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Abstract. In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to
a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation
procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymp-
totic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions.
Some applications to the goodness-of-fit test and the construction of bivariate distributions are proposed.

Résumé. Dans cet article nous étudions les composantes principales non linéaires définies par Salinelli en 1998, dans le cas d’une
variable aléatoire réelle. La signification probabiliste et statistique est approfondie et des proprietés sont illustrées. Une procédure
d’estimation basée sur les fonctions splines, qui adapte la méthode classique de Rayleigh–Ritz, est présentée. Des propriétés
asymptotiques de cet estimateur sont établies, et on donne une borne pour la vitesse de convergence sous des conditions générales.
Des applications aux tests d’ajustement et à la construction de distributions bivariées sont proposées.
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1. Introduction

Linear Principal Components Analysis (LPCA) of a real random vector is a well-known multivariate statistical tech-
nique mainly appreciated as a dimensional reduction tool in data analysis. Many different but equivalent definitions
of LPCs are known (see [23]) concerning in any case the goal of finding a linear change of coordinates such that
the transformed random vector has uncorrelated components or, in other words, its covariance operator is in diag-
onal form. The more general definition of LPCs for functional variables (see [15]), based on the Karhunen–Loève
decomposition, follows the same idea.

Starting from the 70’s, a rich literature which extends LPCA to the more general context of nonlinear transforma-
tions has been developed, motivated by the aim of detecting nonlinear structures in random vectors. Several different
but not equivalent definitions of “nonlinear” principal components have been proposed (for a short survey see the
introduction in [31]) each one based on the generalization of some property of LPCs. Many of these definitions give
countable many nonlinear PCs for a random vector, excluding a priori the possibility of using them in the reduction
of dimensionality and then raising the need to deepen their statistical meaning and applicability.

To this group of definitions belongs the one proposed in [30]: nonlinear principal components (in the sequel NLPCs)
of a random vector with zero mean and positive definite covariance matrix were introduced as a solution of a variance
maximization problem over the weighted Sobolev space of real valued nonlinear transformations which are centered,
square integrable and differentiable in the weak sense, with square integrable first derivatives. Some results on the
existence of NLPC transformations and their properties were proved for densities bounded away from zero and infinity,
whereas in [31] the NLPCs of a Gaussian random vector were considered, obtaining a characterization result and
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giving new insight on the so-called “horse-shoe” effect. However, in these works, the probabilistic and statistical
meaning of NLPCs and the problem of their estimation and applications were not investigated.

The aim of this paper is to face these questions in the one-dimensional case, that is for random variables (r.v.s).
This choice is justified by several different reasons: first, given the depart of NLPCs from the classical idea of LPC as
a reduction of dimensionality, in order to explore the statistical meaning of NLPCs it is not too restrictive to consider
the one-dimensional case where PCA make no sense, gaining however in simplicity and mathematical tractability;
second, as shown later on, it is possible to prove some results on the transformations of random variables which do
not appear easily extensible to a multivariate context; furthermore, we feel that the analysis of the one-dimensional
case could give some insight on the possibility to expand the idea, only sketched in [30], of introducing marginal
nonlinear principal components of a random vector.

Our work is organized in three parts. In the first one (Sections 2 and 3), specializing the definition given in [30],
we introduce optimal transformations of a random variable as solution of a variance maximization problem with a
normalization differential constraint, calling them, by analogy with the multivariate case, nonlinear principal compo-
nents. We show how this maximization problem on a functional space can be solved with the so-called direct method
of the calculus of variations on which, in the second part, we base the estimation procedure proposed.

The probabilistic-statistical meaning of NLPCs is clarified under two different, but related, points of view. From
one part we show that the first (i.e. with maximum variance) NLPC transformation is equal to the optimal transfor-
mation (i.e. the one that realize the equality) in the Chernoff–Poincaré inequality (see e.g. [7,12,13]): thus, all the
NLPC transformations can be considered optimal transformations for suitable restricted Chernoff–Poincaré inequal-
ities. From another point of view, we show how finding NLPCs is equivalent to determining a complete basis of the
weighted Sobolev space on which is posed the maximization variance problem which diagonalizes the extension to
this space of the covariance operator associated to the random variable considered: hence NLPCs transformations and
their variances are the eigenfunctions and the eigenvalues respectively of this extended covariance operator.

Besides, we have obtained further improvements with respect to what obtained in [30] and [31]: the assumptions
on the density of the initial r.v. are weakened, new examples (with a nonexistence case) are presented, we prove a
symmetry result for the NLPCs transformations and the monotonicity of the first one, a result that do not extend to the
multivariate case. Using this last result, we are able to prove a weak version of a characterization result known in the
Chernoff–Poincaré literature.

The second part (Sections 4, 5 and 7) of our work is devoted to introducing and analyzing an estimation procedure
of NLPCs based on splines, adapting in a statistical perspective the classical Rayleigh–Ritz method. After defining the
estimator, we derive its explicit expression showing how the problem of estimating the NLPC transformations reduces
to a generalized eigenvalue one. Then we give some asymptotic results. In particular, we prove that the empirical
estimates of NLPCs exist and they are unique except on an event whose probability approaches zero as the sample
size tends to infinity. Moreover, under mild regularity conditions on the NLPCs transformations, by choosing the
degree of the splines and the number of knots properly, we obtain an upper bound for the rate of convergence in
probability. A simulation study completes the analysis, showing the performances of the proposed estimator.

In the third part (Section 6) we suggest how to use in practice NLPCs, discussing two possible applications: the
aim is to show how some properties of NLPCs turn out interesting in statistical frameworks involving distributional
aspects. More precisely, we apply the characterization property in defining a goodness-of-fit test. Here we illustrate
this idea in testing uniformity: we carry out a simulation study from which the good performances of this procedure
emerge. Moreover, since NLPCs transformations represent a suitable basis of the functional space associated to the
density of a r.v., they may help in the study of the dependence structure between two r.v.s. In this perspective we dwell
on the study of the properties of a family of bivariate dependent variables, constructed using NLPCs.

2. Notation, definitions and existence results

We start by recalling briefly the definition of nonlinear principal component for a real, absolutely continuous (a.c.)
random vector X with density fX having support a domain (an open and connected set) D ⊆ R

p given in [30]. The
starting point was to note that the normalization constraint ‖aj‖2

Rp = 1 on the vector transformations to find the j th
LPC Yj = aT

j X, j = 1,2, . . . , p, of X can be equivalently replaced by ‖∇aj‖2
Rp = 1 where aj : Rp → R is the linear

functional represented by aj . Thus, the j th nonlinear principal component of X was defined as the r.v. Zj = ϕj (X)
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where ϕj solves

max E
[
u(X)2],

sub E
[∥∥∇u(X)

∥∥2
Rp

] = 1, u ∈ Ẇ
1,2
X , (1)

E
[
u(X)ϕs(X)

] = 0, s = 1,2, . . . , j − 1, j > 1,

and Ẇ
1,2
X is the weighted Sobolev space of real valued nonlinear transformations u centered, square integrable (that

is belonging to L̇2
X) and differentiable in the weak sense, with square integrable derivatives.

Denoting by Υ (D) the set of a.c. r.v.s X with zero mean, finite variance and density fX having support the closure
D of the interval D = (a, b), −∞ ≤ a < b ≤ +∞, we introduce the following definition.

Definition 2.1. The r.v. Zj = ϕj (X) is said to be the j th nonlinear principal component of X ∈ Υ (D) if ϕj solves

max E
[
u(X)2],

sub E
[
u′(X)2] = 1, u ∈ Ẇ

1,2
X , (2)

E
[
u(X)ϕs(X)

] = 0, s = 1,2, . . . , j − 1, j > 1.

By Ẇ
1,2
X = Ẇ 1,2(D,fX) and L̇2

X = L̇2(D,fX) we denote the one-dimensional versions of spaces Ẇ
1,2
X and L̇2

X
respectively. As known, L̇2

X is a separable Hilbert space with respect to the inner product 〈u,v〉0 = E[uv] with in-

duced norm ‖u‖0 = √〈u,u〉0, whereas Ẇ
1,2
X is an inner product space with respect to 〈u,u〉1 = E[u′v′]. A sufficient

condition for Ẇ
1,2
X to be a separable Hilbert space (see [21]) that will assume in the sequel is

(1/fX) ∈ L1
loc(D). (3)

Note that several usual distributions as e.g. the uniform, exponential or normal ones, satisfy (3).
As well known, in classical PCA the normalization constraint ‖aj‖2

Rp = 1 implies the boundedness of the variance
E[aTX] of the transformed variables, which is a necessary condition for the existence of LPCs. The differential
normalization constraint E[u′(X)2] = 1 plays the same role in the nonlinear framework of Definition 2.1, but its
effectiveness cannot be taken for granted: the existence of a constant C, depending on the domain D, such that

E
[
u(X)2] ≤ CE

[
u′(X)2] ∀u ∈ Ẇ

1,2
X (4)

is not assured for any a.c. r.v. The inequality (4) is known as the Chernoff–Poincaré inequality (in the sequel CP-
inequality). The interest for it in the probabilistic-statistical literature has notably grown starting from the seminal
work of Chernoff [13] on the CP-inequality for Gaussian random variables. Nowadays several results on the validity
of (4) for different univariate and multivariate distributions and some different applications to the characterization of
the normal and uniform distributions, or to the central limit theorem are known (see e.g. [7–10,20,22]).

Note that, fixed X ∈ Υ (D), if there exists u∗ ∈ Ẇ
1,2
X which realizes equality in (4) with E[u′∗(X)2] = 1, then

u∗ = ϕ1 that is, Z = u∗(X) is the first NLPC of X and the (optimal) Poincaré constant C represents its variance.
The same reasoning extend to the others NLPC transformations. The j th NLPC transformation ϕj (if there exists) of
X ∈ Υ (D) is the optimal transformation (that is Cj = E[ϕj (X)2]) of the restricted CP-inequality:

E
[
u(X)2] ≤ CjE

[
u′(X)2] ∀u ∈ Ψj ,

where

Ψj = {
u ∈ Ẇ

1,2
X : E

[
u′(X)2] = 1,E

[
u(X)ϕs(X)

] = 0, s = 1,2, . . . , j − 1
}
. (5)

A final remark: since the CP-constant C can be defined as

C = sup
u∈Ẇ

1,2
X

E[u(X)2]
E[u′(X)2]
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it is possible to find r.v.s (see Example 3.4 later on) for which the CP-inequality holds but that do not have NLPCs.
Now we prove an existence result recurring to the so-called direct methods of the calculus of variations (see [6]),

on which is based the estimation procedure introduced in Section 5. We set, for the sake of convenience,

F [u] = E
[
u2(X)

]; Q[u] = E
[(

u′(X)
)2]

.

Theorem 2.1. If the embedding ID : Ẇ 1,2
X → L̇2

X is compact, then problem (2) admits countably many solutions ϕj .

Proof. The first step to solve (2) is to look for solutions of the problem

max F [u] on Ψ1 = {
u ∈ Ẇ

1,2
X : Q[u] = 1

}
. (6)

Note that F [u] ≥ 0 and, assuming the validity of (4), there exists a constant C1 such that sup F [u] = C1. This implies
the existence of a maximizing sequence {us} in Ψ1, i.e. F [us] → C1. By definition of Ψ1 the sequence {us} is uniformly
bounded (since Q is the norm of Ẇ

1,2
X ) hence there exists a subsequence {usj } such that usj weakly converges in Ẇ

1,2
X

to u. Since the validity of (4) means that the embedding ID is continuous, it follows that F is continuous with respect
to the weak convergence in Ẇ

1,2
X . Furthermore, if ID is compact, then usj strongly converges to u in L̇2

X and this

implies that the convergence is strong in Ẇ
1,2
X too.

Proved the existence of an element ϕ1 in Ψ1 such that

F [ϕ1] = λ1 = max
{

F [u]: u ∈ Ψ1
}

the previous approach is applied to the sets Ψj defined in (5) giving the existence of two sequences {λj } and {ϕj } such
that

F [ϕj ] = λj = max
{

F [u]: u ∈ Ψj

}
, j ∈ N \ {0}. (7)

�

Remark 2.1. The relation (7) can be stated equivalently in terms of the so-called Rayleigh quotient Q[u]/F [u] as

F [ϕj ] = λj = max
{

F [u] \ Q[u]: u ∈ Ψ j ,u �= 0
}
,

where Ψ j = {u ∈ Ẇ
1,2
X : E[u(X)ϕs(X)] = 0, s = 1,2, . . . , j − 1}. Note that, by construction, λj represents the vari-

ance of the r.v. Zj = ϕj (X).

Next theorem gives some further insights on the statistical meaning of NLPCs. We recall that the covariance
operator V of a random variable with values in a real separable Hilbert space H , having finite second moments is the
unique linear operator from the dual H ′ to H such that〈

V (ϕ),ψ
〉
H ′,H = E[ϕψ].

Theorem 2.2. The solutions λj and ϕj of problem (2) are the eigenvalues and the corresponding eigenfunctions of
the extension G to L̇2

X of the covariance operator V associated to X.
If ID is compact it holds:

(i) there are countably many eigenvalues λj which are real positive, simple with 0 as unique limit point;
(ii) the eigenfunctions ϕj of G are mutually orthogonal and form a complete set in Ẇ

1,2
X ;

(iii) the j th eigenfunction ϕj has exactly j zeros in the open interval D;
(iv) if fX and 1/fX are in L1(D) the following asymptotic formula holds:

lim
j→+∞ j2λj = meas(D2)

π2
.
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Proof. We prove only the first statement, the others being standard consequences of the spectral theory of linear
compact operators in Hilbert spaces (see [6,14]).

If ϕ1 is the first solution of (2), applying the Lagrangian multipliers method, there exists a real positive constant λ1

such that

λ1〈ϕ1, h〉1 = 〈ϕ1, h〉0 ∀h ∈ Ẇ
1,2
X (8)

with the natural boundary conditions (possibly to be intended as limit):

fX(a)ϕ′
1(a) = fX(b)ϕ′

1(b) = 0. (9)

The continuity of l(h) = 〈u,h〉0, h ∈ Ẇ
1,2
X , for any fixed u ∈ L̇2

X that follows by the CP-inequality, implies by Riesz

representation theorem, the existence of a continuous linear operator G : L̇2
X → Ẇ

1,2
X defined by

〈ϕ1, h〉0 = 〈Gϕ1, h〉1 ∀h ∈ Ẇ
1,2
X . (10)

Thus Eq. (8) can be written as

〈Gϕ1, h〉1 = λ1〈ϕ1, h〉1 ∀h ∈ Ẇ
1,2
X (11)

i.e., equality (8) is equivalent to state that λ1 and ϕ1 are the dominant eigenvalue and the corresponding eigenfunction
of the operator G. The same argument can be repeated for all other solutions of (2). Hence finding NLPCs is equivalent
to looking for a basis of Ẇ

1,2
X that diagonalizes G. Note that the restriction of G to Ẇ

1,2
X is invertible, positive and

self-adjoint. Furthermore, the isometric isomorphism between the space of continuous bilinear forms on Ẇ
1,2
X and the

one of continuous linear operator from Ẇ
1,2
X to its topological dual, guarantees that G represents in an unique way the

extension to Ẇ
1,2
X of the covariance operator that represents V . Note that when Ẇ

1,2
X is densely contained in L̇2

X we
can consider the (unique) extension of G to L̇2

X . �

The last part of the previous proof shows that looking for the NLPCs of a r.v. X is equivalent to looking for a
complete basis of L̇2

X that diagonalizes the extension to this space of the covariance operator of X. Hence, since

{ϕj } is an orthonormal basis of Ẇ
1,2
X , by a density argument, {λ−1/2

j ϕj } represents an orthonormal basis of L̇2
X and,

expanding with respect to this basis the identity function iD(X) = X, we find

X =
+∞∑
j=0

ϕj (X)E
[
ϕ′

j

]
.

Note that the elements ϕj are ordered by their variances. An extensive use of Fourier expansions of r.v.s was made
in the work of Lancaster and its school (see e.g. [24]): in the framework of bivariate r.v.s (X,Y ) they generalized the
canonical linear analysis to a nonlinear context. We will see in Section 7 that many ideas for the applications of the
nonlinear canonical variables in the study of the dependence structure between two r.v.s may be extended also for
NLPCs.

The previous discussion puts in evidence that a key result is the compactness of the embedding ID : several con-
clusions about it are collected in the following theorem (see [1,6]).

Theorem 2.3. For X ∈ Υ (D), with D ⊆ R, the following conclusions hold:

(i) if D is bounded and there exist two constants c1 and c2 such that

0 < c1 ≤ fX(x) ≤ c2 ∀x ∈ D (12)

then the embedding ID is compact;
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(ii) if fX ∈ C1(D) is positive in every compact interval K ⊂ D, and near the boundary ∂D can be expressed
as fX(x) = g(δ), where g ∈ C1 is positive, nondecreasing, with bounded derivative, such that limδ→0+ g(δ) = 0 and
δ(x) = dist(x, ∂D), then ID is compact;

(iii) if fX ∈ C0(D) is bounded from above, and Dr = {x ∈ D: |x| > r}, then the compactness of ID implies that
for every k ∈ Z

lim
r→+∞ ekr

∫
Dr

fX(x)dx = 0; (13)

(iv) if D = R with symmetric density fX(x) = g(|x|) where g ∈ C1([0,+∞)) is positive, nonincreasing, with
bounded derivative, then ID is compact if and only if

lim
s→+∞

g(s + ε)

g(s)
= 0 ∀ε > 0.

Remark 2.2. As pointed out in [30], condition (iii) in Theorem 2.3 can be reformulated in terms of the moment
generating function (m.g.f.) of X ∈ Υ (D): the existence on R of the m.g.f. is a necessary condition for the compactness
of ID .

We conclude this section observing that the regularity of the quadratic function which defines the functional F
implies that the regularity of the eigenfunctions ϕj strictly depends on the regularity of the density fX . More precisely,
if fX ∈ Cm then ϕj ∈ Cm+1 for all j and m ≥ 1.

3. Some examples and further results

The examples presented in this section are based on the possibility to analytically compute the NLPC transformations
as solutions of the Euler equation associated to problem (2). It is a standard fact (see e.g. [6]) that a normalized (in
Ẇ

1,2
X ) solution ϕj of λ〈u,h〉1 = 〈u,h〉0 (the general version of (8)) is a weak solution corresponding to the constant

ξj = λ−1
j of the Sturm–Liouville problem (SLP) with homogeneous Neumann boundary conditions (see [34]){
−(

fXu′)′ = ξfXu,

fX(a)u′(a) = fX(b)u′(b) = 0.
(14)

From an operatorial point of view this means that ϕj is the j th eigenfunction corresponding to the eigenvalue ξj of
the differential operator G (the inverse of G) defined by

G[u] = − 1

fX

(
fXu′)′

. (15)

A strong solution of (14) is a function u :D → R such that u and its quasi-derivative fXu′ are absolutely continuous
on each compact subinterval of D and the equation is satisfied a.e. on D. The endpoint a ∈ R ∪ {±∞} is called regular
if there exists d ∈ D such that (1/fX) ∈ L1((a, d)), otherwise it is called singular. The same definitions hold for b.
Note that the regularity condition is stronger than (3) that guarantees Ẇ

1,2
X is Hilbert.

Remark 3.1. If ξj and ϕj solve (14) then, by an integration by parts, we obtain

ξj

∫
D

xϕj (x)fX(x)dx = −
∫

D

x
(
ϕ′

j (x)fX(x)
)′ dx

= −[
xϕ′

j (x)fX(x)
]
∂D

+
∫

D

ϕ′
j (x)fX(x)dx

=
∫

D

ϕ′
j (x)fX(x)dx,
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where the last equality descends from ϕ′
j ∈ L̇2

X . Hence for any NLPCs transformation it holds:

E[Xϕj ] = λjE
[
ϕ′

j

]
. (16)

The simplest example of what exposed above is the following.

Example 3.1 (see [30]). A r.v. X uniformly distributed on (−a/2, a/2), a ∈ R+, by condition (i) in Theorem 2.3,
admits NLPCs. Solving (14) we obtain

ϕj (x) = −
√

2a

jπ
cos

(
jπ

a

(
x + a

2

))
, j ∈ N \ {0}, x ∈ (−a/2, a/2), (17)

with corresponding variances λj = a2/j2π2.

In particular, ϕ1(x) =
√

2a
π sin(π

a
x) with λ1 = a2/π2: this last is the optimal CP-constant obtained by direct com-

putation in [29].

The following example concerns a non-symmetric r.v. which satisfies (12).

Example 3.2. Consider the r.v. X with density

fX(x) = Ke−αx x ∈ (b, c), (18)

where, fixed b and c such that −∞ < b < 0 < −b < c < +∞, the parameters K and α are such that
∫ c

b
fX(x)dx = 1

and E[X] = 0.
Solving the associated Sturm–Liouville problem

y′′ − αy′ + ξy = 0 (19)

with Neumann condition y′(b) = y′(c) = 0, for j ∈ N \ {0} one finds

ϕj (x) = √
2eαx/2

(
jπ

c − b
cos

jπ(b − x)

c − b
+ α

2
sin

jπ(b − x)

c − b

)

×
(√

a(c − b)ξj · signum

(
jπ

c − b
sin

(
jbπ

c − b

)
− α

2
cos

(
jbπ

c − b

)))−1

with corresponding NLPCs variances

λj =
(

α2

4
+ j2π2

(c − b)2

)−1

.

Note that, as prescribed by Theorem 2.2, we have

j2λj ∼ (c − b)2

π2
as j → +∞.

The next example, treating a singular case on a bounded domain, shows that even when it is not immediate to
derive an explicit form of NLPC transformations, their existence can be however stated.

Example 3.3. Let us consider the family of generalized beta distributions with density fX defined by

fX(x) = C
(
1 − x2)α

, x ∈ (−1,1), α ∈ R+, (20)

where C is the normalization constant. Note that for α = 0 we obtain the uniform distribution, for α > 0 we have the
density of an unimodal symmetric distribution (in particular, for α = 1/2 the Wigner one).
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All the r.v.s of this family admit NLPCs. In fact, for α = 0 the result is stated in Example 3.1. Noting that(
1 − x2)α = δα(x)

(
2 − δ(x)

)α

having set δ(x) = 1−|x| and applying (ii) of Theorem 2.3, the existence of NLPC transformations is proved for α ≥ 1.
With a similar reasoning the same conclusion holds for 0 < α < 1 thanks to Theorem 8.8 in [19].

If the support D is unbounded, the existence of NLPCs is not guaranteed, as showed in the following example.

Example 3.4. The r.v. X ∈ Υ ([−α−1,+∞)) with α > 0 and density

fX(x) = α exp{−1 − αx}
does not satisfy the necessary condition of compactness of Remark 2.2.

Operating as in Example 3.2, it is easy to prove that the associated Sturm–Liouville problem has no solutions, i.e.
X has not optimal transformations satisfying (2).

We note that for an exponential distribution with density fX(x) = αe−αx on (0,+∞) the CP-inequality

Var
[
u(X)

] ≤ 4

α2
E

[(
u′(X)

)2] (21)

was proved in [20] (for a related but different inequality see also [8]). Observe that equality in (21) cannot be reached
by any L2

X function; furthermore, 4/α2 is the reciprocal of the value of ξ which corresponds to a null discriminant of
the characteristic equation associated to (19) and (see Example 3.2):

lim
c→+∞λj = lim

c→+∞

(
α2

4
+ j2π2

(c − b)2

)−1

= 4

α2
.

We show now that the normal distribution admits NLPCs.

Example 3.5 (see [31]). Let us consider X ∼ N (0, σ 2). By (iv) of Theorem 2.3, X admits NLPCs. To compute them,
observe that the differential operator G[u] = −ex2/2σ 2

(e−x2/2σ 2
u′)′ associated to (14) is the well-know Ornstein–

Uhlenbeck operator having (nonconstant) eigenfunctions, orthonormal in Ẇ
1,2
X , given by

ϕj (x) = (
jσ 2(j−1)

)−1/2
Hj(x), j ∈ N \ {0},

where Hj is the j th Hermite polynomial

Hj(x) = (−σ 2)j√
j ! ex2/2σ 2 dj

dxj

(
e−x2/2σ 2)

, j ∈ N \ {0}.

The variances λj of the NLPCs Zj = ϕj (X) are expressed in a simple form in terms of the variance of X:

λj = σ 2

j
, j ∈ N \ {0}.

The first NLPC transformation is the identity function ϕ1(x) = x: as proved in [31] in a multivariate framework, this
happens only in the Gaussian case. The optimal Poincaré constant λ1 = σ 2 coincides with the one found in [13].

Note furthermore that λ2 coincides with the restricted CP-constant R∗
X introduced in [22] as

R∗
X = sup

u∈ ∗Ẇ 1,2
X

E[u(X)2]
E[u′(X)2] ,
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where ∗Ẇ 1,2
X = Ẇ

1,2
X ∩ {u: E[u′] = 0}, that is, to be orthogonal to the first NLPC transformation ϕ1 and to have

centered first derivative coincides:

E
[
ϕ1(X)ϕ2(X)

] = 0 ⇔ E
[
ϕ′

2

] = 0.

This is a direct consequence of the Stein equality (compare with (16)) for Gaussian distributions

E
[
u′(X)

] = E
[
Xu(X)

]
, u ∈ Ẇ

1,2
X ,

and ϕ1(x) = x. This result is not true for any distribution. For example: the transformation ϕ2 in Example 3.2 does
not satisfy E[ϕ′

2(X)] = 0.

Theorem 2.2 of Section 2 states many properties of the NLPCs and their corresponding variances. We investigate
some further properties particularly interesting for their statistical meaning and applicability.

We start with a result which relates the symmetry of the density fX of a r.v. X with the one of its NLPC transfor-
mations.

Theorem 3.1. Let X ∈ Υ (D) be a r.v. that admits NLPCs. If fX is even then the NLPC transformations ϕj are
alternatively even and odd, with ϕ1 odd.

Proof. If fX is even, then the operator G defined in (15) is even in the following sense:

G(−x) = − 1

fX(−x)

d

d(−x)

(
fX(−x)

d

d(−x)
y(x)

)
= − 1

fX(x)

d

dx

(
fX(x)

d

dx
y(x)

)
= G(x)

and this implies (see [2]) that its eigenfunctions are odd or even. Since the dominant eigenfunction, by Theo-
rem 2.2(iii), has one and only one zero, it must be odd. The orthogonality properties of ϕj ’s imply the general part of
the thesis. �

Remark 3.2. Theorem 3.1 implies that if fX is even then ϕ2 is the transformation which corresponds to the optimal
CP-constant

λ2 = sup
u∈ ∗Ẇ 1,2

X ∩Ψ ∗
2

E[u(X)2]
E[u′(X)2] ,

where

Ψ ∗
2 = {

u ∈ Ẇ
1,2
X : E

[
u(X)ϕ1(X)

] = 0
}
.

The second result we present concerns a monotonicity property of the first NLPC transformation, result which
cannot be extended to the others NLPCs transformations.

Theorem 3.2. Let X ∈ Υ (D) be a r.v. which admits NLPCs. If fX ∈ C1(D) then the first NLPC transformation ϕ1 of
X is strictly monotone.

Proof. We assume for simplicity D = [a, b], since the proof can be straightforwardly extended to the unbounded case.
By the assumptions it follows the existence of the first NLPC transformation ϕ1 ∈ C2([a, b]). Since ϕ1 is a solution
of (14), setting g(x) = ϕ′(x)fX(x), it follows the existence of c ∈ (a, b) such that

g′(c) = −(
fXϕ′

1

)′
(c) = ξ1fX(c)ϕ1(c) = 0



662 A. Goia and E. Salinelli

and the positivity of ξ1 and fX implies ϕ1(c) = 0. From Theorem 2.2(iii) c is the unique interior zero of ϕ1, hence
ϕ′

1 has constant sign on D. In fact, if there existed d ∈ (a, b), d �= c, such that ϕ′
1(d) = 0, then g(d) = 0 and hence it

would exist h ∈ (a, d) such that g′(h) = 0 and consequently ϕ1(h) = 0. Since ϕ1 is the dominant solution of (14) it
follows h = c. �

The following proposition shows that, in several cases, the knowledge of only the first NLPC transformation uni-
vocally determines the density of X. The conclusion and the proof (which we omit) substantially agree with the ones
presented in Lemma 4.2 in [12] and Theorem 3.8 in [10] regarding the optimal transformation for the CP-inequality
but, differently from these authors, we do not need to make any assumption on the first derivative of ϕ1 as a conse-
quence of our Theorem 3.2.

Theorem 3.3. If ϕ1 ∈ C2(D) is the first NLPC transformation of X ∈ Υ (D), then its density fX is of the form
fX = g/

∫
D

g, where

g(x) = 1

ϕ′
1(x)

exp

{
−ξ1

∫
ϕ1

ϕ′
1

}
, (22)

∫
ϕ1/ϕ

′
1 is an indefinite integral and ξ1 is the eigenvalue associated to ϕ1 by (14).

4. Spline estimates of NLPCs

In this section we introduce estimators for the NLPCs transformations ϕj and their corresponding variances λj of a
given r.v. X, stating the main results about their asymptotic properties.

To define an estimation procedure we adapt in a statistical perspective the classical Rayleigh–Ritz method (see
e.g. [18]): we find an approximate version of the maximizers and the corresponding maxima of the reciprocal of the
Rayleigh quotient F [u]/Q[u] (see Remark 2.1) on a sequence of appropriate finite-dimensional subspaces of Ẇ

1,2
X

generated by B-splines (see e.g. [16] and [32]). In such a way we obtain nonparametric estimates of the eigenfunctions
ϕj and the corresponding eigenvalues λj of the covariance operator G defined in (10).

We will refer to a r.v. X ∈ Υ (D) that admits NLPCs, assuming D = (a, b) is bounded. Fixed two integers k > 0
and d ≥ 2, we denote by Sk,d the (k + d)-dimensional linear space of spline functions of order d + 1 defined on D,
having k − 1 interior knot points r0 = a < r1 < · · · < rk−1 < b = rk .

Consider now a sample {Xi, i = 1,2, . . . , n} of i.i.d. r.v.s drawn from X, and denote by ̂̇W 1,2
k the space of

spline functions u ∈ Sk,d such that n−1 ∑n
i=1 u(Xi) = 0, a.s. This space is Hilbert with respect to the inner prod-

uct n−1 ∑n
i=1 u′(Xi)v

′(Xi).
We introduce the estimator of λj and ϕj by the following:

Definition 4.1. Let j , k and d ≥ 2 be positive integers such that j ≤ k + d − 1 < n and

Fn[u] = 1

n

n∑
i=1

(
u(Xi)

)2
, Qn[u] = 1

n

n∑
i=1

(
u′(Xi)

)2
.

We define the estimator λ̂j,k,n of the j th eigenvalue λj of G as

λ̂j,k,n = max
u∈ ̂̇W 1,2

k

{ Fn[u]
Qn[u] :

1

n

n∑
i=1

u(Xi)ϕ̂h,k,n(Xi) = 0 a.s.,1 ≤ h ≤ j − 1

}
(23)

and the estimator of the associated eigenfunction ϕj as the maximizer ϕ̂j,k,n ∈ ̂̇W 1,2
k corresponding to λ̂j,k,n.

The technical aspects which illustrate how to convert problem (23) into a generalized eigenvalue problem and thus
to obtain an explicit expression for the estimates of NLPCs transformations by means of B-splines are discussed in
the Section 7.

We state the main asymptotic results on the estimators λ̂j,k,n and ϕ̂j,k,n.
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Theorem 4.1. Let X ∈ Υ (D) be a r.v. which admits NLPCs transformations ϕj . We assume that:

(H1) knots are equispaced;
(H2) fX satisfies condition (12);
(H3) there exists m > 2 such that ϕj ∈ Cm(D) with mth derivative Lipschitz continuous of order α, 0 < α ≤ 1.

Let β = m + α and consider k ≤ n(1−δ)/(2β+5) for 0 < δ < 1. Fixed j , under conditions (H1)–(H3) and taken d ≥
m + α:

(a) a unique solution to problem (23) exists except on an event whose probability goes to zero as n → +∞;
(b) when n → +∞ the following results hold:

|̂λj,k,n − λj | −→ 0 in probability,

‖ϕ̂j,k,n − ϕj‖0 −→ 0 in probability.

The proof of this theorem directly follows from Theorems 7.1 and 7.2 in Section 7. More precisely, in Theorem 7.1
we obtain the convergence of the population spline approximation λ̃j,k and ϕ̃j,k to λj and ϕj respectively. Then Theo-
rem 7.2 concerns the convergence in probability of the sequence of estimators λ̂j,k,n and ϕ̂j,k,n to their approximation
counterparts.

Some remarks on assumptions (H1)–(H3) are in order. Condition (H1) is standard in spline framework; however
the results of Theorem 4.1 remain true when (H1) is replaced by the following asymptotic condition: the distance
between two contiguous knots rs and rs+1 satisfies

max
s

|rs+1 − rs | = O
(
k−1) and

1

mins |rs+1 − rs | = O(k).

The assumption (H2) and the regularity hypothesis (H3) are typical in many studies of asymptotic properties of
nonparametric estimators as, for example, in the estimation of the regression function (see among the others [5]), in
the estimation of optimal transformations of variables (see [4]) or in deriving rates of convergence of splines estimates
of additive principal components (see [17]).

Remark 4.1. Let β = m + α. Under the same assumptions of Theorem 4.1 and choosing k ∼ n1/(4β+1), an upper
bound for the rate of convergence for both the estimators of λj and ϕj is n−β/(4β+1). This bound cannot be considered
optimal if compared with the usual optimal rate of convergence in a nonparametric framework (see, for instance, [17]
and [33]) and the one of the approximations in Theorem 7.1. Probably, it is necessary to use some other arguments in
the proof of Theorem 7.2 to improve our bound. These aspects need further investigations in a future work.

5. Simulation study

To asses the practical performance of the proposed estimator we run a simulation study: we make comparison between
the estimations of the NLPC transformations obtained in the Examples 3.1, 3.2 and 3.5 when sample size varies. Our
aim is to compare some empirical measures for the distributions of the estimated eigenvalues (mean, standard deviation
and mean square error) and the following error criterion for the eigenfunctions

E2
j = 1

λj

1

M

M∑
h=1

‖hϕ̂j,k,n − ϕj‖2
0,

where M is the number of simulations in each case study and hϕ̂j,k,n denotes the estimation of ϕj at the hth simulation.
We base simulations on the following operative conditions:

1. sample sizes are n = 50,100,200,500,1000,2000 and 5000;
2. we provide the results on the first two eigenvalues λj and eigenfunctions ϕj (j = 1,2) for the uniform distribution

on (−1,1), the truncate exponential on (−1,2) and the standardized normal N (0,1);
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3. the number of simulations for each setting of experimental factors is M = 2000.

As in the greatest part of the applications of spline functions, we work with cubic splines (d = 3): this choice is
sufficient to guarantee the wished degree of regularity of the estimates. The number of knots varies between 3 and
15. Differently from condition (H1) in Theorem 4.1, the knots are placed at sample quantiles: this choice does not
invalidate the results of the theorem, and it is desiderable in practice, as pointed out for example in [4]. For evidently
reasons of synthesis in the next we collect only some selected results. The norm ‖ · ‖2

0 in the above defined error E2
j

is evaluated by the trapezoidal rule integration.

5.1. Uniform distribution

Tables 1 and 2 provide the results when the samples are drawn from a uniform r.v. on (−1,1) (see also Example 3.1)
with 3 interior knots. Note that the estimators show good performances for reasonably large sample sizes both for
eigenvalues and for eigenfunctions. For n ≥ 2000, we would get similar results using 4 knots. This confirms the
intuition that the parameter k has to grow quite slowly with respect to the sample size although.

From Tables 1 and 2 it emerges the presence of a positive bias that decreases when n increases: in relative terms,
the bias for the first eigenvalue is of the order of 10% when the sample is small and decreases under 1% when n is
largest than 500. The results are better for the second eigenvalue: for n = 50 the relative bias is around 7% and it is
less then 0.5% for n ≥ 500.

To complete this example, we have drawn an estimate of the first two NLPCs obtained from a sample of 200 ele-
ments and 3 interior knots: the graphics of Fig. 1 tends to confirm the good performances of the estimation procedure
for a reasonably large sample size.

Table 1
Estimation errors for the first eigenvalue and associated eigenfunction of a uniform distribution

λ1 ϕ1

n Mean St. dev MSE E1

50 0.4460 0.0978 1.12 × 10−2 4.29 × 10−2

100 0.4231 0.0619 4.15 × 10−3 2.04 × 10−2

200 0.4147 0.0426 1.90 × 10−3 9.69 × 10−3

500 0.4090 0.0258 6.80 × 10−4 3.94 × 10−3

1000 0.4065 0.0178 3.19 × 10−4 1.88 × 10−3

2000 0.4061 0.0128 1.65 × 10−4 9.70 × 10−4

5000 0.4059 0.0083 6.84 × 10−5 3.80 × 10−4

Table 2
Estimation errors for the second eigenvalue and associated eigenfunction of a uniform distribution

λ2 ϕ2

n Mean St. dev MSE E2

50 0.1086 0.0238 6.18 × 10−4 1.22 × 10−1

100 0.1047 0.0149 2.33 × 10−4 6.15 × 10−2

200 0.1026 0.0106 1.14 × 10−4 3.03 × 10−2

500 0.1018 0.0064 4.13 × 10−5 1.22 × 10−2

1000 0.1017 0.0044 1.97 × 10−5 6.07 × 10−3

2000 0.1013 0.0033 1.06 × 10−5 3.08 × 10−3

5000 0.1013 0.0020 3.88 × 10−6 1.27 × 10−3
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Fig. 1. Estimates of the first and second NLPC transformations for the uniform distribution on (−1,1).

5.2. Truncated exponential distribution

Also for the truncated exponential distribution on (−1,2) (see Example 3.2), results are encouraging: from Tables 3
and 4, which summarize the results obtained with 5 knots, we can confirm the goodness of the estimator of the λs with
a bias that decreases rapidly when the sample size increases and the goodness of fit of the estimated eigenfunctions.
An estimate when we use a sample of size n = 200 of the first two NLPC transformations is plotted in Fig. 2: as we
can see, the obtained curves are smooth and fit very well the shape of the true NLPC transformations.

Table 3
Estimation errors for the first eigenvalue and associated eigenfunction of a truncated exponential
distribution

λ1 ϕ1

n Mean St. dev MSE E1

50 0.9470 0.2620 8.57 × 10−2 5.95 × 10−2

100 0.8692 0.1598 2.83 × 10−2 2.61 × 10−2

200 0.8450 0.1063 1.21 × 10−2 1.27 × 10−2

500 0.8265 0.0638 4.17 × 10−3 4.82 × 10−3

1000 0.8214 0.0445 2.01 × 10−3 2.48 × 10−3

2000 0.8181 0.0315 9.96 × 10−4 1.22 × 10−3

5000 0.8164 0.0204 4.16 × 10−4 4.90 × 10−4

5.3. Normal distribution

We conclude the collection of examples by proposing the results about the estimates of eigenvalues and associated
eigenfunctions when the samples come from a standard normal distribution (see Example 3.5). Since D is unbounded,
the boundary points are chosen as the minimum and the maximum of the observed data. The results (see Tables 5
and 6), with 3 knots, are good both for the eigenvalues and the eigenfunctions as is evidenced by the estimates,
displayed in Fig. 3, of the first two NLPC transformations with n = 200. These results show that the estimation
procedure may be used with success also when we consider a r.v. admitting NLPCs and defined on an unbounded set.
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Table 4
Estimation errors for the second eigenvalue and associated eigenfunction of a truncated exponential
distribution

λ2 ϕ2

n Mean St. dev MSE E2

50 0.2429 0.0607 4.14×10−3 1.83×10−1

100 0.2311 0.0402 1.70×10−3 8.87×10−2

200 0.2271 0.0275 7.87×10−4 4.38×10−2

500 0.2237 0.0169 2.89×10−4 1.75×10−2

1000 0.2224 0.0120 1.46×10−4 8.59×10−3

2000 0.2221 0.0085 7.28×10−5 4.26×10−3

5000 0.2219 0.0054 2.89×10−5 1.82×10−3

Fig. 2. Estimates of the first and second NLPC transformations for the truncated exponential on (−1,2).

6. Some applications of NLPCs

The properties discussed in Section 3 represent a theoretical support to apply NLPCs in some statistical contexts;
the estimation procedure, introduced in Section 4 provides the tool that permits to make operational the NLPCs in
practice.

The aim of this Section is to show some examples of these possible applications, developing principally two
streams: the first one based on the characterization property of the first transformation ϕ1 stated in Theorem 3.3, the
second one on the fact that the set of NLPCs transformations is the basis of L̇2

X that diagonalizes the covariance
operator acting on this space.

In particular, the characterization property is the ground in defining a goodness-of-fit test: the statistic used in the
test is based on the comparison between the estimate of λ1 and its value under the null hypothesis. About the second
aspect, we show how to use the transformations in study the dependence structure of a bivariate r.v., illustrating how
to construct a bivariate distribution with fixed marginals using NLPCs.
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Table 5
Estimation errors for the first eigenvalue and associated eigenfunction of a standardized normal
distribution

λ1 ϕ1

n Mean St. dev MSE E1

50 1.1534 0.2815 1.03×10−1 1.16×10−1

100 1.0836 0.1813 3.99×10−2 6.94×10−2

200 1.0452 0.1212 1.67×10−2 4.68×10−2

500 1.0175 0.0678 4.91×10−3 1.97×10−2

1000 1.0070 0.0498 2.53×10−3 1.20×10−2

2000 1.0035 0.0364 1.33×10−3 6.17×10−3

5000 1.0009 0.0220 4.84×10−4 2.47×10−3

Table 6
Estimation errors for the second eigenvalue and associated eigenfunction of a standardized normal
distribution

λ2 ϕ2

n Mean St. dev MSE E2

50 0.5180 0.1720 2.99×10−2 3.78×10−1

100 0.5258 0.1363 1.92×10−2 2.58×10−1

200 0.5279 0.1145 1.39×10−2 1.90×10−1

500 0.5228 0.0784 6.66×10−3 1.23×10−1

1000 0.5177 0.0667 4.76×10−3 1.00×10−1

2000 0.5141 0.0514 2.84×10−3 7.67×10−2

5000 0.5080 0.0327 1.13×10−3 4.46×10−2

6.1. Goodness-of-fit test

We have seen in Theorem 3.3 that when the couple (λ1, ϕ1) exists, it characterizes the distribution of a given r.v.
X ∈ Υ (D): this fact may be exploited for constructing a goodness-of-fit test. Moreover, in some cases, some additional
results linked to particular families of distributions, permit to use only λ1 with a considerable simplification in defining
the statistic in the test.

We expose this idea referring to the uniform case: suppose we have to test that the distribution of X ∈ Υ ((−1,1))

is uniform

H0: X ∼ U (−1,1)

against the alternative

H1: X ∼ S(−1,1),

where S is a unimodal symmetric distribution on (−1,1) such that S �∼ U .
We know (see Example 3.1) that the variance of the first NLPC of a uniform distribution on (−1,1) is λ1 = 4/π2

and, by the result of [29], that it is the largest Poincaré constant for all unimodal symmetric r.v.s in Υ ((−1,1)). This
leads to the equivalent hypotheses

H0: λ1 = 4/π2 vs. H1: λ1 < 4/π2.

We thus define the test statistic

Dn,k = √
n
(
λ̂1,k,n − 4/π2)
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Fig. 3. Estimate of the first and second NLPC transformations for the standard normal distribution.

Table 7
Probabilities of rejecting hypothesis of uniformity using the Dn,k statistic (in bold) and the Kolmogorov–
Smirnov statistic (in italics) when sample size is 200

Level of significanceUnderlying
distributions 0.10 0.05 0.01

U (−1,1) 0.097 0.093 0.048 0.043 0.008 0.008
N T (0,2) 0.210 0.096 0.125 0.048 0.034 0.008
N T (0,3/2) 0.348 0.111 0.223 0.056 0.076 0.010
N T (0,1) 0.752 0.221 0.619 0.118 0.361 0.024
N T (0,3/4) 0.981 0.551 0.963 0.353 0.865 0.102
N T (0,1/2) 1.000 0.999 1.000 0.995 1.000 0.911

and the critical region at level of significance α, 0 < α ≤ 1, is {Dn,k ≤ d�
n(α)}.

In order to give a short but meaningful exemplification, we conduct the study for selected levels in the i.i.d. case
with sample size fixed to 200. We defer to a future work a deeper analysis.

We obtain the critical values of the test by a Monte Carlo calculation: fifty hundred samples were generated from
a uniform distribution on (−1,1) and the null distribution of Dn,k was thus estimated, by using 3 knots. The values
d�
n(α) are the empirical quantiles of order α of these distributions, with α = 0.10, 0.05 and 0.01.

A Monte Carlo investigation was carried out for the level and the power of this test. The alternatives consist
of truncated normal distributions N T (0, σ ) on (−1,1) with σ = 2, 4/3, 1, 3/4 and 1/2. For each distribution ten
hundred samples of size n = 200 were generated and the probabilities of rejection using the test based on Dn,k was
determined by the proportion of cases falling into the critical region. The power estimates are thus compared with that
ones obtained by the Kolmogorov–Smirnov test.

The results, collected in Table 7, show that for all the selected distributions, our test performs reasonably well and
it is better than the known Kolmogorov–Smirnov. This fact encourages further developments: investigations need for
the study of the exact or asymptotic distribution of the statistic proposed and for a more complete study of the power
of this test.
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6.2. Construction of bivariate distributions

The specification of a continuous joint bivariate distribution with fixed margins is required in many statistical appli-
cations. For instance, examining the robustness of multivariate tests, comparing the multivariate goodness-of-fit tests,
simulating in a portfolio analysis, constructing a multivariate prior in Bayesian inference.

In the literature various methods to form some families of bivariate distributions with given marginal and a de-
pendence structure specified by a vector of parameters have been investigated (see e.g. [26]). In the following, we
illustrate a method to generate some bivariate distributions by using NLPC transformations which is based on Lan-
caster’s thought [24].

Let X ∈ Υ (DX) and Y ∈ Υ (DY ) be two r.v.s with densities fX and fY respectively, {ah} and {bj } some normalized
elements of L̇2

X and L̇2
Y respectively. Then

fX,Y (x, y) = fX(x)fY (y)

(
1 +

N∑
h=1

N∑
j=1

ρh,j ah(x)bj (y)

)
(24)

is a joint density distribution on DX × DY if ρh,j are chosen such that

sup
x,y

[
−

N∑
h=1

N∑
j=1

ρh,j ah(x)bj (y)

]
≤ 1.

Clearly {ah} and {bj } can be selected into the orthonormal bases of L̇2
X and L̇2

Y respectively.
To describe the dependence structure between X and Y one usually uses the Pearson’s φ2 index of independence,

the covariance E[XY ] and the regression functions E[Y |x] and E[X|y]. When the density is of the type (24), we have

φ2 =
N∑

h=1

N∑
j=1

ρ2
h,j , E[XY ] =

N∑
h=1

N∑
j=1

ρh,jαhβj ,

where αh = E[Xah(X)] and βj = E[Ybj (Y )] and

E[Y |x] =
N∑

h=1

N∑
j=1

ρh,jβj ah(x), E[X|y] =
N∑

h=1

N∑
j=1

ρh,jαhbj (y).

If X and Y admit NLPCs, we can use the NLPC transformations ϕh of X and ψj of Y , normalized with respect to
their standard deviations, to construct a bivariate distribution having a given structure of dependence in terms of φ2,
covariance and regression functions.

We illustrate the aforesaid idea in the case N = 1 obtaining some densities in the class of the Sarmanov family,
which is a generalization of the popular Farlie–Gumbel–Morgenstern (FGM) family (see [26], Chapter 5). This type of
distributions is suited in modelling when dependence is small or moderate: the search of some extensions is motivated
in increasing the maximal value of the correlation coefficient between the r.v.s involved.

For fixed (h, j) we have

fX,Y (x, y) = fX(x)fY (y)
(
1 + ρah(x)bj (y)

)
,

where ρ satisfies the condition that |ρ| ≤ 1/ supx,y[−ah(x)bj (y)], for all x, y, and we choose ah(x) = (λX
h )−1/2ϕh(x)

and bj (y) = (λY
j )−1/2ψj(y) where λX

h = E[ϕ2
h(X)] and λY

j = E[ψ2
j (Y )].

Note that the dependence structure of the bivariate distribution is described through just the parameter ρ, i.e. the
index of linear dependence between two selected NLPC transformations. In particular we have φ2 = ρ2 and, thanks
to (16),

E[XY ] = ρ
(
λX

h λY
j

)1/2
E

[
ϕ′

h(X)
]
E

[
ψ ′

j (Y )
]
.



670 A. Goia and E. Salinelli

Besides the regression function is expressed in term of the NLPC transformations used: for example the regression
function of Y on X is

E[Y |x] = ρ

(
λY

j

λX
h

)1/2

E
[
ψ ′

j (Y )
]
ϕh(x).

It is proportional to ϕh(x) and its sign depends on those of ρ and E[ψ ′
j (Y )]. The same arguments are valid for the

regression function of X on Y .
In the following example we consider a family of bivariate joint distribution with uniform marginals for which the

range of the correlation coefficient may be wider than the one for the FGM distribution.

Example 6.1. Consider a bivariate distributions whose marginals are uniforms on (−1,1) (see the Example 3.1). We
obtain

fX,Y (x, y) = 1

4
+ ρ

2
cos

(
hπ(x + 1)

2

)
cos

(
jπ(y + 1)

2

)
, x, y ∈ (−1,1). (25)

The function (25) will be non-negative if |ρ| ≤ 1/2. It is easy to see that φ2 = ρ2, and the covariance is equal
to 32ρ/(jhπ2)2 for j = 2m + 1 and h = 2n + 1, m,n ∈ N, and 0 otherwise. Denoting by Cor(X,Y ) the linear
correlation coefficient, if we take j = h = 1 we obtain |Cor(X,Y )| ≤ 48/π4. We note that this bound is appreciably
wider than the one of the extension proposed in [25] which is the same as for the classical FGM: |Cor(X,Y )| ≤ 1/3.

Finally, the regression function of Y on X is

E[Y |x] = − 8ρ

(jπ)2
cos

(
hπ

2
(x + 1)

)
for j = 2m + 1, m ∈ N, and equal to zero otherwise.

7. Technical results and proofs

This section is devoted to illustrate how to convert problem (23) into a generalized eigenvalue problem and thus to
obtain an explicit expression for the estimates of NLPCs transformations by means of B-splines. The discussion is
developed by two steps: first, we construct the spline approximations λ̃j,k and ϕ̃j,k of λj and ϕj respectively, assuming
the density fX known and we derive the rate of convergence; second, we solve the problem of estimating λ̃j,k and
ϕ̃j,k from a sample, and we study the behaviour of the estimators when the sample size goes to infinity.

Definition 7.1. Fixed integers k > 0, d ≥ 2 and given the (k + d − 1)-dimensional linear space of spline functions

with zero mean ˜̇W 1,2
k = Ẇ

1,2
X ∩ Sk,d , for any j , with j ≤ k + d − 1, we define λ̃j,k as

λ̃j,k = max
u∈ ˜̇W 1,2

k

{ F [u]
Q[u] : E

[
u(X)ϕ̃h,k(X)

] = 0,1 ≤ h ≤ j − 1

}
(26)

and ϕ̃j,k ∈ ˜̇W 1,2
k as the corresponding maximizer.

To find solutions of (26) we look for the stationary values of F [u]/Q[u] on ˜̇W 1,2
k . In this perspective, we prelimi-

narily consider the basis of ˜̇W 1,2
k constituted by the functions

B̃t (x) =
k+d∑
s=1

et,sBs(x)

kbs

, t = 1, . . . , k + d − 1,
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where the Bs are normalized B-splines forming a basis of Sk,d , the vectors e1, e2, . . . , ek+d−1 of R
k+d satisfy eT

r er ′ =
δr,r ′ and eT

r 1 = 0 for all r, r ′, and bs = E[Bs(X)] > 0. Thus, any function u ∈ ˜̇W 1,2
k has the representation

u(x) = θTDkBd,k(x),

where θ ∈ R
k+d−1, Dk is a (k + d − 1) × (k + d) matrix with entries et,s/(kbs) and Bd,k is the (k + d)-dimensional

vector of the B-splines.

The functionals F and Q on ˜̇W 1,2
k are respectively represented by the symmetric and positive definite matrices

Fk = DkMkDT
k ; Qk = DkM�

kDT
k ,

where Mk and M�
k have entries (B ′ denotes the first derivative of a B-spline):

Ms,t = E
[
Bs(X)Bt (X)

]
, M�

s,t = E
[
B ′

s(X)B ′
t (X)

]
, 1 ≤ s, t ≤ k + d.

The stationary values of F [u]/Q[u] on ˜̇W 1,2
k are the solutions of the equations

∂θTFkθ

∂θt

= �
∂θTQkθ

∂θt

, 1 ≤ t ≤ k + d − 1,

that is the solutions of the generalized eigenvalue problem Fkθ = �Qkθ which can be rewritten as

Mkη = �η, (27)

where Mk = Q−1/2
k FkQ−1/2

k , η = Q1/2
k θ , and Q1/2

k is the symmetric square root of the positive definite matrix Qk . The
matrix Mk is symmetric, positive definite and has k +d − 1 positive eigenvalues �j,k with corresponding orthonormal
eigenvectors η̃j,k . Thus the approximate solutions we look for are:

λ̃j,k = �j,k; ϕ̃j,k(x) = θ̃ T
j,kDkBd,k(x),

where θ̃j,k = Q−1/2
k η̃j,k .

In the following theorem we summarize the most important convergence results about λ̃j,k and ϕ̃j,k adapting the
issues in [28].

Theorem 7.1. Fixed the positive integers j and d , under conditions (H1)–(H3) of Theorem 4.1:

(a) the sequence {̃λj,k} converges (from below) to λj and

|λj − λ̃j,k| ≤ ck−β for all k ≥ k0,

(b) if β = m + α, there exist a positive integer k0 and a positive constant c, depending only on j , such that

‖ϕj − ϕ̃j,k‖0 ≤ ck−β for all k ≥ k0.

Proof. Part (a) is a direct consequence of [28].
To prove part (b), observe that by (H2) the norm ‖ · ‖0 is equivalent to the standard Lebesgue norm ‖g‖� =

(
∫

g2(x)dx)1/2 and thus there exists c1 > 0 such that

‖ϕj − ϕ̃j,k‖0 ≤ c1‖ϕj − ϕ̃j,k‖�.

Let ϕj,k be the projections of ϕj on the subspaces ˜̇W 1,2
k . There exists (see [28]) a constant c2 > 0 and a positive integer

k0 such that

‖ϕj − ϕ̃j,k‖� ≤ c2‖ϕj − ϕj,k‖� for all k ≥ k0.
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From Theorem XII.6 in [16] and thanks to condition (H3) the result follows. �

We discuss now the sample version of (26) in the (k +d −1)-dimensional space ̂̇W 1,2
k defined above. The functions

B̂t (x) =
k+d∑
s=1

et,sBs(x)

kb̂s,n

, t = 1, . . . , k + d − 1, (28)

where b̂s,n = 1
n

∑n
i=1 Bs(Xi), provide a basis for it. As shown in [4], there exists γ > 0 such that we have

P(̂bs,n = 0 for some s = 1, . . . , k + d) ≤ k exp(−γ n/k)

and this probability goes to zero for n → +∞.
The functionals Fn and Qn in (23) have the following matrix representation with respect to the basis (28):

F̂k,n = D̂k,nM̂k,nD̂T
k,n; Q̂k,n = D̂k,nM̂�

k,nD̂T
k,n,

where D̂k,n = [et,s/(kb̂s,n)], M̂k,n = [M̂s,t ] and M̂�
k,n = [M̂�

s,t ] with:

M̂s,t = 1

n

n∑
i=1

Bs(Xi)Bt (Xi); M̂�
s,t = 1

n

n∑
i=1

B ′
s(Xi)B

′
t (Xi).

Analogously to the approximation case, we have to solve the generalized eigenvalue problem F̂k,nθ = �Q̂k,nθ which,
if Q̂k,n is nonsingular, is equivalent to

M̂k,nη = �η, (29)

where M̂k,n = Q̂−1/2
k,n F̂k,nQ̂−1/2

k,n . In this case, the symmetric matrix M̂k,n has k + d − 1 eigenvalues �j,k,n with
corresponding orthonormal eigenvectors η̂j,k,n. The estimates we look for are thus

λ̂j,k,n = �j,k,n; ϕ̂j,k,n(x) = θ̂ T
j,kD̂kBd,k(x)

with θ̂j,k,n = Q̂−1/2
k,n η̂j,k,n.

The existence and unicity of the solutions of (23) and the relevant results about the rate of convergence in proba-
bility of the sequence of the estimators to the spline approximates are stated in the following theorem.

Theorem 7.2. Let τn = (kn1−δ)−1/2, 0 < δ < 1, and consider k = k(n) that satisfies k ≤ n(1−δ)/6, j and d ≥ 2 fixed.
Under conditions (H1)–(H3) of Theorem 4.1:

(a) a unique solution to the sample problem (23) exists except on an event whose probability goes to zero as n → +∞;
(b) when n → +∞ the following results hold:

|̂λj,k,n − λ̃j,k| = oP

(
k3τn

)
, (30)

‖ϕ̃j,k − ϕ̂j,k,n‖0 = oP

(
k3τn

)
. (31)

The proof of Theorem 7.2 makes use of arguments similar to the ones in [4], and is based on asymptotics for
matrices F̂k,n, Q̂k,n and M̂k,n, summarized in the next Lemmas 7.1 and 7.2.

For the reader’s convenience, we collect here the most important properties of B-splines to which we will refer
(see [16] and [32]):

(P1) 0 < Bs(x) ≤ 1, for all x ∈ (rs, rs+d) and Bs(x) = 0 otherwise;
(P2)

∫
D

Bs(x)Bt (x)dx = 0 for |s − t | > d + 1 and positive otherwise;
(P3)

∫
D

Bs(x)dx = (r�
s+d − r�

s )/d for all s (with r�
1 , r�

2 , . . . , we denote the extended knots sequence);
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(P4) there exists a positive constant c such that supx∈D |B ′
s(x)| ≤ ck for all s;

(P5) for any spline function u ∈ Sk,d , u(x) = αTBd,k(x), with α ∈ R
k+d , we have

u′(x) = αT�TBd−1,k(x),

where Bd−1,k is the (k + d − 1)-dimensional vector of B-splines belonging from the basis of Sk,d−1 and �
is the weighted differentiation (k + d − 1) × (k + d) matrix such that, when the knots are equally spaced, for
w ∈ R

k+d ,

�w = (d − 1)k(w2 − w1,w3 − w2, . . . ,wk+d − wk+d−1)
T.

Denoting by ‖·‖ the euclidean norm on R
p , as usual the norm ‖|A‖| of a matrix A is defined as

‖|A‖| = max
‖w‖=1

‖Aw‖.

In the following lemma we prove the convergence in probability of the “empirical matrices” F̂k,n and Q̂k,n to the
“approximation matrices” Fk and Qk , respectively.

Lemma 7.1. The following conclusions hold:

‖|M̂k,n − Mk‖| = oP (τn), (32)

‖|M̂�
k,n − M�

k‖| = oP

(
k2τn

)
, (33)

‖|̂Fk,n − Fk‖| = oP (τn), (34)

‖|Q̂k,n − Qk‖| = oP

(
k2τn

)
. (35)

Proof. Since

‖|M̂k,n − Mk‖| ≤ sup
1≤s≤k+d

k+d∑
t=1

|M̂s,t − Ms,t |

and since from property (P2), for |s − t | > d + 1 we have M̂s,t
a.s.= Ms,t = 0, to prove (32) it is sufficient to get

|M̂s,t − Ms,t | = oP (τn) for any s, t , with |s − t | ≤ d + 1.
Setting Zi = Bs(Xi)Bt (Xi), obviously E[Zi] = Ms,t and, for (P1), |Zi | ≤ 1 a.s. for all i. By (H1) the support of

each B-spline is of the order of k−1 and by (H2) the density fX is bounded from above. The boundedness of B-splines
implies that Var(Zi) vanishes for |s − t | > d + 1 and is O(k−1) otherwise. Choosing ε = ε0τk,n, where ε0 is a positive
constant, the Chebychev inequality states that for |s − t | ≤ d + 1 there exists c > 0 such that

P
(|M̂s,t − Ms,t | ≥ ε

) ≤ cn−δ

and the relation (32) follows.

For what concerns (33), by (P5), for any u ∈ ˜̇W 1,2
k , we have

u′(x) = θTDk�
TBd−1,k(x).

It follows that M�
k = �TMd−1,k� and M̂�

k,n = �TM̂d−1,k,n� where Md−1,k = E[Bd−1,kBT
d−1,k] and M̂d−1,k is its

empirical version. Denoting ζ = max(‖|�‖|,‖|�T‖|), we obtain∥∥∣∣M̂�
k,n − M�

k

∥∥∣∣ ≤ ζ 2‖|M̂d−1,k,n − Md−1,k‖|.
By (32) we get

‖|M̂d−1,k,n − Md−1,k‖| = oP (τk,n)
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and, since by condition (H1) it is ζ = O(k), relation (33) follows.
To derive (34) we use the decomposition

F̂k,n − Fk =(D̂k,n − Dk)M̂k,nD̂T
k,n + D̂k,n(M̂k,n − Mk)DT

k + DkMk

(
D̂T

k,n − DT
k

)
which allows to bound from above ‖|̂Fk,n − Fk‖| by

‖|D̂k,n − Dk‖|‖|M̂k,n‖|‖|D̂k,n‖| + ‖|D̂k,n‖|‖|M̂k,n − Mk‖|‖|Dk‖|
+ ‖|Dk‖|‖|Mk‖|‖|D̂k,n − Dk‖|. (36)

Thanks to (H1), (H2) and property (P3), for s = 1, . . . , k + d − 1, there exists a positive constant c such that kbs ≥ c

and so ‖|Dk‖| = O(1).
Since ‖|D̂k,n − Dk‖| = oP (kτn) (see [4]), it follows ‖|D̂k‖| = OP (1). Besides (H1), (H2) and (P1) imply that

‖|Mk‖| = O(k−1) and, thanks to (32), we get ‖|M̂k‖| = OP (k−1). So, we conclude that all the terms in (36) are oP (τn)

and (34) follows.
The result (35) is obtained by observing that, operating similarly to the proof of (34), it holds

‖|Q̂k,n − Qk‖| ≤ ‖|D̂k,n − Dk‖|
∥∥∣∣M̂�

k,n

∥∥∣∣‖|D̂k,n‖| + ‖|D̂k,n‖|
∥∥∣∣M̂�

k,n − M�
k

∥∥∣∣‖|Dk‖|
+ ‖|Dk‖|

∥∥∣∣M�
k

∥∥∣∣‖|D̂k,n − Dk‖|. (37)

Then, from conditions (H1), (H2) and property (P4), we get ‖|M�
k‖| = O(k) and, thanks to (33), ‖|M̂�

k‖| = OP (k). It
follows that all the terms in (37) are oP (k2τk,n) and this concludes the proof. �

Note that, by (35), the probability that Q̂k,n is definite positive tends to one when n tends to infinity and in this
sense Q̂−1/2

k,n exists.

In the next lemma we show the convergence of the “empirical matrix” M̂k,n to the “population approximation
matrix” Mk involved in the eigenvalues problems (29) and (27), respectively.

Lemma 7.2. The following conclusions hold:∥∥∣∣Q̂−1/2
k,n − Q−1/2

k

∥∥∣∣ = oP

(
k7/2τn

)
, (38)

‖|M̂k,n − Mk‖| = oP

(
k3τn

)
. (39)

Proof. Observe preliminarily that matrix Qk = DkM�
d,kDT

k is positive definite and consider wTQkw where w ∈
Rk+d−1 with ‖w‖2 = 1. Let K = {α ∈ R

k+d : M�
d,kα = 0}. From Lemma 5.2 in [11] and (H1), it follows that there

exist two positive constants c1 and c2 such that c1k
−1‖α‖2 ≤ αTM�

d,kα, for any α ∈ K⊥, and αTM�
d,kα ≤ c2k‖α‖2, for

any α ∈ R
k+d . Because, from (H1), (H2) and (P3), ‖|Dk‖|2 is bounded by positive constants, then there are 0 < c3 < c4

such that all the eigenvalues of Qk lie between c3k
−1 and c4k.

Let ϑ be the minimum of the smallest eigenvalues of Q̂k,n and Qk . There exists (see [4]) a positive constant c5
such that:∥∥∣∣Q̂−1/2

k,n − Q−1/2
k

∥∥∣∣ ≤ c5ϑ
−3/2‖|Q̂k,n − Qk‖|. (40)

By the preliminary remark, the smallest eigenvalue of Qk is not smaller than c3k
−1; furthermore, by (35) we obtain

ϑ−1 = OP (k). Finally, combining (35) and (40) the (38) follows.
About (39), using the decomposition

M̂k,n − Mk = (
Q̂−1/2

k,n − Q−1/2
k

)̂
Fk,nQ̂−1/2

k,n

+ Q−1/2
k,n (̂Fk,n − Fk)Q̂

−1/2
k,n + Q−1/2

k Fk

(
Q̂−1/2

k,n − Q−1/2
k

)
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we can bound from above ‖|M̂k,n − Mk‖| by∥∥∣∣Q̂−1/2
k,n − Q−1/2

k

∥∥∣∣‖|̂Fk,n‖|
∥∥∣∣Q̂−1/2

k,n

∥∥∣∣ + ‖|Q−1/2
k ‖|‖|̂Fk,n − Fk‖|

∥∥∣∣Q̂−1/2
k,n

∥∥∣∣
+ ∥∥∣∣Q−1/2

k

∥∥∣∣‖|Fk‖|
∥∥∣∣Q̂−1/2

k,n − Q−1/2
k

∥∥∣∣. (41)

Note that conditions (H1), (H2) and properties (P1) and (P3) imply that ‖|Fk‖| = O(k−1) and, by Lemma 7.1,
‖|̂Fk,n‖| = OP (k−1). Besides, ‖|Q−1/2

k ‖| = O(k1/2) and from (38) we have ‖|Q̂−1/2
k,n ‖| = OP (k1/2). Thanks to these

results and to relations (38) and (34), we obtain that the first and third term in (41) are oP (k3τn) and the second one is
oP (kτn); thus (39) follows. �

We are now ready to prove Theorem 7.2.

Proof of Theorem 7.2. (a) Since, by Lemma 7.1, the matrix Q̂k,n is nonsingular except on a event whose probability
tends to zero as n → +∞, there exists a solution for (23) whose unicity is guaranteed with probability that goes to
one as n → +∞, thanks to the result proved in [27].

(b) The result (30) follows directly from (39) since, for all j ,

|̂λj,k,n − λ̃j,k| ≤ ‖|M̂k,n − Mk‖|.
Now we prove (31). Recalling that

ϕ̂j,k,n(x) = η̂T
j,k,nQ̂−1/2

k,n D̂kBd,k(x),

ϕ̃j,k,n(x) = η̃T
j,k,nQ−1/2

k,n DkBd,k(x),

we obtain the following majorization

‖ϕ̂j,k,n − ϕ̃j,k‖0 ≤ ‖η̃j,k,n‖
∥∥∣∣Q−1/2

k,n − Q̂−1/2
k,n

∥∥∣∣‖|Dk‖|‖|Mk‖|1/2

+ ‖η̂j,k,n − η̃j,k,n‖
∥∥∣∣Q̂−1/2

k,n

∥∥∣∣‖|D̂k‖|‖|Mk‖|1/2

+ ‖η̃j,k,n‖
∥∥∣∣Q̂−1/2

k,n

∥∥∣∣‖|Dk − D̂k‖|‖|Mk‖|1/2.

By the Lemma 3.1 in [3], we have

‖η̂j,k,n − η̃j,k,n‖ ≤ αj‖|M̂k,n − Mk‖|,
where⎧⎪⎨⎪⎩

α1 = 2
√

2
λ̃1,k−λ̃2,k

,

αj = 2
√

2
min(̃λj−1,k−̃λj,k ,̃λj,k−̃λj+1,k)

, 1 < j ≤ k + q − 1.

Thanks to the part (a) of Theorem 7.1, Lemma 7.2, and because ‖|Mk‖|1/2 = O(k−1/2), ‖|Q̂−1/2
k,n ‖| = O(k1/2), ‖|Dk‖| =

O(1), ‖|D̂k‖| = OP (1), ‖|Dk − D̂k‖| = oP (kτn) and ‖η̂j,k,n‖ a.s.= ‖η̃j,k‖ = 1, the result (31) follows. �
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