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THE LIGHTCONE GAUSS MAP OF A SPACELIKE SURFACE
IN MINKOWSKI 4-SPACE ∗

SHYUICHI IZUMIYA† , DONGHE PEI‡ , AND MAŔıA DEL CARMEN ROMERO FUSTER§

Abstract. We study the geometry of the spacelike surfaces in Minkowski 4-space through their
generic contact with lightlike hyperplanes.

1. Introduction. Inspired in the results obtained by Kossowski [10, 11] for sub-
manifolds of Minkowski space, we introduced in [7] the notion of lightcone Gauss map
of a spacelike curve in Minkowski 3-space. We studied the singularities of lightcone
Gauss maps of spacelike curves and established the relationships between such sin-
gularities and the geometric invariants of these curves under the action of Lorentz
group. Our aim in this paper is to develop the analogous theory for spacelike surfaces
in Minkowski 4-space. To do this we need to work out local differential geometry tools
for spacelike surfaces in Minkowski 4-space similar to those of surfaces in Euclidean 4-
space [12]. As it was to be expected, the situation presents certain peculiarities when
compared with the Euclidean case. For instance, it is always possible to choose, in our
case, two lightlike normal directions along the surface as a frame of its normal bundle.
By using this, we define a Lorentzian invariant, Kl(1,±1), called lightlike Gaussian
curvature of the spacelike surface. We introduce in §3 the notion of lightcone height
function which is useful to show that the lightcone Gauss map has a singular point if
and only if the lightlike Gaussian curvature vanishes at such point. Moreover, we show
that the lightcone Gauss map is a constant map if and only if the surface is contained
in a lightlike hyperplane, so we can view the singularities of the lightcone Gauss map
as an estimate of the contacts of the surface with lightlike hyperplanes. In §4 we define
the notion of lightcone pedal surface of a spacelike surface and show that its singu-
larities are in correspondence with that of the lightcone Gauss map of the surface.
We apply Montaldi’s methods [16] to the extended lightcone height function in order
to study the generic contacts between spacelike surfaces and lightlike hyperplanes in
§5 . Finally, in §6, we give a generic classification of lightcone pedal surfaces and
lightcone Gauss maps (cf., Theorem 6.1 and Corollary 6.3). Briefly speaking, generic
singularities of lightcone pedal surfaces are cuspidaledges and swallowtails (cf., Fig.
1) and the corresponding singularities for lightcone Gauss maps are folds and cusps
respectively (cf., Fig. 2). We also analyze the geometrical meaning of cuspidaledges,
cross caps and swallowtails of lightcone pedal surfaces.

We observe that any surface M in Euclidean space R3 can be viewed as a space-
like surface in R4

1. In this case the lightlike Gaussian curvature is the (Euclidean)
Gaussian curvature of the surface. In this sense, our theory is a generalization of the
theory of cusps of Gauss maps developed in [2]. On the other hand, the notion of
hyperbolic Gauss maps for surfaces in the Poincaré disk was introduced in [5]. The
singularities of the hyperbolic Gauss maps for hypersurfaces in Hyperbolic n-space
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Espanya (carmen.romero@post.uv.es).

511



512 S. IZUMIYA, D. PEI AND M. C. ROMERO FUSTER

cuspidaledge swallowtail
Fig. 1.

fold cusp
Fig. 2.

Hn
+(−1) were studied in [7] under the framework of Minkowski model. The hypersur-

faces in Hyperbolic n-space Hn
+(−1) are a particular case of spacelike submanifolds

of codimension 2 of Minkowski (n+1)-space Rn+1
1 . We remark that in the case n = 3

the hyperbolic Gaussian curvature is equal to the lightlike Gaussian curvature and
hence our theory is also a generalization of the singularity theory for hyperbolic Gauss
maps for surfaces. We give in §7 some examples of spacelike surfaces of 4-dimensional
Minkowski space that are not included in any of these two categories.

Motivated by physical applications [6] and the previous work of Kossowski [10, 11]
we are preparing a further article dealing with singularities of lightlike hypersurfaces
in Minkowski 4-space [9] in which we shall push forward the topics treated in the
present paper.

We shall assume throughout the whole paper that all the maps and manifolds are
C∞ unless the contrary is explicitly stated.

2. Local differential geometry of spacelike surfaces. In this section we
introduce the basic geometrical tools for the study of spacelike surfaces in Minkowski
4-space in an analogous way to the theory developed in [12] for surfaces in Euclidean
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4-space.
Let R4 = {(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ R} be a 4-dimensional vector space. For

any vectors x = (x1, x2, x3, x4) y = (y1, y2, y3, y4) in R4, the pseudo scalar product
of x and y is defined to be 〈x,y〉 = −x1y1 + x2y2 + x3y3 + x4y4. We call (R4, 〈, 〉) a
Minkowski 4-space. We write R4

1 instead of (R4, 〈, 〉).
We say that a vector x in R4

1\{0} is spacelike, lightlike or timelike if 〈x,x〉 > 0,= 0
or < 0 respectively. The norm of the vector x ∈ R4

1 is defined by ‖x‖ =
√|〈x,x〉|.

For a lightlike vector n ∈ R4
1 and a real number c, we define the lightlike hyperplane

with pseudo normal n by

LHP (n, c) = {x ∈ R4
1|〈x,n〉 = c}.

Let R4
1 be an oriented and timelike oriented space (i.e., a 4-volume form dV , and

future time-like vector field, have been chosen), and X : U → R4
1 a regular surface

(i.e., an immersion), where U ⊂ R2 is an open subset. We denote by M = X(U) and
identify M and U by the immersion X.

We say that M is a spacelike surface if the tangent plane TpM of M is
a spacelike plane (i.e., consists of spacelike vectors) for any point p ∈ M .
In this case, the normal space NpM is a timelike plane (i.e., Lorentz plane)
(cf.,[18]). Let {e3(x, y),e4(x, y); p = (x, y)} be an orthonormal frame of TpMand
{e1(x, y),e2(x, y); p = (x, y)} a pseudo-orthonormal frame of NpM . Here, e1(p) is a
timelike vector and ei; i = 2, 3, 4 are spacelike vectors.

We shall now establish the fundamental formula for a spacelike surface in R4
1 by

means of similar notions to those of Little [12].

We can write dX =
4∑

i=1

ωiei and dei =
4∑

j=1

ωijej ; i = 1, 2, 3, 4. where ωi and ωij

are 1-forms given by ωi = δ(ei)〈dX,ei〉 and ωij = δ(ej)〈dei,ej〉, with

δ(ei) = Sign(ei) =

{
1 i = 2, 3, 4
−1 i = 1

.

We have the Codazzi type equations:⎧⎪⎪⎨⎪⎪⎩
dωi =

4∑
j=1

δ(ei)δ(ej)ωij ∧ ωj

dωij =
4∑

k=1

ωik ∧ ωkj ,

(1)

where d is exterior derivative.
In fact, we have

dωi = δ(ei)〈d2X,ei〉 − δ(ei)dX ∧ dei = −δ(ei)(
4∑

j=1

ωjei ∧ dei)

=
4∑

j=1

−δ(ei)(ωj ∧ 〈dei,ej〉 =
4∑

j=1

−δ(ei)(ωj ∧ ωij)δ(ej)

=
4∑

j=1

δ(ei)δ(ej)ωij ∧ ωj
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and

dωij = δ(ej)〈d2ei,ej〉 − δ(ej)dei ∧ dej = −δ(ej)dei ∧ dej

= −δ(ej)(
4∑

k=1

ωikek ∧
4∑

k=1

ωjkek)

= −δ(ej)δ(ek)
4∑

k=1

−δ(ej)δ(ek)ωik ∧ ωkj

=
4∑

k=1

ωik ∧ ωkj .

Since 〈ei,ej〉 = δijδ(ej) (where δij is Kronecker’s delta), we get

〈dei,ej〉 + 〈ei, dej〉 = 0,

that is δ(ej)ωij + δ(ei)ωji = 0. And thus

ωij = −δ(ei)δ(ej)ωji. (2)

In particular, ωii = 0; i = 1, 2, 3, 4.
It follows from the fact 〈dX,e1〉 = 〈dX,e2〉 = 0 that

ω1 = ω2 = 0. (3)

Therefore we have⎧⎪⎪⎨⎪⎪⎩
0 = dω1 =

4∑
j=1

δ(e1)δ(ej)ω1j ∧ ωj =
4∑

j=3

δ(ej)ω1j ∧ ωj = −ω13 ∧ ω3 − ω14 ∧ ω4

0 = dω2 =
4∑

j=1

δ(e2)δ(ej)ω2j ∧ ωj =
4∑

j=3

δ(ej)ω2j ∧ ωj = ω23 ∧ ω3 + ω24 ∧ ω4.

By Cartan’s lemma, we can write{
ω13 = aω3 + bω4, ω14 = bω3 + cω4

ω23 = eω3 + fω4, ω24 = fω3 + gω4.
(4)

for appropriate functions a, b, c, e, f and g.
Since 〈dX,e1〉 = 〈dX,e2〉 = 0,

〈d2X,e1〉 = −〈dX, de1〉

= −〈
4∑

i=1

ωiei,

4∑
j=1

ω1jej〉 = −〈
4∑

i=3

ωiei,

4∑
j=2

ω1jej〉

= −(ω3ω13 + ω4ω14) = −ω3(aω3 + bω4) − ω4(bω3 + cω4)
= −(aω2

3 + 2bω3ω4 + cω2
4),

and
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〈d2X,e2〉 = −〈dX, de2〉

= −〈
4∑

i=3

ωiei, ω21e1 + ω23e3 + ω24e4〉 = −(ω3ω23 + ω4ω24)

= −(eω2
3 + 2fω3ω4 + gω2

4).

This means that

−〈d2X,e1〉e1 + 〈d2X, e2〉e2 = (aω2
3 + 2bω3ω4 + cω2

4)e1 − (eω2
3 + 2fω3ω4 + gω2

4)e2.(5)

By using equations (2), we may write

d

⎛⎜⎜⎝
e1

e2

e3

e4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 ω12 ω13 ω14

ω12 0 ω23 ω24

ω13 −ω23 0 ω34

ω14 −ω24 −ω34 0

⎞⎟⎟⎠
⎛⎜⎜⎝

e1

e2

e3

e4

⎞⎟⎟⎠ . (6)

And a straight forward calculation leads us to the following equations:

d

⎛⎜⎜⎝
e1 − e2

e1 + e2

e3

e4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 −ω12 ω13 − ω23 ω14 − ω24

ω12 0 ω13 + ω23 ω14 + ω24
ω13 − ω23

2
ω13 + ω23

2
0 ω34

ω14 − ω24

2
ω14 + ω24

2
−ω34 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

e1 + e2

e1 − e2

e3

e4

⎞⎟⎟⎠ (7)

On the other hand, we define

LCp = {x ∈ R4
1| x = −(x1 − p1)2 +

4∑
i=2

(xi − pi)2 = 0}

and

S2
+ = {x = (x1, x2, x3, x4) ∈ LC =: LC0 | x1 = 1},

where p = (p1, p2, p3, p4) ∈ R4
1. We call S2

+ a lightlike unit sphere and LC∗
p = LCp\{p}

a lightcone at the vertex p. Given any lightlike vector x = (x1, x2, x3, x4), we have
x̃ = (1, x2

x1
, x3

x1
, x4

x1
, ) ∈ S2

+.
Let e1 = (a1, a2, a3, a4) and e2 = (b1, b2, b3, b4) and consider
e1 ± e2 = (a1 ± b1)ẽ1 ± e2, and thus

d(e1 ± e2) = d(a1 ± b1)ẽ1 ± e2 + (a1 ± b1)dẽ1 ± e2.

Hence

(a1 + b1)dẽ1 + e2 = d(e1 + e2) − d(a1 + b1)ẽ1 + e2

= ω12(e1 + e2) + (ω13 + ω23)e3 + (ω14 + ω24)e4 − d(a1 + b1)ẽ1 + e2

= (a1 + b1)ω12ẽ1 + e2 + (ω13 + ω23)e3 + (ω14 + ω24)e4

−d(a1 + b1)ẽ1 + e2

= [(a1 + b1)ω12 − d(a1 + b1)]ẽ1 + e2 + (ω13 + ω23)e3 + (ω14 + ω24)e4.
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which leads us to the equality

dẽ1 + e2 = [ω12 − d ln(a1 + b1)]ẽ1 + e2 +
(ω13 + ω23)e3

a1 + b1
+

(ω14 + ω24)e4

a1 + b1
.

Similarly we have

dẽ1 − e2 = [−ω12 − d ln(a1 − b1)]ẽ1 − e2 +
(ω13 − ω23)e3

a1 − b1
+

(ω14 − ω24)e4

a1 − b1
.

And finally we arrive to the the following fundamental formula:

d

⎛⎜⎜⎝
ẽ1 − e2

ẽ1 + e2

e3

e4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 −ω12 − d(a1−b1)

a1−b1
ω13−ω23
a1−b1

ω14−ω24
a1−b1

ω12 − d(a1+b1)
a1+b1

0 ω13+ω23
a1+b1

ω14+ω24
a1+b1

ω13−ω23
2

ω13+ω23
2 0 ω34

ω14−ω24
2

ω14+ω24
2 −ω34 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

ẽ1 + e2

ẽ1 − e2

e3

e4

⎞⎟⎟⎠
(8)

We now define the curvature ellipse at a given point p ∈ M as the image of the
normal curvature vector map η : S1 → R2

1 of M, where S1 is the unit sphere in TpM
and we identify NpM with R2

1.
Let γ : I → R4

1 be a parameterization by arclength of the regular spacelike curve
in R4

1 obtained by intersecting M with the 3-plane determined by a unit direction
v ∈ TpM and NpM . We clearly have that v = γ′(s) and p ∈ γ(I). The normal
curvature vector of γ lies in NpM and is given by

η(v) = −〈d2γ/ds2(p),e1〉e1 + 〈d2γ/ds2(p),e2〉e2

= (a cos2 θ + 2b cos θ sin θ + c sin2 θ)e1 − (e cos2 θ + 2f cos θ sin θ + g sin2 θ)e2,

where v = cos θe3 + sin θe4 ∈ TpM and {e3(p),e4(p); p} is an orthonormal frame of
TpM .

We define the mean curvature vector H as

H =
1
2
(a+ c)e1 − 1

2
(e+ g)e2. (9)

We clearly have

η(θ) = (
1
2
(a− c) cos 2θ + b sin 2θ)e1 − (

1
2
(e− g) cos 2θ + f sin 2θ)e2 + H.

Or equivalently

η(θ) − H(θ) =
(

1
2 (a− c) b

− 1
2 (e− g) −f

)
·
(

cos 2θ
sin 2θ

)
which shows that varying θ from 0 to π, the vector η(θ) describes an ellipse in NpM .

Given v = xe1 +ye2 ∈ NpM, we have dv = dxe1 +xde1 +dye2 +yde2. and then

〈dv,e3〉 ∧ 〈dv,e4〉
= [(ax+ ey)(cx+ gy) − (bx+ fy)2]ω3 ∧ ω4

= [(ac− b2)x2 + (ec+ ag − 2bf)xy + (eg − f2)y2]ω3 ∧ ω4.
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We define a function Kl as follows

Kl(x, y) = (ac− b2)x2 + (ec+ ag − 2bf)xy + (eg − f2)y2. (10)

On the other hand, we define two maps

LG±
M : M −→ S2

+

by LG±
M (x, y) = ẽ1 ± e2(x, y). Each one of these maps shall be called lightcone Gauss

map of X(U) = M.

3. Lightcone height functions on spacelike surfaces. In this section we
introduce the notion of lightcone height functions on space like surfaces which, as we
shall see, is useful for the study of singularities of the lightcone Gauss maps.

Given a spacelike surface M(= X(U)) we define the function

H : M × S2
+ −→ R

asH((x, y),λ) = 〈X(x, y),λ〉, where λ = (1, λ2, λ3, λ4) ∈ S2
+. We callH the lightcone

height function on the spacelike surface M . We denote that hλ0(x, y) = H(x, y,λ0),
for any fixed λ0 ∈ S2

+. The singularities of this function are characterized as follows.

Proposition 3.1. Let M be a spacelike surface and H : M × S2
+ −→ R a

lightcone height function. Then we have the following assertions:
(1) (∂hλ/∂x)(p0) = (∂hλ/∂y)(p0) = 0 if and only if λ = µ(e1±e2)(p0) = ẽ1 ± e2(p0).
Here e1(p0) = (a1, a2, a3, a4), e2(p0) = (b1, b2, b3, b4) and µ = 1

a1±b1
; (p0) = (x0, y0) ∈

M,
(2) (∂hλ/∂x)(p0) = (∂hλ/∂y)(p0) = detH(hλ)(p0) = 0 if and only if

λ = ẽ1 ± e2(p0) and Kl(1,±1)(p0) = 0.

Here, detH(hλ)(x, y) is the determinant of the Hessian matrix of hλ at (x, y).

Proof. It follows from a straight forward calculation that (∂hλ/∂x)(p0) =
(∂hλ/∂y)(p0) = 0 if and only if

〈Xx,λ〉(p0) = 〈Xy,λ〉(p0) = 0.

This is equivalent to the condition that λ ∈ Np0M and λ ∈ S2
+ which means that

λ = µ(e1 ± e2) = ẽ1 ± e2.
On the other hand, if we choose local coordinates such that X is given in the

Monge form X(x, y) = (f1(x, y), f2(x, y), x, y) and e1(p0) = (1, 0, 0, 0) and e2(p0) =
(0, 1, 0, 0), since

detH(hλ)(x, y) =
∣∣∣∣〈Xxx,λ〉 〈Xxy,λ〉
〈Xxy,λ〉 〈Xyy,λ〉

∣∣∣∣ = 0

and λ(p0) = (1,±1, 0, 0), we have∣∣∣∣〈(f1xx
, f2xx

, 0, 0), (1,±1, 0, 0)〉 〈(f1xy
, f2xy

, 0, 0), (1,±1, 0, 0)〉
〈(f1xy

, f2xy
, 0, 0), (1,±1, 0, 0)〉 〈(f1yy

, f2yy
, 0, 0), (1,±1, 0, 0)〉

∣∣∣∣
=

∣∣∣∣−a± e −b± f
−b± f −c± g

∣∣∣∣ = 0.
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But this is equivalent to the condition
(ac+ eg)± (2bf −ag− ec)− (b2 +f2) = (ac− b2)+(eg−f2)± (2bf −ag− ce) = 0

and λ(p0) = (1,±1, 0, 0), namely Kl(1,±1)(x, y) = 0 and λ(p0) = (1,±1, 0, 0).

As a corollary of Proposition 3.1, we have the following theorem.

Theorem 3.2. Under the assumption of Proposition 2.1, we have that the fol-
lowing conditions are equivalent:
(1) p ∈M is a degenerate singular point of the lightcone height function hλ.
(2) (p,λ) is a singular point of the lightcone Gauss map LG±

M .
(3) Kl(1,±1)(p) = 0.

Proof. Let’s consider the subset

Σ(H) =
{

(p,λ) ∈M × S2
+ | ∂hλ

∂x
(p) =

∂hλ

∂y
(p) = 0

}
.

which from Proposition 3.1, (1) can be also written as

Σ(H) = {(p,λ) ∈M × S2
+ | λ = ẽ1 ± e2(p) }.

We now observe that the restriction, π|Σ(H), of the canonical projection π : M ×
S2

+ −→ S2
+ can be identified with the lightcone Gauss map LG±

M . We can easily see,
under this identification, that the condition (1) is equivalent to the condition (2).

That the condition (2) is equivalent to the condition (3) follows immediately from
Proposition 3.1 (2).

Theorem 3.3. Let M be a spacelike surface in Minkowski 4-space.
(1) The lightcone Gauss map LG+

M (respectively, LG−
M ) is constant if and only if

there exists a unique lightlike hyperplane HLP (v+, c+) (respectively, HLP (v−, c−))
such that M ⊂ HLP (v+, c+) (respectively, M ⊂ HLP (v−, c−))
(2) Both maps, LG+

M and LG−
M , are constant if and only if M is a spacelike plane.

In this case, the intersection of the lightlike hyperplanes

HLP (ẽ1 + e2, c
+) ∩HLP (ẽ1 − e2, c

−)

is the spacelike plane M.

Proof. (1) We prove the assertion for the assumption LG+
M (x, y) = ẽ1 + e2(x, y)

is constant. The other case can be shown analogously. In this case we have

d〈X, ẽ1 + e2〉 = 〈dX, ẽ1 + e2〉 + 〈X, d(ẽ1 + e2)〉 = 0.

Therefore, 〈X, ẽ1 + e2〉 ≡ c+. This means that M = X(U) ⊂ HLP (v+, c+), where
v+ = ẽ1 + e2(x, y). Conversely, suppose that there exists a lightlike vector v and a
real number c such that X(U) = M ⊂ HLP (v, c). Since 〈X(x, y),v〉 = c, we have
d〈X(x, y),v〉 = 0. This means that v is a lightlike normal vector of M. Thus we have
ṽ = ẽ1 ± e2(x, y) which completes the proof of (1).

Since v+ /∈ HLP (v−, c−) and v− /∈ HLP (v+, c+), HLP (v−, c−) and
HLP (v+, c+) intersect transversally. By the assertion (1), both of the lightcone Gauss
maps LG+

M and LG−
M are constant if and only if M ⊂ HLP (v+, c+)∩HLP (v−, c−).

Since the intersection must be a spacelike plane we have proven assertion (2).

We say that a point p = X(x0, y0) is a lightlike parabolic point ofM if Kl(1, 1)(p) =
0 or Kl(1,−1)(p) = 0.
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4. The lightcone pedal surface of a spacelike surface. In this section we
associate to M a singular hypersurface contained in the positive lightcone

LC∗
+ = {x = (x1, x2, x3, x4) ∈ LC0 | x1 > 0 }

whose singularities correspond to those of the lightcone Gauss map of M. To do this
we consider a family of functions

H̃ : M × LC∗
+ −→ R

defined by

H̃((x, y),v) = 〈X(x, y), ṽ〉 − v1,

where v = (v1, v2, v3, v4). We call H̃ the extended lightcone height function of M =
X(U).

An immediate consequence of Proposition 3.1 is the following.

Proposition 4.1. Let M be a spacelike surface and H̃ : M × LC∗
+ −→ R the

extended lightcone height function of M. For p0 = X(x0, y0) and v0 ∈ LC∗
+, we have

the following:
(1) H̃(p0,v0) = (∂H̃/∂x)(p0,v0) = (∂H̃/∂y)(p0,v0) = 0 if and only if

ṽ0 = ẽ1 ± e2(p0) and v1 = 〈X(x0, y0), ẽ1 ± e2(p0)〉.

(2)

H̃(p0,v0) =
∂H̃

∂x
(p0,v0) =

∂H̃

∂y
(p0,v0) = detH(h̃v)(p0) = 0

if and only if

ṽ0 = ẽ1 ± e2(p0), v1 = 〈X(x0, y0), ẽ1 ± e2(p0)〉 and Kl(1,±1)(p0) = 0.

Here, h̃v(x, y) = H̃((x, y),v).

The above result implies that the discriminant set of the extended lightcone height
function H̃ is

DH̃ =
{

v ∈ LC∗
+ | v = 〈X(x, y), ẽ1 ± e2(x, y)〉(ẽ1 ± e2)(x, y) for some (x, y) ∈ U

}
.

In view of this, we associate to M a couple of singular surfaces, LP±
M ⊂ LC∗

+, called
lightcone pedal surfaces of X(U) = M . These are defined by

LP±
M (p) = LP±

M (x, y) = 〈X(x, y), ẽ1 ± e2(x, y)〉(ẽ1 ± e2)(x, y).

We observe that each singularity of each one of the lightcone pedal surfaces cor-
responds to a singularity of the lightcone Gauss map. This correspondence has an
interesting explanation in terms of the Symplectic and Contact Geometry methods
that we analyze in the following paragraphs.

Given a point v = (v1, v2, v3, v4) ∈ LC∗
+, we have that v1 =

√
v2
2 + v2

3 + v2
3 .

We take coordinates (v2, v3, v4) on the manifold LC∗
+ and consider the projective
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cotangent bundle π : PT ∗(LC∗
+) −→ LC∗

+ with its canonical contact structure. Con-
sider also the tangent bundle τ : TPT ∗(LC∗

+) → PT ∗(LC∗
+) and the differential,

dπ : TPT ∗(LC∗
+) → TLC∗

+, of π. For any X ∈ TPT ∗(LC∗
+), there exists an element

α ∈ T ∗(LC∗
+) such that τ(X) = [α]. For an element V ∈ Tx(LC∗

+), the property
α(V ) = 0 does not depend on the choice of representative of the class [α]. Thus we
can define the canonical contact structure on PT ∗(LC∗

+) as

K = {X ∈ TPT ∗(LC∗
+)|τ(X)(dπ(X)) = 0}.

In the coordinates (v2, v3, v4) we have the trivialization PT ∗(LC∗
+) ∼= LC∗

+ ×
P (R2)∗. If [ξ2 : ξ3 : ξ4] represent the homogeneous coordinate of the dual projective
space P (R2)∗, we shall call

((v2, v3, v4), [ξ2 : ξ3 : ξ4])

homogeneous coordinates for PT ∗(LC∗
+).

It is easy to show that X ∈ K(x,[ξ]) if and only if
∑4

i=2 µiξi = 0, where dπ̃(X) =∑4
i=2 µi

∂
∂vi

. An immersion i : L → PT ∗(LC∗
+) is said to be a Legendrian immersion

if dimL = 2 and diq(TqL) ⊂ Ki(q) for any q ∈ L. We also call the map π ◦ i the
Legendrian map and the set W (i) = imageπ ◦ i the wave front of i. Moreover, i (or,
the image of i) is called the Legendrian lift of W (i).

In order to lighten the study of the lightcone pedal surface, we include here a quick
survey on the Legendrian singularity theory developed by Arnol’d and Zakalyukin
[1, 22]. It is enough to consider, for our purposes, the 3-dimensional case instead of
the whole general theory.

Let F : (Rk × R3,0) −→ (R,0) be a function germ. We say that F is a Morse
family if the map

∆∗F =
(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × R3,0) −→ (Rk × R,0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, x3, x3) ∈ (Rk × R3,0). In this case we
have a smooth 2-dimensional submanifold

Σ∗(F ) =
{

(q, x) ∈ (Rk × R3,0) | F (q, x) =
∂F

∂q1
(q, x) = · · · =

∂F

∂qk
(q, x) = 0

}
and the map germ ΦF : (Σ∗(F ),0) −→ PT ∗R3 defined by

ΦF (q, x) =
(
x, [

∂F

∂x1
(q, x) :

∂F

∂x2
(q, x) :

∂F

∂x3
(q, x)]

)
is a Legendrian immersion. Then we have the following fundamental theorem ([1, 22]).

Proposition 4.2. All Legendrian submanifold germs in PT ∗R3 are constructed
by the above method.

We call F a generating family of ΦF . The corresponding wave front is

W (ΦF )={
x ∈ R3 |there exists q ∈ Rk such that F (q, x) =

∂F

∂q1
(q, x) = · · · =

∂F

∂qk
(q, x) = 0

}
.



THE LIGHTCONE GAUSS MAP OF A SPACELIKE SURFACE 521

We have, by definition, that DF = W (ΦF ). It then follows from the previous argu-
ments that the lightcone pedal surface LP±

M is the discriminant set of the extended
lightcone height function H̃.

Proposition 4.3. The extended lightcone height function H̃ is a Morse family.

Proof. Consider the family of functions

H̄ : U × S2
+ × R −→ R

given by H̄((x, y),w, r) = 〈X(x, y),w〉 − r, and a C∞-diffeomorphism, Φ : U × S2
+ ×

R −→ LC∗
+ defined by Φ((x, y),w, r) = ((x, y), rw). Then we have that H̃ = H̄ ◦ Φ

and it is enough to show that H̄ is a Morse family. Given w = (1, w2, w3, w4) ∈ S2
+,

we have w2 =
√

1 − w2
3 − w2

4, so that

H((x, y),w, r) = −x1(x, y) + x2(x, y)
√

1 − w2
3 − w2

4 + x3(u)w3 + x4(x, y))w4 − r,

where X(x, y) = (x1(x, y), x2(x, y), x3(x, y), x4(x, y)). We now prove that the map

∆∗H̄ =
(
∂H̄

∂x
,
∂H̄, H̄

∂y

)
is non-singular at any point. The Jacobian matrix of ∆∗H̄ is given as follows:⎛⎜⎜⎜⎝

〈Xxx,w〉 〈Xxy,w〉 −x2,x
w3

w2
+ x3,x −x2,x

w4

w2
+ x4,x 0

〈Xxy,w〉 〈Xyy,w〉 −x2,y
w3

w2
+ x3,y −x2,y

w4

w2
+ x4,y 0

〈Xx,w〉 〈Xy,w〉 −x2
w3

w2
+ x3 −x2

w4

w2
+ x4 −1

⎞⎟⎟⎟⎠ .

It follows now from a straight forward calculation that the determinant of the matrix

A =

⎛⎝ −x2,x
w3

w2
+ x3,x −x2,x

w4

w2
+ x4,x

−x2,y
w3

w2
+ x3,y −x2,y

w4

w2
+ x4,y

⎞⎠ .

is equal to

w4

w2
(x2,xx3,y − x3,xx2,y) +

w3

w2
(xx,4x2,y − x2,xx4,y) + (x3,xx4,y − x4,xx3,x).

Since X(U) = M is a spacelike surface, the surface parameterized by
(x2(x, y), x3(x, y), x4(x, y)) in Euclidean space is everywhere regular and we can in-
terpret that the above determinant vanishes if and only if the vector (w2, w3, w4) is
tangent to this surface. But it is impossible because X(U) = M is a spacelike surface.

It follows from Proposition 4.3 that the lightcone pedal surfaces LP±
M are wave

fronts and the extended lightcone height function H̃ provides a generating family for
the Legendrian lifts of LP±

M .
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5. Contact with lightlike hyperplanes. In this section we give geometrical
interpretations to the singularities of the lightcone Gauss map and the lightcone pedal
surface of X(U) = M . This is done, following the classical differential geometry
methods, through the analysis of the contacts of a spacelike surface with the lightlike
hyperplanes. We first include a brief review of the theory of contact due to Montaldi
([16]).

Let Xi, Yi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 and dimY1 =
dimY2. We say that the contact of X1 and Y1 at y1 is of the same type as the contact of
X2 and Y2 at y2 if there is a diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2) such that
Φ(X1) = X2 and Φ(Y1) = Y2. In this case we write K(X1, Y1; y1) = K(X2, Y2; y2).
We can, clearly, replace Rn by any manifold in this definition. Montaldi gives a
characterization of the notion of contact by using the terminology of singularity theory.

Theorem 5.1. ([16]) Let Xi, Yi (i = 1, 2) be submanifolds of Rn with dimX1 =
dimX2 and dimY1 = dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and
fi : (Rn, yi) −→ (Rp, 0) be submersion germs with (Yi, yi) = (f−1

i (0), yi). Then

K(X1, Y1; y1) = K(X2, Y2; y2)

if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

We now consider a function H : R4
1 × LC∗

+ −→ R defined by H(x,v) =
〈x, ṽ〉 − v1. Given v0 ∈ LC∗

+, we denote hv0(x) = H(x,v0) and observe that
h−1

v0
(0) = LHP (ṽ0, v0,1) defines a lightlike hyperplane. For any p0 = X(x0, y0) ∈ U,

we consider the lightlike vector v±
0 = e1 ± e2(p0) and c± = 〈X(x0, y0),v±〉, and we

have

hv±
0
◦ X(p0) = H ◦ (X × idLC+

0
)((p0),v±

0 ) = H((x0, y0), ṽ0
±) − c± = 0.

We also have the relations

∂hv±
0
◦ X

∂x
(p0) =

∂H

∂x
((p0),v±

0 ) = 0

and

∂hv±
0
◦ X

∂y
(p0) =

∂H

∂y
((p0),v±

0 ) = 0.

which imply that the lightlike hyperplane h−1

v±
0

(0) = LHP (v±
0 , c

±) is tangent to M =

X(U) at p0 = X(x0, y0). In this case, we call each LHP (v±
0 , c

±) the tangent lightlike
hyperplane of M = X(U) at p0 = X(x0, y0). Moreover, the intersection

LHP (v±
0 , c

+) ∩ LHP (v±
0 , c

−)

is the tangent plane of M at p0. Let v1,v2 be lightlike vectors. Clearly, if v1,v2

are linearly dependent the lightlike hyperplanes LHP (v1, c1) and LHP (v2, c2) are
parallel. We have the following simple lemma.

Lemma 5.2. Let X : U −→ R4
1 be a spacelike surface and σ = ±. Given two

points p1 = X(x1, y1), p2 = X(x2, y2) in M = X(U), the following assertions hold:
(1) LGσ

M (p1) = LGσ
M (p2) if and only if LHP (vσ

1 , c
σ
1 ) and LHP (vσ

2 , c
σ
2 ) are parallel.
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(2) LPσ
M (p1) = LPσ

M (p2) if and only if LHP (vσ
1 , c

σ
1 ) = LHP (vσ

2 , c
σ
2 ).

Here, v±i = ẽ1 ± e2(pi) and c±i = 〈X(xi, yi),v±
i 〉 for i = 1, 2.

On the other hand, given any map f : N −→ P, we denote its set of singular points
by Σ(f) and put D(f) = f(Σ(f)). We call f |Σ(f) : Σ(f) −→ D(f) the critical part of
the map f. For any Morse family F : (Rk ×R3,0) −→ (R,0), (F−1(0),0) is a smooth
hypersurface, so we can define a smooth map germ πF : (F−1(0),0) −→ (R, 0) by
πF (q, x) = x. We can easily show that Σ∗(F ) = Σ(πF ). Therefore, the corresponding
Legendrian map π ◦ ΦF is the critical part of πF .

We introduce the following equivalence relation among Legendrian immersion
germs: Let i : (L, p) ⊂ (PT ∗R3, p) and i′ : (L′, p′) ⊂ (PT ∗R3, p′) be Legendrian
immersion germs. We say that i and i′ are Legendrian equivalent if there exists a
contact diffeomorphism germ H : (PT ∗R3, p) −→ (PT ∗R3, p′) such that H preserves
fibers of π and H(L) = L′. A Legendrian immersion germ into PT ∗R3 at a point is
said to be Legendrian stable if for every map with the given germ there is a neigh-
bourhood in the space of Legendrian immersions (in the Whitney C∞ topology) and
a neighbourhood of the original point such that each Legendrian immersion belonging
to the first neighbourhood has in the second neighbourhood a point at which its germ
is Legendrian equivalent to the original germ.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗R3, p) is uniquely determined on the
regular part of the wave front W (i), we have the following simple but significant
property of Legendrian immersion germs:

Proposition 5.3. Let i : (L, p) ⊂ (PT ∗R3, p) and i′ : (L′, p′) ⊂ (PT ∗R3, p′) be
Legendrian immersion germs such that the regular sets of π ◦ i, π ◦ i′ are dense respec-
tively. Then i, i′ are Legendrian equivalent if and only if wave front sets W (i),W (i′)
are diffeomorphic as set germs.

This result has been firstly pointed out by Zakalyukin [23]. The assumption in the
above proposition is a generic condition for i, i′. In particular, if i, i′ are Legendrian
stable, then they satisfy this assumption.

We can interpret the Legendrian equivalence by using the notion of generating
families. We denote by En the local ring of function germs (Rn,0) −→ R with the
unique maximal ideal Mn = {h ∈ En | h(0) = 0 }. Let F,G : (Rk × Rn,0) −→
(R,0) be function germs. We say that F and G are P -K-equivalent if there exists
a diffeomorphism germ Ψ : (Rk × Rn,0) −→ (Rk × Rn,0) of the form Ψ(x, u) =
(ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × Rn,0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
. Here

Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra isomorphism defined by Ψ∗(h) = h◦Ψ.
Let F : (Rk × R3,0) −→ (R,0) a function germ. We say that F is a K-versal

deformation of f = F |Rk × {0} if

Ek = Te(K)(f) +
〈
∂F

∂x1
|Rk × {0}, ∂F

∂x2
|Rk × {0}, ∂F

∂x3
|Rk × {0}

〉
R

,

where

Te(K)(f) =
〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek

.

(See [14].)
The main result in Arnol’d-Zakalyukin’s theory[1, 22] is the following:

Theorem 5.4. Let F,G : (Rk × R3,0) −→ (R, 0) be Morse families. Then
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(1) ΦF and ΦG are Legendrian equivalent if and only if F, G are P -K-equivalent.
(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F | Rk×{0}.

Since F,G are function germs on the common space germ (Rk ×R3,0), we do no
need the notion of stable P -K- equivalences (cf., [1]). By the uniqueness result of the
K-versal deformation of a function germ, Proposition 5.2 and Theorem 5.3, we have
the following classification result of Legendrian stable germs (cf., [7]). For any map
germ f : (Rn,0) −→ (Rp,0), we define the local ring of f by Q(f) = En/f

∗(Mp)En.

Proposition 5.5. Let F,G : (Rk ×R3,0) −→ (R, 0) be Morse families. Suppose
that ΦF ,ΦG are Legendrian stable. The the following conditions are equivalent.

(1) (W (ΦF ),0) and (W (ΦG),0) are diffeomorphic as germs.
(2) ΦF and ΦG are Legendrian equivalent.
(3) Q(f) and Q(g) are isomorphic as R-algebras, where f = F |Rk × {0}, g =

G|Rk × {0}.
Proof. Since ΦF , ΦG are Legendrian stable, they satisfy the generic condition

of Proposition 5.3, so that the conditions (1) and (2) are equivalent. The condition
(3) implies that f, g are K-equivalent[14, 15]. By the uniqueness of the K-versal
deformation of a function germ, F, G are P -K-equivalent. This means that the
condition (2) holds. By Theorem 5.4, the condition (2) implies the condition (3).

We apply now these tools to the study of the contact between spacelike surfaces
and lightlike hyperplanes.

Let LPσ
M,i : (U, (xi, yi)) −→ (LC∗

+,v
σ
i ) (i = 1, 2) be two lightcone pedal surface

germs respectively associated to spacelike surface germs Xi : (U, (xi, yi)) −→ (R4
1, pi),

where σ = ±. We say that LPσ
M,1 and LPσ

M,2 are A-equivalent if there exist diffeo-
morphism germs φ : (U, (x1, y1)) −→ (U, x2, y2)) and Φ : (LC∗

+,v
σ
1 ) −→ (LC∗

+,v
σ
2 )

such that Φ◦LPσ
M,1 = LPσ

M,2 ◦φ. If the both of the regular sets of LPσ
M,i are dense in

(U, (xi, yi)), it follows from Proposition 5.5 that LPσ
M,1 and LPσ

M,2 are A-equivalent if
and only if the corresponding Legendrian lift germs are Legendrian equivalent. This
condition is also equivalent, by Theorem 5.4, to the condition that the two generating
families H̃1 and H̃2 are P -K-equivalent. Here, H̃i : (U × LC∗

+, ((xi, yi),vσ
i )) −→ R is

the extended lightlike height function germ of Xi.
On the other hand, we denote that hi,vσ

i
(u) = Hi(u,vσ

i ) and we have
hi,v±

i
(u) = hv±

i
◦ xi(u). By Theorem 5.1, K(X1(U),HLP (vσ,−1),vσ

1 ) =

K(x2(U),HLP (vσ,−1),vσ
2 ) if and only if h̃1,v1 and h̃1,v2 are K-equivalent. So we

can apply the previous arguments to our situation. We denote Qσ(X, (x0, y0)) the
local ring of the function germ h̃vσ

0
: (U, (x0, y0)) −→ R, where vσ

0 = LPσ
M (x0, y0). We

remark that we can explicitly write the local ring as follows:

Q±(X, (x0, y0)) =
C∞

(x0,y0)
(U)

〈〈X(x, y), ẽ1 ± e2(x0, y0)〉 − 1〉C∞
(x0,y0)(U)

,

where C∞
(x0,y0)

(U) is the local ring of function germs at (x0, y0) with the unique max-
imal ideal M(x0,y0)(U).

Theorem 5.6. Let Xi : (U, (xi, yi)) −→ (R4
1,Xi((xi, yi))) (i = 1, 2) be spacelike

surface germs such that the corresponding Legendrian lift germs are Legendrian stable
and σ = ±. Then the following conditions are equivalent:

(1) The lightcone pedal surface germs LPσ
M,1 and LPσ

M,2 are A-equivalent.
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(2) H̃1 and H̃2 are P -K-equivalent.
(3) h̃1,v1 and h̃1,v2 are K-equivalent.
(4) K(X1(U),HLP (vσ,−1),vσ

1 ) = K(x2(U),HLP (vσ,−1),vσ
2 )

(5) Qσ(X1, (x1, y1)) and Qσ(X2, (x2, y2)) are isomorphic as R-algebras.

Proof. The previous arguments (mainly by Theorem 5.1) imply that conditions
(3) and (4) are equivalent. The other assertions follow from Proposition 5.5.

Given a spacelike surface germ X : (U, (x0, y0)) −→ (R4
1,X(x0, y0)), we call each

set

(X−1(LHP (v±, c±)), (x0, y0))

a tangent lightlike hyperplane indicatrix germ of X, where v± = e1 ± e2(x0, y0) and
c± = 〈X(x0, y0),v±〉. Moreover, in view of the above results, we can borrow some
basic invariants, such as the K-invariants for function germs, from the singularity
theory on function germs. The local ring of a function germ is a complete K-invariant
for generic function germs. It isn’t, however, a numerical invariant. On the other
hand, the K-codimension (or, Tyurina number) of a function germ is a numerical
K-invariant of function germs [14]. We denote it by

L-ord±(X, (x0, y0)) = dimR

C∞
(x0,y0)

(U)

〈h̃v±
0

(x, y), h̃v±
0 ,x(x, y), h̃v±

0 ,y(x, y)〉
.

L-ordσ(x, u0) is usually called the K-codimension of h̃vσ
0
, where σ = ±. However, we

shall refer here to it as the order of contact with the tangent lightlike hyperplane at
X(x0, y0). We also have the notion of corank of function germs,

L-corankσ(X, (x0, y0)) = 2 − rank Hess(h̃vσ
0
(x0, y0)),

where v±
0 = e1 ± e2(x0, y0).

Then Proposition 4.1 tells us that X(x0, y0) is a Lσ-parabolic point if and only if

L-corankσ(X, (x0, y0)) ≥ 1.

Moreover, X(x0, y0) is a lightlike umbilic point if and only if

L-corankσ(X, (x0, y0)) = 2.

On the other hand, a function germ f : (Rn−1,a) −→ R has the Ak-type singular-
ity if f is K-equivalent to the germ ±u2

1±· · ·±u2
n−2+uk+1

n−1. If L-corankσ(X, (x0, y0)) =
1, the extended lightcone height function h̃vσ

0
has, generically, a singularity of type

Ak at (x0, y0). In this case, we have that H-ordσ(x, u0) = k. The number k is
equal to the order of contact in the classical sense (cf., [4]). This justifies why we
call L-ordσ(X, (x0, y0)) the order of contact with the tangent lightlike hyperplane at
X(x0, y0).

6. Classification of singularities of lightcone Gauss maps and lightcone
pedal surfaces. This section is devoted to the study of the generic singularities of
lightcone Gauss maps and lightcone pedal surfaces. We denote by Embs (U,R4

1) the
space of spacelike embeddings with the Whitney C∞-topology, where U ⊂ R2 is an
open subset. The set of lightlike parabolic points (i.e., {p ∈ M | K�(1 ± 1)(p) = 0})
is called a lightlike paraboic set .
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Theorem 6.1. There exists an open dense subset O ⊂ Embs (U,R4
1) such that

for any X ∈ O, the following conditions hold:
(1) Each component of the lightlike parabolic set is a regular curve. We call such

a curve the lightlike parabolic curve.
(2) The lightcone pedal surface LPσ

M is a cuspidaledge at each point of the lightlike
parabolic curve except at isolated points. At these points LPσ

M is a swallowtail.
Here, a map germ f : (R2,a) −→ (R3, b) is called a cuspidaledge if it is A-

equivalent to the germ (u1, u
2
2, u

3
2) ( cf., Fig. 1) and a swallowtail if it is A-equivalent

to the germ (3u4
1 + u2

1u2, 4u3
1 + 2u1u2, u2) (cf., Fig.1).

In order to prove Theorem 6.1, we consider the function H : R4
1×LC∗

+ −→ R given
in §5. We claim that Hv is a submersion for any v ∈ LC∗

+, where Hv(x) = H(x,v).
For any X ∈ Embs (U,R4

1), we have H̃ = H ◦ (X × idLC∗
+
). We also have the �-jet

extension

j�
1H̃ : U × LC∗

+ −→ J�(U,R)

defined by j�
1H̃((x, y),v) = j�h̃v(x, y). Consider the trivialization J�(U,R) ≡ U ×R×

J�(2, 1). Given any submanifold Q ⊂ J�(2, 1), we denote Q̃ = U × {0} ×Q. Then we
have the following proposition as a corollary of Lemma 6 in Wassermann [20]. (See
also Montaldi [17] and Looijenga [13]).

Proposition 6.2. Let Q be a submanifold of J�(2, 1). Then the set

TQ = {x ∈ Embs (U,R4
1) | j�

1H is transversal to Q̃ }

is a residual subset of Embs (U,R4
1). If Q is a closed subset, then TQ is open.

The proof of Theorem 6.1 is easily obtained from this by considering the K-orbits
in J�(2, 1), so we omit the detailed discussion. The assertion of Theorem 6.1 can be
interpreted in the sense that the Legendrian lift of the lightcone pedal surface LP±

M of
X ∈ O is Legendrian stable at each point. Since the Legendrian lift is the Legendrian
covering of the Lagrangian lift of LG±

M , it has been known that the corresponding
singularities of LG±

M are folds or cusps [1]. Hence, we have the following corollary.

Corollary 6.3. Let O ⊂ Embs (U,R4
1) be the open dense subset provided by

Theorem 6.1. Given any X ∈ O, the following assertions hold:
(1) A lightlike parabolic point (x0, y0) ∈ U is a fold of the lightcone Gauss map

LGσ
M if and only if it is a cuspidaledge of the lightcone pedal surface LPσ

M .
(2) A lightlike parabolic point (x0, y0) ∈ U is a cusp of the lightcone Gauss map

LGσ
M if and only if it is a swallowtail of the lightcone pedal surface LPσ

M .
Here, a map germ f : (R2,a) −→ (R2, b) is called a fold if it is A-equivalent to

the germ (u1, u
2
2) and a cusp if it is A-equivalent to the germ (u1, u

3
2 + u1u2).

Following the terminology of Whitney [21], we say that a surface X : U −→ R4
1

has an excellent lightcone pedal surface LPσ
M if the Legendrian lift of LPσ

M is a stable
Legendrian immersion at each point. In this case, the lightcone pedal surface LPσ

M

has only cuspidaledges and swallowtails as singularities. Theorem 6.1 implies that a
spacelike surface with an excellent lightcone pedal surface is generic in the space of all
spacelike surfaces in R4

1. We now analyze the geometric meanings of cuspidaledges and
swallowtails of the lightcone pedal surface. We have the following results analogous
to those of Banchoff et al [2].
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Theorem 6.4. Let LPσ
M : (U, (x0, y0)) −→ (R4

1, p0) be the excellent lightcone
pedal surface of a spacelike surface X and h̃vσ

0
: (U, (x0, y0)) −→ R be the extended

lightcone height function germ at v±
0 = e1 ± e2(p0), where σ = ±. Then we have the

following:
(1) (x0, y0) is a lightlike parabolic point of X if and only if L-corankσ(X, (x0, y0)) = 1.
(2) If (x0, y0) is a lightlike parabolic point of X, then h̃vσ

0
has the Ak-type singularity

for k = 2, 3.
(3) Suppose that (x0, y0) is a lightlike parabolic point of X. Then the following condi-
tions are equivalent:

(a) LP σ
M has a cuspidaledge at (x0, y0)

(b) h̃vσ
0

has an A2-type singularity.
(c) L-ordσ(X, (x0, y0)) = 2.
(d) The tangent lightlike hyperplane indicatrix is an ordinary cusp, where a curve

C ⊂ R2 is said to be an ordinary cusp if it is diffeomorphic to the curve given by
{(u1, u2) | u2

1 − u3
2 = 0 }.

(e) For each ε > 0, there exist two distinct points (xi, yi) ∈ U (i = 1, 2) such that

‖(x0, y0) − (xi, yi)‖ < ε

for i = 1, 2, both of (xi, yi) are not lightlike parabolic points and the tangent lightlike
hyperplanes to M = x(U) at (xi, yi) are parallel.
(4) Suppose that (x0, y0) is a lightlike parabolic point of X. Then the following condi-
tions are equivalent:

(a) LP σ
M has a swallowtail at (x0, y0)

(b) h̃vσ
0

has an A3-type singularity.
(c) L-ordσ(X, (x0, y0)) = 3.
(d) The tangent lightlike hyperplane indicatrix is a point or a tachnodal, where

a curve C ⊂ R2 is called a tachnodal if it is diffeomorphic to the curve given by
{(u1, u2) | u2

1 − u4
2 = 0 }.

(e) For each ε > 0, there exist three distinct points (xi, yi) ∈ U (i = 1, 2, 3) such
that

‖(x0, y0) − (xi, yi)‖ < ε

for i = 1, 2, 3 and the tangent lightlike hyperplanes to M = x(U) at (xi, yi) are parallel.
(f) For each ε > 0, there exist two distinct points (xi, yi) ∈ U (i = 1, 2) such that

‖(x0, y0) − (xi, yi)‖ < ε

for i = 1, 2 and the tangent lightlike hyperplanes to M = x(U) at (xi, yi) are equal.

Proof. We have shown that (x0, y0) is a lightlike parabolic point if and only if

L-corankσ(X, (x0, y0)) ≥ 1.

We have that L-corankσ(X, (x0, y0)) ≤ 2. Since the extended lightcone height function
germ, H̃ : (U×, LC∗

+, ((x0, y0),v0)) −→ R, can be considered as a generating family of
the Legendrian lift of LPσ

M , h̃vσ
0

has onlyAk-type singularities (k = 1, 2, 3). This means
that the corank of the Hessian matrix of h̃vσ

0
at a lightlike parabolic point is 1. The

assertion (2) follows analogously. By the same reason, the conditions (3);(a),(b),(c)
(respectively, (4); (a),(b),(c)) are equivalent. If the height function germ hvσ

0
has
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the A2-type singularity, then it is K-equivalent to the germ ±u2
1 + u3

2. Since the K-
equivalence preserves the diffeomorphism type of zero level sets, the tangent lightlike
hyperplane indicatrix is diffeomorphic to the curve given by ±u2

1 +u3
2 = 0 which is an

ordinary cusp. The normal form for the A3-type singularity is given by ±u2
1 + u4

2, so
the tangent lightlike hyperplane indicatrix is diffeomorphic to the curve ±u2

1 +u4
2 = 0.

This means that the condition (3),(d) (respectively, (4),(d)) is also equivalent to the
other conditions.

Suppose that (x0, y0) is a lightlike parabolic point, then the lightcone Gauss map
has only folds or cusps as singularities. If the point (x0, y0) is a fold point, there is
a neighbourhood of (x0, y0) at which the lightcone Gauss map is 2 to 1 except at
the lightlike parabolic curve (i.e, fold curve). By Lemma 5.2, the condition (3), (e)
is satisfied. If the point (x0, y0) is a cusp, the critical value set is an ordinary cusp.
By considering its normal form we see that the lightcone Gauss map is 3 to 1 inside
the region of the critical value. Moreover, the point (x0, y0) lies in the closure of
this region from which it we get condition (4),(e). We also observe that nearby of a
cusp point, there are 2 to 1 points which approach to (x0, y0). However, one of these
points is always a lightlike parabolic point. Since no other singularities appear in this
case, we have that the condition (3), (e) (respectively, (4),(e)) characterizes a fold
(respectively, a cusp).

I we consider the lightcone pedal surface instead of the lightcone Gauss map we
have that its only singularities are cuspidaledges and swallowtails. we observe that
we can always find a self intersection curve (cf., Fig. 1) approaching a swallowtail
point (x0, y0). This means that there are two distinct point (xi, yi) (i = 1, 2) such that
LPσ

M (x1, y1) = LPσ
M (x2, y2), which by Lemma 5.2, means that the tangent lightlike

hyperplanes to M = X(U) at (xi and yi are the same. Since no other singularities
present this particularity, we can conclude that the condition (4),(f) characterizes the
swallowtail points of PLσ

M and the proof is completed.

More detailed properties of spacelike surfaces in Minkowski 4-space will be dis-
cussed elsewhere.

7. Examples. Surfaces contained in the Euclidean space R3 =
{(0, x2, x3, x4) | xi ∈ R } or in the hyperbolic spaceH3

+(−1) = {x ∈ R4
1 | 〈x,x〉 = −1 }

provide special examples of spacelike surfaces. We remark that the singularity theory
for the lightcone Gauss map of such surfaces coincides with the singularity theory for
ordinary (Euclidean) Gauss maps [2, 3] or hyperbolic Gauss maps [8] respectively.
In order to illustrate our results we propose next some examples of spacelike surfaces
which lie neither in the Euclidean space R3 nor in the hyperbolic space H3

+(−1).
Given an immersion in the Monge form

X(x, y) = (f1(x, y), f2(x, y), x, y)

with fi(0, 0) = 0 and ∂fi/∂x(0, 0) = ∂fi/∂y(0, 0) = 0, (i = 1, 2), we can choose
v±

0 = ẽ1 ± e2(0, 0) = (1,±1, 0, 0) as in §3. Therefore, the lightcone height function is
given by

hv±
0

(x, y) = −f1(x, y) ± f2(x, y),

so that hv±
0

(0, 0) = 0. Moreover, the lightlike tangent indicatrix at the origin 0
¯

is

X−1(LHP (v±, 0)) = {(x, y) ∈ U | − f1(x, y) ± f2(x, y) = 0 }.
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Since X(U) = M is a spacelike surface, fi(x, y) (i = 1, 2) must satisfy the condi-
tion (

∂f2
∂x

(x, y)
)2

+ 1 >
(
∂f1
∂x

(x, y)
)2

,

(
∂f2
∂y

(x, y)
)2

+ 1 >
(
∂f1
∂y

(x, y)
)2

.

We observe that choosing f1 = ±f2, ensures that this condition is satisfied.

Example 7.1. Take the functions f1(x, y) = − 1
3x

3 + 1
2y

2 and f2(x, y) =
−f1(x, y), then

hv+
0
(x, y) =

(
2
3
x3 − y2

)
.

So the lightlike tangent indicatrix is the ordinary cusp y2 = 2
3x

3. It follows that the
lightcone pedal surface LP+

M is the cuspidaledge at the origin.

Example 7.2. Take now f1(x, y) = 1
2 (x2 − y4) and f2(x, y) = −f1(x, y), then

hv+
0
(x, y) = (x2 − y4).

Clearly, the lightlike tangent indicatrix is the tachnode x2 = y4 and the lightcone
pedal surface LP+

M has a swallowtail at the origin in this case.
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