THE CANONICAL SUBGROUP OF E IS Spec $\mathbf{R}[\mathbf{x}] /\left(x^{p}+\frac{p}{E_{p-1}(\mathbf{E}, \omega)} \mathbf{x}\right)^{*}$

ROBERT F. COLEMAN ${ }^{\dagger}$

Key words. Canonical subgroups, group schemes of order p
AMS subject classifications. 14L15, 11G07

Let p be a prime. In this note we make explicit some results on the canonical subgroup of an elliptic curve E over the ring of integers \mathbf{R}_{p} of \mathbf{C}_{p} implicit in [K-pPMF]. In particular, if ω generates $\Omega_{E / \mathbf{R}_{p}}^{1}$ and E has a canonical subgroup C_{E}, knowlege of the Hasse invariant of the reduction of (E, ω) modulo p is equivalent to knowledge of the pair $\left(C_{E},\left.\omega\right|_{C_{E}}\right)$.

1. Group Schemes of order p. Let μ denote the group of $(p-1)$-st roots of unity in \mathbf{Z}_{p} and A the subring of \mathbf{Q}_{p}

$$
\left\{r \in \mathbf{Z}_{p}: \exists n \in \mathbf{N}, p^{n} r \in \mathbf{Z}[\mu, 1 /(p-1)]\right\}
$$

Suppose R is an A-algebra, e.g., a p-adically complete ring with identity. For $a \in R$, let $R_{a}=R[x] /\left(x^{p}+a x\right)$ and $B_{a}=\operatorname{Spec} R_{a}$ and for $\epsilon \in \mu_{p-1}(R),[\epsilon]_{a}$ the automorphism of B_{a} corresponding to $x \mapsto \epsilon x$.

If $a \neq 0$, the automorphisms α of B_{a} such that $\alpha \circ[\epsilon]_{a}=[\epsilon]_{a} \circ \alpha$ for $\epsilon \in \mu$ are the $[\gamma]_{a}$ for $\gamma \in \mu_{p-1}(R)$. Suppose $\exists b \in R$ such that $a b=p$. Because then, $\mathrm{d}\left(x^{p}+a x\right)=a\left(1+b x^{p-1}\right) \mathrm{d} x$ and $\left(1+b x^{p-1}\right)\left(1-b x^{p-1} /(1-p)\right)=1, \Omega_{B_{a} / R}^{1} \cong B_{a} / a B_{a}$.

Proposition 1.1. Suppose G is a group scheme of order p over R. Then the R-module of invariant differentials $\Omega_{G / R}$ on G over R is cyclic and if ω is a generator, there are $a, b \in R$ such that $a b=p$ and a unique isomorphism of schemes $h: B_{a} \rightarrow G$ such that $h \circ[\epsilon]_{a}=[\epsilon]_{G} \circ h$, for $\epsilon \in \mu$, and $h^{*} \omega=\left(1+b x^{p-1}\right)^{-1} \mathrm{~d} x$. Moreover, $\Omega_{G / R} \cong R / a R, a$ is determined modulo $a^{2} R$ and b is determined modulo $p R$. In particular, if R is integrally closed and G is self-dual both a and b are determined modulo $p R$.

Proof. We know from [O-T, pp.13-14] that there are universal constants $w_{i} \in A$, $i \geq 1$, such that $w_{1}=1, w_{j} \in \mathbf{Z}_{p}^{*}, j<p, w_{p}=p w_{p-1}$ and there are $u, v \in R$ such that $u v=w_{p}$, an isomorphism $g: B_{-u} \rightarrow G$ over R for which the pullback of the group law on G to B_{-u} is

$$
\begin{equation*}
F^{v}(X, Y)=X+Y+\frac{1}{1-p} \sum_{i=1}^{p-1} \frac{v}{w_{i} w_{p-i}} X^{i} Y^{p-i} \tag{1}
\end{equation*}
$$

(Call the group scheme, $\left(B_{-u}, F^{v}\right), G_{v u}$.) In particular, $g \circ[\epsilon]_{-u}=[\epsilon]_{G} \circ g$, for $\epsilon \in \mu$. Suppose $f(x) \mathrm{d} x$ is a differential on B_{-u} invariant with respect to this group law. Then,

$$
\begin{equation*}
f(x) \mathrm{d} x+f(y) \mathrm{d} y=f\left(F^{v}(x, y)\right)\left(F_{1}^{v}(x, y) \mathrm{d} x+F_{2}^{v}(x, y) \mathrm{d} y\right) \tag{2}
\end{equation*}
$$

[^0]In particular, after equating coefficients of $\mathrm{d} y$ and then setting $y=0$, we have

$$
f(0) \equiv f(x)\left(1+\frac{v x^{p-1}}{w_{p-1}}\right) \bmod u R_{-u}
$$

Thus $\Omega_{G / R}$ is isomorphic to a sub- R-module of $R / u R$. We claim it is isomorphic to $R / u R$. This is true when $u=p$ and $v=w_{p-1}$ and $R=\mathbf{Z}_{p}$, for then $G=\mu_{p}$. The claim is equivalent to the statement that $\omega_{v u}:=\mathrm{d} x /\left(1+v x^{p-1} / w_{p-1}\right)$ is an invariant differential on $G_{u v}$. Let $F=F^{w_{p-1}}$. Since $\mathrm{d} x /\left(1+x^{p-1}\right)$ is an invariant differential on $G_{p w_{p-1}}$, (2) implies

$$
\frac{d x}{1+x^{p-1}}=\frac{F_{1}(x, y) \mathrm{d} x}{1+F(x, y)^{p-1}} \quad \text { on } B_{p} \text { over } \mathbf{Z}_{p}
$$

Because $r F^{w_{p-1} r^{p-1}}(x, y)=F(r x, r y)$ in $\mathbf{Z}_{p}[x, y, r]$, this means as elements of $\mathbf{Z}_{p}[[x, y, z]]$,

$$
\frac{1}{1+z x^{p-1}} \equiv \frac{F_{1}^{w_{p-1} z}(x, y)}{1+z F^{w_{p-1} z}(x, y)^{p-1}} \bmod \left(p, x^{p}\right)
$$

which implies

$$
\frac{d x}{1+v x^{p-1} / w_{p-1}}=\frac{F_{1}^{v}(x, y) \mathrm{d} x}{1+v F^{v}(x, y)^{p-1} / w_{p-1}}
$$

on B_{-u} over R. This implies $d x /\left(1+v x^{p-1} / w_{p-1}\right)$ is an invariant differential on $G_{u v}$. Thus $\Omega_{G / R} \cong R / u R$ and $g^{*} \omega=r\left(1+v x^{p-1} / w_{p-1}\right) \mathrm{d} x$ for some $r \in R^{*}$. Let $a=-u r^{1-p}$ and $b=-v /\left(w_{p-1} r^{p-1}\right)$. Then $j: B_{-u} \cong B_{a}$ via $x \mapsto x / r$ and $(g \circ j)^{*} \omega=\mathrm{d} x /\left(1+b x^{p-1}\right)$. So take $h=g \circ j$. The uniqueness follows from the comments before the proposition. The determination of the congruence classes follows the fact that $\Omega_{B_{a}}^{1} \cong B_{a} / a B_{a}$.

Finally, the dual of G is isomorphic to B_{b} and if G is isomorphic to its dual we must have $b=a u^{p-1}$ fo some unit u.

In particular, when G is potentially self dual (i.e., self dual after a finite flat base extension) a and b are both determined $\bmod p$. Indeed, in this case, b is a unit times a. In [OT, pp. 13-14], without fixing a differential, it is shown that there exist a and b determined up to $(p-1)$-st powers of units and an isomorphism $B_{a} \rightarrow G$.

We can rephrase the above as follows:
Let \check{G} denote the Cartier dual of G so that if S is an R-scheme, $\check{G}(S)=\operatorname{Hom}_{S}$ $\left(G_{S},\left(\mu_{p}\right)_{S}\right)$. We have a collection of natural homomorphisms

$$
\begin{aligned}
\check{G}(S) & \rightarrow \Omega_{G_{S} / S} \\
h & \mapsto h^{*} \frac{\mathrm{~d} T}{T}
\end{aligned}
$$

This determines an isomorphism of group schemes over $R / a R$

$$
\check{G}_{R / a R} \rightarrow V\left(\Omega_{G / R}\right)
$$

where for a ring B and a B-module $M, V(M)$ denotes the associated vectorial group scheme over B. Giving a generator ω of $\Omega_{G / R}$ is equivalent to giving an isomorphism $V\left(\Omega_{G / R}\right) \rightarrow\left(\mathbf{G}_{a}\right)_{R / a R}$ and so, an isomorphism

$$
\lambda_{\omega}: \check{G}_{R / a R} \rightarrow\left(\mathbf{G}_{a}\right)_{R / a R}
$$

One knows $\check{G}_{v u} \cong G_{u v}[\mathrm{O}-\mathrm{T}]$ and from (1) we see there is an evident isomorphism from $\left(G_{u v}\right)_{R / u R}$ onto $\left(\mathbf{G}_{a}\right)_{R / u R}$. It is easy to see that this isomorphism is $\lambda_{\omega_{v u}}$ and

$$
\lambda_{\omega_{v u}}^{*} \mathrm{~d} T=\omega_{u v} \bmod u R .
$$

We conclude from this discussion,
Proposition 1.2. Suppose G is a group scheme of order p, ω generates $\Omega_{G / R}$, $\check{\omega}$ generates $\Omega_{\check{G} / R}$ and

$$
\lambda_{\omega}^{*} \mathrm{~d} T \equiv \check{\omega} \bmod A n n_{R}\left(\Omega_{G / R}\right)
$$

Then there exist $u, v \in R, u v=w_{p-1}$ and an isomorphism $h: G_{v u} \rightarrow G$ such that

$$
h^{*} \omega=\omega_{v u} \quad \text { and } \check{h}^{*} \omega_{u v}=\check{\omega} .
$$

Moreover, u and v are both determined modulo p.

2. Canonical subgroups.

Theorem 2.1. Suppose R is a subring of \mathbf{C}_{p}, E is an elliptic curve over R and ω generates $\Omega_{E / R}^{1}$. Suppose \mathcal{H} is a lifting of the Hasse invariant of $(E, \omega) \bmod p$ to R and $v(\mathcal{H})<p /(p+1)$. Then E has a canonical subgroup C_{E} and there is a unique isomorphism h from $B_{p / \mathcal{H}}$ onto C_{E} such that $h \circ[\epsilon]_{p / \mathcal{H}}=[\epsilon]_{C_{E}} \circ h$, for $\epsilon \in \mu$ and ω pulls back to $\mathrm{d} x /\left(1+\mathcal{H} x^{p-1}\right)$.

Proof. By [K-pPMF, p. 118], we can choose a local parameter X at 0 on E so that

$$
\omega=(1+\text { higher order terms }) \mathrm{d} X
$$

and

$$
[p](X)=X g\left(X^{p-1}\right)
$$

where

$$
g(T)=p+\mathcal{H} T+\sum_{r \geq 2} c_{r} T^{r}
$$

and $c_{r} \equiv 0 \bmod p$ unless $r \equiv 1 \bmod p$. Let

$$
h(T)=\frac{1}{p} g\left(\frac{p}{\mathcal{H}} T\right)
$$

Because $v\left((p / \mathcal{H})^{p+1}\right)>(p+1)(1-p /(p+1))=1$,

$$
h(T)=1+T+\sum_{r \geq 2} d_{r} T^{r}
$$

where $\left|d_{r}\right|<1$ and $d_{r} \rightarrow 0$ as $r \rightarrow \infty$. It follows from Weierstrass preparation that $h(T)$ has a zero u in R such that $|u+1|<1$ so g has a zero which equals $-p / \mathcal{H}$ times a $(p-1)$-st power. Thus there is an isomorphism h of $B_{p / \mathcal{H}}$ onto C_{E} such that $h \circ[\epsilon]_{p / \mathcal{H}}=[\epsilon]_{C_{E}} \circ h$ for $\epsilon \in \mu$. The theorem follows from this and the fact that ω pulls back to a differential which is $\mathrm{d} x$ modulo $x \Omega_{B_{p / \mathcal{H}} / R}$.

The statement in the title makes sense for $p>3$ and follows from the theorem since in this case $E_{p-1}(E, \omega)$ is a lifting of the Hasse invariant of the reduction of (E, ω) modulo $p[\mathrm{~K}-\mathrm{pPMF}, \mathrm{p} .98]$. That the Hasse invariant of (E, ω) is determined by $\left(C_{E},\left.\omega\right|_{C_{E}}\right)$ follows from the proposition.
3. $\mathbf{E}[\mathbf{p}]$; an example. Let notation be as in Theorem 2.1. Then, $E[p]$ is an extension of C_{E} by its Cartier dual. This, the above and results of Breuil (eg. [B, $\S 3.1]$) lead one to ask whether $E[p]$ may have a presentation in the form

$$
\operatorname{Spec} R[x, y] /\left(x^{p}+\mathcal{H} x, y^{p}+(p / \mathcal{H}) y-b x\right)
$$

for some $b \in R$. This is true when E has CM by the maximal order in an imaginary quadratic field in which p splits (in which case E has ordinary reduction and one can take b to be 0). We verify that it also true in some other cases.

First, suppose R is the ring of integers in an extension K of \mathbf{Q}_{q} and $q>2$. Then E has a model with good reduction over R if the j-invariant is integral and all the 2-torsion is defined over K. Indeed, after possibly a quadratic twist, it has a model $y^{2}=x(x-1)(x-\lambda)$ which has good reduction iff λ is not near 0,1 or infinity iff the j -invariant is integral.

Second, if E has CM by an order $S, 2$ splits in S and $S \subset K$ then all the 2torsion of E is defined over K. Indeed, for each prime ideal b above 2 , there is only one non-trivial b-torsion point which must therefore be defined over K.

Now suppose p is a prime and $F=\mathbf{Q}(\sqrt{-p})$. Then because the prime $P:=(\sqrt{-p})$ of the maximal order S of F is principal it splits completely in the Hilbert class field of F. Therefore, there is an elliptic curve defined over $F_{P} \cong \mathbf{Q}_{p}(\sqrt{-p})$ with potential CM by S. In fact, by a Galois argument it must have actual CM by S.

In conclusion, if $p+1 \equiv 0 \bmod 8$, there exists an elliptic curve E over $K:=$ $\mathbf{Q}_{p}[\sqrt{-p}]$ with CM by $\mathbf{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$ and a model over $R:=\mathbf{Z}_{p}[\sqrt{-p}]$ with good reduction \bar{E}.

Since $\operatorname{End}_{K} E \cong \operatorname{End}_{\mathbf{F}_{p}} \bar{E},[\sqrt{-p}]_{E}$ must reduce to plus or minus Frobenius. We may suppose it reduces to Frobenius. It follows that \hat{E} is a Lubin-Tate group over R and respect to some parameter $T,[\sqrt{-p}]_{F}(T)=f(T):=\sqrt{-p} \cdot T+T^{p}$.

THEOREM 3.1. Suppose $p+1 \equiv 0 \bmod 8$ and A is a model with good reduction over the ring of integers R of a finite extension K of $\mathbf{Q}_{p}(\sqrt{-p})$ of an elliptic curve with $C M$ by $\mathbf{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$. Then there exists a choice of $\sqrt{-p}$ so that

$$
A[p] \cong \operatorname{Spec}\left(R[x, y] /\left(x^{p}+\sqrt{-p} \cdot x, y^{p}+\sqrt{-p} \cdot y-x\right)\right)
$$

REFERENCES

[B] Brevil, C., Groupes p-divisibles, groupes finis et modules filtrés, Annals of Mathematics, 152 (2000), pp. 489-549.
[K-pPMF] Katz, N., p-adic properties of modular forms, Modular Functions of one Variable III, SLN 350 (1972), pp. 69-190.
[O-T] Oort, F. and J. Tate, Group schmes of prime order, Ann. Sci. Ecole Norm. Sup., 3 (1970), pp. 1-21.

[^0]: *Received July 27, 2004; accepted for publication January 31, 2005.
 \dagger Department of Mathematcis, University of California, Berkeley, CA 94720-3840, USA (coleman @math.berkeley.edu).

