
ASIAN J. MATH. c© 2005 International Press
Vol. 9, No. 2, pp. 251–256, June 2005 009

HOMOGENEOUS VARIETIES – ZERO-CYCLES OF DEGREE ONE
VERSUS RATIONAL POINTS∗

R. PARIMALA†

Abstract. Examples of projective homogeneous varieties over the field of Laurent series over
p-adic fields which admit zero-cycles of degree one and which do not have rational points are con-
structed.
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Let k be a field and X a quasi-projective variety over k. Let Z0(X) denote the
group of zero-cycles on X and deg : Z0(X) → Z the degree homomorphism which
associates to a closed point x of X , the degree [k(x) : k] of its residue field.

One would like to understand which classes X of smooth absolutely irreducible
varieties (respectively, what classes of fields k) satisfy the property: X ∈ X, if X
admits a zero-cycle of degree one, then X has a rational point.

Even in the setting of rational varieties, there are examples, due to Colliot-Thélène
and Coray [CTC] of conic bundles over the projective line over a p-adic field with a
zero-cycle of degree one, which have no rational points. In the next section, we
briefly recall from the literature some questions in this direction for homogeneous
varieties and their status. In the final section, we show by an example that there exist
projective homogeneous varieties over fields with cohomological dimension 3 which
admit zero-cycles of degree one, but which have no rational points.

The author thanks the referee for pointing out the generality in Lemma 1.

1. Some open questions. We begin by listing some open questions from the
literature concerning homogeneous spaces under linear algebraic groups - existence of
zero-cycles of degree one versus rational points.

Q(HP ) (Vĕısfĕıler)[V] Let X be a projective homogeneous variety under a connected
linear algebraic group defined over a field k. If X has a zero-cycle of degree one, does
X have a rational point?

Q(PHS) (Serre) ([Se] p 192, [Se1] p 166) Let X be a principal homogeneous
space for a connected linear algebraic group G defined over k. If X has a zero cycle
of degree one, does X have a rational point?

The following questions combine the above two in a more general setting.

Q(H) (Colliot-Thélène)[To] Let X be a quasi-projective variety over k which is a
homogeneous space for a connected linear algebraic group defined over k. If X has a
zero-cycle of degree one, does X have a rational point?

Q(Hd) (Totaro)[To] Let X be a quasi-projective variety over k which is a homoge-
neous space for a connected linear algebraic group defined over k. If X has a zero-cycle
of degree d > 0, does X have a closed point of degree dividing d?
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Totaro mentions that the most reasonable cases of his question are where X is a
principal homogeneous space or a projective homogeneous space.

Connectedness. Serre points out in ([Se] p 192, [Se1] p 166) that if the connect-
edness assumption is dropped in Q(PHS), it has a negative answer in general. We
thank P. Gille for bringing to our attention the following example.

We recall that for any subgroup H of a group G with trivial G action, the set
H1(H, G) is the quotient of Hom(H, G) under the equivalence: f ∼ g if and only if
there exists y ∈ G such that f(x) = yg(x)y−1 for all x ∈ H .

There exists a finite group G equipped with an automorphism f (Coleman au-
tomorphisms [HK]) such that f is not inner, but for every Sylow subgroup H of G,
f |H : H → G is given by f(x) = yHxy−1

H for some yH ∈ G. The class of [f ] in
H1(G, G) for the trivial action of G on G is non-trivial, but restricted to each p-Sylow
subgroup, it is trivial. Since any finite group may be realised as the Galois group of a
finite Galois extension, for instance, of a number field, the above example shows that
Q(PHS) has a negative answer in general if the connectedness hypothesis is dropped.

Principal homogeneous spaces. The case of Q(PHS) is wide open, and in special
cases Q(PHS) is proved to have an affirmative answer. The cases of PGLn and SOn

are classical; for SOn the result goes back to a theorem of Springer [Sp]. The case of
unitary groups is settled in the affirmative by Eva-Bayer and Lenstra [BL]. A positive
answer to Q(PHS) when k is a number field is due to Sansuc ([Sa],§4 Cor. 4.8).

Projective homogeneous varieties. The Hasse principle holds for the existence of
rational points for projective homogeneous varieties defined over number fields, thanks
to a theorem of Harder([H]). Borovoi gives an alternate proof of Harder’s theorem,
([B], Cor. 7.5) using the non-abelian H2 of Springer to study homogeneous varieties.
Following Borovoi’s proof and using the results of [CGP], one can show that if k is
a 2-dimensional strict henselian field, Q(HP ) has a positive answer. Borovoi’s proof
also leads to a positive answer to Q(HP ) for number fields. It is good to study Q(HP )
in the case of 2-dimensional fields.

The first example where Q(H) has a negative answer is due to Florence [F]. The
base field in the examples of Florence may be taken to be C((x))((y)) or a local field
or a global field; these fields have virtual cohomological dimension at most 2. The
stabiliser of a rational point over the algebraic closure for these homogeneous spaces
is a finite group. In the next section, we give examples to show that Q(HP ) has a
negative answer in general. In particular, the stabiliser of a rational point over the
algebraic closure in these examples is a connected group; the base field is the Laurent
series field over a p-adic field which has cohomological dimension 3.

2. Examples. In this section, we construct examples to show that Q(HP ) has
a negative answer in general. These examples are a refinement of an example of an
anisotropic rank 2 hermitian form over a division algebra with a unitary involution
admitting a nontrivial zero in two coprime degree extensions, given in [PSS]. In the
example in [PSS], the variety Y of zeros of the hermitian form over the algebraic
closure K̄ of the base field K is not homogeneous under the action of the unitary
group of the form. This variety over K̄ is defined by:

Y = {(X1, X2, Y1, Y2); X1Y
t
1 + X2Y

t
2 = 0, X1, X2, Y1, Y2 ∈ Mp(K̄)},

where p is the degree of the division algebra. We begin with the following lemma:
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Lemma 1. Let ℓ|k be a finite extension of p-adic fields with [ℓ : k] > 1. Then
|ℓ∗/ℓ∗p| > |k∗/k∗p|.

Proof. For any field M with char(M) 6= p, from the Kummer exact sequence,
one has an isomorphism H1(M, µp) ≃ M∗/M∗p. Let hi

M (µp) = |Hi(M, µp)| and
χM (µp) = h0

M (µp)h
2
M (µp)/h1

M (µp). If M is a p-adic field, h0
M (µp) is p or 1 according

as M contains a primitive pth root of unity or not; further, h2
M (µp) = p. In view

of ([Se], §5.7, Theorem 5), χM (µp) = 1/pN , where [M : Qp] = N . Thus h1
M (µp) =

pN+1+ǫM , where ǫM = 1 or 0 according as M contains a pth root of unity or not. It
follows that h1

ℓ (µp) > h1
k(µp) and |ℓ∗/ℓ∗p| > |k∗/k∗p|, provided [ℓ : k] > 1.

Let k be a p-adic field containing a primitive pth root of unity ξ with p ≥ 5. Let
K = k((t)).

Let ℓ|k be a degree two extension of k. Then by lemma (1), |ℓ∗/ℓ∗p| > |k∗/k∗p|
so that the norm map Nℓ/k has a non-trivial kernel. Let µ ∈ ℓ∗ be such that [µ] ∈
ker(Nℓ/k : ℓ∗/ℓ∗p → k∗/k∗p) and [µ] 6= 1 in ℓ∗/ℓ∗p. Let L = ℓ((t)). Let D be the
cyclic algebra of degree p over L defined by:

Xp = µ, Y p = t, XY = ξY X.

The algebra D is clearly a division algebra and is represented by (µ)∪(t) ∈ H2(L, µp).
We have, using the projection formula (cf. [CF], Prop. 9(iv), page 107),
coresL|K ((µ) ∪ (t)) = (NL/K(µ)) ∪ (t) = 1 so that by a theorem of Albert (cf. [Sc],
Theorem 9.5, page 309) the division algebra D supports an involution of second kind.
Let τ be an L|K involution on D. Let λ ∈ k∗ be such that λ /∈ Nℓ/k(ℓ∗). Local class
field theory guarantees the existence of such a λ. Let h be the rank 3 hermitian form
〈1,−λ, t〉 over (D, τ). Then we have the following:

Lemma 2. The hermitian form h is anisotropic over (D, τ).

Proof. Let ∆ =
{

a ∈ D : NrdD|L(a) ∈ l[[t]]
}

be the unique maximal ℓ[[t]]-order
in D (cf. [R], Theorem 12.8, page 137). Every element a of ∆ can be written as
a = πnb, where b is a unit in ∆ and π a generator of the unique maximal right ideal
in ∆ (which is indeed a two sided ideal) and n is a non-negative integer.
Suppose there exist v1, v2, v3 ∈ D, not all zero, such that:

v1τ(v1) − λv2τ(v2) + tv3τ(v3) = 0. (1)

Without loss of generality, we may assume that each vi ∈ ∆. We write vi = πniui,
where ui is a unit in ∆ for i = 1, 2, 3 and ni ≥ 0. Thus (1) becomes:

πn1u1τ(πn1u1) − λπn2u2τ(πn2u2) + tπn3u3τ(πn3u3) = 0. (2)

We first consider the case when n1 is the smallest of all ni. Let m2 = n2 − n1 and
m3 = n3 − n1; both m2 and m3 are non-negative. We can rewrite (2) as

u1τ(u1) = λπm2u2τ(πm2u2) − tπm3u3τ(πm3u3). (3)

Since t = πpu0 with u0 a unit in ∆ and p odd, the valuation of

λπm2u2τ(πm2u2) − tπm3u3τ(πm3u3)
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is the minimum of {2m2, p + 2m3}, and it is zero by (3). This implies that m2 = 0.
Thus

λu2τ(u2) = u1τ(u1)
(

1 + tτ(u1)
−1u−1

1 πm3u3τ(πm3u3)
)

. (4)

Set w = τ(u1)
−1u−1

1 πm3u3τ(πm3u3); the element w is in the maximal order ∆. Taking
reduced norm on both sides of (4) we get:

NrdD (λu2τ(u2)) = NrdD (u1τ(u1))NrdD(1 + tw)

which gives:

λpNL|K (NrdD(u2)) = NL|K (NrdD(u1))NrdD(1 + tw).

Reading the above equality modulo t, we conclude that λp ∈ Nℓ|k(ℓ∗). Since ℓ is a
quadratic extension over k and p is odd, this implies that λ ∈ Nℓ|k(ℓ∗). But this is a
contradiction to the choice of λ and therefore the form h is anisotropic in this case.
The case when n2 is smallest can be treated in a similar manner.

Now we consider the case when n3 is the smallest among all ni’s. Let r1 = n1−n3

and r2 = n2 − n3. The integers r1 and r2 are nonnegative and (2) becomes:

πr1u1τ(πr1u1) − λπr2u2τ(πr2u2) = −tu3τ(u3). (5)

Suppose r1 6= r2. The valuation of πr1u1τ(πr1u1) − λπr2u2τ(πr2u2) is the min-
imum of {2r1, 2r2}, which is even, while the valuation of tu3τ(u3) is p which is odd
leading to a contradiction. Therefore r1 = r2 and we have

u1τ(u1) = λu2τ(u2) − tπ−r1u3τ(π−r1u3). (6)

If p < 2r1, u3τ(u3) = t−1πr1 (−u1τ(u1) + λu2τ(u2)) τ(πr1) with the valuation of
right hand side positive, leading to a contradiction. Thus p > 2r1. Taking reduced
norm on both sides of (6) and then reading modulo t we conclude, as before that
λ ∈ Nℓ|k(ℓ∗), which is a contradiction. Thus the hermitian form h is anisotropic.

Theorem 3. Let X be the variety of rank one (rank over D) zero subspaces of
h over (D, τ). Then, X is a projective variety which is a homogeneous space under
the action of SU(h). The variety X admits a zero-cycle of degree one, but has no
K-rational point.

Proof. Let B = M3(D) and τh the involution on B adjoint to h. Under the Morita
equivalence, a right ideal J1 in B with dimD(J1) = 3 and τh(J1).J1 = 0 corresponds
to a rank one (over D) zero subspace V1 for h. The ideal J2 of B with dimD(J2) = 6
and τh(J1).J2 = 0 is determined by J1 and corresponds under Morita equivalence to
the orthogonal complement V ⊥

1 of V1 in h. Thus the variety of flags of right ideals
J1 ⊂ J2 in B such that dimD(J1) = 3, dimD(J2) = 6 and τh(J1).J2 = 0 is isomorphic
to the variety X of rank one (over D) zero subspaces of h. In particular, the variety
X is a projective homogeneous variety under the action of SU(h) (cf. [MT], §2.4.2).

The algebra DK(
√

λ) is a division algebra and hK(
√

λ) ≃ 〈1,−1, t〉 is isotropic

over
(

DK(
√

λ), τK(
√

λ)

)

with a rank one isotropic subspace (over
(

DK(
√

λ)

)

). Hence

X
(

K
(√

λ
))

6= φ. Let M = K(t1/p). Then [M : K] = p, DM is split and hM

is Morita equivalent to a 3p-dimensional hermitian form h̃M over LM |M (cf. [BP],
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section 1.3) Under this equivalence, every rank r zero space of hM corresponds to a
rank rp zero space of the hermitian form h̃M . To the hermitian form h̃M is associated
a quadratic form qM (cf. [MH], page 114) and every rank r zero of h̃M corresponds
to a rank 2r zero of qM . Since M is a Laurent series field over a p-adic field, every
9-dimensional quadratic form over M is isotropic (cf. [P], Theorem 2.2, Chapter 5)
and every 5-dimensional hermitian form over LM |M is isotropic, (cf. [MH], page
114). Since p ≥ 5, h̃M has a totally isotropic subspace of rank at least p over LM ;
hence hM has a rank one isotropic subspace over DM and X(M) 6= φ. Thus X admits
a zero-cycle of degree one. By Lemma(2), the form h has no nontrivial zero over K
and X has no K-rational point.

We shall now describe the parabolic subgroup defining the stabiliser of a rational
point in X(K).

Let △ be the set of simple roots with respect to a pair (T, B) for Gk = SU(h)k

for a choice of a maximal torus T defined over k and a Borel subgroup B over k
containing T . Let S = △\{p, 2p} where the ordering on vertices of △ are as in ([T],
Table I, page 53). From the description of a parabolic subgroup of SU(h) belonging to
the conjugacy class associated to S as the stabiliser of the flag of right ideals J1 ⊂ J2

in B such that dimD(J1) = 3, dimD(J2) = 6 and τh(J1).J2 = 0 (cf. [MT], §2.4.2),
it follows that X is precisely the variety of parabolic subgroups of SU(h) defined by
the conjugacy class associated to S.

We have the following Tits indices for SU(h)K(
√

λ) and SU(h)M (Witt index of

h over M is p + r).

2(p − 1) p − 1

Fig. 2.1. Tits index for SU(h)
K(

√
λ)

2 (p + r) p − 2r − 1

Fig. 2.2. Tits index for SU(h)M
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Remark. One may replace the Laurent series fields over p-adic fields in the
above examples by the rational function field in one variable over p-adic fields with
p sufficiently large. One needs to use results of [HV] and [PS] stating that quadratic
forms over such fields in sufficiently many variables have a nontrivial zero.
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Not., 54 (2004), pp. 2897–2914.
[H] G. Harder, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen,

Jahresbericht der DMV, 70 (1968), pp. 182–216.
[HK] Martin Hertweck and Wolfgang Kimmerle, Coleman automorphisms of finite groups,

Math. Z., 242 (2002), pp. 203–215.
[HV] D.W. Hoffmann and J. Van Geel, Zeros and norm groups of quadratic forms over function

fields in one variable over a local non-dyadic field, J. Ramanujan Math. Soc., 13 (1998),
pp. 85–110.

[MT] A.S. Merkurjev and J.-P. Tignol, Multipliers of similitudes and the Brauer group of

homogeneous varieties, J. reine angew. Math., 461 (1995), pp. 13–47.
[MH] J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, 1973.
[P] A. Pfister, Quadratic forms with applications to Algebraic Geometry and Topology, London

Mathematical Society Lecture Note Series (217), 1995.
[PS] R. Parimala and V. Suresh, Isotropy of quadratic forms over function fields of p-adic

curves, Publ. IHES., 88 (1998), pp. 129–150.
[PSS] R. Parimala, R. Sridharan and V. Suresh, Hermitian analogue of a theorem of Springer,

Journal of Algebra, 243 (2001), pp. 780–789.
[R] I. Reiner, Maximal Orders, Academic Press, 1975.
[Sa] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un
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