Coze. (36)

The coefficient vectors Cyo then satisfy (Co,Cg) =0 for a #  and {(Co,Co) = :I:(d).

o

Proof. Suppose that (f(z), f(z)) = 1 whenever (z,z) = 1. We polarize this
condition and conclude that (f(z), f(w)) = 1 whenever (z,w) = 1. Next suppose that
(z,w) = A #0. Then (%, w) = 1, so we conclude that

;wyd. (37)



THE X-VARIETIES FOR CR MAPPINGS BETWEEN HYPERQUADRICS 99

Both f and (, )¢ are homogeneous of degree d in z, so (37) yields (35) for all z and
w such that (z,w) # 0. By continuity, (35) holds for all z and w, giving the first
conclusion.

Before considering the second conclusion we write (36) for some coefficient vectors
Cy. Suppose that the form on C™ has k positive eigenvalues. We may write

<Zaw> = Z:I:(j)zjwjv (38)

where £(j) = 1for j < kand £(j) = —1 for j > k. Expanding (38) by the multinomial
theorem yields

=3 (o) meate) (39)

where each a(a) = £1.
Plugging (39) and (36) into (35) yields

Z(Ca,Cﬁ)zaEB = (z,w)d = Z (d> (zw)>a(a). (40)

(6%
a,B a

Varying z and w separately in (40) and equating coefficients gives the formulas for
the (Cw,Cp). Since (Cy,Cq) # 0 for all a, all the coefficient vectors are not zero.
Since (Cq,Cs) = 0 for a # (3 and the Hermitian form is nondegenerate, the coefficient
vectors are linearly independent. Thus N is at least as large as the dimension of
H(n,d), which is ("747").

Finally let g be another such mapping, with coefficient vectors D,, and assume
that N is minimal. Using (40) again we conclude that (D, Dg) = (Ca,Cgs) for
all multi-indices a and 3. Since all inner products are preserved, and the linear
independence condition holds for each set of vectors, we can define L € U(a,b) by
setting L(Cy) = Dgq. It follows that g = Lf. O

COROLLARY 5. Let f : C* — CN be a homogeneous polynomial mapping of
degree d. Suppose (f(z), f(2)) =1 on (z,z) = 1. Then Y; is the graph of f if and
only if N = ("+g_1).

Proof. For any polynomial of degree d Corollary 4 implies, when N > (n+371)7

that X and hence Y} strictly contain the graph of f. If also f is homogeneous, then
Yy equals the graph of f if and only if the target dimension is minimal by Corollary
3. By Theorem 2, the target dimension N is minimal if and only if N = ("Jr;l*l). O

Corollary 5 generalizes Example 1. In Example 1 any excess in target dimension
for a linear map L is revealed as the fibre dimension of Xy. In Corollary 5 we see the
same result in the homogeneous case.

Given a homogeneous polynomial map f such that f(Q(a,b)) C Q(a/, V), we
can compose f with a linear map L into higher dimensions that sends Q(a’,¥’) into
Q(a”,v") for appropriate a” and . Then g = Lo f maps Q(a,b) to Q(a”,b"). We can
detect such compositions of maps because Y, must have positive dimensional fibres.
Using these ideas it is possible to combine Theorem 2 with the rigidity results in [BH].

It is also easy to construct general polynomial examples. In a future paper we will
describe a procedure for homogenization analogous to the orthogonal homogenization
procedure from [D1] and [D2] stated in Theorem 3 below.



100 JOHN P. D’ANGELO

Let u be a polynomial in one variable with u(1) = 1. We may expand u((z, w)),
and choose signs such that (41) holds for some polynomial mapping f and appropriate
form on the target of f:

u((z,w)) = (f(2), f(w))- (41)

Using this method we can construct as many examples as we wish of polynomial
mappings between hyperquadrics, as long as we allow the form in the target space to
have enough negative eigenvalues. Again we observe the complexity issue. See [BH]
and [EHZ1] for what happens when one restricts the number of negative eigenvalues.

The homogeneous polynomial mappings taking spheres to spheres play a key role
in the classification problem and have many additional interesting properties. We can
use them to study arbitrary polynomial maps taking spheres to spheres. We do so by
considering the volume of the image of the unit ball B,, under such maps.

Let f : B, — CN be a holomorphic mapping. Recall that the volume (with
multiplicity counted) of the image of the ball B,, under f is given by

viH=% /B T (Firsooe Fr)2AV = /B H(f)dv. (12)

In (42) the sum is taken over all choices of n-tuples of components of f, and J denotes
the Jacobian determinant. In the second term H(f) denotes the determinant of the
complex Hessian of f. Using wedge products one can easily verify that the two inte-
grands in (42) are the same. In case f is homogeneous of degree d, the volume turns
out to be dtz,r", independent of the target dimension. See [D1].

In [D2] and [D3] the homogeneous maps between spheres are used to classify all
polynomial maps between spheres, via a tensor product operation. We briefly sketch
these ideas. Let H,, denote a homogeneous polynomial mapping of degree m whose
components are linearly independent and for which

[ Hm (2)|? = [[2] ]2 (43)

It is evident from (43) that H,, maps the sphere in its domain to the sphere in its
target. Its components are linearly independent and they must also span the space
of homogeneous polynomials of degree m in n variables for (43) to hold. Theorem
2 therefore implies that H,, is determined up to a unitary map by (43). (See also
[D2] and [R].) Corollary 3 guarantees that the X-variety for Hp, is its graph. Each
polynomial mapping of degree m between spheres can be ”tensored” into H,,. Each
tensor operation increases the volume of the image of the ball.

Let A be a subspace of CVN with orthogonal complement A+. Let m denote the
orthogonal projection onto A. Given a function p with values in CN we naturally
write

p=(1-m)(p) &) (44)
Let g be a function with the same domain as p and with values in some Ck. We define
a mapping Ea(p, g) by

Ea(p,g) =1 —7)(p) @ (7(p) ®9g). (45)

In case p and g map the sphere to the sphere, a simple calculation shows that
E(p, g) also does. Notice that the target dimension of E4(p, g) is (N —a) +ak, where
a = dim(A) (hence N — a = dim(A+1)) and k is the dimension of the target of g.
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When g is the identity mapping z, the restricted tensor product operation p —
E4(p, g) is a kind of orthogonal homogenization, closely related to the homogenization
part of the proof of Theorem 1. The inverse operation sending F4(p, g) — p is a kind
of orthogonal dehomogenization. When the subspace A is one-dimensional, say the
span of the vector e;, we have

EA(f,Z) = (Zlfl,...,anl,fg,...,fN). (46)

The inverse operation replaces the right-hand side of (46) with f.

The author [D2] and [D3]) obtained the following result as part of the classification
problem for proper polynomial mappings between balls.

THEOREM 3. Let p : C* — CN be a polynomial mapping of degree m such that
p(S2n=1) C S2N-1. Let Hy, satisfy (43). Then there is an integer N', subspaces Ao,
ey A of CN' | tensor products Ey, ...Ey, and a linear mapping L : CN' — CN(n.m)
such that

Hu = LT[ B5(0). (47)

Each tensor product Ej is of the form Ea,(f,z) for the corresponding subspace Aj;.

Let f : B, — CV be a holomorphic mapping for which the volume V} of the
image of the ball under f is finite. By a monotonicity result from [D1], the volume of
the image of the ball under E4(f,z) exceeds Vy unless ma(f) = 0. By combining this
result with Theorem 3 we obtain a characterization of the homogeneous polynomial
mappings between spheres as extremals for volumes.

THEOREM 4. [D1] Let p : C* — CN be a polynomial of degree m, and suppose that
p(S2n—1) C S2N-1. Then the volume (with multiplicity counted) of the image of the

unit ball under p is at most m:fn , and equality occurs if and only if p is homogeneous.

Theorem 2 has a nice geometric interpretation. A homogeneous polynomial map-
ping of degree m covers the ball m times, introducing a factor of m” into the volume.
Lower order terms mean that the multiplicity is less than m at some points, so the
full impact of this factor is not felt. We compute the volumes V' of the images of the
two-ball under the three maps in (48) to illustrate this idea.

(21,22) — (21,2122,23). V = —

(21, 22) = (22,V22129, 22). V = 22 (48)
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