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THE EINSTEIN-KÄHLER METRIC WITH EXPLICIT FORMULAS
ON SOME NON-HOMOGENEOUS DOMAINS ∗

AN WANG† , WEIPING YIN†‡ , LIYOU ZHANG† , AND WENJUAN ZHANG†

Dedicated to Yum-Tong Siu on the occasion of his 60th birthday.

Abstract. In this paper we describe the Einstein-Kähler metric for the Cartan-Hartogs domains
which are the special case of the Hua domains. First of all, we reduce the Monge-Ampère equation
for the metric to an ordinary differential equation in the auxiliary function X = X(z, w). This
differential equation can be solved to give an implicit function in X. Secondly, for some cases, we
obtained explicit forms of the complete Einstein-Kähler metrics on Cartan-Hartogs domains which
are the non-homogeneous domains.

Let M be a complex manifold. Then a Hermitian metric
∑

i,j gi,jdzi
⊗

dzj de-
fined on M is said to be Kähler if the Kähler form Ω =

√−1
∑

i,j gi,jdzi
∧

dzj is
closed. The Ricci form is given by −∂∂ log det(gi,j). If the Ricci form of the Kähler
metric is proportional to the Kähler form, the metric is called Einstein-Kähler. If
the manifold is not compact, we require the metric to be complete. Clearly for a
noncompact complex manifold to admit such a metric, it is necessary that there ex-
ists a volume form, the negative of whose Ricci tensor defines a complete Kähler
metric. The volume form of this Kähler metric must be equivalent to the original vol-
ume form. If we normalize the metric by requiring the scalar curvature to be minus
one, then the Einstein-Kähler metric is unique. Cheng and Yau[CY] proved that any
bounded domain D which is the intersection of domain with C2 boundary admits a
complete Einstein-Kähler. Without any regularity assumption on the domain D, Mok
and Yau[MY] proved that the complete Einstein-Kähler metric always exists. This
Einstein-Kähler metric is given by

ED(z) :=
∑ ∂2g

∂zi∂zj
dzidzj ,

where g is an unique solution to the boundary problem of the Monge-Ampère equation:⎧⎨
⎩ det

(
∂2g

∂zi∂zj

)
= e(n+1)g z ∈ D,

g = ∞ z ∈ ∂D,

We call g the generating function of ED(z). It is obvious that if one determines g
explicitly, then the Einstein-Kähler metric is also determined explicitly. Therefore if
one would like to compute the Einstein-Kähler metric explicitly, it suffices to compute
the generating function g in explicit formula.

The explicit formulas for the Einstein-Kähler metric, however, are only known
on homogeneous domains. In his famous paper [Wu], H.Wu points out that among
the four classical invariant metrics(i.e. the Bergman metric, Carathéodory metric,
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Kobayashi metric and Einstein-Kähler metric), the Einstein-Kähler metric is the
hardest to compute because its existence is proved by complicated nonconstructive
methods. The purpose of this paper is to compute the explicit formulas of complete
Einstein-Kähler metrics on Cartan-Hartogs domains of the following four types:

YI(1,m, n;K) := {w ∈ C, Z ∈ RI(m,n) : |w|2K < det(I − ZZ
T
),K > 0} := YI ,

YII(1, p;K) := {w ∈ C, Z ∈ RII(p) : |w|2K < det(I − ZZ
T
),K > 0} := YII ,

YIII(1, q;K) := {w ∈ C, Z ∈ RIII(q) : |w|2K < det(I − ZZ
T
),K > 0} := YIII ,

YIV (1, n;K) := {w ∈ C, Z ∈ RIV (n) : |w|2K < 1 − 2ZZ
T

+ |ZZT |2,K > 0, }
:= YIV .

Where RI(m,n), RII(p), RIII(q) and RIV (n) are the first, second, third and fourth
Cartan domains respectively in the sense of Loo-Keng HUA[Hu], Z

T
indicates the

conjugate and transpose of Z, det indicates the determinant. The Cartan-Hartogs
domains are introduced in 1998. The Bergman kernel functions on Cartan-Hartogs
domains are obtained in explicit formulas in [Yin1,Yin2,Yin3,GY]. And these Bergman
kernel functions are Bergman exhaustions, therefore all of the Cartan-Hartogs domains
are bounded pseudoconvex domains. Some results on Hua domains can be found in
[Yin1-Yin3,GY,YW,YWZ].

This paper is organized as follows. Section 1 presents some background material
and known results from domain YI needed for us. In section 2, by using the noncom-
pact automorphism group of YI and the biholomorphic invariance of the Einstein-
Kähler metric, we reduce the Monge-Ampère equation for the metric to an ordinary
differential equation in the auxiliary function X = X(z, w) = |w|2[det(I −ZZ

T
)]−

1
K ,

this differential equation can be solved to give an implicit function in X. In section
3, we give explicit forms of complete Einstein-Kähler metric on YI . And the explicit
formulas of complete Einstein-Kähler metrics on YII , YIII and YIV are given in section
4. At that time the YI , YII , YIII , and YIV are the non-homogeneous domains.

The authors would like to express their gratitude to the referee for his/her review
of this paper and much useful suggestions.

1. Preliminaries. Ω×C can first of all be interpreted as the total space of the
anticanonical line bundle over Ω. The latter is endowed a Hermitian metric unique
up to a global multiplicative constant. Aut(Ω) acts canonically on Ω × C preserving
the unit disk bundle D ⊂ Ω × C, i.e., the set of all vectors of length < 1. The
action of Aut(Ω) on Ω extends naturally to an action on Ω × C and hence on D.
Write D = {(z, w) : |w| < ϕo(z)}. The Cartan-Hartogs domains are of the form
Dα = {(z, w) : |w| < ϕα

o (z)} for an arbitrary positive real constant α. We may
now interpret Dα as the unit ball bundle of a positive power of the anticanonical line
bundle represented by (Ω×C, hα), where the exponent is real. For an arbitrary α > 0
we do not have a canonical extension of the action of of Aut(Ω) on Ω to an action on
Dα. Instead, there is a semi-direct product H = Aut(Ω)�S1 (an extension of Aut(Ω)
by S1), acting on Ω × C , such that S1 is a normal subgroup acting on Ω × C by
scalar mutliplication (z, w) → (z, eiθw), θ ∈ R, in the second factor, and such that H
acts as holomorphic bundle isomorphisms of (Ω×C, hα) and hence as automorphisms
of Dα. When α is rational, α = p/q, p, q coprime, H contains a proper subgroup
Aut(Ω) � µq, where µq ⊂ S1 denotes the group of q-th roots of unity, µq

∼= Z/qZ. Dα

with α rational are thus particularly interesting geometrically. In fact, if Γ ⊂ Aut(Ω)
is a torsion-free cocompact discrete subgroup, then we have an action of Γ�µq on Dα,
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and the normal quotient space Dα/Γ carries the structure of a strongly pseudoconvex
manifold whose exceptional set is the compact Hermitian locally symmetric manifold
Ω/Γ = N .

If it is furthermore possible to define a q-th root of the canonical line bundle on
N , then Γ � µq is a direct product, so that Γ acts on Dα without any fixed point,
and the Einstein-Kähler metric on Dα descends to an Einstein-Kähler metric on the
strongly pseudoconvex manifold Dα/Γ. The exceptional set N ⊂ Dα/Γ is then a
totally geodesic complex submanifold with respect to the Einstein-Kähler metric.

Lemma 1. The automorphism group Aut(YI) of YI consists of the following
mappings F (z, w; z0, θ0):{

w∗ = eiθ0w det(I − Z0Z
T

0 )
1

2K det(I − ZZ
T

0 )−
1
K ,

Z∗ = A(Z − Z0)(I − Z
T

0 Z)−1D−1,

where A
T
A = (I − Z0Z

T

0 )−1,D
T
D = (I − Z

T

0 Z0)−1, Z0, Z ∈ RI(m,n), θ0 ∈ R.

Proof. See [Yi].

Obviously, the F (z, w; z0, θ0) maps points (Z0, w) ∈ YI on to points (0, w∗) and
Z∗ = A(Z − Z0)(I − Z

T

0 Z)−1D−1 is holomorphic automorphism of RI(m,n).

Lemma 2. Let X = X(Z,w) = |w|2[det(I − ZZ
T
)]−

1
K . Then X is invariant

under the mapping of Aut(YI). That is X(Z∗, w∗) = X(Z,w).

Proof. See [Yi].

Lemma 3. If F = F (z, w; z0, θ0) ∈ Aut(YI). Let JF be the Jacobi matrix of
F (z, w; z0, θ0), i.e.

JF =

⎛
⎜⎜⎝

∂z∗

∂z

∂w∗

∂z

0
∂w∗

∂w

⎞
⎟⎟⎠ ,

where z = (z11, · · · , z1n, z21, · · · , z2n, · · · , zm1, · · · , zmn) is a vector, zjk is the element
of Z and Z = (zjk)m×n ∈ RI(m,n). Then one has

∂z∗

∂z

∣∣∣
z0=z

= (AT ·×D
T
)
∣∣∣
z0=z

,

∂w∗

∂z

∣∣∣
z0=z

=
1
K

eiθ0 det(I − ZZ
T
)−

1
2K E(Z)T w,

∂w∗

∂w

∣∣∣
z0=z

= eiθ0 det(I − ZZ
T
)−

1
2K ,

where E(Z) = (tr[(I − ZZ
T
)−1I11Z

T
], tr[(I − Z

T
)−1I12Z

T
], · · · , tr[(I −

ZZ
T
)−1ImnZ

T
]) is a column vector with mn entries. Ipq is defined as a m × n

matrix, the (p,q)-th entry of Ipq, i.e. the entry located at the junction of the p-th
row and q-th column of Ipq, is 1, and others entries of Ipq are zero. The meaning of
·× is following(see [Lu]):
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Let A∗ = (aij)p×q, B∗ = (bkl)r×s, then A∗ ·×B∗ = (cαβ)pr×qs is defined as
cαβ = aikbjl, where α = q(i − 1) + j, β = s(k − 1) + l.

Proof. It can be obtained by direct computation.

Lemma 4. If F = F (z, w; z0, θ0) ∈ Aut(YI) and T = T [(z, w), (z, w)] is the metric
matrix of the Einstein-Kähler metric of YI , one has

T [(z, w), (z, w)] = JF |z0=zT [(0, w∗), (0, w∗)]JF
T |z0=z,

and |JF |2z0=z = det(I − ZZ
T
)−(m+n+ 1

K ), where |JF | = det JF .

Proof. It can be proved by using the invariance of the Einstein-Kähler metric
under the holomorphic automorphism of YI .

2. Reduction of the Monge-Ampère equation to an ordinary differential
equation. Let Z = (zjk)m×n ∈ RI(m,n). We denote

(z, w) = (z11, · · · , z1n, z21, · · · , z2n, · · · , zm1, · · · , zmn, w) = (z1, z2, · · · , zN ),

where N = mn + 1, and

gαβ(z, w) =
∂2g

∂zα∂zβ
α, β = 1, 2, · · · , N.

Note that zN = w.
Suppose g(z, w) generates the Einstein-Kähler metric of YI . Then g(z, w) is a

solution to the boundary problem of the Monge-Ampère equation:{
det(gαβ(z, w)) = e(N+1)g(z,w) (z, w) ∈ YI ,

g = ∞ (z, w) ∈ ∂YI .
(1)

Let F : (z, w) −→ (z∗, w∗), F = F (z, w; z0, θ0) ∈ Aut(YI). Because of the in-
variance of the metric, it is easy to show that det(gαβ(z, w)) = |JF |2 det(gαβ(z∗, w∗)).
So

e(N+1)g(z,w) = |JF |2e(N+1)g(z∗,w∗).

Thus

e−g(z∗,w∗) = |JF | 2
N+1 e−g(z,w).

For arbitrary (z, w) ∈ YI , especially take z0 = z, θ0 = − arg w, that is
F0 = F (z, w; z,− arg w). We have

e−g(0,w∗) = |JF0 |
2

N+1 e−g(z,w) = det(I − ZZ
T
)−

(m+n+1/K)
N+1 e−g(z,w),

where w∗ = |w∗| = X
1
2 . If λ = K(m + n) + 1, then |JF0 |2 = Xλ|w|−2λ.

Let h(X) = e−g(0,X
1
2 ) = e−g(0,w∗). We obtain

h(X) = |JF0 |
2

N+1 e−g(z,w) = X
λ

N+1 |w|−2 λ
N+1 e−g(z,w).

Hence

∂h

∂w
= h′(X)

∂X

∂w
= |JF | 2

N+1 e−g(z,w) ∂(−g)
∂w

.
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It is obvious that

∂X

∂w
=

X

w
,

∂X

∂w
=

X

w
.

(2)

Where

X

w
=

{
w det(I − ZZ

T
)−1/K w �= 0,

0 w = 0.

Then

∂g

∂w
= −X

w
· h′(X)

h(X)
.

Since h(X) = X
λ

N+1 |w|−2 λ
N+1 e−g(z,w), we have

∂h

∂zα
= h′(X)

∂X

∂zα
= −h(X)

∂g

∂zα
+

λ

N + 1
X−1 ∂X

∂zα
h(X),

where α = 1, 2, · · · , N − 1.
Then

∂g

∂zα
=
( λ

N + 1
X−1 − h′(X)

h(X)

) ∂X

∂zα
.

Let

Y (X) =
λ

N + 1
− X

h′(X)
h(X)

, (3)

then

∂g

∂zα
= Y X−1 ∂X

∂zα
, α = 1, 2, · · · , N − 1.

∂g

∂w
=
(

Y − λ

N + 1

)
1
w

.

So, we have

∂2g

∂w∂w
= Y ′ X

|w|2 ,

∂2g

∂w∂zβ
=

1
w

Y ′ ∂X

∂zβ
,

∂2g

∂zα∂w
= Y ′X−1 ∂X

∂w
· ∂X

∂zα
+ Y X−1 ∂2X

∂zα∂w
− Y X−2 ∂X

∂w
· ∂X

∂zα
,

∂2g

∂zα∂zβ
= Y ′X−1 ∂X

∂zβ
· ∂X

∂zα
+ Y X−1 ∂2X

∂zα∂zβ
− Y X−2 ∂X

∂zβ
· ∂X

∂zα
,

(4)
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where α, β = 1, 2, · · · , N − 1.
Because

∂X

∂zpq
=

1
K

Xtr[(I − ZZ
T
)−1IpqZ

T
],

∂X

∂zst
=

1
K

Xtr[(I − ZZ
T
)−1ZIT

st].

(5)

From (2) and (5), we have

∂X

∂w

∣∣∣
z=0

= w,
∂X

∂w

∣∣∣
z=0

= w,

∂X

∂zα

∣∣∣
z=0

=
∂X

∂zpq

∣∣∣
z=0

= 0,
∂X

∂zβ

∣∣∣
z=0

=
∂X

∂zst

∣∣∣
z=0

= 0,

(6)

where α = n(p − 1) + q, β = n(s − 1) + t.
And from (5), we have

∂2X

∂zpq∂zst
=

1
K

∂X

∂zst
tr[(I − ZZ

T
)−1IpqZ

T
] +

X

K
tr[(I − ZZ

T
)−1IpqI

T
st]

+
X

K
tr[(I − ZZ

T
)−1ZIT

st(I − ZZ
T
)−1IpqZ

T
].

(7)

From (2), (5), (6), (7), by computation, we obtain

∂2X

∂zpq∂zst

∣∣∣∣
z=0

=
X

K
δpsδqt,

∂2X

∂zpq∂w

∣∣∣∣
z=0

= 0,

∂2X

∂w∂zst

∣∣∣∣
z=0

= 0,

(8)

where

δps =
{

1 p = s,
0 p �= s.

δqt =
{

1 q = t,
0 q �= t.

From (6), (8) and (4), we obtain

∂2g

∂w∂w

∣∣∣∣
z=0

= Y ′,

∂2g

∂w∂zβ

∣∣∣∣
z=0

= 0,

∂2g

∂zα∂w

∣∣∣∣
z=0

= 0,

∂2g

∂zα∂zβ

∣∣∣∣
z=0

= Y K−1δαβ ,
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where α, β = 1, 2, · · · , N − 1.
Therefore

det(gαβ(0, w∗)) = det

⎛
⎜⎜⎜⎝

Y
K 0

. . .
Y
K

0 Y ′

⎞
⎟⎟⎟⎠ =

(
Y

K

)N−1

Y ′.

Since

det(gαβ(z, w)) = det(gαβ(0, w∗))|JF0 |2 =
(

Y

K

)N−1

Y ′|JF0 |2,

and

e(N+1)g(z,w) = |JF0 |2e(N+1)g(0,w∗) = |JF0 |2h−(N+1),

we reduce the Monge-Ampère equation to an ordinary differential equation:

(
Y

K

)N−1

Y ′ = h−(N+1).

It is equivalent to

log(Y N−1Y ′) + (N + 1) log h − log KN−1 = 0.

Differentiating with respect to X

(Y N−1Y ′)′

(Y N−1Y ′)
+ (N + 1)

h′

h
= 0.

By computation and (3), we obtain

(Y N−1Y ′)′

(Y N−1Y ′)
+

λ

X
− (N + 1)

Y

X
= 0.

So we have

[X(Y N−1Y ′)]′ = (Y N+1)′ − λ − 1
N

(Y N )′.

It is equivalent to

XY N−1Y ′ = Y N+1 − λ − 1
N

Y N + C, (9)

where C is a constant. Because

∂g

∂w
= (Y − λ

N + 1
)
1
w

.

So

Y = w
∂g

∂w
+

λ

N + 1
,
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it holds for ∀(z, w) ∈ YI . If take (z, 0) ∈ YI , then X = 0, thus w ∂g
∂w |w=0 = 0, therefore

Y (0) = λ
N+1 . We obtain C = (λ−N−1)λN

N(N+1)N+1 from (9).
Suppose g is a solution of Monge-Ampère equation. Then from the above we have

g =
1

N + 1
log[(

Y

K
)N−1Y ′ det(I − ZZ

T
)−(m+n+ 1

K )],

where Y are the solutions to the following problem:⎧⎪⎨
⎪⎩

XY N−1Y ′ = Y N+1 − λ − 1
N

Y N +
(λ − N − 1)λN

N(N + 1)N+1
,

Y (0) =
λ

N + 1
.

(10)

The solutions of above problem are not unique. If g is the generating function of the
complete Einstein-Kähler metric on YI , then g is the unique solution of the problem
(1) and has the form as follows:

g =
1

N + 1
log[(

Y

K
)N−1Y ′ det(I − ZZ

T
)−(m+n+ 1

K )],

where Y is a solution of problem (10). The unique solution g of (1), which includes
the condition that g(x) → ∞ as x → ∂YI , determines a particular solution to (10).

For the problem (10), we obtain

C∗X = (Y − Y (0))

(
Y N − λ − N − 1

N(N + 1)

N∑
k=1

Y (0)k−1Y N−k

)
eϕ(Y ),

where

ϕ(Y ) = −
∫ Y

Y (0)

(N + 1)Y N−1

Y N − λ−N−1
N(N+1)

∑N
k=1 Y (0)k−1Y N−k

dY .

C∗ is a positive constant, and Y is the function in X. Therefore the problem (10) can
be solved to give an implicit function in X. There is a unique choise of the positive
constant corresponding to the unique solution g of problem (1).

3. Complete Einstein-Kähler metric with explicit formula on YI. Let
K = mn+1

m+n , m �= 1 in YI . We have λ = N + 1, C = 0. The equation (10) becomes

{
XY ′ = Y 2 − Y,
Y (0) = 1.

(11)

We obtained solution Y = 1
1−C∗X , where C∗ is a constant.

Let C∗ = 1. Then Y = 1
1−X . Therefore

g = 1
N+1 log[( Y

K )N−1Y ′ det(I − ZZ
T
)−(m+n+ 1

K )]

= log[ 1
1−X det(I − ZZ

T
)−

1
K K

1−N
1+N ].

Now, we will prove g is the solution of problem (1).
Obviously, det(gαβ(z, w)) = e(N+1)g(z,w) for any (z, w) ∈ YI .
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If point (
∼
z,

∼
w) ∈ ∂YI and

∼
w �= 0, when (z, w) ∈ YI , (z, w) −→ (

∼
z,

∼
w), we have

X −→ 1−. So 1
1−X −→ +∞ and det(I − ZZ

T
) −→ | ∼

w |2K > 0. Therefore,
g(z, w) −→ +∞ as (z, w) −→ ∂YI .

If point (
∼
z,

∼
w) ∈ ∂YI , and

∼
w= 0, when (z, w) ∈ YI , (z, w) −→ (

∼
z, 0), we have

1
1−X > 1, and det(I −ZZ

T
) −→ 0,det(I −ZZ

T
)−

1
K −→ +∞. That is g(z, w) → +∞

as (z, w) → ∂YI .
Therefore g generates the complete Einstein-Kähler metric of YI in the case of

K = mn+1
m+n , m �= 1, and is given by the following explicit formula:

g = log[
1

1 − X
det(I − ZZ

T
)−

1
K K

1−N
1+N ].

whereX = X(Z,w) = |w|2[det(I − ZZ
T
)]−

1
K , N = mn + 1 and (w,Z) ∈ YI .

The YI in the case of K = mn+1
m+n , m �= 1 is nonhomogeneous domain.

4. Complete Einstein-Kähler metric with explicit formulas on
YII,YIII,YIV. Follow the above idea and similar procedure, we get the explicit
formulas of complete Einstein-Kähler metrics on YII , YIII and YIV as follows.

1. For YII .
Suppose g is a solution of Monge-Ampère equation on YII . Then we have

g =
1

N + 1
log[(

Y

K
)N−1Y ′ det(I − ZZ

T
)−(p+1+ 1

K )],

where Y are the solutions to the following problem:

⎧⎪⎨
⎪⎩

XY N−1Y ′ = Y N+1 − λ − 1
N

Y N +
(λ − N − 1)λN

N(N + 1)N+1
,

Y (0) =
λ

N + 1
.

(12)

Where N = 1
2p(p + 1) + 1, λ = K(p + 1) + 1.

In the case of K = 1/(p + 1) + p/2, p > 1, if g generates the complete Einstein-
Kähler metric of YII then g is given by the following explicit formula:

g = log[
1

1 − X
det(I − ZZ

T
)−

1
K K

1−N
1+N ].

whereX = X(Z,w) = |w|2[det(I − ZZ
T
)]−

1
K and (w,Z) ∈ YII .

2. For YIII .
Suppose g is a solution of Monge-Ampère equation on YIII . Then we have

g =
1

N + 1
log[(

Y

K
)N−1Y ′ det(I − ZZ

T
)−(q−1+ 1

K )],

where Y are the solutions to the following problem:

⎧⎪⎨
⎪⎩

XY N−1Y ′ = Y N+1 − λ − 1
N

Y N +
(λ − N − 1)λN

N(N + 1)N+1
,

Y (0) =
λ

N + 1
.

(13)
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Where N = 1
2q(q − 1) + 1, λ = K(q − 1) + 1.

In the case of K = 1/(q − 1) + q/2, q > 1, If g generates the complete Einstein-
Kähler metric of YIII then g is given by the following explicit formula:

g = log[
1

1 − X
det(I − ZZ

T
)−

1
K (

K

2
)

1−N
1+N ].

whereX = X(Z,w) = |w|2[det(I − ZZ
T
)]−

1
K and (w,Z) ∈ YIII .

3. For YIV .
Suppose g is a solution of Monge-Ampère equation on YIV . Then we have

g =
1

N + 1
log[(

2Y

K
)N−1Y ′β(Z,Z)−(n+ 1

K )],

where Y are the solutions to the following problem:
⎧⎪⎨
⎪⎩

XY N−1Y ′ = Y N+1 − λ − 1
N

Y N +
(λ − N − 1)λN

N(N + 1)N+1
,

Y (0) =
λ

N + 1
.

(14)

Where N = n + 1, λ = Kn + 1.
In the case of K = 1/n + 1, if g generates the complete Einstein-Kähler metric of

YIV then g is given by the following explicit formula:

g = log[
1

1 − X
β(Z,Z)−

1
K (K/2)

1−N
1+N ].

whereX = X(Z,w) = |w|2[β(Z,Z)]−
1
K , (w,Z) ∈ YIV , and β(Z,Z) = 1 + ZZT ZZT −

2ZZ
T
.

In the above cases, YII , YIII and YIV are non-homogeneous domains.
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