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A SECOND MAIN THEOREM ON PARABOLIC MANIFOLDS∗

MIN RU†AND JULIE-TZU-YUEH WANG‡

Abstract. In [St], [WS], Stoll and Wong-Stoll established the Second Main Theorem of mero-
morphic maps f : M → PN (C) intersecting hyperplanes, under the assumption that f is linear
non-degenerate, where M is a m-dimensional affine algebraic manifold(the proof actually works for
more general category of Stein parabolic manifolds). This paper deals with the degenerate case. Us-
ing P. Vojta’s method, we show that there exists a finite union of proper linear subspaces of PN (C),
depending only on the given hyperplanes, such that for every (possibly degenerate) meromorphic map
f : M → PN (C), if its image is not contained in that union, the inequality of Wong-Stoll’s theorem
still holds (without the ramification term). We also carefully examine the error terms appearing in
the inequality.
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In [WS], W. Stoll and Pit-Mann Wong established the Second Main Theorem of
meromorphic maps f : M → PN(C) intersecting hyperplanes, under the assumption
that f is linear non-degenerate, where M is a m-dimensional affine algebraic mani-
fold(the proof actually works for more general category of Stein parabolic manifolds).
This paper deals with the degenerate case. Motivated by the works of Vojta (see
[Vo2], [Vo3]), we show that, for a finite set of hyperplanes in PN (C), there exists a
finite union of proper linear subspaces, depending only on the given hyperplanes, such
that for every meromorphic map f : M → PN(C), if its image is not contained in
that union, then the inequality of Wong-Stoll’s theorem still holds, except that the
ramification term is lost. Here the exceptional subspaces(i.e. the subspaces which the
image f(M) is not contained in) depend only on the given hyperplanes and can be
determined explicitly. We note that the Second Main Theorem for linearly degener-
ated maps was also studied by W.X. Chen(see [Chen]). The estimate in the Theorem
of Chen holds without exceptions. However, his estimate is weaker than the estimate
of the current paper(which allows a finite number exceptions).

Throughout this paper, we shall use the standard notation in the value distri-
bution theory of meromorphic maps on parabolic manifolds (see [WS] or [St]). An
affine algebraic manifold M can be represented as a finite branch cover over Cm,
π : M → Cm. Let κ be the sheet number of the projection π and dπ be the degree of
the branching divisor of τ .

Our main theorem is stated as follows:

Main Theorem. Let M be an affine algebraic manifold of complex dimension
m. Let π : M → Cm be a finite branched covering. Let H = {H1, ..., Hq} be a
finite collection of hyperplanes in PN (C) in general position. Then there exists a
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finite union R of proper linear subspaces of PN(C) depending only on H such that if
f : M → PN (C) is a meromorphic map whose image does not lie in R, then, for every
ǫ > 0,

q
∑

j=1

mf (Hj , r). ≤ .(N + 1)Tf(r, s0) +
N(N + 1)

2
dπ log r

+ κ
N(N + 1)

2
[log+ Tf (r, s0) + (2 + ǫ) log+ log+ Tf (r, s0) + O(log+ r)],

where κ is the sheet number of π, dπ is the degree of the branching divisor of π, and
. ≤ . means that the inequality holds for all r ∈ [s0, +∞) outside a union of intervals
of finite total length.

The proof of the main theorem also works for more general category of Stein
parabolic manifolds. See the “Second Main Theorem for parabolic manifolds” in
section 6.

We organize our paper as follows: In section 1, we recall the Cartan-Ahlfors
theory for meromorphic maps on parabolic manifolds(see [St] or [WS]). In section 2,
we give a slight generalization of the theorem of Wong-Stoll [WS] to the case where the
hyperplanes H1, . . . , Hq in Pn(C) are not necessarily in general position. In section
3, we recall the concept of the associate cycle CH to the given set of hyperplanes
H = {H1, . . . , Hq}. We then study the relationship between the distance function of
f(z) to CH and to Hj , 1 ≤ j ≤ q. In this section, we also recall the concept of Möbius
inversion of cycles and express the associate cycle CH in terms of the Möbius inversion
of cycles. In section 4, we extend the Second Main Theorem which we established in
section 2 to the case where linear subspaces E of Pn(C) are involved. In section 5, we
recall an algebraic lemma, due to P. Vojta, which plays an essential role. In section
6, we adapt Vojta’s method in [Vo2] to prove our main theorem.

1. Preliminaries. In this section, we recall some basic results in the theory of
meromorphic maps on parabolic manifolds. For reference, see [St] and [WS].

1.1. Parabolic manifolds and affine algebraic manifolds. Let M be a con-
nected complex manifold of dimension m. Let τ ≥ 0 be a non-negative, unbounded
function of class C∞ on M . For 0 ≤ r ∈ R and A ⊆ M define

A[r] = {x ∈ A | τ(x) ≤ r2}, A(r) = {x ∈ A | τ(x) < r2},

A〈r〉 = {x ∈ A | τ(x) = r2}, A∗ = {x ∈ A | τ(x) > 0},

υ = ddcτ, ω = ddclogτ, σ = dclogτ ∧ ωm−1.

If M [r] is compact for each r > 0, the function τ is then said to be an exhaustion of
M . The function τ is said to be parabolic if

ω ≥ 0, ωm ≡ 0, υm 6≡ 0

on M∗. Note that this also implies that υ ≥ 0 on M . If τ is a parabolic exhaustion,
(M, τ) is said to be a parabolic manifold. Define

R̂τ = {r ∈ R+ | dτ(x) 6= 0 for all x ∈ M〈r〉}.
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Then R+\R̂τ has measure zero. If r ∈ R̂τ , the boundary ∂M(r) = M〈r〉 is a compact,
real, (2m − 1)-dimensional submanifold of class C∞ of M , oriented to the exterior of

M〈r〉. By Stoll ([St], p. 133), for all r ∈ R̂τ ,
∫

M〈r〉
σ is a positive constant, independent

of r.

Throughout this paper, we shall assume that M is an (connected) affine algebraic
manifold of dimension m ≥ 1 with π : M → Cm a finite branched covering map (i.e., π
is a surjective holomorphic map such that the number of points of a fiber is finite and
that there exists a subvariety S of lower dimension such that the restriction of π to
M −S onto Cm −π(S) is a covering map). Here, by “affine algebraic”, we mean there
exists k > m such that M is a closed complex submanifold of Ck and the closure M̄
of M in Pk(C) is an analytic subset of Pk(C). Furthermore there exists a projection
π̄ : M̄ → Pm(C) such that π̄|M = π. Here Pm(C) is the closure of Cm in Pk(C).

Since M is connected, the closure M̄ is irreducible. The set θ̃ = {z ∈ M | the rank of
the differential ∂π(z) is not maximal} is an affine algebraic variety (of strictly lower

dimension) of M and the image θ = π(θ̃) is an affine algebraic variety (of strictly lower

dimension) of Cm. We shall refer to θ̃ as the branching divisor. The map π : M → Cm

is a finite map and the number of points in π−1(p) is independent of p ∈ Cm − θ. This
common number, denoted by κ, is called the sheet number. A point p ∈ Cm − θ is
called a generic point.

For an (connected) affine algebraic manifold π : M → Cm, we define the exhaus-
tion τ of M as τ = ‖π‖2. Then τ is parabolic (cf. [GK], [St]). With this exhaustion
function, we can also prove that the sheet number is

(1.1.1) κ =

∫

M〈r〉

σ,

and the degree of the branching divisor of π is

(1.1.2) dπ = lim
r→+∞

Ricτ(r, s0)

log r
.

1.2. Meromorphic maps; reduced representation. Let M be a complex
manifold with dimM = m. Let A 6= ∅ be an open subset of M such that S = M − A
is analytic. Then A is dense in M . Let f : A → Pn(C) be a holomorphic map on
A. The closure Γ of the graph {(x, f(x))|x ∈ A} in M × Pn(C) is called the closed
graph of f . The map f is said to be meromorphic on M if (i) Γ(f) is analytic in
M × Pn(C) and (ii) Γ(f) ∩ (K × Pn(C)) is compact for each compact subset K ⊆ M ,
i.e. the projection ρ : Γ(f) → M is proper. If f is meromorphic, then the set of
indeterminacy If = {x ∈ M |#ρ−1(x) > 1} is analytic with dim If ≤ m − 2 and is
contained in S. The holomorphic map f : A → Pn(C) continues to a holomorphic map
f : M − If → Pn(C) such that we can assume, a posteriori, that S = If . If m = 1, If

is necessarily empty and f : M → Pn(C) is holomorphic.

Given M, A, S and a holomorphic map f : A → Pn(C) as above. A holomorphic
map f(6≡ 0) : U → Cn+1 on an open and connected subset U of M is said to be a
representation of f if f(x) = P(f(x)) for all x ∈ A∩U with f(x) 6= 0. A representation
f is said to be reduced if dim f−1(0) ≤ m−2. The map f is meromorphic if and only if
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for every point p ∈ M , there is a representation f : U → Cn+1 of f with p ∈ U . If so,
a representation f is reduced if and only if U ∩ If = f−1(0). There is also a reduced
representation at every point p ∈ M .

1.3. The associated map. To define the associated maps, we need to assume
that there exists a holomorphic form B of bidegree (m − 1, 0) on M . Let f be a
holomorphic vector-valued function on an open subset U of M . If z = (z1, . . . , zm) is
a chart with Uz ∩U 6= ∅, then the B-derivative f ′B,z = f ′ on U ∩Uz for z is defined by

df ∧B = f ′dz1∧· · ·∧dzm. The operation can be iterated so that the k-th B-derivative
f (k) is defined: f (k) = (f (k−1))′. Put f (0) = f . Abbreviate

fk = f ∧ f ′ ∧ · · · ∧ f (k) : U → ∧k+1Cn+1.

Let f : M → Pn(C) be a meromorphic map. If fk 6≡ 0 for one choice of a reduced
representation f : U → Cn+1 on a chart Uz, then fk 6≡ 0 for all possible choices
and f is said to be general of order k for B. In this case, the k-th associated map

fk : M → P(
∧k+1 Cn+1) is well-defined as a meromorphic map by fk|U = P(fk) for

all possible choices of f and chart z. We say that f is general for B if f is general of
order k for B for all k, 1 ≤ k ≤ n.

The basic existence theorem for a holomorphic (m − 1)-form B on M is due to
W. Stoll. He (see [St]) proved the following statement: Let M be a connected Stein
manifold and let f : M → Pn(C) be a linearly nondegenerate meromorphic map. Then
there exists a holomorphic (m − 1)-form B on M such that f is general for B. If
dimM = 1, we may take B ≡ 1. If M is affine algebraic with the exhaustion τ defined
as above and dimM ≥ 2, then the form B can be chosen so that

mim−1B ∧ B̄ ≤ (1 + τ)n−1(ddcτ)m−1

where im−1 =

(
√
−1

2π

)

(m − 1)!(−1)(m−1)(m−2)/2.

Note that a general parabolic manifold M of complex dimension m ≥ 2 may not
be Stein. This is the reason that the theory is developed only for parabolic Stein
manifold. For a general parabolic Stein manifold (M, τ), even though the existence
of B is assured we do not, in general, have a polynomial type estimate as for affine
algebraic manifolds. To overcome this difficulty, Stoll [St] postulates the existence of
a majorant function such that

mim−1B ∧ B̄ ≤ Y (r)υm−1

on M [r]. The theory can be carried out as in the algebraic case, except that the
majorant function Y (r) introduces an extra term in the Second Main Theorem. For
simplicity, we only prove the theorem for the affine algebraic manifold M in this paper,
and state the general theorem at the end.

1.4. Projective distance. Denote by C∗n+1 the dual space of Cn+1. For

0 ≤ k ≤ n, let ⌊:
(

∧k+1 Cn+1
)

× C∗n+1 → ∧k Cn+1 be the interior product defined

in the usual way. Let x ∈ P(
∧k+1 Cn+1) with representative ξ ∈ ∧k+1 Cn+1 − {0}

and let a ∈ P(C∗n+1) with representative α ∈ C∗n+1 −{0}, the projective distance
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between x and a is defined by

(1.4.1) 0 ≤ ‖x; a‖ =
‖ξ⌊α‖
‖ξ‖‖α‖ ≤ 1,

where the norm on on
∧k Cn+1 is induced by the standard norm on Cn+1. Note that

the above definition is independent of choice of the representatives α and ξ. Note that
a hyperplane H in Pn(C) can also be regarded as a point in Pn(C∗). Hence, for every
meromorphic map f : M → Pn(C), ‖fk(z); H‖ is defined for z ∈ M . This gives a
distance function (from fk(z) to H) on M .

1.5. The first main theorem. Let M be an (connected) affine algebraic man-
ifold. Let f : M → Pn(C) be a meromorphic map which is linearly non-degenerate.
Then, as we discussed above, a holomorphic (m− 1)-form B exists on M such that f
is general for B and

mim−1B ∧ B̄ ≤ (1 + τ)n−1(ddcτ)m−1.

Let fk be the k-th associated map of f . Let Ωk be the Fubini-Study form on

Pn(
∧k+1 Cn+1). Define the k-th characteristic function for 0 < s0 < r

Tfk
(r, s0) =

∫ r

s0

dt

t2m−1

∫

M [t]

f∗
k (Ωk) ∧ υm−1.

It is known that Tfn
(r, s0) ≡ 0. Denote Tf−1

(r, s) ≡ 0.

Let ν be a divisor on M with S = supp ν. The counting function of ν is defined
to be

Nν(r, s0) =

∫ r

s0

nν(t)
dt

t

where

nν(t) = t2−2m

∫

S[t]

νυm−1 =

∫

S∗[t]

νωm−1 + nν(0), if m > 1

nν(t) =
∑

z∈S[t]

ν(z), if m = 1.

For a hyperplane H in Pn(C), define an H-divisor ν = µH
fk

as in Stoll [St]. Let

Nfk
(r, H) = Nν(r, s0) and let

mfk
(r, H) =

∫

M〈r〉

log
1

‖fk; H‖σ.

Then we have

Theorem 1.5 [First Main Theorem] ([St, (8.21)]). Let f : M → Pn(C) be
a meromorphic map which is general for B. Then, for every hyperplane H in Pn(C)

and for every 0 ≤ k ≤ n, s0, r ∈ R̂τ , 0 < s0 < r,

Tfk
(r, s0) ≥ Nfk

(r, H) + mfk
(r, H) − mfk

(s0, H).
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1.6. Calculus lemma. Let T be a nonnegative function defined on an interval
[s0, r] with s0 ≥ 0. Define the error functions E(T, r) and Ẽ(T, r) by

(1.6.1) Ẽ(T, r) = T (r) log1+ǫ(1 + T (r)) log1+ǫ[1 + r2m−1T (r) log1+t(1 + T (r))]

and

(1.6.2) E(T, r) = log+ Ẽ(T, r).

Calculus Lemma. Let h be a nonnegative measurable function on M such that
hυm is locally integrable. Let T be a function defined by

T (r) =

∫ r

s0

dt

t2m−1

∫

M [t]

hυm.

Then hσ is integrable over M〈r〉 for almost all r > 0 and

2m

∫

M〈r〉

hσ = r−(2m−1) d

dr

(

r2m−1 dT

dr

)

≤ Ẽ(T, r)

holds for all r ∈ [s0, +∞) outside a union of intervals of finite total length.

Proof. By Corollary 2.4 in [WS] using g(t) = log1+ǫ(1 + t).

1.7. The Plücker formula. Let dk be the zero divisor of fk. When k = n, we
obtain the Wronskian divisor dn. The divisor lk = dk−1 − 2dk + dk+1 ≥ 0 is called the
k-th stationary index, where we assume that d−1 = 0. Let Ik be the indeterminacy of
fk. On M − Ik, we define

(1.7.1) h̃k = m!

(√
−1

2π

)m−1

(−1)(m−1)(m−2)/2f∗
k (Ωk) ∧ B ∧ B̄.

It is known that h̃k ≥ 0 (cf. [St]). Define

(1.7.2) hk = h̃k/υm.

For all r ∈ R̂τ , define

(1.7.3) Sk(r) =
1

2

∫

M〈r〉

log hk σ.

Plücker Formula [St, theorem 7.6]. For almost all s0, r ∈ R̂τ , 0 < s0 < r,

Nlk(r, s0) + Tfk−1
(r, s0) − 2Tfk

(r, s0) + Tfk+1
(r, s0) = Sk(r) − Sk(s0) + Ricτ (r, s0).

The Plücker formula implies the following result(see [St, (10.23)]):

Theorem 1.7.2. For 0 ≤ k ≤ n − 1,

Tfk
(r, s) ≤ 3kTf (r, s) +

1

2
(3k − 1)(κ(n − 1) log(1 + r2) + Ricτ(r, s) + ǫκ log r)

holds for all r ∈ [s0,∞) outside a union of intervals of finite total length.
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1.8. The Ahlfors’ estimate.

The Ahlfors’ Estimate [St, p.160, theorem 10.3]. Let H be a hyperplane
in Pn(C). Then for any 0 < λ < 1, 0 < s0 < r, we have

∫ r

s

dt

t2m−1

∫

M [t]

‖fk+1; H‖2

‖fk; H‖2−2λ
hkυm ≤ (1 + r2)n−1

(

4 + 4λ

λ
Tfk

(r, s) +
2κ

λ2
log 2

)

where hk is defined in (1.7.2), and κ =
∫

M〈r〉
σ > 0 (cf. (1.1.1)) is a constant.

Theorem 1.8.2. Let H be a hyperplane in Pn(C). Let ǫ > 0 and Λ(r) =
mink{1/(1 + Tfk

(r, s0))}. Then, for every 0 ≤ k ≤ n − 1,

log+

∫

M〈r〉

‖fk+1; H‖2

‖fk; H‖2−2Λ(r)
hkσ. ≤ .2 log+ Tf(r, s0) + 2(2 + ǫ) log+ log+ Tf (r, s0)

+4(n − 1) log+ r + 3 log+ Ricτ (r, s0) + 5 log+ log+ r + C′

where . ≤ . means that the inequality holds for all r ∈ [s0, +∞) outside a union of
intervals of finite total length, and the constant C′ is independent of r.

Proof. Let 0 < Λ(r) < 1 be a decreasing function of r ≥ 0. Define functions

Kk(r, s0) =

∫ r

s

dt

t2m−1

∫

M [t]

‖fk+1; H‖2

‖fk; H‖2−2Λ∗
hkυm

where Λ∗ = Λ ◦ τ1/2. By the calculus lemma, we have

∫

M〈r〉

‖fk+1; H‖2

‖fk; H‖2−2Λ(r)
hkσ. ≤ .Ẽ(Kk, r).

On the other hand, noticing that Λ is a decreasing function, we have ‖fk; H‖Λ∗ ≤
‖fk; H‖Λ(r). Hence by Ahlfor’s estimate with λ = Λ(r), we have

Kk(r, s0) =

∫ r

s

dt

t2m−1

∫

M [t]

‖fk+1; H‖2

‖fk; H‖2−2Λ∗
hkυm

≤ (1 + r2)n−1

(

8

Λ(r)
Tfk

(r, s0) +
2κ log 2

Λ(r)2

)

.

Since Λ(r) = mink{1/(1 + Tfk
(r, s))},

Kk(r, s0) ≤ (1 + r2)n−1(b1T
2
fk

(r, s0) + b2),

where b1 and b2 are constants depending only on κ. By choosing a larger constant b3,
we have

Ẽ(Kk, r) ≤ Ẽ(b3(1 + r2)n−1T 2
fk

(r, s0), r).

Hence we get

(1.8.1)

∫

M〈r〉

‖fk+1; H‖2

‖fk; H‖2−2Λ(r)
hkσ. ≤ .Ẽ(b3(1 + r2)n−1T 2

fk
(r, s0), r).
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By the definition, we have (see (2.8) in [WS], page 1046)

E(b3(1 + r2)n−1T 2
fk

(r, s0), r)

≤ log+(b3(1 + r2)n−1T 2
k (r, s0)) + 2(1 + ǫ) log+ log+(b3(1 + r2)n−1T 2

k (r, s0))

+ (1 + ǫ) log+ log+ log+(b3(1 + r2)n−1T 2
k (r, s0)) + (1 + ǫ) log+ log+ r + C′

≤ 2 log+ Tk(r, s0) + 2(1 + ǫ) log+ log+ Tk(r, s0)

+ (1 + ǫ) log+ log+ log+ Tk(r, s0) + 2 log+(1 + r2)n−1 + 2 log+ log+ r + C′.

By Theorem 1.7.2,

Tfk
(r, s0) ≤ 3kTf (r, s0) +

1

2
(3k − 1)(κ(n − 1) log(1 + r2) + Ricτ (r, s0) + ǫκ log r).

Hence

E(b3(1 + r2)n−1T 2
fk

(r, s0), r) ≤ 2 log+ Tf (r, s0) + 2(2 + ǫ) log+ log+ Tf(r, s0)

+ 4(n − 1) log+ r + 3 log+ Ricτ (r, s0) + 5 log+ log+ r + C′.

This, together with (1.8.1), concludes the proof.

2. A slight generalization of Wong-Stoll’s theorem. In this section, we
extend the Second Main Theorem of Wong-Stoll (c.f. [WS]) to the case where the
given hyperplanes H1, . . . , Hq in Pn(C) are not necessarily in general position.

Theorem 2.1. Let M be an affine algebraic manifold of complex dimension m.
Let π : M → Cm be a finite branched covering. Let τ = ‖π‖2. Let f : M → Pn(C) be
a meromorphic map which is linearly non-degenerate. Let ǫ > 0 and let H1, ..., Hq be
arbitrary hyperplanes in Pn(C). Then

∫

M〈r〉

max
K

∑

j∈K

log
1

‖f ; Hj‖
σ. ≤ .(n + 1)Tf(r, s0) +

n(n + 1)

2
Ricτ (r, s0)

+ κ
n(n + 1)

2
[log+ Tf (r, s0) + (2 + ǫ) log+ log+ Tf (r, s0)

+ 2 log+ Ricτ (r, s) + 2(n − 1) log+ r + 3 log+ log+ r + O(1)].

where “. ≤ .” means that the inequality holds for all r ∈ [s0, +∞) outside a union of
intervals of finite total length, and the max is taken over all subsets K of {1, . . . , q}
such that the linear forms Hj , j ∈ K, are linearly independent.

Proof. Denote by K ⊂ {1, ..., q} such that linear forms {Hk, k ∈ K}, are linearly
independent. Without loss of generality, we may assume q ≥ n + 1 and that #K =
n+1. Let T be the set of all the injective maps µ : {0, 1, . . . , n} → {1, . . . , q} such that

Hµ(0), . . . , Hµ(n) are linearly independent. Denote by Γ = max1≤j≤q{
∑n−1

k=0 mfk
(s0, Hj)}

and Λ(r) = mink{1/(1 + Tfk
(r, s0))}. For any µ ∈ T, z 6∈ If , the Product to Sum Es-

timate (see [WS] Lemma 1.12), with λ = Λ(r), reads

n
∏

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)
≤ ck





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)





n−k

,
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where ck > 0 is a constant. Since ‖fn; Hµ(j)‖ is a constant for any 0 ≤ j ≤ n, we have

n
∏

j=0

1

‖f(z); Hµ(j)‖2
=

n−1
∏

k=0

n
∏

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)
·

n−1
∏

k=0

n
∏

j=0

1

‖fk(z); Hµ(j)‖2Λ(r)

≤ c
n−1
∏

k=0





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)





n−k

·
n−1
∏

k=0

n
∏

j=0

1

‖fk(z); Hµ(j)‖2Λ(r)
,

where c > 1 is a constant. Therefore, for r > s0, we have

∫

M〈r〉

max
K

∑

j∈K

log
1

‖f(z); Hj‖2
σ =

∫

M〈r〉

max
µ∈T

log





n
∏

j=0

1

‖f(z); Hµ(j)‖2



 σ

≤
n−1
∑

k=0

∫

M〈r〉

max
µ∈T

log





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)





n−k

σ

+

n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

max
µ∈T

log
1

‖fk(z); Hµ(j)‖2Λ(r)
σ + O(1)

=

n−1
∑

k=0

(n − k)

∫

M〈r〉

log max
µ∈T





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)
hk



σ − 2

n−1
∑

k=0

(n − k)Sk(r)

+
n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

max
µ∈T

log
1

‖fk(z); Hµ(j)‖2Λ(r)
σ + O(1)

(2.1)

where, in above, hk is defined by (1.7.2), Sk(r) is defined by (1.7.3). We now estimate
each term appearing the above inequality. First,

∫

M〈r〉

log max
µ∈T





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)
hk



σ

= κ

∫

M〈r〉

log max
µ∈T





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)
hk





σ

κ

≤ κ log

∫

M〈r〉

max
µ∈T





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)
hk





σ

κ

≤ κ max
1≤j≤q

log+

∫

M〈r〉

‖fk+1(z); Hj‖2

‖fk(z); Hj‖2−2Λ(r)
hkσ + C′.

(2.2)
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By Theorem 1.8.2,

max
1≤j≤q

log+

∫

M〈r〉

‖fk+1(z); Hj‖2

‖fk(z); Hj‖2−2Λ(r)
hkσ

. ≤ . 2
[

log+ Tf(r, s0) + (2 + ǫ) log+ log+ Tf(r, s0)

+2 log+ Ricτ (r, s0) + 2(n − 1) log+ r + 3 log+ log+ r + O(1)
]

.

Hence,

n−1
∑

k=0

∫

M〈r〉

log max
µ∈T





n
∑

j=0

‖fk+1(z); Hµ(j)‖2

‖fk(z); Hµ(j)‖2−2Λ(r)
hk





n−k

σ. ≤ .n(n + 1)κ
[

log+ Tf (r)

+(2 + ǫ) log+ log+ Tf(r) + 2 log+ Ricτ(r, s) + 2(n − 1) log+ r + 3 log+ log+ r + O(1)
]

.

(2.3)

Next, using the Plücker formula, we have

Nlk(r, s0) + Tfk−1
(r, s0) − 2Tfk

(r, s0) + Tfk+1
(r, s0) = Sk(r) − Sk(s0) + Ricτ (r, s0).

Noticing that Tfn
(r, s0) = 0,

(2.4)

n−1
∑

k=0

(n − k)Sk(r) = Ndn
(r, s0) − (n + 1)Tf(r, s0) −

n(n + 1)

2
Ricτ(r, s0) + O(1).

Finally, by the First Main Theorem,

n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

max
µ∈T

log
1

‖fk(z); Hµ(j)‖2Λ(r)
σ

≤
∑

µ∈T

n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

2Λ(r) log
1

‖fk(z); Hµ(j)‖
σ + O(1)

=
∑

µ∈T

n−1
∑

k=0

n
∑

j=0

2Λ(r)mfk
(r, Hµ(j)) + O(1)

≤
n−1
∑

k=0

n
∑

j=0

2q!Λ(r)(Tfk
(r, s0) + mfk

(s0, Hµ(j))) + O(1)

≤ O(1).

(2.5)

Combining (2.1), (2.2), (2.3), (2.4) and (2.5), we have
∫

M〈r〉

max
K

∑

j∈K

log
1

‖f(z); Hj‖
σ. ≤ .(n + 1)Tf (r) +

n(n + 1)

2
Ricτ(r, s0) − Ndn

(r, s0)

+ κ
n(n + 1)

2
[log+ Tf(r) + (2 + ǫ) log+ log+ Tf(r)

+ 2 log+ Ricτ (r, s) + 2(n − 1) log+ r

+ 3 log+ log+ r + O(1)].
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3. Distance function, associated cycles, and Möbius inversion of cy-

cles.

3.1. Distance function and associated cycles. Let

H = {[x0 : · · · : xn] | a0x0 + · · · + anxn = 0},

be a hyperplane in Pn(C), with |a0|2 + · · · + |an|2 = 1. We define the Weil function
for H as, for x = [x0 : · · · : xn] ∈ Pn(C)\H ,

λH(x) := log
max(|x0|, . . . , |xn|)
|a0x0 + · · · + anxn|

.

Let f : M → Pn(C) be a meromorphic map and assume that its image is not contained
in H . Choose a reduced representation f : U → Cn+1 on a chart Uz for z ∈ M . We
define

λf,H(z) := λH(f(z)).

This definition is independent of the choice of the reduced representations.

Definition 3.1.1. Let C be a proper linear subspace of Pn(C), let H1, . . . , Hr

be hyperplanes such that C = ∩Hi. Then a distance function for C is a continuous
function λC : Pn(C)\C → R such that

λC = min
1≤i≤r

λHi
+ O(1).

Note that the definition does not depend on the choice of the Hi.

Definition 3.1.2. If C =
∑

niCi is a cycle in Pn(C) such that all Ci are proper
linear subspaces and λCi

are the distance functions for Ci for all i, then we say that a
function λC : Pn(C)\SuppC → R is a distance function for C if it is continuous and if

λC =
∑

niλCi
+ O(1).

Here SuppC denotes the support of C, which is ∪ni 6=0Ci (if all Ci are distinct). Let
f : M → Pn(C) be a meromorphic map, not lying in the support of C, and choose a
reduced representation f : U → Cn+1 on a chart Uz for z ∈ M , then we also define

λf,C(z) := λC(f(z)).

We define

mf (r, C) =

∫

M〈r〉

λf,C(z)σ.

This is well-defined up to O(1).

Given hyperplanes H = {H1, . . . , Hq} in Pn(C) (not necessarily in general posi-
tion), there is one cycle of particular interest. This cycle is called the associated cycle
of H which is defined as follows.

Definition 3.1.3. The associated cycle of H is the cycle CH =
∑

niCi such that
(i) the set of components Ci is the set of nonempty linear subspaces of Pn(C)

which can be written as an intersection of one or more of the hyperplanes Hj , and
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(ii) the multiplicity ni satisfies the equation
∑

{j|Cj⊇Ci}

nj = codimCi

for every i. (In particular, ni = 1 if Ci is a hyperplane and ni ≤ 0 otherwise.)

If H1, . . . , Hq are in general position, then this cycle equals
∑

Hi.

Definition 3.1.4. The set of cycles as in Definition 3.1.2 forms an abelian group
under addition. We define a partial order on this group by saying that C ≥ 0 if, writing
C =

∑

niCi, we have
∑

{i|Ci⊇L}

ni ≥ 0

for all (nonempty) linear subspaces L of Pn(C). We also say that a cycle C is effective
if ni ≥ 0 for all i; note that this is strictly stronger than saying C ≥ 0 (unless n < 2).

The associated cycle of H1, . . . , Hq then has the property (see (3.5) in [Vo 3]) that

(3.1.1) C = max
J

∑

j∈J

Hj ,

where the maximum is taken over all subsets J of {1, . . . , q} such that the linear forms,
corresponding to Hj , j ∈ J , are linearly independent over C.

We also need the following Lemma from [Vo3]:

Lemma 3.1.5. Let C be a cycle as in Definition 3.1.2 and let λC be a distance
function for C. Then C ≥ 0 if and only if λC is bounded from below.

Proof. See [Vo3] Proposition 3.6.

Combining (3.1.1) and Lemma 3.1.5, we have the following result.

Lemma 3.1.6. Let H = {H1, . . . , Hq} be a set of hyperplanes in Pn(C) and let
CH be its associated cycle. Let f : M → Pn(C) be a meromorphic map, not lying in
the hyperplanes in H. Then

(3.1.1) λf,CH
(z) = max

J

∑

j∈J

λf,Hj
(z) + O(1),

where the maximum is taken over all subsets J of {1, ..., q} such that the linear forms
Hj, j ∈ J , are linearly independent over C.

3.2. Möbius inversion of cycles. We recall more definitions and results from
[Vo2] and [Vo3].

Definition 3.2.1. Let D be a finite collection of proper linear subspaces of Pn(C)
having the property that if D1 and D2 are in D, then so is D1 ∩ D2.

(a) Let µD be the function from D to the group of cycles supported on D, defined
by the Möbius condition

(3.2.1)
∑

D∈D
D⊆D0

µD(D) = D0
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for all D0 ∈ D.
(b) Let

mD
f (D, r) = mf (µD(D), r).

Write

µD(D0) =
∑

D∈D

nD
D0,DD.

Then (3.2.1) is equivalent to the condition

∑

D∈D
D⊆D0

nD
D,D1

=

{

1 if D1 = D0,

0 otherwise.

This condition, in turn, is equivalent to

(3.2.2)
∑

D∈D
D⊇D1

nD
D0,D =

{

1 if D1 = D0,

0 otherwise.

Indeed, the former condition says that the matrix given by the nD
D0,D is the right

inverse of the matrix (mD0,D) given by mD0,D = 1 if D0 ⊇ D and mD0,D = 0
otherwise; the latter condition (3.2.2) says that it is also the left inverse of that
matrix.

Lemma 3.2.2. Let H be a set of hyperplanes in Pn(C). Let D be the set of linear
subspaces that can be written as the intersection of one or more of the hyperplanes in
H. Let CH be the associated cycle of H. Then

CH =
∑

D∈D

(codim D)µD(D).

Proof. For D1 ∈ D, the coefficient of D1 in the right hand side of the equality is
nD1

=
∑

D∈D(codim D)nD,D1
. For D0 ∈ D, it follows that

∑

D1∈D
D1⊇D0

nD1
=

∑

D∈D

(codimD)
∑

D1∈D
D1⊇D0

nD,D1
= codimD0

by (3.2.2). Comparing with (ii) in Definition 3.1.3 then gives the lemma.

4. Projective version of the second main theorem. By Lemma 3.1.6,
Theorem 2.1 can be rewritten as

mf (r, CH). ≤ .(n + 1)Tf (r, s0) +
n(n + 1)

2
Ricτ (r, s0)

+ κ
n(n + 1)

2
[log+ Tf(r, s0) + (2 + ǫ) log+ log+ Tf (r, s0)

+ 2 log+ Ricτ (r, s0) + O(log+ r)].



362 m. ru and j. t.-y. wang

Using Lemma 3.2.2, this also can be written as

∑

D∈D

(codimD)mD
f (D, r). ≤ .(n + 1)Tf(r, s0) +

n(n + 1)

2
Ricτ (r, s0)

+ κ
n(n + 1)

2
[log+ Tf(r, s0) + (2 + ǫ) log+ log+ Tf (r, s0)

+ 2 log+ Ricτ (r, s0) + O(log+ r)],

(4.1)

where D is the set of linear subspaces of Pn(C) that can be written as the intersection
of one or more of the hyperplanes in H.

In this section, we will extend this result to a more general case, which involves
the projection of Pn(C) to E, for every linear subspace E. Let D, E be two subspaces
of Pn(C), we use < D, E > to denote the smallest subspace which contains D and E.

Proposition 4.1. Let H = {H1, ..., Hq} be a set of hyperplanes in Pn(C), and
let D be the collection of nonempty proper linear subspaces that can be written as
Hi or a finite intersection of hyperplanes in H. Let f : M → Pn(C) be a linearly
non-degenerate meromorphic map. Then, for every subspace E of Pn(C) and every
ǫ > 0,

∑

D∈D

codim < D, E > mD
f (D, r). ≤ .(codimE)Tf (r) +

n codim E

2
Ricτ(r, s0)

+ κ
n codimE

2
[log+ Tf (r, s0) + (2 + ǫ) log+ log+ Tf(r, s0)

+ 2 log+ Ricτ (r, s0) + O(log+ r) + O(1)]

where “. ≤ .” means that the inequality holds for all r ∈ [s0, +∞) outside a union of
intervals of finite total length,

Proof. We first observe, by (4.1), that Proposition 4.1 holds if E = Pn(C). It also
trivially holds if E is a point. Hence, we let E be a proper linear subspace of Pn(C).
Without loss of generality, we assume that E = Pt(C) with t > 0. We consider the
projection φ : Pn(C) → Pn−t−1(C) defined by φ[x0 : · · · : xn] = [xt+1 : · · · : xn], and
consider the map φ ◦ f : M → Pn−t−1(C). Then φ ◦ f is still linearly non-degenerate.
Let D′ be the set of subspaces φ(D), D ∈ D, together with all intersections thereof.
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Then by Theorem 2.1, Lemma 3.1.6 and Lemma 3.2.2,

∑

D′∈D′

(codimD′)mD′

φ◦f (D′, r)

. ≤ .(codimE) · Tφ◦f (r, s0) +
(codimE − 1) codimE

2
Ricτ (r, s0)

+ κ
(codimE − 1) codimE

2

[

log+ Tφ◦f(r, s0) + (2 + ǫ) log+ log+ Tφ◦f (r, s0)

+2 log+ Ricτ(r, s0) + O(log+ r)
]

. ≤ .(codimE) · Tφ◦f (r, s0) +
n codimE

2
Ricτ (r, s0)

+ κ
n codim E

2

[

log+ Tφ◦f (r, s0) + (2 + ǫ) log+ log+ Tφ◦f (r, s0)

+2 log+ Ricτ(r, s0) + O(log+ r)
]

.

(4.2)

We now compare the characteristic function and the proximity function of f and
φ(f). Let {Uλ, λ ∈ Λ} be an open covering of M , and let fλ : Uλ → Cn+1 be a reduced
representation of f on Uλ, then there is a holomorphic function gλµ : Uλ ∩ Uµ → C∗

such that

fλ = gλµfµ on Uλ ∩ Uµ.

It is easy to check that {gλµ} is a basic cocycle(cf. [St]). Therefore there are exists a
holomorphic line bundle Lf on M with a holomorphic frame atlas {Uλ, sλ}λ∈Λ such
that

sµ = gλµsλ on Uλ ∩ Uµ.

Also define f̃λ ∈ Γ(Uλ, M × Cn+1) by f̃λ(z) = (z, fλ(z)) for z ∈ Uλ. Hence f̃λ ⊗ sλ =

gλµf̃µ ⊗ sλ = f̃µ ⊗ gλµsλ = f̃µ ⊗ sµ on Uλ ∩ Uµ. Therefore there exists a holomorphic

section Ff of (M × Cn+1) ⊗ Lf such that Ff |Uλ
= f̃λ ⊗ sλ. Let ℓ be the standard

hermitian metric along the fibers of the trivial bundle M ×Cn+1 and ρ be a hermitian
metric along the fibers of Lf . Then

ddc log ‖Ff‖2
ℓ⊗ρ = ddc log ‖fλ‖2 + ddc log ‖sλ‖2

ρ = f∗ΩFS − c1(Lf , ρ),

where ΩFS is the Fubini-Study metric on Pn(C). Hence, by Green’s formula(cf. [St]),
we have

Tf (r, s0) =

∫ r

s0

dt

t2m−1

∫

M [t]

c1(Lf , ρ) ∧ υm−1 +

∫

M〈r〉

log ‖Ff‖ℓ⊗ρσ

−
∫

M<s0>

log ‖Ff‖ℓ⊗ρσ.

(4.3)

Noticing that Lf = Lφ(f) since they share the same transition function {gλ,µ}, we also
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have

Tφ(f)(r, s0) =

∫ r

s0

dt

t2m−1

∫

M [t]

c1(Lf , ρ) ∧ υm−1 +

∫

M〈r〉

log ‖Fφ(f)‖ℓ⊗ρσ

−
∫

M<s0>

log ‖Fφ(f)‖ℓ⊗ρσ.

(4.4)

We also note that, on Uλ,

‖Ff‖ℓ⊗ρ = ‖fλ‖ · ‖sλ‖ρ,

and

‖Fφ(f)‖ℓ⊗ρ = ‖φ(fλ)‖ · ‖sλ‖ρ,

where ‖fλ‖ = max0≤j≤n |fλ,j | and ‖φ(fλ)‖ = maxt+1≤j≤n |fλ,j |. Hence, by (4.3) and
(4.4), we have

Tf (r, s0) − Tφ(f)(r, s0) =

∫

M〈r〉

log ‖Ff‖ℓ⊗ρσ −
∫

M〈r〉

log ‖Fφ(f)‖ℓ⊗ρσ + O(1)

=

∫

M〈r〉

log max
0≤j≤n

|fλ,j|σ −
∫

M〈r〉

log max
t+1≤j≤n

|fλ,j |σ

=

∫

M〈r〉

log
max0≤j≤n |fλ,j |

maxt+1≤j≤n |fλ,j |
σ.

(4.5)

Note that the term
max0≤j≤n |fλ,j |

maxt+1≤j≤n |fλ,j |
appearing in the last expression above does not

depend on λ, hence it is, in fact, a global function on M . On the other hand, by the
definition, if we regard E = {[x0 : · · · : xn] | xt+1 = · · · = xn = 0}, then the proximity
function mf (E, r) can be written as

(4.6) mf (E, r) =

∫

M〈r〉

log
max0≤j≤n |fλ,j |

maxt+1≤j≤n |fλ,j |
σ + O(1).

Comparing (4.5) and (4.6), we obtain that

(4.7) Tφ(f)(r, s0) = Tf (r, s0) − mf (E, r).

By the same method in obtaining (4.7), for any linear subspace D ∈ D containing E,
we have

(4.8) mφ(f)(φ(D), r) = mf (D, r) − mf(E, r) + O(1).
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Combining (4.2) and (4.7), we have

∑

D′∈D′

(codim D′)mD′

φ◦f (D′, r)

. ≤ .(codimE) · Tf(r, s0) − (codimE) · mf (E, r) +
n codimE

2
Ricτ (r, s0)

+ κ
n codimE

2

[

log+ Tf(r, s0) + (2 + ǫ) log+ log+ Tf (r, s0)

+2 log+ Ricτ (r, s0) + O(log+ r)
]

.

(4.9)

Hence, Proposition 4.1 will be proved if the following inequality holds:

∑

D∈D

codim < D, E > mD
f (D, r) − (codimE)mf (E, r)

≤
∑

D′∈D′

(codimD′)mD′

φ(f)(D
′, r) + O(1).

(4.10)

Thus the remaining part of the proof is to show (4.10). We first claim the following:

Claim 4.2. Let C be a finite collection of linear spaces of Pn(C). Fix C0 ∈ C
and let C̃ be the collection of subspaces of Pn obtained by adding to C the subspace
< C0, E > as well as all < C0, E > ∩C, C ∈ C. Thus C̃ is closed under taking
intersection. Then

(4.11)
∑

C∈C

(codim < C, E >)µC(C) ≤
∑

C̃∈C̃

(codim < C̃, E >)µC̃(C̃).

Claim 4.2 was proved in [Vo2](see Claim 4.6 in [Vo2]). We will include a proof of
Claim 4.2 later for the sake of completeness. Before proving Claim 4.2, we first show
that Claim 4.2 implies (4.10). Since the inequalities of cycles implies the corresponding
inequalities of proximity functions, the claim implies that the left-hand of (4.10) is not
decreasing when we enlarge D so as to include all < D, E >, D ∈ D. So we assume
that D contains all < D, E >, D ∈ D. To continue, we recall the definition of the
map φ. Under the assumption of E = Pt(C) with t > 0, i.e. E is given by the points
[x0 : · · · : xn] with xt+1 = · · · = xn = 0, φ is the projection φ : Pn(C) → Pn−t−1(C)
defined by φ[x0 : · · · : xn] = [xt+1 : · · · : xn]. Hence, for any subspace D with D 6⊆ E,
codim < D, E >= codimφ(D). Therefore the first term of the left hand side of (4.10)
can be expressed as

∑

D∈D

codim < D, E > mD
f (D, r)

=
∑

D∈D
D 6⊆E

codim < D, E > mf (µD(D), r) +
∑

D∈D
D⊆E

(codimE)mf (µD(D), r)

=
∑

D′∈D′

∑

D∈D
φ(D)=D′

(codimD′)mf (µD(D), r) + (codimE)mf (E, r).
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Hence
∑

D∈D

codim < D, E > mD
f (D, r) − (codimE)mf (E, r)

=
∑

D′∈D′

∑

D∈D
φ(D)=D′

(codimD′)mf (µD(D), r)

=
∑

D′∈D′

(codimD′)
∑

D∈D
φ(D)=D′

mf (µD(D), r).

Hence (4.10) is true if we can show that for any D′ ∈ D′

(4.12) mD′

φ(f)(D
′, r) =

∑

D∈D
φ(D)=D′

mf (µD(D), r).

To show (4.12), we first consider for D0 ∈ D and D0 ⊃ E. From the definition of the
Mobius-type condition, we have

mf (D0, r) =
∑

D∈D
D⊆D0

mf (µD(D), r)

=
∑

D∈D
E 6⊃D⊆D0

mf (µD(D), r) +
∑

D∈D
D⊆E

mf (µD(D), r)

=
∑

D′∈D′

D′⊆φ(D0)

∑

D∈D
φ(D)=D′

mf (µD(D), r) + mf (E, r).

Combining this with (4.8), we have

(4.13) mφ(f)(φ(D0), r) =
∑

D′∈D′

D′⊆φ(D0)

∑

D∈D
φ(D)=D′

mf (µD(D), r).

We note that for each D′ 6= ∅ in D, there exists D0 ∈ D such that D0 ⊃ E and
φ(D0) = D′ since we have assumed that D contains all cycles of the form < D, E >,
D ∈ D. We will now prove (4.12) by induction on the dimension of D′. We first
consider when dimD′ = 0. In this case,

mD′

φ(f)(D
′, r) = mφ(f)(µD′(D′), r) = mφ(f)(D

′, r) = mφ(f)(φ(D0), r),

and by (4.13)

mφ(f)(φ(D0), r) =
∑

D′∈D′

D′⊆φ(D0)

∑

D∈D
φ(D)=D′

mf (µD(D), r) =
∑

D∈D
φ(D)=D′

mf (µD(D), r)

since the dimension of D′ is zero. Hence (4.12) holds when dim D′ = 0. Assume (4.12)
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holds for D′ ∈ D′ with dim D′ < d. Let dimD′ = d. Then from (4.13), we have

mφ(f)(D
′, r) = mφ(f)(φ(D0), r)

=
∑

D∈D
φ(D)=D′

mf (µD(D), r) +
∑

C′∈D′

C′(D′

∑

D∈D
φ(D)=C′

mf (µD(D), r)

=
∑

D∈D
φ(D)=D′

mf (µD(D), r) +
∑

C′∈D′

C′(D′

mφ(f)(µD′(C′), r),

(4.14)

where the last equality follows from the induction hypothesis. On the other hand,
from the definition of Mobius function, we have

(4.15) mφ(f)(D
′, r) = mφ(f)(µD′(D′), r) +

∑

C′∈D′

C′(D′

mφ(f)(µD′(C′), r).

We also have, by definition

(4.16) mD′

φ(f)(D
′, r) = mφ(f)(µD′(D′), r).

Combining (4.14), (4.15) and (4.16) proves (4.12).
We now prove Claim 4.2. It will be convenient to assume that Pn ∈ C. This does

not affect µC , nor does it affect the inequality being proved. Now, for each C̃ ∈ C̃
there is a minimal C ∈ C containing C̃; let it be denoted by β(C̃). We claim

(4.17) µC(C) =
∑

C̃∈C̃,β(C̃)=C

µC̃(C̃).

This can be done by induction on the dimension of C. Suppose that C is a point.
Then µC(C) = C, and the only point in C̃ ∈ C̃ such that β(C̃) = C is when C̃ = C.
Therefore the assertion is clear. Assume the assertion holds for cycles in C with
dimension less than d. Let now C be a cycle of dimension d. Then we have

C =
∑

C̃∈C̃
C̃⊆C

µC̃(C̃) =
∑

C̃∈C̃
β(C̃)=C

µC̃(C̃) +
∑

C̃∈C̃
β(C̃)(C

µC̃(C̃)

=
∑

C̃∈C̃
β(C̃)=C

µC̃(C̃) +
∑

D∈C
D(C

∑

C̃∈C̃
β(C̃)=D

µC̃(C̃)

=
∑

C̃∈C̃
β(C̃)=C

µC̃(C̃) +
∑

D∈C
D(C

µC(D).

Since

µC(C) +
∑

D∈C
D(C

µC(D) = C,
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(4.17) follows easily. From (4.17), we see that
∑

C∈C

(codim < C, E >)µC(C) =
∑

C̃∈C̃

(codim < β(C̃), E >)µC̃(C̃)

≤
∑

C̃∈C̃

(codim < C̃, E >)µC̃(C̃),

where the last step is true because codim < β(C̃), E >≤ codim < C̃, E > . This
proves Claim 4.2. Hence Lemma 4.1 is proved.

5. An algebraic lemma. In this section, we reformulate the following theorem
due to Vojta which plays an essential role in our proof. We call it an algebraic lemma,
since it involves purely (linear) algebra.

Theorem 5.1(An Algebraic Lemma). Let H = {H1, ..., Hq} be a set of hy-
perplanes in PN (C) and let D = {D1, ..., DM} be the collection of cycles which can be
written as Hi or a finite intersection of hyperplanes in H. Then there exists a finite
union of R of proper linear subspaces of PN (C) depending only on D1, . . . , DM , such
that the following holds: Let Pn(C) be a linear subspace of PN (C), and Pn(C) 6⊂ R.
Then there exists a finite set E of linear subspaces of Pn(C) and constants cE ≥ 0 such
that

(5.1)
∑

E∈E

cE codimPn < Di ∩ Pn, E >≥ codimPN Di

for all i and

(5.2)
∑

E∈E

cE codimPn E = N + 1.

To prove Theorem 5.1, we first recall the following theorem from [Vo3].

Theorem 5.2 [Vo3: Theorem 4.6]. Let H = {H1, ..., Hq} be a set of hyper-
planes in PN (C) and D = {D1, ..., DM} be the collection of cycles which can be written
as Hi or a finite intersection of hyperplanes in H. Then there exists a finite union
R of proper linear subspaces of PN (C), depending only on D1, ..., DM , such that the
following is true: Let Pn(C) be a linear subspace of PN (C), with Pn * R and let
(µ1, ..., µM ) be a M -tuple of real numbers satisfying the conditions

(i) µi ≥ 0 for all i, and

(ii)
∑M

i=1 µi codimPn < Di ∩ Pn, E >≤ codimPn E for all linear subspaces E ⊂
Pn(C).

Then (µ1, ..., µM ) must also satisfy

(5.3)

M
∑

i=1

µi codimPN Di ≤ N + 1.

We also recall the following result from linear algebra.

Lemma 5.3. Let L and L1, ..., Lm be linear forms in M + 1 variables with real
coefficients. Suppose L(µ) ≥ 0 for all µ = (µ0, ..., µM ) satisfying the conditions
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Li(µ) ≥ 0 for all i. Then there exist non-negative real numbers c1, ..., cM such that
L = c1L1 + · · · + cMLM .

We now prove Theorem 5.1

Proof of Theorem 5.1. Let R be as in Theorem 5.2, and let Pn(C) 6⊂ R. Define
the linear form

(5.4) L(µ0, µ1, ..., µM ) := (N + 1)µ0 −
M
∑

i=1

µi codimPN Di,

and the linear forms

(5.5) LE(µ0, µ1, ..., µM ) := µ0 codimPn E −
M
∑

i=1

µi codimPn < Di ∩ Pn, E >

for every linear subspace E ⊂ Pn(C). Note that, since the coefficients of such linear
forms over µ0, ..., µM are integers between 0 and n, there are actually only finitely many
linear equations in (5.5). In addition, we define linear forms Li(µ0, µ1, ..., µM ) := µi,
for i = 0, 1, ..., M . By Theorem 5.2, for any M -tuple (µ1, ..., µM ) satisfying condi-
tion (i) and (ii) must satisfies (5.3). This implies that L(µ0, µ1, ..., µM ) ≥ 0 for all
(µ0, ..., µM ) satisfying the conditions Li(µ0, µ1, ..., µM ) ≥ 0 for i = 0, 1, . . . , M and
LE(µ0, µ1, ..., µM ) ≥ 0 for every linear subspace E ⊂ Pn. Hence Lemma 5.3 implies
that there exist constants ci ≥ 0 for i = 1, ..., M , and cE ≥ 0 for E ∈ E such that

L =

M
∑

i=1

ciLi +
∑

E∈E

cELE .

Compare the coefficients of each µi for i = 0, ..., M , we have
∑

E∈E

cE codimPn < Di ∩ Pn, E >≥ codimPN Di

for all i and
∑

E∈E

cE codimPn E = N + 1.

Thus Theorem 5.1 is proved.

6. Proof of the main theorem. Let H = {H1, ..., Hq} be the given hyperplanes
in PN , and let D = {D1, ..., DM} be the collection of cycles which can be written as
Hi or a finite intersection of hyperplanes in H. Let R be as in the algebraic lemma.
Let f : M → PN be a holomorphic curve. If f is linearly non-degenerate, then we
are done by Theorem 2.1. So we only need to consider the case when f is linearly
degenerate. We then assume that f : M → Pn and f is linearly non-degenerate. By
the assumption of the main theorem, we have Pn(C) 6⊂ R. Hence, by the algebraic
lemma, there exist a finite set E of linear subspaces of Pn(C) and constants cE ≥ 0
such that

(6.1)
∑

E∈E

cE codimPn < Di ∩ Pn, E >≥ codimPN Di
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for all i and

(6.2)
∑

E∈E

cE codimPn E = N + 1.

By (6.1), we have

∑

D∈D

(codimPN D)mD
f (D, r) ≤

∑

D∈D

∑

E∈E

cE codimPn < D ∩ Pn, E > mD
f (D, r)

=
∑

E∈E

cE

∑

D∈D

codimPn < D ∩ Pn, E > mD
f (D, r).

(6.3)

On the other hand, by Proposition 4.1, we have, for every subspace E of Pn(C),
∑

D∈D

codimPn < D ∩ Pn, E > mD
f (Di, r)

. ≤ .(codimE) · Tf (r, s0) +
n codim E

2
Ricτ(r, s0)

+ κ
n codimE

2

[

log+ Tf(r, s0) + (2 + ǫ) log+ log+ Tf(r, s0)

+2 log+ Ricτ (r, s0) + O(log+ r)
]

.

(6.4)

Combining (6.2), (6.3) and (6.4), we have

∑

D∈D

(codimPN D)mD
f (D, r). ≤ .(N + 1)Tf(r, s0) +

N(N + 1)

2
Ricτ (r, s0)

+ κ
N(N + 1)

2

[

log+ Tf(r, s0) + (2 + ǫ) log+ log+ Tf (r, s0)

+2 log+ Ricτ(r, s0) + O(log+ r)
]

.

(6.5)

On the other hand, by Lemma 3.2.2

(6.6) mf (CH, r) =
∑

D∈D

(codimPN D)mD
f (D, r),

and by Lemma 3.1.6

(6.7) mf (CH, r) =

∫

M〈r〉

max
K

∑

j∈K

log
1

‖f ; Hj‖
σ + O(1),

where the maximum is taken over all subset K of {1, . . . , q} such that the linear forms
Hj , j ∈ K, are linearly independent. By the assumption that H1, . . . , Hq are in general
position, we have

(6.8)

q
∑

j=1

mf (Hj , r) ≤
∫

M〈r〉

max
K

∑

j∈K

log
1

‖f ; Hj‖
σ + O(1),

where the maximum is taken over all subset K of {1, . . . , q} such that the linear forms
Hj , j ∈ K, are linearly independent. Therefore, the theorem follows by combining
(6.5), (6.6), (6.7), (6.8) and (1.1.2).
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The proof of the main theorem also gives the following more general theorem.

Second Main Theorem for parabolic manifolds. Let M be a Stein par-
abolic manifold of complex dimension m. Let H = {H1, ..., Hq} be a finite collection
of hyperplanes in PN(C) in general position. Then there exists a finite union R of
proper linear subspaces of PN (C) depending only on H such that if f : M → PN (C) is
a meromorphic map whose image does not lie in R, then, for every ǫ > 0,

q
∑

j=1

mf (Hj , r). ≤ .(N + 1)Tf(r, s0) +
N(N + 1)

2
Ricτ(r, s0)

+ κ
N(N + 1)

2
[log+ Tf(r, s0) + (2 + ǫ) log+ log+ Tf(r, s0)

+ log+ Y (r) + 2 log+ Ricτ(r, s0) + 5 log+ log+ r)],

where κ =
∫

M〈r〉 dc log τ∧(ddc log τ)m−1 > 0 is a constant independent of r, Ricτ (r, s0)

is the Ricci function of M (cf. [St]), and . ≤ . means that the inequality holds for all
r ∈ [s0, +∞) outside a union of intervals of finite total length.
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