Annales de I’Institut Henri Poincaré - Probabilités et Statistiques

2011, Vol. 47, No. 1, 130-147 ANNALES

DE LINSTITUT
DOI: 10.1214/10-AIHP365 HENRI
© Association des Publications de I'Institut Henri Poincaré, 2011 POINCARE
PROBABILITES

ET STATISTIQUES

www.imstat.org/aihp

Windings of planar random walks and averaged Dehn function

Bruno Schapira? and Robert Young®

ADépartement de Mathématiques, Bat. 425, Université Paris-Sud 11, F-91405 Orsay Cedex, France. E-mail: bruno.schapira@math.u-psud.fr
Ynstitut des Hautes Etudes Scientifiques, Le Bois Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette, France. E-mail: rjyoung @ihes.fr

Received 10 December 2009; revised 1 March 2010; accepted 9 March 2010

Abstract. We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular
lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random
curve with a disc.

Résumé. Le principal résultat de cet article donne un équivalent précis de I’espérance du nombre total de tours effectués par la
marche aléatoire simple sur 72 ou sur le réseau triangulaire. Comme corollaire, nous obtenons une nouvelle borne inférieure de la
fonction de Dehn moyennée sur 74,d>2, qui mesure 1’aire moyenne du disque remplissant de maniére optimale une courbe de
longueur donnée.
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1. Introduction

The winding numbers of random curves have received much study, going back to Lévy [11] and Spitzer [14]. Lévy,
in particular, studied the Lévy area of a planar Brownian motion, which is based in spirit on adding, with sign, the
winding number of the curve around different regions of the plane. In this paper, we will study the total winding
number of a random closed curve, that is, the integral of the magnitude of the winding number over the plane. The
total winding number of a curve is always non-negative, unlike the Lévy area, and it is connected to problems of filling
curves by discs or cycles.

Let 6;(z) be the angular part of a Brownian motion with respect to z. Spitzer showed that (In 719, (2) converges to
the Cauchy distribution, so the winding angle of a Brownian motion can be quite large. Further results on the winding
number of Brownian motion suggest that the total winding number of a loop based on Brownian motion is infinite.
Werner [16] showed that if 6;(z) is the angular part of a Brownian motion with respect to z, then

K> area{z e€C|6(z) —6p(z) € [21'ck, 21 (k + l))} —t/27 (D)

in L% as k — +o00. Thus if y is the loop formed by connecting the ends of a Brownian motion by a straight line and
iy (x) is the winding number of y around x, then

EU iy ()] dx:| = 00.
R2

Similarly, Yor [17] explicitly computed the law of the index of a point z € C with respect to a Brownian loop. Using
this result, one can show that there is equality in (1) for all £ # 0, so the expectation above is also infinite if y is a
Brownian loop.
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This infinite area, however, is due to the presence of small regions with arbitrarily large winding number, which
are not present if y is the curve formed by connecting the ends of a random walk by a straight line. In fact, since y
has finite length, its total winding number is finite. Let i,(z) be the random variable corresponding to the number
of times that a random walk of n steps winds around z. Windings of random walks have been studied less than
windings of Brownian curves, but one result is an analogue of Spitzer’s theorem for the random walk, due to Bélisle
[2], who proved that for any fixed z € C, the distribution of i, (z)/Inn converges to the hyperbolic secant distribution
as n — +00.

In this paper, we will prove the following theorem.

Theorem 1.1. Let (S, n > 0) be the simple random walk on the unit square lattice in the complex plane. Let S, be
the loop joining the points Sp, S1, ..., Sn, So in order by straight lines and for z € C\ S,, let i,,(z) be the index of z
with respect to S,. Then

1
EU |in(z)|dz:| ~ —nlnlnn,
C 27[

when n — +00.

Note that the integral in the theorem is well defined since S, has Lebesgue measure 0.

The basic idea of the proof is to use strong approximation to relate windings of the random walk to windings of
Brownian motion. The main effect of replacing a Brownian curve with a random walk is to eliminate points with
very high winding numbers, and the replacement does not affect points which are far from the Brownian motion. We
thus find a lower bound on the expected winding number by considering points which are far from the random walk
(Proposition 3.2). We find an upper bound by bounding the number of points with high winding numbers (Propo-
sition 3.3). Windings around a point can be broken into classes depending on their distance from the point, and we
bound the number of windings in each class separately. We will give some notation and preliminaries in Section 2,
and prove Theorem 1.1 in Section 3.

In Section 4, we describe an application to geometric group theory. The isoperimetric problem is a classical problem
in geometry which asks for the largest area that can be bounded by a loop of a given length. This question can be asked
for a variety of spaces, and is particularly important in geometric group theory, where the growth rate of this area as a
function of the length of the loop is known as the Dehn function and carries information on the geometry of a group
(see [5] for a survey). Gromov [8], Chapter 5.A7, proposed studying the distribution of areas of random curves as an
alternative to studying the supremal area of a curve, and the total filling area of a curve in R? is bounded below by its
total winding number.

Finally, in Section 5, we give some extensions of Theorem 1.1, including a version that holds for the triangular
lattice and a lower bound for Brownian bridges in the plane.

2. Preliminaries and notation

We start by laying out some of the background and notation for the rest of the paper. We will recall some standard
notation and describe results of Zaitsev on approximating random walks by Brownian motion and of Werner on
winding numbers of Brownian motion. Throughout this paper, ¢ will represent a positive L' function on C; this
function may change from one step to another, but we plan to provide some warning of these shifts.

We first describe some notation for the growth of functions. Recall that if g is positive, then f(x) = O(g(x)) if and
only if limsup, _, o | f(x)/g(x)| < co. We define a class of quickly-decaying functions:

g= {g:R+ — Rt | g(k) :O(k_c) Ve > O}.

We next describe some notation for planar random walks and winding numbers. Throughout this paper, we will
identify R2 with C. Let (S;,i > 0) be a random walk on R? with i.i.d. bounded increments, E[S; — S;_;] = 0, and
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cov(S; — Si_1) =« 1. Except express mention of the contrary, we will assume that S is the simple random walk on
the unit square lattice, for which x = 1/2. For any n, consider the rescaled process (X;,0 <t < 1) defined by

_ S+ = [nt]/n)(Snej+1 — Sinr))
AvKn

for all # > 0 (the dependence on n in the notation will often be implicit). Here, | x | represents the largest integer which
does not exceed x. Denote by C, the loop made of the curve (X;,0 <¢ < 1) and the segment joining X¢ and X. This
curve connects the points of the random walk in order and joins the endpoints. Note in comparison with the notation
of Theorem 1.1 that C, = S,, /+/n/2. We will primarily work with X; and C, rather than S; and S,,.

If Y; is a continuous function of 7 € [0, 1] and z is not in its image, let v/} (¢) be the unique continuous lift of
Im(In(Y; — z)) such that ¥ (0) € [0,2m). If T = |J; I; is a finite disjoint union of intervals I; with endpoints x;
and y;, let w}, (T) =Y _;[¥y (yi) — ¥y (xp)]. If z is in the image of Y, set w},(T') = 0. For z not in the image of C,, let

w ([0, 1])}

X[:

2

Jn(2) = [ o

where [x] represents the closest integer to x. Note that if w§(([0, 1]) is an odd multiple of m, then z is on the line
connecting X¢ and X. Soif z ¢ C,, then j,(z) is well defined, and this is the index of z with respect to C,,. Actually it
will be also convenient to define j,(z) when z is on the line connecting X and X . In this case we set by convention

o wh0.1) 1
(@)= = 5 3)

Observe now that
in(zv/n/2) = ju(z) forallzeC\C,.

One of our main tools is the fact that a random walk can be approximated by a Brownian motion. A strong ap-
proximation theorem due to Zaitsev [19], which improves bounds of Einmahl [6] and generalizes results of Komlods,
Major and Tusnady [9], implies the following theorem.

Theorem 2.1 ([19]). If (X;,0 <t <1) is defined as above, then there is a constant ¢ > 0 such that for any n > 1,
there exists a coupling of (X;,0 <t < 1) with a Brownian motion (8;,0 <t < 1) such that

]P’|: X Bl = 1nn] - 1
sup k — Pk ZC— | = —.
k<n.keN " " Jn nt

Standard properties of the Brownian motion imply that there is a constant ¢’ > 0 such that

]P-S sup 1Bs — fronl = Inn - el
up su — — —
sy, DT P = =

Le<1 h<l/n

for all n > 1, so there are constants ¢y > 0 and ¢” > 0 such that

IP’_ X — B> lnn:|<c”
sup|X; — Bl > co—= | < —
Li<1 ' ' N n#

foralln > 1. Let

Inn
Ep i =C0——=

NG

and let U/ be the event

U=Um) ={sup|X; - Bl = &].

t<1
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Let (8¢, t > 0) be a complex Brownian motion starting from 0. As with the random walk, we can connect the endpoints
of the Brownian motion by a line segment to form a closed curve C. If z ¢ C, let

. w3 ([0, 1)
o= [200]
T

be its index with respect to C.
We will need to consider the number of times 8 winds around a point, especially when this occurs outside a ball of

radius ¢. Let B(z, r) denote the closed disc with center z € C and radius r. For r > 0, let

T.(z) :=inf{s > 0| Bs ¢ B(z,r)},

“
t(z) := inf{s >0] 8, € B(z, r)}.
For any z # 0, we have the following skew-product representation (see, for instance, [10] or [13]):

B —z=exp(p: +i0}:).

where ((pf, 6f),t > 0) is a two-dimensional Brownian motion, and

t
1
Af:/ ﬁds forallz > 0.
o 1Bs —z

Note the intuition behind this representation; when S, is far from z, then A% increases slowly, so that arg(8; — z) also
varies slowly. For ¢ > 0 and ¢ > 0, let

" 1jg,—z1>e) )1/2
Z.(1) = Uhs=alzed o) 5
® (/o Bzl ©)

and let Z, := Z.(1). This Z, controls the amount of winding around z which occurs while the Brownian motion is
outside B(z, ¢). The next lemma is essentially taken from [15] and Lemma 2 and Corollary 3(ii) of [16]. It shows,
among other things, that Z, is not likely to be much larger than |In¢g|.

Lemma 2.2.

(1) Thereisa g € G, such that for all ¢ € (0,1/2) and all k > 1,
P[Z, > k] < g(k/|Ing]).

(ii) There exists a function ¢ € L', such that for all & € (0, 1/2) and all z # 0,

Plte(z) <1] < )

~ |lng|

(iii) There exists a function ¢ € LY, such that forall e € (0,1/2),all z #0and all k > 1,

PlZs = k] = ?

Proof. We start with part (i). The proof is essentially contained in the proof of Lemma 2 in [16]. Let M = evk,
Consider first the case where |z| < M /2. The skew-product decomposition shows that Z, (T (z))? has the distribution
of the exit time of [0, In(M/¢)] by a reflected Brownian motion starting from In |z| —Ine¢ if |z] > ¢, or from O if |z| < e.
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The Markov property implies that this exit time is dominated by the exit time o) of [0, In(M /)] by a reflected
Brownian motion starting from 0. Thus

P[Ze (T (2)) = k] < Pommmye) = k7]
k2
P __~
: [Gl R |1ne|>2}

k2
<cexp| ¢ ——),
= p( (ﬁ+|lns|)2)

where ¢ and ¢’ are positive constants. For the last inequality see, for instance, [12], Proposition 8.4. If k/|Ing| > 1,

k/|Ineg| )
(Ilne|~12 + /TIne]/k)?

)sgwmmu)

P[Z:(Tu(2)) = k] < cexp<—c’

< o
JexP( “10/Ine]

for some g € G.
On the other hand, since |z| < M/2, by the maximal inequality, there is a g € G such that

P[Tw(z) < 1] <P[Tu2(0) < 1] < g (k).
The case |z| < M /2 now follows from the inequality
P[Z: > k] <P[Ty(2) < 1]+ P[Zs(Tu (2)) = k].

Next assume that |z| > M /2. Then

PIZ: = k] <P[inf B, — 2| <k~ | < P[Turp(0) = 1] = ¢'k)

for some function g’ € G, which concludes the proof of (i).
Part (ii) is essentially due to Spitzer [15] (see also [10] for a precise statement). Part (iii) is a special case of
Corollary 3(ii) in [16]. O

Let ¢, be as in the remarks after Theorem 2.1. The consequence of (ii) in the previous lemma for the random walk
is the

Corollary 2.3. For any ¢ > 0, there exists a function ¢ € L', such that for all z # 0 and sufficiently large n,

Plinf{t > 0| X; € B(z,cen)} < 1] < ™
n

Proof. By Lemma 2.2(ii), there is a ¢ € L' and a ¢’ > 0 such that for sufficiently large n,
P[inf{t > 0] X, € B(z, cen)} < 1] < Ptc41)e, @) < 1.U] + P[UC]

< —¢(Z) + c/n_4.
Inn

Since the length of a step of the random walk is bounded, if n is sufficiently large and |z| > n + 1, then P[inf{r > 0 |
X; € B(z,cen)} < 1] =0. We thus find

~ Inn

-3 /
Plinf{t > 0| X; € B(z,cen)} < 1] < ¢ +c/min{n4 &} < ¢ @

as desired. O
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3. Proof of Theorem 1.1

Let D C C be given by

D ={z; +iz2 | 21v/n/2,22/n/2 ¢ Z for any n}.

This is the set of points which are not on any of the edges of the rescaled lattices for the random walk, and C \ D has
measure 0.
Theorem 1.1 follows by dominated convergence from the following proposition.

Proposition 3.1. Let (S,,,n > 0) be the simple random walk on the unit square lattice in the complex plane. For
z € D, let j,(2) be defined by (2) and (3). Then

: 1
i B @I _ Jo ps(0.2)ds

n—>+o00 Inlnn b

forall z € D,

where pg(0, z) = (21s) "L exp(—|z|?/2s). Moreover, there is a function ¢ € L' such that for all sufficiently large n,

E[|ja(2)]]

<¢(z) forallzeD.
Inlnn

3.1. Sketch of proof

The main idea of our proof is that there are no small windings in the rescaled random walk because the granularity
of the walk makes it impossible to approach a point more closely than roughly (xn)~!/2. We thus expect the number
of windings of C, to be roughly the number of windings of the Brownian motion which stay far from z (relative to
(«n)~1/2). This has the effect of eliminating points with large winding numbers, since points with many windings
generally have many close windings. We will show that the number of points with winding number <Inn remains
roughly the same, but there are many fewer points with winding number >Inn.

Accordingly, we will bound the total winding number from below by considering just the points with small winding
number.

Proposition 3.2 (Points with low index). Let (S;,i > 0) be a random walk on R2 with i.i.d. bounded increments,
E[S; — Si—1]1 =0, and cov(S; — S;—1) =« 1. Let X; and j,(z) be as in Section 2. Then

Inn

1
ZIP’IJn(z)|>k n/ ps(0,2)ds forallz € D,
0

n% +oo Inlnn

and there is a ¢ € L' such that for all sufficiently large n,

Inn

> P[lin@)| 2 k] <) foralizeD.
k=1

Inlnn —

Note that if i,,(z) is the winding number of the unscaled random walk, as in Theorem 1.1, then

Inn

[/|zn(z)|dz} > ien 3 Pl jn(0)] 2 K]

k=1

so it follows as a corollary that

liminf

o 1 K
n—oo nlnlnn [/}ZH(Z)|dZi| o
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We will use this in Section 4.

Werner’s [16] results (see Lemma 3.4 in the next subsection) imply that the proposition also holds for the Brownian
motion; that is, when j, (z) is replaced by f(z), the number of times that the Brownian motion winds around z. This
gives the lower bound required by Proposition 3.1.

In Section 3.2, we prove this proposition through strong approximation. Since the random walk is usually close to
the Brownian motion, j,(z) and f(z) can differ only if z is close to the Brownian motion. Using Spitzer’s estimate
of the area of the Wiener sausage, we will show that most of the points with winding numbers <Inn lie far from the
curve.

This proposition relies mainly on strong approximation and not on properties of the random walk, so we can prove
it for random walks with arbitrary increments. Furthermore, it can be proved using a weaker embedding theorem, such
as the Skorokhod embedding theorem.

We get an upper bound by showing that there are few points with winding number >In#. In fact, we show that

Proposition 3.3. Under the hypotheses of Proposition 3.1, there is a function ¢ € L' such that for all k > Inn,

P[|jn(2)| = k] < @ forall z € D.

Furthermore, there is a ¢’ € L' such that for any € > 0, any k > (Inn)'*¢ and n large enough,
. Inn
P[|jn(2)| = k] < 9@ forallzeD.

The proof of the proposition proceeds by decomposing the random walk into pieces that are close to and far from
a given point z; this technique is similar to that used by Bélisle [2]. We bound the amount of winding accumulated by
the faraway pieces using strong approximation and Lemma 2.2. We bound the winding of the nearby pieces by noting
that the random walk usually spends little time near z, and so does not accumulate a large winding number while close
to z. This is different from the case of the Brownian motion, in which most of the winding around a point with high
winding number occurs very close to the point.

The proof of this proposition requires stronger machinery than the proof of the lower bound. In particular, it requires
that S, be the simple random walk on the square grid. Furthermore, we need the full power of Theorem 2.1, since
Theorem 2.1 allows us to choose ¢, so that the &,-neighborhood of z contains roughly (Inn)? grid points.

Assuming the two propositions, we can prove Proposition 3.1.

Proof of Proposition 3.1. Note that by summation by parts,

E[]jn(2)|] = Z K| jin(z) =]

k=—00

+o0
=Y P[|jn(2)] = k] 6)

k=1

Moreover, Proposition 3.3 implies that for n large enough,

Inlnn Z [|jn(@)] = k] <e¢'(z )+ & forall z € D. )

Proposition 3.1 now immediately follows from (6), Proposition 3.2 and (7). ([

We will prove Proposition 3.2 in the next subsection and Proposition 3.3 in Sections 3.3-3.6.
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3.2. Points with low index

We concentrate here on Proposition 3.2. The proof combines strong approximation [19], Spitzer’s estimate on the area
of the Wiener sausage [15], and Werner’s estimate of P[ j (z) = k] [16]. Recall that Werner showed that

Lemma 3.4 ([16], Lemma 5).
(1) Forallt > 0andall z #0,

t
x?P[w} (10, 1]) € [x, x +27]] = 231/ ps(0,2)ds.
0

(2) Forallt > 0, there is a function ¢, € L' such that for all z # 0 and all x large enough,

P[w} (10, 11) € [x, x +27]] < ¢ (2).

Proof of Proposition 3.2. For ¢ > 0, let W, be the e-neighborhood of the loop C formed by connecting the endpoints
of the Brownian motion. Since W, is mostly made up of the Wiener sausage of §, Spitzer’s estimate [15] (see also
[10]) shows that for all z,

1
tim | ne|Plz € Wl = [ pu(0.2)ds ®)
E—> 0
and that there is a ¢ € L! such that

Plzew,]< 2@
[Ineg|

©))
Observe that on the set U/, the straight-line homotopy between C and C, lies entirely in We,. So if z ¢ W, then
Jn(z) = j(2). Thus

IP[|jn(2)| = k. U] = P[|j(2)| = k. U]| <Plz € W,].

On the other hand, if j,(z) # j(z), then one of them is non-zero, so |z| < SUpg<;<1 |X¢| or |z] < supy-,< |B;|. There-
fore

B[ |jn(2)| = k. U] = P[|7(2)| > k. U | < IP’[ sup |X,| > |z|,u0] +]P’[ sup 1B > |z|,u“]

0<t<l 0<t<l

< PIUT 1 <+ min{P[ sup 18] > Izl P[]}

0<r<l

Since P[] =O(n~*), there is a ¢’ € L' such that

IP[|jn(@)] = k. U] = P[|7 )] > k. U<]| < WS)‘
Thus

[P[|jn(2)| = k] = P[|j ()| = k]| <Plz € W]+ @ o
and by (8),

Inn Inn

Y P[lin@] = k] = Y P[|j @] = k]| < nm)Plz € W, 1+

¢'(z)Inn
k=1 k=1 n
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is bounded. Thus

Inn Inn

> P[ljn(2)]| = k] = lim > P[li@] = k]
k=1

n—oc Inlnn 4

im
n—+oo Inlnn

1 1
—/ ps(0, z) ds,
T Jo

where the last equality follows from Lemma 3.4. Finally, by (10), (9) and Lemma 3.4, there is a ¢” € L! such that

¢"() " (2)
k + Inn

P[|jn ()] = k] <

9

and so

Inn

> P[lin(@)] = k] <¢” (@) Inlnn +¢" (2).

k=1

This concludes the proof of Proposition 3.2. (|
3.3. Decomposing the winding number

In the next subsections, we will prove Proposition 3.3.

To bound the probability that a point will have large index, we will introduce a decomposition of the winding
number into small, medium, and large windings, depending on their distance from the point. We will then use different
methods to bound the number of windings. During large windings, the random walk stays away from the point and is
well approximated by the Brownian motion. The number of medium and small windings is bounded by the fact that
the random walk spends little time near the point, and while the bounds on the medium and large windings only use
strong approximation, the bound on the small windings uses the full power of Theorem 2.1.

Define the stopping times (t;,7 > 0) and (o;,i > 1) by

70 :=0,

oj =inf{t > 7_; |18 —z| <2&,} Vi=1,

t:=inf{t > 0 | 1B, —z| > 4e,} Vi=1.
These times divide the curve into pieces close to z and far from z. If ¢ € [0}, T;), then |8; — z| < 4e,;if t € [1, 0i+1),
then |B; — z| > 2¢,. Let

T .= U[rl-, oi+1) N[0, 1];

i>0

this is a.s. a finite union of intervals during which |8; — z| > 2¢,,.

We also break the random walk into excursions with winding number +1/2; this decomposition relies on the
assumption that (S;, i > 0) is a nearest-neighbor walk on a square lattice, and this is the main step that requires this
assumption. Let Z be the center of the square in the rescaled lattice containing z; since z € D, this is unique. Let

AF =2+ (1 +)RT

be the halves of the diagonal line through Z. If the random walk hits AT before A_, define
eo:=inf{r > 0] X, € AT},
€41 = inf{t >e| X; € AZ_},

ey = inf{t >ei—1 | X; € Az_};
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otherwise, define the ¢;’s with + and — switched. Note that e; € Z/n for all i. We call intervals of the form [e;, e, 1]
excursions with respect to z, and let £ = £(z) be the set of all such excursions which are subsets of [0, 1]. If e = [¢1, 2]
is an excursion, set w(e) := w§(([t1 ,h])/2m ==41/2. Then

wi ([0, 1])

We will classify these excursions as small, medium or large. Let
Esm = Em(2) = {[u,v] € € || Xy — 2] < enl,
be the set of excursions starting close to z; we call them small excursions. Let
&g =Eg(2) = {[u, vlef&|[u,v]C ’T}.
These large excursions stay far from z. On the set U/, these two sets are disjoint. Let
Emd =Emd@) =&\ (Esm U &)

be the set of medium excursions, so that every excursion is either small, medium or large.
Proposition 3.3 is a consequence of the following lemmas.

Lemma 3.5. There exists a function ¢ € L', such that for all sufficiently large n, all k > 1, and all 7 € D:

Z w(e)

e€Esm

Z w(e)

e€€md

@) IP[

Inn
> k] < k—2¢(2)

(ii) P[

Inn
> ki| < k—2¢(2)-

Lemma 3.6.

(i) There is a function ¢ € L', such that for any & > 0, all sufficiently large n and k > (Inn)'*¢,

P[ Z w(e)
ety

(ii) There exists a function ¢ € L', such that for all sufficiently large n and all k > 1,

]P’|: Z w(e) @

ety
We will prove these lemmas in the next three subsections.

Inn
> k] < ﬁ(ﬁ(z) forall z € D.

forall z e D.

Zk:|§

3.4. Small excursions

In this subsection, we will prove Lemma 3.5(i) by using results on the occupation times of points by a random walk
on a lattice.

We first show that the symmetry of the random walk implies that excursions are equally likely to go clockwise or
counterclockwise. For the simple random walk, this follows from the fact that reflecting an excursion across the line
A} UAT results in an equally probable excursion which winds in the opposite direction, but there is also an argument
which relies only on the random walk being symmetric. Let [e;, ¢;41] be an excursion from Aj to A7 and let

to=max{r € [e;, ei41] | X; € AT}
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The portion of the excursion between fg and e; | travels between p; = X;; and py = X, ,. Its time reversal travels
from p, to p;. Rotating this curve by 180 degrees and translating gives a curve going from p; to p, which winds
around z in the opposite direction of the original. Replacing the section of the excursion between 7y and e; 11 by this
rotated curve is a measure-preserving map on the space of random walk paths. This map does not change £ or &y, and
changes the direction of the excursion from clockwise to counterclockwise or vice versa, so the variables w([e;, ej+1])
are independent and take values from {—1/2, 1/2} with equal probability. Furthermore,

2
IE[( Z w(e)) } = %E[#é‘sm].

e€Em

Many points have no small excursions; if the random walk never comes close to z, then &y, = . Let 7 = inf{r >
0] X; € B(z,2¢,)}. Then by Corollary 2.3,

Plr <1]= S
Inn

for some ¢ € L'. Applying the Markov property, this gives

3T hno
ecEsm
where the expectation on the right-hand side is taken conditionally on the past before time t. Since each small excur-
sion starts at a point in ( Aj UA7)NB(z, &,), the number #&, of small excursions is bounded by the number of visits
to such points; it is well known that the mean number of visits to each site is bounded by cIn#n for some constant ¢
(this follows from the fact that probability of return to the origin in k steps decays like 1/k). Since the number of
lattice points in (AZ+ U A7) N B(z, &) is of order Inn, we get

E[#€sm] < c(Inn)?
for some constant ¢ > 0, which establishes Lemma 3.5(1).
3.5. Medium excursions

On the set U, medium excursions start outside of B(z, &,) and enter B(z, 5¢,) at some point. We will divide the
medium excursions into two classes, depending on whether they start inside or outside the ball B(z, 8¢,), and bound
the number in each class.

Let

Era=Eha@ =111, 0] € Ema | 1Xy, — 2| > 8en},

be the set of medium excursions starting outside B(z, 8¢,) and

"o

i =Ema(@) :={lt1,12] € Ema | 1Xs, — 2] < 8en},
be its complement. Given 0 < a < b, define the sequences of stopping times

ab.__

Ty =0,
a,b _
;=

a,b
T

of (@) i=inflt > 0 | 1B — 2l <ae,) Viz1,
=) =inflt = 6" | 1, — 2| > bey} Vi=1.

These stopping times record the number of times the Brownian motion crosses the annulus B(z, bey,) \ B(z, ag;).
Using the skew-product decomposition, we can bound the number of such crossings that occur before time 1.
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Lemma 3.7. For any 0 < a < b, there are a constant ¢ > 0 and functions ¢ € L' and g € G, such that for sufficiently
large n and all z € C,

P[a.“”’<1]<@(1—i) +g(n )<¢() e /I 4 e(n).

~ Ilnn Inn

Proof. Recall the definitions of 7} (z) and ¢, (z) from (4). By the skew-product decomposition, there is a constant ¢ > 0
(depending on a and b) such that a Brownian motion starting on the circle of radius be, around z has probability
p <1—c/Inn of entering B(z, ag,) before escaping B(z, n). Thus, if Uia’b < T,(2), then a.s. rl.“’b < T,(z) and

P[oia_’ﬁ < Th(@)lof" b < T, (z)] =
Thus

Plof’ < T,(@)lo{"" < T,(2)] = p'

l
Furthermore it is well known that
P[Ty(z) <11 < g(n)
for some g € G. Now 01” b — tqs, (z) and by Lemma 2.2(ii), there is a ¢ € L' such that for all sufficiently large 7,

P[o}" b < 1] =Pltae, (2) < 1] < %

We conclude that

Plof"? < 1] <P[of"? < T(2), 01" < 1]+ g(n) < ¢( )p + g(n),

1

as desired. O

On U, the Brownian motion crosses the annulus B(z, 7¢,) \ B(z, 6&,) during each excursion in &’ g+ Thus, there
are ¢, ¢’ € L' such that for all sufficiently large n,

P[#Epq > k] < Plo” < 1]+ P[Ue]

< ¢(2) e—ck/lnn
~ Inn

1
Scb/(z)% +0(n) (1)

+ O(n_4)

for all k.
To bound the cardinality of SI’I’]d, we will show that if Er’l’ld is large, then the rescaled random walk likely crosses the
annulus

B(z, 11e,) \ B(z, 8¢y)
many times before time 1. First note that, on U/,
Era CE={ln.nle e, <|X; —z| <8en}.

Using strong approximation and the skew-product decomposition, one can show that the probability that a random
walk started in

(B(z,8¢,) \ B(z,en)) N AT
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leaves B(z, 11g,) before hitting A7 is bounded away from zero, say by p > 0. Let n be the number of times the
random walk crosses from inside B(z, 8¢,) to outside B(z, 11g,). Let {x;} be a sequence of independent random
variables with P[x; = 1] = p, P[x; = 0] = 1 — p. Since the starting times of excursions in € form a sequence of
stopping times,

2k/p
PIH#E = 2k/p,n < k] < P[Z X < k] <e

i=1
for some ¢ > 0. So by reproducing the steps of (11), we get

Inn

PI#E = 2k/p] < $(2) 75 +O(n™*)

for some ¢ € L.
Combining the bounds on #El’nd and #Ségd, we see that there is some ¢ € L' such that

IP’[ Z w(e)| > (1 + %)k} SIP[#Smd > <1 + %)k} §¢>(z)h]:—2n +O(n*4).

eeé‘md
We can eliminate the O(n~*) term using an argument like the one in the proof of Corollary 2.3. That is, the number
of medium excursions is at most n, and if |z| > +/n/x, then the random walk does not come near z. So

P[ Z w(e)

eeé'md

2 Inn 4
> 1+; k §¢(Z)k—2+cn 1jzj< i) L1142/ pykzn)

for some ¢ > 0 and ¢’ € L', as desired. This proves Lemma 3.5(ii).
3.6. Large excursions

In this subsection, we will prove Lemma 3.6 using strong approximation.

Note first that on the set ¢/, the winding of the Brownian motion during 7 is approximated by the winding number
of the large excursions. The difference between the two arises from excursions which intersect the beginning or end
of an interval of 7 ; each such interval can thus increase the difference by at most 1. Thus on the set I/,

w§(T)

> wle)| < ‘+#{i|fi§1}+1

ety
and

ST
P[ > wie)| > 2k + 1] 51@“1052(“ ) zk} +P[#i |5 <1} > k] +P[u]. (12)
L'Eglg
By Lemma 3.7, we have
. Inn
Pl#i 1t < 1) > k] < ~5 0 @) + () (13)

for some ¢ € L! and g € G. To prove Lemma 3.6, it thus suffices to bound

wi(7)
P >k|.
Eak
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Let

- ds 1/2
7= (/T Iﬁs—Z|2> '

Since 7 is a finite union of intervals whose endpoints are stopping times for the Brownian motion, wf8 (T N[0,1]) is
a continuous local martingale whose quadratic variation at time 1 is Z2. Thus wg (7) is equal in law to yZ , withy a
standard normal variable. If Z, is given by (5), then 4 < Z,,, and we get

P[|w}(T)| = k] <P[ly|Ze, = &].

We first show part (i) of the lemma. Let § > O be such that (1 — §)(1 + ¢) > 1. Then by Lemma 2.2(i), for n
sufficiently large depending on € and k > (Inn)!*¢, thereare ¢ > 0, ¢’ > 0, ¢ > 0 and g/, g” € G such that

Ply|Zs, = k] <P[ly| = K] + P[Zs, = k']
< e 4 g(k' e, )
< C/e,kza/z +g/(ck8/) < g”(k).
Thus for sufficiently large n and k > (Inn)'+¢,

Pl|w}(T)| = k] <k

Moreover, if |wfS (T)| = m, then we must have T;,2(0) < 1; this has probability less than e—dlz\z for some constant
d > 0. By interpolation this gives

P[|wj(T)| = k] < k~2e~4/2, (14)

Thus by (12)—(14) there is a ¢ € L', independent of &, such that for all sufficiently large n and k > (Inn)'*¢,
P[ > we)

eeyy
As in the previous subsection, we can eliminate the O(n~*) term by changing ¢. This proves part (i) of Lemma 3.6.
For part (ii), we use Lemma 2.2(iii). If n is sufficiently large, we have

> k] < lZ—f«b(z) +0(n™%).

2
P[lylzsnzk]=/0 Vin
</°° 2 _epp@r, 2 90
“Jo V2T k 2k

k
e_xz/zlP’[Zgn > —:| dx
X

for some ¢ € L'. Thus
IE”|: Z w(e)

ee&g
for some ¢’ € L', and as above, the O(n %) term can be absorbed into ¢

. k] AN
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4. Application to the study of Dehn functions

One motivation for studying the winding numbers of random walks comes from geometric group theory, namely the
study of Dehn functions. For an introduction to Dehn functions with rigorous definitions, see [5]; we will only sketch
the definitions. Given a closed curve y in a space X, one can ask for the infimal area of a disc with boundary y. We
call this the filling area of y, denoted 6(y ), and define a function é so that §(n) is the supremal filling area of curves
in X with length at most #; this is the Dehn function of X.

Gromov noted that when a group G acts properly discontinuously and cocompactly on a connected, simply con-
nected manifold or simplicial complex X, the filling area of curves can be described in terms of G [8]. Roughly,
formal products of generators of G (words) correspond to curves in X and conversely, curves in X can be approxi-
mated by words. For example, if X is the universal cover of a compact manifold M and G = (M), generators of G
correspond to closed curves in M. A formal product w of generators corresponds to a concatenation of these curves,
and if w represents the identity in G, this concatenation lifts to a closed curve in X. A disc whose boundary is this
curve corresponds to a way of using the relators of G to show that w represents the identity. We define the Dehn
function of a group similarly to that of a space; if w is a word, let w be the element of G represented by w, and if w
is the identity, let the filling area 5 (w) of w be the minimal number of applications of relators necessary to reduce w
to the identity. Define the Dehn function 6 of G so that §(n) is the maximal filling area of words with length at most n
(that is, formal products with at most n terms). The Dehn function of a group depends a priori on the presentation of
the group, but one can show that the growth rate of § is a group invariant and that the Dehn function of G grows at the
same rate as that of X.

Note that we are using two related notions of length: the length of a curve in a manifold and the length of a word,
which is the number of generators in the word. We will denote word length by ¢,, and curve length by £.; if y is the
curve corresponding to a word w, then £.(y) ~ £y, (w).

The Dehn function measures maximal filling area; Gromov [8], Chapter 5.A’, also proposed studying the distribu-
tion of §(w) when w is a random word of length n. This has led to multiple versions of an averaged Dehn function or
mean Dehn function; see [3] for some alternatives to our definition. We will give definitions based on random walks.
Given a random walk on G supported on the generators, paths of the random walk correspond to words; in particular,
the random walk induces a measure on the set of words of length n. We can thus define the averaged Dehn function
davg(n) to be the expectation of é(w) with respect to this measure, conditioned on the event that w represents the
identity in G. If the random walk has a non-zero probability of not moving at each step, this is defined for all n. The
averaged Dehn function is not known to be a group invariant and it is possible that its growth depends on the transition
probabilities of the random walk.

The averaged Dehn function often behaves differently than the Dehn function. For example, in Z?, the Dehn
function is quadratic, corresponding to the fact that a curve of length n in R? encloses an area at most quadratic in .
On the other hand, random walks in Z? enclose much less area, so if G = Z2, then

Savg(m) = O(nlnn)

for a wide variety of random walks [18]. A similar phenomenon occurs in nilpotent groups; if G is a nilpotent group
and 8(n) = O(n*) for some k > 2, then Savg(n) = O(n*/2y for many random walks [18].

Since the averaged Dehn function involves bridges of random walks on groups, it is often difficult to work with.
M. Sapir has proposed an alternative, the random Dehn function [3], which depends on a choice of a random walk and
a choice of a word v, for every element x € G so that v, represents x !, If w is a word, wvy is a word representing
the identity; essentially, the v, give a way to close up any path. One can then define

Sma(n) = E[8(wvy)].,

where w is chosen from the set of words of length n with measure corresponding to the random walk.

This function depends a priori on the choice of vy, but if the length €,,(v,) of v, satisfies €y, (vy) ~ ||x|l2, where
Il - Il is the £2-norm in Z4, then vy is usually much shorter than the random walk, and we will show that the choice of
vy has little effect on the asymptotics of g (n).

If w=w;---w, is a word in Zd, let W be the curve in RY connecting

w_l,wlwz,...,w1---wn€chRd
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by straight lines.

Proposition 4.1. Let (S;,i > 0) be a random walk on Z¢ with i.i.d. bounded increments and mean 0. Let ¢ > 0, and
for every x € 74,d>2, let yx be a curve connecting x to 0 such that £.(yy) < c||x||2. There is a ¢’ > 0 such that for
sufficiently large n,

E[8(Wya)] = c'ninlnn,
where w is chosen from the set of words of length n with measure corresponding to the random walk.

Proof. Winding numbers provide a lower bound on the filling area of curves in the plane; if y:S' — R?, and
f:D* — R? is a piecewise linear or smooth map with boundary y, then #£~!(x) > |i, (x)| away from a set of
measure zero and thus

areafz/ |iy (x)] dx.
R2

Indeed, fRz ‘iy (x)| dx is the abelianized area of wyy, a function defined in [1] as a lower bound for the filling area.

As in the 2-dimensional case, we can define a random closed curve S in R4 which consists of a random walk and
a line connecting the endpoints. Let p:R? — R? be the projection onto the first two coordinates; since this map is
area-decreasing,

5(S) z/ lipes) ()| dx.
]RZ

The curve S can be obtained from wyy by replacing y with a straight line. Define A to be the concatenation of y,
and the straight line connecting 0 and x; by the hypothesis on y,, this is a closed curve of length at most (¢ + 1)||x||>.
It can be filled by a disc f; : D? - R? whose boundary is A, and which satisfies area( fy) < (¢ + 1)2||x ||%.

If h: D?> — R is a disc with boundary Wy, we can construct a disc with boundary S by adjoining f to &, and
s0

5@y = [ lips )] dx = @+ Dol

R

Then Proposition 3.2 implies that there is a ¢’ > 0 such that
E[8(@ys)] > ¢nlnlnn — (c + D?E[(I10]2)*]-

Since w is the nth step of a random walk on Z?, w is the sum of n independent variables with bounded variance and
mean 0, so there is a ¢” such that E[”II}”%] =c"n. Thus

/

E[5(@vq)] = Snininn
for sufficiently large n, as desired. O

If v, are as in the definition of the random Dehn function and £,,(vy) ~ ||x||2, we can let y, = Uy in the proposition
above to get a bound

Smd(n) > cnlnlnn
for some c. If Z¢ is given by the standard set of generators z1, ..., z4, we can define an appropriate set of v, by letting

S 9 —Xd
V(xi,oxg) =21 """%q -
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Compare this result to the upper bound attributed to Sapir in [3], which states that under these conditions, there is
/
a ¢’ such that

Sdmd(n) < cnlnn.

5. Extensions to bridges and other random walks

We can prove a similar result to Proposition 4.1 for the averaged Dehn function of Z> by extending Proposition 3.2 to
the random walk bridge. To prove Proposition 3.2, it suffices to have strong approximation of the random walk bridge
by a Brownian bridge, estimates of E[f(z)], and estimates of the probability of lying near the loop; all of these results
exist in the literature. Borisov [4] has proven a strong approximation theorem which applies to the simple random
walk bridge in Z2, and the analogue of Werner’s result for the Brownian loop is a consequence of Yor [17]. Note that
for Brownian loop, the result is more precise since [17] gives an exact formula for the expected area of points with
index k # 0. The case k = 0 has even been computed recently by Garban and Trujillo Ferreras [7]. Finally the upper
bound on the probability of being close to the Brownian loop is a consequence of the fact that the law of the Brownian
loop for ¢t € [0,1/2] or t € [1/2, 1] is absolutely continuous with respect to the law of the Brownian motion. More
precisely, for ¢ > 0, denote by W/ the Wiener sausage associated to the Brownian loop. Denote by P or E the law of
the Brownian motion and by P’ the law of the Brownian loop. Now if p;(x, y) is the heat kernel, then one has

1171/2(0,,31/2)1 W:|
p1(0,0) =W

for all £ > 0. Since p1,2(0, x) is bounded, (8) implies that

Plze W] < 2E[

Plze W] <¢(@)/lne]

for some ¢ € L' as desired. Thus there is a ¢ > 0 such that Save(n) > cnlnlnn for sufficiently large n. We suspect that
neither of these lower bounds is sharp and conjecture that in fact 8,y¢ (1) and 8yq(n) grow like nInn, corresponding
to the upper bound in [18] for 8,v¢ (1) and the upper bound on §ynq (1) which is attributed to Sapir in [3]. The integral
fRZ liy (x)|dx is the area necessary to fill y with a chain or an arbitrary manifold with boundary, and requiring that
the filling be a disc should increase the necessary area.

Extending Theorem 1.1 to more general situations seems difficult, because of the use of £, but it can be extended
to walks with certain symmetries. For instance, £ can be defined for the simple random walk on the triangular lattice.
If z is a point in the plane and X, is the rescaled triangular random walk, let s be an edge of the triangle containing z,
let AT and A~ be opposite sides of the straight line containing s and define ¢; and £ as before. If e € £, define w(e)
to be 0 if X, traverses s during e. If this does not happen, then X; goes around s in either the positive or negative
direction; let w(e) = £1/2 depending on the direction. Note that each direction is equally likely, just as in the case of
the square lattice.

Then

&n(s)

Jn (@) —Zw(e) <2+ 5

ec€

where g, (s) is the number of times that X; traverses s. We can bound Zee £ w(e) exactly as before, by breaking &£
into small, medium, and large excursions, so it remains only to bound g, (s). This is straightforward; since the random
walk is n steps long, ) " g,(s) =n, and there is a ¢ € L' such that E[g, (s)] < ¢(z)/n. A similar proof holds for the
simple random walk on the honeycomb lattice.
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