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Full Abstract (English) In extreme value analysis, the extreme value index (EVI)
plays a vital role as it determines the tail heaviness of the underlying distribution
and the primary parameter required for estimating other extreme events. In this
paper, we review the estimation of the EVI when observations are subject to right
random censoring and the presence of covariate information. In addition, we pro-
pose some estimators of the EVI, including a maximum likelihood estimator from a
perturbed Pareto distribution. The existing estimators and the proposed ones are
compared through a simulation study. The results show that the performance of
the estimators depend on the percentage of censoring, the underlying distribution,
the size of extreme value index and the number of top order statistics. Overall, we
found the proposed estimator from the perturbed Pareto distribution to be more
robust to censoring, size of the EVI and the number of top order statistics.

Résumé (French) Dans la théorie des valeurs extrêmes (TVE), l’indice des valeur
extrêmes (IVE) joue un rôle essentiel car il détermine la lourdeur de la queue de
la distribution sous-jacente et le paramètre principal requis pour estimer d’autres
événements extrêmes. Dans cet article, nous passons en revue l’estimation de l’EVI
lorsque les observations sont soumises à une censure aléatoire et à la présence
d’informations auxiliares. En outre, nous proposons quelques estimateurs de l’EVI,
y compris un estimateur du maximum de vraisemblance à partir d’une distribu-
tion de Pareto perturbée. Les estimateurs existants et ceux proposés sont comparés
à l’aide d’une étude de simulation. Les résultats montrent que les performances
des estimateurs dépendent du pourcentage de censure, de la distribution sous-
jacente, de la taille de l’indice de valeur extrême et du nombre de statistiques
d’ordre supérieur. Dans l’ensemble, nous avons trouvé que l’estimateur proposé
provenant de la distribution de Pareto perturbée était plus robuste par rapport à
la censure, à la taille de l’IVE et au nombre d’observations de queue utilisées.

1. Introduction

The study of extreme events has received much attention in many fields of appli-
cation due to the nature of their impact. For instance, extreme earth quakes cause
many deaths and destruction to properties; large price movements in equities
result in huge losses, profits or collapse of financial markets; large insurance
claims lead to solvency problems.

Unlike traditional statistical methods that focus on the central part of distribu-
tions, statistics of extremes focuses on the tail of the underlying distribution.
Interest is then on parameters associated with the tail of the underlying distri-
bution, such as high quantiles and exceedance probabilities. For inference on
such parameters, distributional results are needed on the extreme observations.
The first such result in extreme value theory was obtained by Fisher and Tippett
(1928) and further developed by e.g. Gnedenko (1943) and de Haan (1970). These
asymptotic distributions form the basis for carrying out inference in extreme value
analysis.
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Let Y1, . . . , Yn be an independent and identically distributed sample on some ran-
dom variable Y and let Y1,n ≤ . . . ≤ Yn,n be the corresponding order statistics. The
mentioned results state that, if there exist normalising constants an > 0 and bn ∈ R,
and some nondegenerate function Ψ, such that

Yn,n − bn
an

d−→ Ψ, (1)

then the constants can be redefined such that for γ ∈ R,

Ψ(y) ≡ Ψγ(y) =

{
exp

(
− (1 + γy)

−1/γ
)
, 1 + γy > 0, γ 6= 0,

exp (− exp (y)) , y ∈ R, γ = 0.
(2)

Here, (2) is the so-called Generalized Extreme Value distribution and γ is the
extreme value index (or tail index). The parameter γ is the primary parameter
needed in extreme value analysis and determines the tail heaviness of the un-
derlying distribution. If γ > 0,Ψγ belongs to the Pareto domain (heavy tailed); if
γ < 0,Ψγ belongs to the Weibull domain (short-tailed); and if γ = 0,Ψγ belongs
to the Gumbel domain (light-tailed). An underlying distribution function, F, for
which (1) and (2) hold, is said to be in the domain of attraction of Ψγ , denoted
F ∈ D (Ψγ) .

The estimation of γ has been addressed in many papers, including Hill (1975);
Pickands (1975); de Haan and Peng (1998); Tsourti and Panaretos (2003); Beirlant
et al. (2004); Diop and Lo (2006); Gomes et al. (2008); Diop and Lo (2009);
Deme et al. (2009); Gomes and Guillou (2014) and Ngom and Lo (2016). When
covariate information is available, the focus is to include it in the estimation
by modelling the parameters of the extreme value distribution as a function of
the covariate(s). For example, Davison and Smith (1990) fitted a Generalised
Pareto (GP) distribution with parameters taken as an exponential function of the
covariates; Gardes and Girard (2008) used moving-window methodology; Beirlant
and Goegebeur (2003) and Wang and Tsai (2009) used a conditional exponential
regression model; and Beirlant and Goegebeur (2004) employed repeated fitting of
local polynomial maximum likelihood estimation.

In the case of censoring, Beirlant et al. (2007) and Einmahl et al. (2008) proposed
an inverse probability-of-censoring weighted method to adapt classical extreme
value index estimators to censoring. Similarly, Gomes and Neves (2011) and
Brahimi et al. (2013) used this idea to adapt various estimators to censoring.
In addition, Beirlant et al. (2010) addressed the issue of censoring, obtaining
maximum likelihood estimators by adapting the likelihood function of the gener-
alised Pareto distribution to censoring. Also, Worms and Worms (2014) considered
estimators based on Kaplan-Meier integration and censored regression. Further-
more, Ameraoui et al. (2016) estimated the extreme value index from a Bayesian
perspectives and Beirlant et al. (2017) proposed a reduced-bias estimator based
on an extended Pareto distribution.
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In the case of the presence of both covariate information and censoring, Ndao et al.
(2014) proposed three estimators for the estimation of the conditional extreme
value index and extreme quantiles for heavy-tailed distributions. In particular,
the Hill, generalised Hill and moment type estimators were proposed using the
moving window method ofility-of-censoring weighted method (Beirlant et al.,
2007; Einmahl et al., 2008). Unlike Ndao et al. (2014), Stupfler (2016) proposed
a moment estimator valid for all domains of attraction. In addition, Ndao et al.
(2016) addressed the estimation of the extreme value index under censoring and
the presence of random covariates.

Although quite a number of papers have compared the available estimators of the
extreme value index, no paper has compared the estimators of the conditional
extreme value index when observations are subject to random censoring. The
aim of this paper is two-fold. Firstly, to adapt some classical estimators to the
current context, including a reduced-bias maximum likelihood estimator based on
a perturbed Pareto distribution in Beirlant et al. (2004). Secondly, we review the
available estimators that were proposed in the literature for estimating conditional
extreme value index under right random censoring and compare them together
with the proposed ones in a simulation study.

The remainder of the paper is organised as follows. In Section 2, we set out the
framework for the estimation of the parameter of interest i.e. extreme value index.
In addition, the existing estimators are reviewed and we present the proposed es-
timators. In section 3, we conduct a simulation study to assess the performance
of these estimators. Lastly, general conclusions from the simulation results are
presented in section 4.

2. Estimation of the Extreme Value Index

Consider Y1, . . . , Yn as independent copies of a positive random variable, Y, and
let x1, . . . ,xn be the values of an associated d-dimensional covariate vector, x ∈ Ω,
where Ω ⊂ Rd. Also, in order to incorporate the presence of censoring, let C1, . . . , Cn
be independent copies of another positive random variable C, also associated with
the covariate vector x. We assume that for all x ∈ Ω, the random variables, Y and C,
are independent. Furthermore, for every x ∈ Ω, we assume that the random vari-
ables Y and C have respective conditional distribution functions, F (.;x) ∈ D(Ψγ1(x))
and G(.;x) ∈ D(Ψγ2(x)), where γ1(x) and γ2(x) are real functions. We consider the
case where F (.;x) and G(.;x) are in the Pareto domain of attraction i.e. γ1(x) > 0
and γ2(x) > 0. For this domain of attraction, the distribution functions can be
represented as

1− F (y;x) = y
− 1
γ1(x) `F (y;x) and 1−G(y;x) = y

− 1
γ2(x) `G(y;x). (3)

or equivalently in terms of the tail quantile function,

UF (y;x) = yγ1(x)`UF (y;x) and UG(y;x) = yγ2(x)`UG(y;x). (4)

Journal home page: www.jafristatap.net



R. Minkah, T. de Wet, E. N. N. Nortey, African Journal of Applied Statistics, Vol. 5 (1),
2018, 337 – 349. A Simulation Comparison of Estimators of Conditional Extreme Value
Index under Right Random Censoring. 341

Here, `F (y;x) (and `UF (y;x)) and `G(y;x) (and `UG(y;x)) are slowly varying func-
tions associated with F and G respectively and defined as

lim
y→∞

`j(by;x)

`j(y;x)
= 1, b > 0; j ∈ {F,G,UF , UG}. (5)

In this context, we observe the triplets {Zi, δi,xi}, i = 1, . . . , nwhere Zi = min{Yi, Ci}
and δi = I{Yi ≤ Ci}. By the independent assumption of Y and C, the conditional dis-
tribution function H(.;x) of the random variable Zi is related to F (.;x) and G(.;x),
as

1−H(.;x) = (1− F (.;x)) (1−G(.;x)) . (6)

Therefore, H(.;x) is also in the Pareto domain with conditional extreme value index
given in Einmahl et al. (2008) as

γ(x) =
γ1(x)γ2(x)

γ1(x) + γ2(x)
. (7)

Before presenting the estimators, we define a ball B(x, r) in Ω where x and r (r > 0)
are the center and radius respectively. Thus,

B(x, r) = {µ ∈ Rd : d(x, µ) ≤ r}. (8)

In addition, let hn,x be a positive integer that approaches 0 as n→∞. The estimators
of the EVI are based on observations of Zi for which the corresponding values of
xi fall within the ball B(x, hn,x). The proportion of the design points falling within
the ball is defined as

φ(hn,x) =
1

n

n∑
i=1

I{xi ∈ B(x, hn,x)}, (9)

where I is the indicator variable. Relation (9) plays an important role in this proce-
dure as it describes how the points are concentrated around the neighbourhood of
xi when hn,x approaches 0 (Gardes and Girard (2008)). The number of nonrandom
observations in (0,∞)×B(x, hn,x) is given by mn,x = nφ(hn,x).

Let
(
W1(x), δ(1)

)
, . . . , (Wmn,x(x), δ(mn,x)) denote the pair, (Zi, δi) , i = 1, 2, . . . , n, that

have their corresponding xi-values falling within the ball as defined in (8). Also, let
W1,mn,x(x) ≤ . . . ≤ Wmn,x,mn,x(x) be the corresponding order statistics of W ’s and
δ
(W )
(i) , i = 1, . . . ,mn,x be the values of δ’s associated with Wi,mn,x(x), i = 1, . . . ,mn,x.

The values of δ
(W )
(i) , i = 1, . . . ,mn,x form the basis for adapting the classical

estimators of the conditional extreme value index presented below to censoring.

In what follows, given a sample {Z1, δ1,x1}, . . . , {Zn, δn,xn}, we con-
sider the estimation of γ1(x). To do this, we rely on the observations(
W1(x), δ(1)

)
, . . . , (Wmn,x(x), δ(mn,x)) resulting from the moving window approach of

Gardes and Girard (2008) described after (9).
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2.1. The Existing Estimators

The existing estimators result from the application of the moving window tech-
nique (Gardes and Girard, 2008) and the inverse probability-of-censoring weighted
method (Beirlant et al., 2007; Einmahl et al., 2008) to adapt classical estimators to
censoring. Ndao et al. (2014) used this approach to adapt the Hill, generalised Hill
and moment estimators to censoring. In this section, we review these estimators
and follow a similar approach to propose other estimators of the extreme value
index in the next section.

The estimators introduced by Ndao et al. (2014) are presented as follows:

– The Hill-type estimator: The Hill estimator (Hill, 1975) is arguably the most
common estimator of γ in the Pareto case i.e. γ > 0. To take into account the
available covariate information, the Hill estimator is defined for the (kn,x + 1)-
largest order statistics as

γ̂(c,Hill)(W,kn,x,mn,x) =
1

kn,x

kn,x∑
i=1

i
(
logWmn,x−i+1,mn,x(x)− logWmn,x−i,mn,x(x)

)
.

(10)
– The Moment-type estimator: Dekkers et al. (1989) introduced the moment es-

timator as an adaptation of the Hill estimator valid for all domains of attraction.
It is defined to take into account the covariate information x as,

γ̂(c,MOM)(W,kn,x,mn,x) = M (1)
n (W,kn,x,mn,x)+1−1

2

1−

(
M

(1)
n (W,kn,x,mn,x)

)2
M

(2)
n (W,kn,x,mn,x)


−1

(11)
where

M (j)
n (W,kn,x,mn,x) =

1

kn,x

kn,x∑
i=1

[
log (Wmn,x−i+1,mn,x(x))− log (Wmn,x−kn,x,mn,x(x))

]j
.

(12)
– The generalised Hill Estimator: Beirlant et al. (1996) proposed the generalised

Hill (GH) estimator as an attempt to extend the Hill estimator to the case where
γ ∈ R. The GH estimator is obtained as the slope of the ultimately linear part
of the generalised Pareto quantile plot of the observations within the defined
window as,

γ̂(c,UH)(W,kn,x,mn,x) =
1

kn,x

kn,x∑
j=1

logUHj,mn,x − logUHkn,x+1,mn,x , (13)

where

UHj,mn,x = Wmn,x−j,mn,x

(
1

j

j∑
i=1

logWmn,x−i+1,mn,x − logWmn,x−j,mn,x

)
.
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The estimators (10), (11) and (13) were adapted to censoring by dividing each es-
timator by the proportion of noncensored observations in the kn,x largest order
statistics of W ’s. Thus, an adapted estimator of the conditional extreme value in-
dex is given by

γ̂(c,.)(W,kn,x,mn,x) =
γ̂
(.)
W,kn,x,mn,x

℘̂(x)
, (14)

where ℘̂(x) = k−1n,x
∑kn,x
i=1 δ

(w)
mn,x−i+1,mn,x

.

2.2. The Proposed Estimators

In this section, we propose some estimators for the estimation of conditional
extreme value index when observations are subject to right random censoring. We
follow closely the methodology in Ndao et al. (2014).

Firstly, the estimators are presented to take into account the covariate and are
subsequently adapted to censoring.

(i) The Zipf estimator: Kratz and Resnick (1996) derived the Zipf estimator as
a smoother version of the Hill estimator through unconstrained least squares
fit to the k largest observations on the generalised Pareto quantile plot method
of Beirlant et al. (1996). The estimator is valid for γ > 0 and in the case of a
covariate, is given by,

γ̂(c,Zipf)(W,kn,x,mn,x) =

kn,x∑
i=1

i log

(
Wmn,x−i+1,mn,x(x)

Wmn,x−i,mn,x(x)

)
log(kn,x/i)∑kn,x
i=1 log (kn,x/i)

(15)

(ii) The Moment Ratio: The Moment Ratio estimator was introduced by Danielsson
et al. (1996) as a moment based estimator to reduce bias in the Hill estimator.
The moment ratio estimator is valid for the Pareto domain of attraction only. In
the case of a covariate, it is given by

γ̂(MomR)(W,kn,x,mn,x) =
1

2

M
(2)
W,kn,x,mn,x

M
(1)
W,kn,x,mn,x

, (16)

where M (j)
W,kn,x,mn,x

, j = 1, 2 is obtained from (12).
(iii) The Peng Moment Estimator: Deheuvels et al. (1997) reports on a variant of

the moment estimator for the no covariate case suggested by Liam Peng. This
estimator is designed to reduce bias in the moment estimator and it is adapted
to the covariate case as

γ̂(PMom)(W,kn,x,mn,x) =
1

2

M
(2)
W,kn,x,mn,x

M
(1)
W,kn,x,mn,x

+ 1− 1

2

1−
(M

(1)
W,kn,x,mn,x

)2

M
(2)
W,kn,x,mn,x

−1 , (17)
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where M
(j)
W,kn,x,mn,x

, j = 1, 2 is as before obtained from (12). This estimator is
valid for all domains of attraction.

(iv) The Perturbed Pareto Estimator
Beirlant et al. (2004) derived the perturbed Pareto estimator as a reduced-biased
Hill type estimator by making use of the second-order properties on the un-
derlying distribution function, F. Here, we consider adapting this estimator to
censoring and the presence of covariate information. Considering (3) and (5),
we can write

lim
u→∞

1− F (uw;x)

1− F (u;x)
= w−1/γ(x), for any w > 1. (18)

Therefore, (18) can be interpreted as

1− Fu(w;x) = P (W/u > z|W > u) ≈ w−1/γ(x), (19)

for large u and w > 1. Now, consider the relative excesses Vj = Wi/u given Wi > u
for a large threshold u, where i is the index of the jth exceedance. Then, it
seems natural to consider the strict Pareto distribution as the approximate
distribution of the relative excesses, Vj . The maximum likelihood estimator
of the parameter results in the Hill estimator in (10). However, if the strict
Pareto approximation is poor, the Hill estimator has large bias, and hence, a
second-order refinement is needed to address the departure from the strict
Pareto distribution (see Beirlant et al., 2004). Assume that the s.v function, `,
satisfies the second-order assumption:

Assumption I: There exists a real constant ρ < 0 and a rate function b satisfying
b(w)→ 0 as w →∞, such that for all λ ≥ 1,

lim
w→∞

log `(λw)− log `(w)

b(w)
= κρ(λ) (20)

where κρ(λ) =
∫ λ
1
uρ−1du (Beirlant and Goegebeur, 2003, page 602).

Then, from (20), we can write (18) as

lim
u→∞

1− F (uw;x)

1− F (u;x)
= w−1/γ(x)

(
1− b(u)

τ(x)

(
w−τ(x) − 1

)
+ o (b (u))

)
, τ(x) > 0, (21)

where b is regularly varying with index -τ(x). Ignoring the error term, (21) be-
comes a mixture of two Pareto distributions. The survival function for such a
distribution is given by

1−G(w;x) = (1− c(x))w−1/γ(x) + c(x)w−(1/γ(x)+τ(x)) (22)

where c(x) ∈ (−1/τ(x), 1), τ(x) > 0 and w > 1. In practice, the perturbed
Pareto distribution is fitted to the relative excesses, Vj , j = 1, ..., kn,x, and
the parameters of the distribution can be estimated through the maximum

Journal home page: www.jafristatap.net



R. Minkah, T. de Wet, E. N. N. Nortey, African Journal of Applied Statistics, Vol. 5 (1),
2018, 337 – 349. A Simulation Comparison of Estimators of Conditional Extreme Value
Index under Right Random Censoring. 345

likelihood method. The resulting estimator is denoted by γ̂(PPD) (V, kn,x,mn,x) .
Similar to Ndao et al. (2014), the estimators of the the extreme value index
from (i) through to (iv) are adapted to censoring using (14).

Furthermore, we extend the two estimators of the extreme value index intro-
duced in Worms and Worms (2014) when observations are subject to random
censoring to the case where covariate information is available.

(v) The first estimator is given by

γ̂(c,WW.KM)(W,kn,x,mn,x) :=
1

n
(

1 − F̂
(
Wmn,x−kn,x,mn,x

))×
kn,x∑
j=1

δmn,x−j+1,mn,x

1 − Ĝ(W−mn,x−j+1,mn,x
)
×

log

(
Wmn,x−j+1,mn,x

Wmn,x−kn,x,mn,x

)
, (23)

where F̂ and Ĝ are respectively the Kaplan-Meier estimators for F and G given by

1 − F̂ (b) = ΠWj,mn,x≤b

(
mn,x − j

mn,x − j + 1

)δj,mn,x
(24)

and

1 − Ĝ(b) = ΠWj,mn,x≤b

(
mn,x − j

mn,x − j + 1

)1−δj,mn,x
, (25)

for b < Wmn,x,mn,x . Here, Ĝ
(
W−mn,x−j+1,mn,x

)
is defined as a function of the form

g(w−) = lim
ν→w

g(ν).

(vi) The second alternative estimator is a weighted version of the Hill-type estimator (23),

γ̂(c,WW.KL)(W,kn,x,mn,x) :=
1

n
(

1 − F̂
(
Wmn,x−kn,x,mn,x

))×
kn,x∑
j=1

1

1 − Ĝ(W−mn,x−j+1,mn,x
)
×

j log

(
Wmn,x−j+1,mn,x

Wmn,x−kn,x,mn,x

)
.

(26)

In the next section, the performance of the existing and proposed estimators will
be compared via a simulation study.

3. Simulation Study

In this section, we present a simulation study to assess the performance of the
estimators discussed in the previous section as the asymptotic distribution of most
of the estimators are unknown.
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3.1. Design

Several sample sizes were considered in the simulation and for simplicity, we report
on the simulation for samples of size n = 2000 generated from three distributions
i.e. Burr, Fréchet and Pareto only. For each distribution, our interest is in the es-
timation of the conditional extreme value index (EVI) function, γ1(x) = e(β0+β1x).
Here, β0 and β1 were chosen as −0.11 and −2.90 such that the values of γ1(x) for
x ∈ Uniform(0, 1) are within (0,1). This range of values of the extreme value index
is the most common in extreme value theory literature for simulation studies and
practical applications (see for e.g. Gilli and Këllezi, 2006; Gomes and Neves, 2011;
Einmahl et al., 2008; Stupfler, 2016). In particular, we selected values of x equal
to, 0.12, 0.37 and 0.75, corresponding respectively to γ1(x) values, 0.63 (large), 0.31
(medium) and 0.10 (small). The choice of parameter functions for each distribution
are presented in Table 1.

Table 1. Distributions with parameters as a function of x

Parameter function

Distribution 1 − F (y;x) τ(x) λ(x) α(x) γ1(x)

Burr
(

η(x)

η(x)+yτ(x)

)λ(x)
2 0.5e(0.11+2.90x) NA e−(0.11+2.90x)

Pareto y−α(x) NA 1 e(0.11+2.90x) e−(0.11+2.90x)

Fréchet 1 − exp
(
−y−α(x)

)
NA NA e(0.11+2.90x) e−(0.11+2.90x)

Note: η(x) the scale parameter was taken as 1. Also, the Pareto distribution is a limiting
case of the Burr distribution with λ(x) = 1.

In addition, the distribution of C is chosen such that the percentage of censoring
in the right tail is 10%, 35% and 55%. The performance measures used for
examining the estimators of γ1(x) are Mean Square Error (MSE) and median bias
(hereafter referred to as bias).

The following algorithm was implemented to obtain the performance measures:

A1 Generate n (n = 2000) random observations from, x ∼ Uniform(0, 1).
A2 Generate n, random samples from the distributions of Y and C with parameters,

γ1(x) and γ2(x), respectively. To maintain an approximately equal percentage of
censoring in each sample, γ2 is chosen as γ2(x) = γ1(x)℘(x)/(1 − ℘(x)), where
℘(x) is the percentage of noncensored observations.

A3 Let Zi = min {Yi, Ci} and δi = I{Yi ≤ Ci}, i = 1, . . . , n to obtain the triplets
(Zi, δi, xi), i = 1, 2, . . . , n.
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A4 Choose a covariate value of interest, x? ∈ [0, 1], window size, h, and obtain the
observations (Zi, δi), i = 1, 2, . . . , n?, with its xi values falling within the window
[x? − h, x? + h], where n? is the number of observations within the window.

A5 Compute an estimate of γ1(x?) using γ̂(c,.)1 (x?), at each number of top order statis-
tics k ∈ {5, . . . , n?} for the sample in A4.

A6 Repeat A1-A5 a large number of times, R (R = 1000), to obtain γ̂
(c,.)
1 (x?) =(

γ̂
(c,.)
1,1 (x?), . . . , γ̂

(c,.)
1,R (x?)

)′
at each k.

A7 At each k value, compute the median bias

bias
(
γ̂
(c,.)
1 (x?)

)
= median

(
γ̂
(c,.)
1 (x?)

)
− γ1(x?) (27)

and the MSE,

MSE
(
γ̂
(c,.)
1 (x?)

)
=

1

R

R∑
i=1

[
γ̂
(c,.)
1,i (x?)− γ1(x?)

]2
. (28)

3.2. Results and Discussion

The results of the simulation study are presented in this section. For brevity and
ease of presentation, we present the results for Burr distribution and leave that of
Pareto and Fréchet to the appendix.

Figures 1, 2 and 3 show the results for estimators of γ1(x) = 0.63 (x = 0.10), γ1(x) =
0.31 (x = 0.37) and γ1(x) = 0.10 (x = 0.75) respectively. From these figures, it can
easily be seen that most of the estimators’ performance diminish as k increases.
This is expected as more intermediate observations are included in the estimation
leading to bias. In addition, we observed that the bias and to a larger extent MSE,
increases with decreasing value of γ1(x). Furthermore, the performance of the
estimators of γ1(x) decreases as the censoring percentage increases. This is in
conformity to the findings in Ndao et al. (2014).

We now turn attention to the performance of the individual estimators. Firstly, we
found that the Hill estimator has large MSE and bias as k increases. This is in
contrast to the simulation results and Corollary 4.2 in Ndao et al. (2014). Thus, we
may conclude that the performance of the Hill estimator depends on the choice of
parameter function, γ1(x). However, this result is consistent with the performance
of the Hill estimator in the case where there is no covariate information nor cen-
soring (see e.g. Beirlant et al., 2004, and references therein).
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Fig. 1. Results for Burr distribution with ℘ = 0.1. Leftmost column: γ1(x) =
0.63 (x = 0.12); Middlemost column : γ1(x) = 0.31 (x = 0.37); Rightmost column:
γ1(x) = 0.10 (x = 0.75);
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Fig. 2. Results for Burr distribution with ℘ = 0.35. Leftmost column: γ1(x) =
0.63 (x = 0.12); Middlemost column : γ1(x) = 0.31 (x = 0.37); Rightmost column:
γ1(x) = 0.10 (x = 0.75);
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Fig. 3. Results for Burr distribution with ℘ = 0.55. Leftmost column: γ1(x) =
0.63 (x = 0.12); Middlemost column : γ1(x) = 0.31 (x = 0.37); Rightmost column:
γ1(x) = 0.10 (x = 0.75);

For samples generated from the Burr distribution, the PPD, GH and MOM esti-
mators are the most robust to censoring in most cases. These estimators have
smaller bias and MSE compared to the other estimators of γ1(x). In particular,
the proposed PPD estimator is seen to have the smallest bias and MSE as the
percentage of censoring increases.

With regard to the Pareto distribution, the performance of the estimators are
similar to that of the Burr distribution. However, some differences occur which are
mentioned. Firstly, the PMom estimator competes with the best three estimators
i.e. PPD, MOM and GH in terms of bias and MSE. Secondly, in the case, of large
censoring, the PPD estimator has the smallest MSE and relatively good bias.

In the case of samples generated from the Fréchet distribution, all the estimators
have good MSE values with the exception of small and large k values where some
of the estimators’ performance deteriorate. In terms of bias, the performance
does not differ significantly from that of MSE. Interestingly, the Hill estimator is
seen to compete with the PPD, Zipf and WW.KM in terms of bias and MSE as the
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percentage of censoring and k increase.

Overall, we found that the performance of estimators depend on the distribution,
the number of top order statistics and the percentage of censoring. Contrary to
what was reported in Ndao et al. (2014), we found that the Hill estimator has large
bias and MSE except for samples generated from the Fréchet distribution. The
proposed PPD estimator is universally competitive in estimating γ1(x) regardless of
its size, percentage of censoring and number of top order statistics.

4. Conclusion

In this paper, the central issues were a review and proposals of estimators of con-
ditional extreme value index when observations are subject to right random cen-
soring. In the latter, we proposed adapting some classical extreme value index to
censoring and presence of covariate information. The existing and the proposed
estimators were compared in a simulation study. Some interesting results were
obtained and are outlined as follows:

1. The performance of the estimators depend on the underlying distribution of
the sampled data. Thus, no estimator was universally the best under all the
simulation conditions considered. However, a closer look at the results reveal
that some general conclusions can be reached on some estimators that can be
considered as appropriate for estimating γ1(x).

2. The performance of the estimators depend on the size of γ1(x) : Bias and MSE
values were generally larger for small γ1(x) values and smaller for larger values
of γ1(x). Therefore, we recommend that in practice before proceeding to use any
estimator for γ1(x), one should assess the potential range of the true value of
γ1(x). In such cases, several estimators can be considered and a median or aver-
age value used as an estimate to help in the selection of the preferred estimator.

3. The performance of the estimators generally deteriorates as the percentage of
censoring increases. However, the estimators that are robust to censoring, to a
larger extent, maintain their performance under increased percentage of cen-
soring. These estimators include PPD, MOM and PMom and GH. Conspicuously
missing is the Hill estimator which was shown to have large bias and MSE except
for samples from the Fréchet distribution.

4. Overall, we found that the proposed PPD estimator mostly has the best MSE
and bias behaviour under small and heavy censoring. In addition, it has less
bias as the number of top order statistics, k, increases.

Some additional research is needed to establish the consistency and asymptotic
normality of the PPD estimator. This will enhance statistical inference and will be
considered in future research.
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Appendix A: Pareto Distribution

For each figure, the following description of the panels apply. Leftmost column:
γ1(x) = 0.63 (x = 0.12); Middlemost column : γ1(x) = 0.31 (x = 0.37); Rightmost
column: γ1(x) = 0.10 (x = 0.75);

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

k

M
S

E

Hill
PPD
Zipf
GH
MOM
PMom

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

k

M
S

E

Hill
PPD
Zipf
GH
MOM
PMom

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

k

M
S

E

Hill
PPD
Zipf
GH
MOM
PMom

0 50 100 150

−
0

.5
0

.0
0

.5

k

B
ia

s

Hill
PPD
Zipf
GH
MOM
PMom

0 50 100 150

−
0

.5
0

.0
0

.5

k

B
ia

s

Hill
PPD
Zipf
GH
MOM
PMom

0 50 100 150

−
0

.5
0

.0
0

.5

k

B
ia

s

Hill
PPD
Zipf
GH
MOM
PMom

Fig.A1. Results for Pareto distribution with ℘ = 0.1.
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Fig.A2. Results for Pareto distribution with ℘ = 0.35.
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Fig.A3. Results for Pareto distribution with ℘ = 0.55.
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Appendix B: Fréchet Distribution

For each figure, the following description of the panels apply. Leftmost column:
γ1(x) = 0.63 (x = 0.12); Middlemost column : γ1(x) = 0.31 (x = 0.37); Rightmost
column: γ1(x) = 0.10 (x = 0.75);
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Fig.B1. Results for Fréchet distribution with ℘ = 0.1.

Journal home page: www.jafristatap.net



R. Minkah, T. de Wet, E. N. N. Nortey, African Journal of Applied Statistics, Vol. 5 (1),
2018, 337 – 349. A Simulation Comparison of Estimators of Conditional Extreme Value
Index under Right Random Censoring. 358

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

k

M
S

E

Hill
PPD
Zipf
GH
MOM
PMom
WW.KM

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

k

M
S

E

Hill
PPD
Zipf
GH
MOM
PMom
WW.KM

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

k

M
S

E

Hill
PPD
Zipf
GH
MOM
PMom
WW.KM

0 50 100 150

−
0

.5
0

.0
0

.5

k

B
ia

s

Hill
PPD
Zipf
GH
MOM
PMom
WW.KM

0 50 100 150

−
0

.5
0

.0
0

.5

k

B
ia

s

Hill
PPD
Zipf
GH
MOM
PMom
WW.KM

0 50 100 150

−
0

.5
0

.0
0

.5

k
B

ia
s

Hill
PPD
Zipf
GH
MOM
PMom
WW.KM

Fig.B2. Results for Fréchet distribution with ℘ = 0.35.
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Fig.B3. Results for Fréchet distribution with ℘ = 0.55.
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