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tribution and the Gumbel distribution in fitting weekly highest wind speed observations
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Résumé. Dans cet article, les extrèmes des vitesses de vent sont étudiés dans la ville
du Bénin au Nigéria. Les données concernent une période de 200 semaines. L’étude a
été modéliséeen utilisant une famille de lois de probabilité dénommée Gumbel-Burr XII
(GUBXII) qui aété introduite dans Osatohanmwen et al. (2017), commeétant un nouveau
membre de la famille des distributions T-X, et ensuite avec la distribution généralisée des
extrêmes. Une comparaison a été faite.

1. Introduction

Extreme value analysis differs from other approaches of statistical analysis in its aim to
quantify the stochastic behavior of a process at usually large or small levels. It is based
on the analysis of the maxima or minima of identically distributed sequences of random
variables capturing a particular phenomenon over a given time period. Problems on extreme
values appeared in the work of Bernoulli back in 1709 for studying the problem of the
mean largest distance from origin for n random numbers on a straight line (Johnson et al.
(1995)).

In a few words, the extreme value theory started with the univariate case, especially with
independent data. Given a sequence of independent and identically distributed random vari-
ables (Xn)n≥0 with common cumulative distribution function (cdf) and defined on the same
probability space (Ω,A,P), the max-stability problem consists of finding possible limits in
distribution of the sequences of partial maxima

Mn = max(X1, ..., Xn), n ≥ 1,

when appropriately centered and normalized. Precisely, we want to find non-random se-
quences (an > 0)n≥1 ⊂ R and (bn)n≥1 ⊂ R such that (Mn−bn)/an converges in distribution
to a random variable Z as n→ +∞, denoted as

Mn − bn
an

 Z. (M)

This problem was solved around the middle of 20-th century with the contributions of
many people, from whom we can cite Gnedenko (1943), Fisher and Tippet (1928), Fréchet
(1927), etc. The following result is usually quoted as the Gnedenko (1943) result since he

had the chance to close the characterization theorem. If Z is non-degenerate, that is : Z
takes at least two different values, Formula (M) can hold only if Z is one of the three types
in terms of its cdf :

the Fréchet type with parameter γ ∈ Γ1 = {x ∈ R, x > 0} :

Hγ(x) ≡ φγ(x) = exp(−x−1/γ)1(x≥0),

the Weibull type with parameter γ ∈ Γ2 = {x ∈ R, x < 0} :
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Hγ(x) ≡ ψγ(x) = exp((−x)−1/γ)1(x<0) + 1(x≥0)

and the Gumbel type with parameter γ ∈ Γ0 = {0} :

Hγ(x) ≡ Λ(x) = exp(−e−x), x ∈ R.

By type of distribution, we mean that any non-degenerate Z in Formula (M) have a cdf FZ

which is of the form FZ(x) = Hγ(Ax+B), where 0 < A ∈ R, B ∈ R, and γ ∈ R. These three
types may be gathered in the form of the Generalized Extreme Value (GEV) Distribution

Gγ(x) = exp(−(1 + γx)−1/γ), 1 + γx ≥ 0, γ ∈ R.

A modern account of the theory, including statistical estimation, can be found in Galambos
(1958), de Haan (1970), de Haan and Ferreira (2006), Embrechts et al. (1997), Resnick
(1987), Beirlant et al. (2014), etc. This theory is part of the general weak convergence

theory which is thoroughly treated in Billingsley (1968) and ?. Among other reliable
sources, we may also cite (Sarkar et al. (2011)) and Johnson et al. (1995). Actually, this
theory is part the larger field of weak convergence which is thoroughly treated in Billingsley
(1968) and ?, and comprehensively intrdoduced in Lo et al. (2016).

In this paper we are concerning with the application of such a theory, specifically in wind
speed studies. In such a filed, analysis of extreme wind speeds is important for several
practical applications such as in estimating wind loads on buildings, making predictions
on storms and gusts, engineering design of wind structures and in carrying out draught
analysis for general agricultural purposes. Because wind speed is a stochastic variable, its
behaviour over time can be captured using specific probability distributions, from which
certain properties, pattern and progression of a wind regime is ascertained. For extreme
wind speeds analysis, it is usually required that an extreme value distribution is used to fit
a sequence of extreme wind speeds collected over time in order to make statistical inference
concerning the wind regime of a particular location.

In many special cases, the classical extreme values distributions may not be flexible enough
to capture the behavior of an extreme wind speed regime based on some historical data.
For example, when the distribution of the extreme wind speeds presents a bimodal density,
the classical extreme values distributions break down since they are all unimodal. The need
to offer more flexibility to the standard classical extreme values distributions have spurred
the development of new extreme value distributions either by adding extra parameter(s)
to the standard distributions or by compounding the classical extreme value distributions
with other well-known probability distributions. In the light of these realities, Nadarajah
and Kotz (2004) developed the beta Gumbel distribution which can be unimodal and
bimodal, Nadarajah (2006) proposed the exponentiated Gumbel distribution by adding
a shape parameter to the Gumbel distribution in other to add more flexibility to the
distribution, Osatohanmwen et al. (2017) compounded the Gumbel distribution with the
Burr XII distribution by adopting the logit transformation of the cumulative distribution
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function (CDF) of the Burr XII random variable to obtain the Gumbel-Burr XII (GUBXII)
distribution. The density was shown to be both unimodal and bimodal by the authors.

In this paper, the performance of the GUBXII distribution in fitting and estimating extreme
wind speeds is compared with that of the GEV and the Gumbel distributions with CDFs
given respectively by

FGEV (x) = exp

{
−
[
1 + ζ

(
−x− µ

δ

)]−1/ζ
}
, (1)

1 + ζ (x− µ) /δ > 0, −∞ < µ, ζ <∞, δ > 0,

FGumbel (x) = exp
[
−exp−

(
x− µ
δ

)]
, (2)

−∞ < x, µ <∞, δ > 0,

where The parameters ζ, µ and δ are shape, location and scale parameters respectively.
Confidence bounds for extreme wind speed estimates for a given return period are further
constructed and compared for the three distributions. The analysis is based on a weekly
highest wind speed observations collected in 200 weeks between (2011-2015) in Benin City,
South-South, Nigeria.

This paper is organized in six sections. In section 2, we take a look at the GUBXII dis-
tribution and discuss the maximum likelihood estimation of its parameters. Extreme wind
speed frequency analysis and construction of confidence bounds for extreme wind speed es-
timates are discussed in sections 3 and 4 respectively. Results from analysis using weekly
highest wind speeds observations are presented in section 5, with discussion of results and
conclusion, contained in section 6.

2. The Gumbel-Burr XII (GUBXII) Distribution

Osatohanmwen et al. (2017) proposed the GUBXII distribution as a new member from the
T-X class of distributions developed by Alzaatreh et al. (2013). The CDF and probability
density function (PDF) of the GUBXII distribution was given respectively by

G (x) = exp

{
−eε/α

[(
1 +

(x
c

)s)λ

− 1
]−1/α

}
. (3)

g (x) =
sλeε/α

αc

(x
c

)s−1 (
1 +

(x
c

)s)λ−1
[(

1 +
(x
c

)s)λ

− 1
]−1−1/α

×

exp

{
−eε/α

[(
1 +

(x
c

)s)λ

− 1
]−1/α

}
,

(4)

x > 0,−∞ < ε <∞, α, c, s, λ > 0,
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where the parameters ε,α,λ, and s are shape parameters and c a scale parameter. Several
properties of the distribution such as its hazard, moments, relationship with some continu-
ous univariate distributions, quantiles, Shannon entropy, mode, skewness and kurtosis were
studied, as well as application of the distribution. The distribution was shown to be highly
flexible, having both unimodal and bimodal density at some certain parameters values.

Figure 1: GUBXII density (c = 1, λ = 4, s = 8)
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Figure 2: GUBXII density (c = 1, α = 10, β = 3)

2.1. Maximum likelihood estimation of the parameters of the GUBXII distribution

For a random independent sample x1, x2, . . . , xn of size n, the log-likelihood function of the
5-Parameter GUBXII distribution is given by

L =
n∑

i=1

ln (g(xi)) = n (lnλ+ lns+ lnβ − lnα− slnc) + (s− 1)
n∑

i=1

lnxi

+ (λ+ 1)
n∑

i=1

ln (1 + (xi/c)s)− (1 + 1/α)
n∑

i=1

ln
(
(1 + (xi/c)s)λ − 1

)
− β

n∑
i=1

(
(1 + (xi/c)s)λ − 1

)−1/α

,

(5)

where β = eε/α. Let Θ = (α, β, c, λ, s)T be the unknown parameter vector, the associated
score function is given by

U (Θ) =
(
∂L

∂α
,
∂L

∂β
,
∂L

∂c
,
∂L

∂λ
,
∂L

∂s

)T

,

where
∂L

∂α
,
∂L

∂β
,
∂L

∂c
,
∂L

∂λ
and

∂L

∂s
are the partial derivatives of the log-likelihood function

w.r.t. to each parameter.
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The maximum likelihood estimate of Θ can be obtained by solving the non-linear
systems of equations, U (Θ) = 0. Since the resulting systems of equations are not in
closed form, the solutions can be found numerically using some specialized numerical
optimization method such as the Quasi-Newton method. The BFGS iterative method
which is implemented in the R software is an example of an iterative scheme based on the
Quasi-Newton method. The parameters c, s and λ are from the Burr XII distribution, the
maximum likelihood estimates of c, s and λ for the Burr XII distribution can be used as
initial guess to begin the iteration (i.e., c0, s0 and λ0). Also α and ε are from the Gumbel
distribution hence, the moments estimates of these parameters can be used as initial guess
for the iterations too. In particular, the random sample x1, x2, . . . , xn is transformed to
a sample from the Gumbel distribution by ti = ln

(
(1 + (xi/c0)s0)λ0 − 1

)
, where ti is a

Gumbel variate. Thus, the initial estimates for β and α are β0 = eε0/α0 with α0 = ST

√
6/π

and ε0 = T̄ − γα0,where ε0 and α0 are the moments estimates of ε and α (Johnson et
al. (1995)). T̄ and ST are the mean and standard deviation of (t1, t2, . . . , tn) respectively,
γ = 0.5772 is the Euler constant (Osatohanmwen et al. (2017)).

The Fisher information matrix (FIM) of the GUBXII distribution is the 5 × 5 symmetric
matrix given by

I (Θ) = −EΘ


Iαα Iαβ Iαc Iαλ Iαs

Iβα Iββ Iβc Iβλ Iβs

Icα Icβ Icc Icλ Ics

Iλα Iλβ Iλc Iλλ Iλs

Isα Isβ Isc Isλ Iss

 ,

where the elements Ii,j (Θ) =
[

∂2L

∂Θi∂Θj

]
.Thus, the elements of the FIM can be obtained by

considering the second order partial derivatives of the log-likelihood function w.r.t. to the
parameters.These second order partial derivatives can be easily obtained using some sym-
bolic computing software like MATHEMATICA. The total FIM, I (Θ), can be approximated
by

J
(
Θ̂
)
≈
[
− ∂2L

∂Θi∂Θj

∣∣∣∣
Θ=Θ̂

]
5×5

.

For real data, J
(
Θ̂
)
is obtained after the maximum likelihood estimate of Θ̂ is gotten,

which implies the convergence of the iterative numerical procedure involved in finding such
estimate.

2.2. Asymptotic confidence intervals for the maximum likelihood estimates of the GUBXII
parameters

Suppose Θ̂ is the maximum likelihood estimate of Θ. Under the usual regularity conditions
and that the parameters are in the interior of the parameter space, but not on the boundary,
we have:

√
n
(
Θ̂−Θ

)
d−→ N5

(
0, I−1 (Θ)

)
, where I−1 (Θ) is the inverse of the expected FIM,

which also corresponds to the variance-covariance matrix of the parameters. The asymptotic
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behavior is still valid if I−1 (Θ) is replaced by the inverse of the observed information matrix
evaluated at Θ, that is J

(
Θ̂
)
. The multivariate normal distribution with mean vector 0 =

(0, 0, 0, 0, 0)T and covariance matrix I−1 (Θ) can be used to construct confidence intervals
for the GUBXII parameters. The approximate 100(1− θ)% two-sided confidence interval for
the parameters α, β, c, λ and s are given by

α̂± Zθ/2

√
I−1
αα

(
Θ̂
)
, β̂ ± Zθ/2

√
I−1
ββ

(
Θ̂
)
, ĉ± Zθ/2

√
I−1
cc

(
Θ̂
)
,

λ̂± Zθ/2

√
I−1
λλ

(
Θ̂
)
, ŝ± Zθ/2

√
I−1
ss

(
Θ̂
)
,

respectively, where I−1
αα

(
Θ̂
)
, I−1

ββ

(
Θ̂
)
, I−1

cc

(
Θ̂
)
, I−1

λλ

(
Θ̂
)
, I−1

ss

(
Θ̂
)

are diagonal elements

of I−1
(
Θ̂
)

and Zθ/2 is the upper (θ/2)th percentile of a standard normal distribution.

For the GEV and Gumbel distributions, similar results hold for the maximum likeli-
hood estimates of their parameters.

3. Extreme Wind Speed Frequency Analysis

An extreme wind speed event is said to have occurred if the wind speed random variable
X with CDF F, is greater than or equal to a particular threshold xT i.e., if X ≥ xT . If
the event X ≥ xT occurred now, the time it will take for it to happen again is called the
“Recurrence Interval”. The expected value of the recurrence interval is the return period T
of the extreme wind speed event X ≥ xT . This is the average number of time (e.g., days,
weeks, years) in which the extreme wind speed event X ≥ xT returns, which also describe
the chance of occurrence of the event. The probability φ of the occurrence of the extreme
wind speed event X ≥ xT is related to the return period T by

φ = P (X ≥ xT ) =
1
T
. (6)

Thus, the probability of occurrence of the extreme wind speed event X ≥ xT is the inverse
of the return period T . Therefore the T − duration return period event is X ≥ xT and it
occurs on average once in T duration. From (7) it follows that the extreme wind speed xT

for a given return period T can be obtained by solving the equation

1− T (1− F (xT )) = 0. (7)

By taking F to be the CDF of the GUBXII, GEV and Gumbel distributions, the solution
of (8) for the respective distribution are given respectively by

xT = c

[(
exp

(
ε− αln

(
−ln

(
1− 1

T

)))
+ 1
)1/λ

− 1

]1/s

, (8)

xT = µ+

δ

(
1−

(
ln
(

1− 1
T

))−ζ
)

ζ
, (9)
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xT = µ− δln
(
−ln

(
1− 1

T

))
. (10)

4. Confidence Bounds for Extreme Wind Speed Estimates

We have established that under suitable regularity condition that, Θ, which is a vector
containing the parameters of a given extreme value distribution is asymptotically normal.
In some special cases, one may be interested in the estimation of a function of Θ. The Taylor’s
formula comes handy in such situation because it holds that an estimate of a function, say
h = h (Θ) is simply found by h

(
Θ̂
)
, where Θ̂ is the maximum likelihood estimator of Θ.

In particular, the return period T can be viewed as a function giving us a tool to construct
approximate confidence bounds for the T − duration return period extreme value xT , since
xT is a function of the parameters of the extreme value distribution used for the analysis as
shown by (8), (9) and (10). This procedure is known as thedelta method. It follows that the
1− θ confidence bound for xT is given as

xT =
[
x̂T ± Zθ/2σ

]
, (11)

with

σ2 = 5xT

(
Θ̂
)T

I−1
(
Θ̂
)
5 xT

(
Θ̂
)
,

where I−1
(
Θ̂
)

is the k × k variance-covariance matrix evaluated at Θ̂, and

5xT

(
Θ̂
)

=
[
∂xT

∂Θ

∣∣∣∣
Θ=Θ̂

]
k×1

,

k, being the number of parameters in the extreme value distribution used for the analysis.

5. Analysis and Results

Weekly highest wind speed observations obtained from the recording station of the National
Center for Energy and Environment (NCEE), Energy Commission of Nigeria (ECN) was
used for the analysis (see, www.ncee.org.ng). The maximum likelihood fits of the GUBXII,
GEV and Gumbel distributions to the data are presented in Table 1. The variance-covariance
matrix I−1

(
Θ̂
)
, evaluated at the parameter estimates of each distribution is also reported.

The density plot and Q-Q plots of the fitted distributions is given by Figure 3(a-d). Estimates
of xT (in m/s) using the three distributions for a given return period and the corresponding
95% confidence bounds for xT are contained in Table 2.
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Table 1: Maximum likelihood fits of weekly highest wind speeds
Distribution Gumbel GEV GUBXII
Parameter esti-
mates

δ̂=0.5264
(0.0294)
µ̂=1.2532
(0.0391)

δ̂=0.5069
(0.0299)
µ̂=1.2258
(0.0479)
ζ̂=0.0892
(0.0400)

α̂=14.7493
(1.2053) ε̂=-
2.0129 (1.3194)
ĉ=1.4122
(0.0032)
λ̂=2.3143
(0.3033)
ŝ=25.5480
(0.0032)

AIC 386.1084 383.2876 381.4605
(Standard error of estimates in parenthesis)

I−1

GUBXII

(
Θ̂
)

=


1.45270 0.90890 0.27250 0.00071 0.00063
0.90890 1.74070 0.21900 0.00021 −0.00002
0.27250 0.21900 0.09200 0.00012 0.00013
0.00071 0.00021 0.00012 0.00001 0.0000004
0.00063 −0.00002 0.00013 0.0000004 0.00001



I−1

GEV

(
Θ̂
)

=

 0.00090 −0.00021 0.00056
−0.00021 0.00230 −0.00058
0.00056 −0.00058 0.00160



I−1

Gumbel

(
Θ̂
)

=
(

0.00087 0.00035
0.00035 0.00150

)
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Figure 3 (a-d): Densities and Q-Q plots of fitted distributions

Table 2: Extreme wind speed estimates (in m/s) for given return periods and
corresponding confidence bounds

Return periods with 95% confidence bounds
T = 5(x5) T = 20(x20) T = 100(x100) T = 200(x200)

GUBXII 1.9843
(1.8565,2.1121)

2.8635
(2.5240,3.2030)

4.3001
(3.35006,5.0996)

5.1150
(4.0133,6.2167)

GEV 2.0393
(1.8945,2.1841)

2.94797
(2.6377,3.2617)

4.1088
(3.4093,4.8083)

4.6571
(3.7130,5.6012)

Gumbel 2.0419
(1.9104,2.1734)

2.8158
(2.6078,3.9719)

3.6738
(3.3757,3.9719)

4.0400
(3.7027,4.3773)
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6. Discussion of Results and Conclusion

Results obtained from fitting the data using the three distributions as contained in Table
1 clearly showed that the three distributions reported very good fits to the data, as shown
from the density and Q-Q plots. The fit of the GUBXII distribution to the data is observed
to be best, given that it possessed the smallest AIC value.

Results obtained from the extreme wind speed frequency analysis, as reported in Table
2, reveal that as the return period T increases, the estimated T − Week extreme wind
speeds also increase for the three distributions used. For T = 5, the T − Week extreme
wind speed estimate using the Gumbel distribution was highest, followed by that of the
GEV distribution, and then the GUBXII distribution. Also, the confidence bound for the
GUBXII distribution was shortest. For T = 20, theT −Week extreme wind speed estimate
using the GEV distribution was highest, followed by that of the GUBXII distribution, and
then Gumbel distribution. The confidence bounds obtained using the GEV distribution
is also observed to be shortest. For T = 100,and T = 200, the T − Week extreme wind
speed estimate using the GUBXII is highest, and the confidence bounds of the Gumbel
distribution are shortest.

In conclusion, we observe that the GUBXII distribution can be very effective when used
in construction of confidence bounds for extreme wind speed estimates with short return
periods. This implies that for wind regimes with frequent extreme wind speeds, the GUBXII
distribution can be effectively used to give good predictions. On the other hand, the Gumbel
distribution is observed to be best for longer return period extreme wind speeds predictions.

Acknowledgment. The authors wish to address their thanks to the editor in Chief and
presenter of the paper for valuable suggestions and comments, and for extending the review
on Extreme value theory.

References

Alzaatreh, A., Lee, C., and Famoye, F.(2013). A new method for generating families of
continuous distributions, Metron, 71(1), 63 - 79.

Gnedenko, B.(1943). Sur La Distribution Limite Du Terme Maximum D’Une Serie Aleatoire,
Annals of Mathematics, Vol. 44, No.3, pp.423-453.

Johnson, N.L., Kotz, S., and Balakrishnan, N.(1995). Continuous univariate distributions,
vol. 2, second edition, New York, John Wiley and sons, Inc.

Nadarajah, S. and Kotz, S.(2004). The beta-Gumbel distribution, Mathematical Problems
in Engineering, 4, 323 - 332.

Nadarajah, S.(2006). The exponentiated Gumbel distribution with climate application, En-
vironmetrics, 17, 13 – 23.

Journal home page: www.jafristatap.net



P. Osatohanmwen, F.O. Oyegue and S.M Ogbonmwan, African Journal of Applied Statistics, Vol.
4 (1), 2017, pages 271–271.
Confidence Bounds for Extreme Wind Speed Estimates: A Comparison For the Gumbel - Burr
XII Distribution and Classical Extreme Value Distributions. 271

Osatohanmwen, P., Oyegue, F.O. and Ogbonmwan, S.M. (2017). A New Member from the T-
X Family of Distributions: The Gumbel-Burr XII distribution and its Properties. Sankhya
A. Available at https://doi.org/10.1007/s13171-017-0110-x

Sarkar A., Singh, S. and Mitra, D.(2011). Wind Climate modeling using Weibull and Extreme
value distribution, International Journal of Engineering Science and Technology, Vol. 3,
No.5, pp. 100-106.

Beirlant, J., Goegebeur, Y. Teugels, J. (2004). Statistics of Extremes Theory and Applica-
tions. Wiley. (MR2108013)

Billingsley, P. (1968). Convergence of Probability measures. John Wiley, New-York.

de Haan, L. (1970). On regular variation and its application to the weak convergence of
sample extremes. Mathematical Centre Tracts, 32, Amsterdam. (MR0286156)

de Haan, L. and Ferreira A. (2006). Extreme value theory : An introduction. Springer.
(MR2234156)
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