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Résumé. (Abstract in French). Nous traitons le problème de la détermination de la
dose maximale de securité dans le domaine médical. La methode statistique pour
les essais de no-inforieté pour des traitements multiples permettent de mettre en
place un nouveu traitement rapidement disponible avec des ajustements mutilples.
Nous étendons cette méthode en incorporant des etapes utilisant des intervalles
de confiance de type Fieller avec hétérocedasticity sans répétition des ajustements.
Nos résultats théoriques sont simulés et les résultats de la simulation démontre
des gains de notre methodology en terme d’erreurs par famille (FWER), de puis-
sance des tests et de rapport des moyennes

1. Introduction

The main purpose of non-inferiority clinical three-arm trial is to demonstrate both
the assay sensitivity of trial and non-inferiority of the new treatment compared
with the reference treatment by some pre-specified non-inferiority margin. This
is necessary in assessing whether the new treatment is clinically not worse than
the reference treatment in so far as the new treatment maintain sizable fraction of
the effectiveness of the reference treatment. The reference treatment is replaced
with the new treatment if it can be proven that the benefits of the new treatment
outweigh the loss in efficacy of the reference treatment at an acceptable margin.
There has been a lot of research on three-arm non-inferiority trials: in assessing
the efficacy of a new treatment [see Pigeot et al. (2003), Kwong et al. (2014),
Huang et al. (2014), Huang et al. (2015)] and as proof of safety in toxicological
experiments [see Hauschke et al. (2005), Hasler et al. (2008), Hasler (2012)]. For
example, Hauschke et al. (2005) considered mutagenicity data set for micronu-
cleus assay published by Adler and Kliesch (1990).They evaluated proof of safety
by using the concept of maximum safe dose by formulating a problem based on
Bartholomew test and incorporated a biological meaningful threshold value as
a fraction of the difference between a positive and negative control. An inherent
issue about proof of safety is the control of the consumer risk. That is probability
of erroneously concluding on safety at a pre-specified margin. In other words,
the control of the FWER is critical in such investigation in order to maintain α level.

Statistical procedures have been developed to analyze data collected from non-
inferiority trials but they focused on situations with only one experimental
treatment [see Pigeot et al. (2003), Hasler et al. (2008)]. However, non-inferiority
clinical trials may involve different combination of several new drugs or different
doses of a new drug. In this case, appropriate statistical methods involving several
experimental treatments (multiple treatments) is required [see Hasler (2012),
Kwong et al. (2014), Huang et al. (2014), Huang et al. (2015)]. For example
Hasler (2012) extended the theory of three-arm trial with one experimental
treatment to (k + 2)-arm trials for safety endpoint by considering cases with k
experimental treatments. This necessitates multiple comparisons and multiple
testing procedures. For this reasons, they employed single step procedure and
adjusted for multiplicity effect in order to maintain the FWER at a designated level
α. On the other hand, no multiplicity adjustment is necessary if the experimental
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groups (new treatments) can be ordered a priori according to their treatment
effect. It is known in literature that stepwise procedure is more powerful than
single step procedure. Stepwise procedure for multiple comparisons settings were
proposed by Bonfiger (1987), Stefansson et al. (1988), Cao et al. (2015), Adjabui
et al. (2016): where the individual inferences are made in stepwise fashion if the
sequence of individual inferences is in a specific order . Hsu and Berger (1999)
proposed stepwise confidence set-based procedure in a dose-response study for
identification of minimum effective dose without multiplicity adjustment. In their
procedure, unknown and equal variances across dose group under normality
were assumed and they also incorporated the partitioning principle proposed by
Finner and Strassburger (2002) in their investigations. However, equal variance
assumption is seldom satisfied in practice. Tao et al. (2002) extended Hsu and
Berger (1999) procedure for a situation of unknown and unequal variances
across dose groups by employing two-stage sampling procedure proposed by
Stein (1945) and incorporating the partitioning principle proposed by Finner
and Strassburger (2002) for identifying minimum effective dose. But the issue of
unknown and unequal variances or heteroscedasticity has been a long standing
problem in multiple comparison procedures since the pioneering work of Welch
(1938). The situation is far from being settled. Therefore, we propose a stepwise
confidence set procedure without multiplicity adjustment and incorporating the
partitioning principle for identifying maximum safe dose within the framework of
non-inferiority trials under the ratio of mean difference for a normally distributed
data. In other words, we extend the procedure proposed by Hsu and Berger (1999)
to a situation of unequal variances by using the partition principle proposed by
Finner and Strassburger (2002).

The outline of the article is as follows. In Section 2 the test statistics and the
confidence intervals for the problem are formulated and derived. Algorithm for our
proposed procedure is discussed in Section 3. Simulation studies is conducted to
assess the performance of the power and the FWER of our stepwise procedure in
Section 4. In Section 5 we employ our proposed procedure to examine a real data
set. Conclusion is presented in Section 6.

2. Statistical background

Let Xij denote observations for i = 0, · · · k+ 1 and j = 1, 2, · · ·ni, where i = 1, 2, · · · , k
are the experimental treatment groups, i = 0 for the negative control (placebo group
(P)) and i = k + 1 for the positive control (reference group (R)) respectively. Assume
that X ′ijs are mutually independent and follows normal distribution with means
µi and unknown variances σ2

i , in other words Xij ∼ N(µi, σ
2
i ) for i = 0, 1, · · · , k + 1.

The sample variances and the sample means are denoted as S2
i and X̄i respectively.

The test problem is formulated as:
H0i : µi − µk+1 ≥ δ versus H1i : µi − µk+1 < δ for i = 1, 2, · · · k. (1)

When a placebo group is added to the set up problem in Equation (1) for some
ethical reasons, the safety threshold and non-inferiority margin δ can be expressed
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as a fraction of difference between reference and placebo drug by δ = f(µk+1 − µ0),
this is a as result of Pigeot et al. (2003). The testing problem in Equation (1) can
be written as:

H0i : µi − µk+1 ≥ f(µk+1 − µ0) versus H1i : µi − µk+1 < f(µk+1 − µ0) for i = 1, 2, · · · k
or
H0i : µi−µ0

µk+1−µ0
≥ 1 + f versus H0i : µi−µ0

µk+1−µ0
< 1 + f.

Letting θ = 1 + f , this can be rewritten as:

H0i : λi ≥ θ versus H1i : λi < θ (2)

where λi is the ratio of difference in means denoted as :

λi =
µi − µ0

µk+1 − µ0
for i = 1, 2, · · · k, (3)

where θ ∈ (0, 1) being the pre-specified maximum fraction of the effect of refer-
ence group relative to the placebo, which is in effect of treatment groups relative to
placebo group. This requirement has to be preserved in order to demonstrate non-
inferiority. The specification of θ depends on combination of clinical relevance and
statistical judgment. Equation (3) is valid if and only if µk+1−µ0 > 0, this is neces-
sary for assessment of assay sensitivity of the trial and must be established in the
first step in our stepwise procedure. The corresponding estimators for Equation (2)
is

λ̂i =
X̄i − X̄0

X̄k+1 − X̄0
(i = 1, 2, · · · , k).

The test statistics

Ti =
X̄i − θX̄k+1 − (1− θ)X̄0√
S2
i

ni
+

θ2S2
k+1

nk+1
+

(1−θ)2S2
0

n0

for i = 1, 2, · · · k (4)

are t−distributed with degrees of freedom given by

ν̂i =

(
S2
i

ni
+

θ2S2
k+1

nk+1
+

(1−θ)2S2
0

n0

)2
S4
i

n2
i (ni−1) +

θ4S4
k+1

n2
k+1(nk+1−1)

+
(1−θ)4S4

0

n2
0(n0−1)

for i = 1, 2, · · · , k (5)

The confidence intervals for λi are derived from the random variable in Formula
(4) using Fieller’s (1954) method. The upper confidence limits are obtained as:

θi,1−α =

(
−Bi +

√
(Bi)2 − 4AiCi
2Ai

)
i = 1, 2, · · · k

where

Ai =
(
X̄K+1 − X̄0

)2 − tk,(1−α)νi (S2
k+1

nk+1
+
S2
0

n0

)
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Bi = −2
(
X̄i − X̄0

) (
X̄k+1 − X̄0

)
− tk,(1−α)νi

S2
0

n0

and

Ci =
(
X̄i − X̄0

)2 − tk,(1−α)νi (S2
i

ni
+
S2
0

n0

)
.

3. The proposed procedure

3.1. Algorithm : a stepwise procedure

We employ stepwise confidence set procedure proposed by Hsu and Berger (1999)
for the case of unequal variances across dose groups for identifying maximum
safe dose that is non-inferior to the vehicle control. In this sense all doses lower
than the maximum safe dose are also non-inferior to the vehicle control. This is
because in Hsu and Berger (1999) procedure, it is desirable not to declare safety
for higher dose of the experimental drug prior to the declaration of safety at lower
dose . Let θi,1−α be a 100(1− α)% upper one-sided individual confidence bound for
the ratio λi, i = 1, 2, · · · k. The stepwise procedure takes the following form:
Step 0:
Is Ai > 0 at min{νi : i = 1, 2, · · · , k}? If yes continue to step 1, otherwise stop and
declare that the assay sensitivity of the experiment is inadequate.
Step 1:
If θ1,1−α 6⊂ (−∞, θ), then conclude that λ1 ∈ θ1,1−α and stop. Otherwise conclude
that λ1 ∈ (−∞, θ) and continue.
Step 2:
If θ2,1−α 6⊂ (−∞, θ), then conclude that λ2 ∈ θ2,1−α and stop. Otherwise conclude
that λ2 ∈ (−∞, θ) and continue.
...
Step m:
If θm,1−α 6⊂ (−∞, θ), then conclude that λm ∈ θm,1−α and stop. Otherwise conclude
that λm ∈ (−∞, θ) and continue.

...
Step k:

If θk,1−α 6⊂ (−∞, θ), then conclude that λk ∈ θk,1−α and stop. Otherwise conclude
that λk ∈ (−∞, θ) and continue.
step k+1:

Conclude that maxi=1,2,···k λi < maxi=1,2,···k

(
Bi+
√

(Bi)2−4AiCi

2Ai

)
.

To understand the algorithm 3.1, we start from i = 1, screen lowest dose and then
sequentially screen up toward i = k in a step-by-step manner searching for the first
integer M (1 ≤ M ≤ k) if it exists, such that λM < θ and λM+1 ≥ θ (where the first
statistical insignificant for safety effect occurred to screen the first unsafe dose).
In other words, the subsequent comparison in a more higher dose levels for steps
M + 1,M + 2, · · · k are insignificant and needless for screening.
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3.2. Validity of the stepwise procedure

Definition 1. Suppose that the data X have a distribution determined by a pa-
rameter Λ = {λ1, λ2. · · ·λk} ∈ Θ. A confidence set C(X) for Λ is said to be directed
towards a subset of the parameter space Θ∗ ⊂ Θ, if for every sample point X, either
Θ∗ ⊂ C(X) or C(X) ⊂ Θ∗.

To validate our procedure, let λ1, λ2, · · ·λk be parameter of interest in Θ, (the
parameter space). Before one can construct 100(1 − α)% simultaneous confidence
set, it is required that, the individual confidence intervals should have 100(1−α)%
confidence level. For i = 1, 2, · · · k, let Θc

i = (−∞, θ), and Θi = [θ,∞). Let also, Θc
k =

Θ, Θk = ∅, and Θ∗i = Θc
1 ∩ Θc

2 ∩ · · · ∩ Θc
i−1 ∩ Θi for i = 2, 3, · · · , k − 1, k with Θ∗1 = Θ1.

Then, Θ∗1,Θ
∗
2, · · ·Θ∗k constitute a partition in the entire parameter space Θ. Note that,

Θ = Θ∗1∪Θ∗2∪· · ·∪Θ∗k constitute disjoint subsets, this is premised on the fact that the
true parameter of interest lies in one and only one of these disjoint subsets. Each
of these subset Θ∗i is tested at a local level α. Hence the simultaneous confidence
sets for µi−µ0

µk+1−µ0
are directed toward Θc

i = {λi < θ} for i = 1, 2, · · · k Hsu and Berger
(1999). This construction leads to multiple comparison procedure which guarantee
the control of FWER in the strong sense. In handling the problem in Equation
(1), we construct simultaneous confidence set-based procedure using intersection-
union principle formulated by Berger (1982). The overall null hypothesis can be
expressed as the union of the local null hypotheses H0 against the intersection of
the alternative hypotheses H1. Thus

H0 =

k⋃
i=1

H0i against H1 =

k⋂
i=1

H1i

The rationale behind the intersection-union principle is that, if the overall null hy-
pothesisH0 : θ ∈

⋃k
i=1 Θi can be rejected then each of the individual null hypotheses

H0i : θ ∈ Θi can also be rejected. Hence Berger (1982) proved the following theorem.

Theorem 1. If Θi is a level α test ofH0i, for i = 1, 2, · · · , k , then the intersection-union
test with rejection region Θc is a level α test of H0 =

⋃k
i=1 λi ∈ Θi against H1 =⋂k

i=1 λi ∈ Θc
i .

Remark 1. The discernible feature about Theorem 1 is that if each of the individual
test is performed at level α, then the overall test is also performed at level α. In this
manner, the test does remit multiplicity adjustment for performing the multiple test
at level α.Therefore, the procedure in this article is an extended intersection-union
principle.

Proposition 1. Suppose that θ1, θ2 · · · θk are the 100(1 − α)% confidence bounds for
λ1, λ2 · · ·λk respectively, with confidence level 1 − α. Then for all λ1, λ2 · · ·λk ∈ Θ. we
have

P (λ1 < θ1, λ2 < θ2 · · ·λM−1 < θM−1, λM < θM ) ≥ 1− α.

The proof of Proposition 1 is similar to the proof of Theorem 3.1 of Tao et al. (2002).
See appendix A.
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Table 1. Simulated FWER study for our procedure. setting nR = 10, nP = 20, σR =
15, σP = 5, σEi = 10 i = 1, 2

nE1(nE2) Balanced design Unbalanced design
4 (5) 0.0216 (0.0223) 0.0256 (0.0240)
6 (7) 0.0236 (0.0235 0.0244 (0.0236)
8 (9) 0.0246 (0.0251) 0.0241 (0.0248)
10 (11) 0.0242 (0.0246) 0.0247 (0.0241)
12 (13) 0.0240 (0.0249) 0.0244 (0.0242)
14 (15) 0.0247 (0.0241) 0.0249 (0.0249)
16 (17) 0.0250 (0.0249) 0.0247 (0.0258)
18 (19) 0.0244 (0.0249) 0.0255 (0.0255)
20 (21) 0.0239 (0.0245) 0.0252 (0.0255)
22 (23) 0.0247 (0.0245) 0.0255 (0.0255)
24 (25) 0.0243 (0.0239) 0.0259 (0.0260)
26 (27) 0.0251 (0.0238) 0.0259 (0.0269)
28 (29) 0.0251 (0.0246) 0.0269 (0.0255)

Remark 2. The proposition guarantee a meaningful protection against incorrect
decision because the overall coverage probability is at least (1− α)100%. Therefore
probability of at least one type I error rate should be less than or equal to pre-
specified level α. Hence the FWER is properly controlled, this is validated by the
partition principle.

4. Simulation studies

We considered k = 2 experimental treatments for the simulation studies. Without
lost of generality, we set α = 0.025 and θ = 0.8. We adapted Hasler et al. (2008)
mean configurations µP = 16.5, µR = 36.7, µEi = 32.66 for i = 1, 2 for our simulation
studies. The data set for the simulation was generated from normal distribution un-
der the cases of heteroscedasticity with 100,000 replications. Computations were
done using R software codes. In these studies, we assess the performance of our
procedure based on FWER and the power evaluation.

4.1. FWER study

The assessment of the FWER was carried out for cases of balanced and unbalanced
designs by using Welch method in our construction of confidence interval, because
its approximates the degrees of freedom in order to ensure the control of type I
error. Result from Table 1 shows that, our procedure performed well for balanced
and unbalanced designs at the nominal level of α = 0.025. However, in the case of
unbalanced design, the procedure failed to control the FWER for sample sizes 4,
and at least 16.
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4.2. Power calculation

In most cases, confidence interval procedures for analyzing clinical trials are insuf-
ficient. Therefore, power estimation is imperative for a well-design clinical study.
There are many definitions of power in multiple comparison procedures, but in our
study, we will define power in the case of maximum safe dose. The maximum safe
dose i is established when λM < θ and λM+1 ≥ θ where M is the first integer at
which the stepwise procedure stops. Notice that M is a random variable because
it depends on the sample under consideration. That is

P (M̂SD = i) = P

 i⋂
j=1

{Tj > t1−α,vi} ∩ {Ti+1 ≤ t1−α,vi}


However, in our setting, power is defined as the probability of incorrectly rejecting
the null hypothesis. Hence Equation (6) can be rewritten as:

P (Reject Hjo for j = 1, 2, · · · i) = P

 i⋂
j=1

{Tj > t1−α,vi}

 (6)

where the

νi =

(
σ2
i

ni
+

θ2σ2
k+1

nk+1
+

(1−θ)2σ2
0

n0

)2
σ4
i

n2
i (ni−1) +

θ4σ4
k+1

n2
k+1(nk+1−1)

+
(1−θ)4σ4

0

n2
0(n0−1)

for i = 1, 2, · · · , k. (7)

Notice that, the sample variances S2
i , S

2
k+1 and S2

0 in Equation (5) are approxima-
tions from σ2

i , σ
2
k+1 and σ2

0 in Equation (7) based on original ideas of Welch (1938)
and Satterthwaite (1946) for a situation of unequal and unknown variances. There-
fore Equation (6)can be calculated from a k variate non-central t-distribution with
νi degrees of freedom. Thus non-centrality parameters for i = 1, 2, · · · , k are:

Θi =
µi − θµk+1 − (1− θ)µ0√
{σi

ni
+ θ2σk+1

nk+1
+ (1−θ)2σ0

n0
}
.

Hence exact power calculation is impossible in this settings: this implies the power
calculation must be approximated. The result of our power estimation are tabulated
in Table 2. In this table, it can be observed that in general, power increases with
increasing in both the ratio of mean differences, λ and the sample sizes. This is
consistent with earlier findings Hasler et al. (2008).

5. Practical Application

We apply our stepwise confidence set procedure to a data set published by Adler
and Kliesch (1990) for evaluation of mutagenic experiment. The data was used for
micronucleus assay on hydroquinone using a positive control of 25mg/kg cyclphos-
phamide. The goal is to show that whether or not the investigational substance is
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Table 2. Power Estimation of the confidence intervals for σR = 13.2, σP = 7.5, σEi =
10.4 i = 1, 2

Ratio(λi) nEi=1,2 nR nP Power
0.70 20 20 20 0.0054
0.70 30 30 30 0.0035
0.70 40 40 40 0.0024
0.70 60 60 60 0.0013
0.80 20 20 20 0.0250
0.80 30 30 30 0.02500
0.80 40 40 40 0.0250
0.80 60 60 60 0.0250
0.90 20 20 20 0.0560
0.90 30 30 30 0.1094
0.90 40 40 40 0.1329
0.90 60 60 60 0.1793
1.00 20 20 20 0.2160
1.00 30 30 30 0.3090
1.00 40 40 40 0.3953
1.00 60 60 60 0.5493
1.10 20 20 20 0.4262
1.10 30 30 30 0.5917
1.10 40 40 40 0.7196
1.10 60 60 60 0.8781
1.20 20 20 20 0.6570
1.20 30 30 30 0.8320
1.20 40 40 40 0.9234
1.20 60 60 60 0.9864
1.30 20 20 20 0.8404
1.30 30 30 30 0.9547
1.30 40 40 40 0.9885
1.30 60 60 60 0.9994

able to induce chromosome damage or interact with the mitotic spindle appara-
tus. Consequently, the result of male mice at 21h sampling time is given in Table
3. Counts of micronuclei in polychromatic erythrocytes after 24 h are taken as a
measure for the potency to induce chromosome damage. A scatter plot in Figure 4
for the data set in Table 2 in Gamalo et al. (2013) depicts heterogeneity of variances
among the reference treatment and the placebo groups. For our analysis in Table
4, we set and without loss of generality α = 0.05 and θ = 0.5, where θ is the safety
threshold. The following results were obtained.

θ̂1 = 0.24 < θ = 0.5 we reject H01

θ̂2 = 0.35 < θ = 0.5 we reject H02

θ̂3 = 0.74 6< θ = 0.5 we do not reject H03

θ̂4 = 1.04 6< θ = 0.5 we do not reject H04

the procedure then stops at step 3, implies it is needless to step it down further.
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Table 3. Number of micronuclei per animal and 2000 scored cells for the negative
control, four doses of hydroquinone and positive control cyclophosphamide

Treatment group Number of micronuclie/per 2000 cells
Negative control 1, 2, 2, 2, 3, 5
30mg/kg 2, 4, 4, 4, 5
50mg/kg 4, 6, 6, 7, 8
75mg/kg 9, 12, 13, 13, 18, 18
100mg/kg 13, 20, 22, 22, 23
Positive control 15, 20, 32, 33

Table 4. 95% upper bound for λi, for i = 1, 2, 3, 4

Treatment groups Comparisons Upper bound
30mg/kg λ1 0.24
50mg/kg λ2 0.35
75mg/kg λ3 0.75
100mg/kg λ4 1.04

In this analysis, our stepwise procedure concluded that doses 75mg/kg and
100mg/kg are unsafe at level α, while safety is concluded on the two lower doses
30mg/kg and 50mg/kg. Since θ̂3 = 0.74 6< θ = 0.5 is the last step at which the
procedure stop, that is M = 3 50mg/kg is recommended as the maximum safe
dose (MSD), which is the highest dose that is non-inferior to the reference drug
such that any lower dose is also non-inferior at level α. Notice that 30mg/kg is
also non-inferior to the reference drug but lower.

6. Conclusions

A typical three-arm clinical trial involves positive control, negative control and
exactly one experimental treatment. But certain therapeutic situations necessitate
more than one experimental treatment. For example, cases that involve different
combinations of several new drugs or different doses of a new drug require multi-
ple experimental treatments. This calls for multiple comparisons procedure with
its concomitant multiplicity effect. Adjustment of multiplicity for the maintenance
of the FWER is unneeded if the new treatment can be ordered a priori according
to their treatment effect. In this article, we extended the three-arm trial to a
case of (k + 2)-arm trial (where k ≥ 2) for identification of maximum safe dose.
Where the maximum safe dose in this context is defined as the highest dose that
is non-inferior to the the reference dose such that any other lower dose is also
non-inferior to the reference dose.

We employed the partitioning method in constructing confidence set-based proce-
dure under unknown unequal variances across dose groups. The procedure prop-
erly controlled the FWER in the sense at the nominal level α. This was validated
by the partitioning principle. Results indicated that the power of the procedure
increases with increasing in sample size and the ratio of mean differences.
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Appendix A: Proof of Proposition 3.1

Let M be the step at which the proposed procedure stop. Where M is a random
variable that assume the values (0 ≤ M ≤ k). There are two cases to consider in
the proof of Proposition 3.1.

Case 1. Let M = 0, this means Ai ≤ 0 at min{νi : i = 1, 2, · · · , k}. This implies the
sensitivity of the experiment is not adequate to proceed further and the procedure
is terminated.

Case 2. Let 1 ≤M ≤ k and for j = 1, · · · k, let
(i)Cj(X) = {λk−j+1 < θk−j+1} ; and
(ii) Θ1 = {λk ≥ θ} and Θj =

⋂j−1
l=1 {λk−l+1 < θ} ∩ {λk−j+1 ≥ θ}

for j = 2, · · · , k. Then, the parameter space Θ is partitioned by Θj , j = 1, · · · k + 1.
Moreover,

k⋃
j=1

(Cj(X) ∩Θj)

provides a 100(1− α) confidence set for λ1 · · ·λk because if (λ1 · · ·λk) ∈ Θ then

Pλ1,··· ,λk

{
(λ1, · · · , λk) ∈

k⋃
j=1

(Cj(X) ∩Θj

}
= Pλ1,··· ,λk

{(λ1 · · ·λK) ∈ Cj(X)} ≥ 1− α.

In this setup, the unionized confidence set can be decomposed as follows:
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k⋃
j=1

(Cj(X) ∩Θj) =
{M−1⋃
j=1

(Cj(X) ∩Θj)
}⋃{ k⋃

j=M

(Cj(X) ∩Θj)
}

=

k⋃
j=M

(Cj(X) ∩Θj)

⊂ (CM (X) ∩ΘM ) ∪

(
M⋂
j=1

{λk−j+1 < θ}

)

=

(
M−1⋂
j=1

{λk−j+1 < θ} ∩ {λk−M+1 ≥ θ} ∩ CM (X)

)
⋃(

M⋂
j=1

{λk−j+1 < θ}

)

=

(
M−1⋂
j=1

{λk−j+1 < θ} ∩ {λk−M+1 ≥ θ} ∩ CM (X)

)
⋃(

M⋂
j=1

{λk−j+1 < θ} ∩ CM (X)

)

=

M−1⋂
j=1

{λk−j+1 < θ} ∩ CM (X)

Finally, we have

Pλ1,···λk

(
(λ1, · · · , λk) ∈

M−1⋂
j=1

{λk−j+1 < θ} ∩ CM (X)

)

= Pλ1,··· ,λk

{
(λ1, · · · , λk) ∈

k⋃
j=1

(Cj(X) ∩Θj

}
≥ 1− α

This completes the proof of Proposition 1. �
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