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Abstract. We find the transition kernels for four Markovian interacting particle systems on the line, by proving that each of these
kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the
Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.

Résumé. Nous trouvons les noyaux de transition de quatre systèmes markoviens de particules en interaction sur une ligne, en
prouvant que chacun de ces noyaux s’entrelace avec un noyau du type de Karlin–McGregor. Tous les noyaux résultants héritent
de la structure de déterminant de la formule de Karlin–McGregor et ont une forme similaire à celle du noyau de Schütz pour le
processus d’exclusion simple totalement asymétrique.
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1. Introduction

Non-colliding Markov processes are canonical examples of stochastic processes with a determinantal transition kernel,
given by the Karlin–McGregor formula. A determinantal transition kernel of a different form, yet similar to the Karlin–
McGregor kernel, was encountered by Schütz [17] in his study of the totally asymmetric simple exclusion process.
This work has stimulated much recent research, e.g., [4,10,14,16,21,22].

In this note we explicitly connect Schütz type formulae for particle systems and Karlin–McGregor-type formu-
lae for non-colliding processes. Our approach builds upon deep connections between particle processes and non-
colliding processes (or random-matrix theory), which have been recently discovered [2,6,9,13]. A combinatorial
correspondence known as the Robinson–Schensted–Knuth (RSK) correspondence links these processes. This RSK
correspondence gives a coupling of the non-colliding process and the particle process. Our key contributions are that
this coupling implies an intertwining of their transition semigroups, and that this intertwining is enough to find the
transition kernel of the particle process.

We give a number of new formulae by applying this method to four variants of the RSK correspondence. Aug-
mented with systems arising from suitable limiting procedures, the particle systems we treat in this way are known to
play pivotal roles in a wide range of interesting applied problems. For instance, they appear in the context of queues
in series, last-passage percolation, growth models, and fragmentation models.
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This note is organized as follows: In Section 2, we introduce four interacting particle systems and we present
the associated transition kernels. Section 3 describes the four variants of the RSK correspondence we use in our
analysis, and derives the aforementioned intertwining of the semigroups. Finally, it is the topic of Section 4 to use this
intertwining for finding the transition mechanism of the interacting particles.

2. Interacting particles on the line; main results

We are concerned with a system of N particles, each with a position in the integer lattice Z, evolving in discrete
time. We will consider four possible cases. Particles will move from the left to the right making either Bernoulli or
geometrically sized jumps, with one of two possible interactions that maintain their relative orderings (blocking or
pushing). We begin by describing these four processes more precisely. In each case Yi(n) denotes the position of
particle number i at time n. We order the particles, so that Y takes values in either WN or ŴN , where

WN = (
z ∈ ZN ; zN ≤ zN−1 ≤ · · · ≤ z1

)
,

ŴN = (
z ∈ ZN ; z1 ≤ z2 ≤ · · · ≤ zN

)
.

Throughout, we let p = (p1,p2, . . . , pN) be a vector with each pk ∈ (0,1).

Case A: Geometric jumps with pushing. Particles are labelled from left to right, so Y1(n) ≤ Y2(n) ≤ · · · ≤ YN(n).
Between time n − 1 and n, each of the particles moves to the right according to some geometrically distributed
jump, having parameter pi for particle i. The order in which the particles jump is given by their labels, so the leftmost
particle jumps first. Overtaken particles (if any) are moved to the same position as the jumping particle, a position from
which the next particle subsequently makes its own jump. One can thus think of particles ‘pushing’ other particles to
maintain their relative orderings.

This leads to the following stochastic recursion. The evolution is generated from a family (ξ(k, n); k ∈
{1,2, . . . ,N}, n ∈ N) of independent geometric random variables satisfying P(ξ(k, n) = r) = (1 − pk)p

r
k for

r = 0,1,2, . . . , via the recursions Y1(n) = Y1(n − 1) + ξ(1, n), and for k = 2,3, . . . ,N ,

Yk(n) = max
(
Yk(n − 1), Yk−1(n)

) + ξ(k,n).

Note that Y = (Y (n);n ≥ 0) is a Markov chain on ŴN .
One application area where this recursion arises is the theory of queueing networks. Indeed, the particle system

with exponentially distributed jumps, which is obtained after a suitable limiting procedure, relates to a series Jackson
network. Here Y(n) corresponds to the departure instants of the nth customer from each of N queues in series. These
networks are investigated further in our companion paper [5].

The vector Y also plays an important role in the context of directed last-passage percolation with geometrically
distributed travel times and ‘origin’ (1,1), where Y(n) can be interpreted as the vector of maximal travel times to the
sites (n + 1,1), . . . , (n + 1,N). Very recently, Johansson [10] has derived the transition kernel of Y in the case of
equal rates p1 = · · · = pN , with different methods than presented here.

Case B: Bernoulli jumps with blocking. Particles are labelled from right to left, so YN(n) ≤ YN−1(n) ≤ · · · ≤ Y1(n).
Between time n − 1 and n each particle attempts to move one step to the right, but it is constrained not to overtake the
particle to its right. Particle i moves with probability pi . The particles are now updated from right to left, so it is the
updated position of the particle to the right that acts as a block.

The evolution is generated from a family (ξ(k, n); k ∈ {1,2, . . . ,N}, n ∈ N) of independent Bernoulli random
variables satisfying P(ξ(k, n) = +1) = 1 − P(ξ(k, n) = 0) = pk , via the recursions Y1(n) = Y1(n − 1) + ξ(1, n), and
for k = 2,3, . . . ,N ,

Yk(n) = min
(
Yk(n − 1) + ξ(k,n),Yk−1(n)

)
.

In particular, Y is a Markov chain on WN .
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The process Y has been investigated by Rákos and Schütz [15] in the context of a fragmentation model. On shifting
the ith particle i positions to the left, Y corresponds to the discrete-time totally asymmetric simple exclusion process
(TASEP) with sequential updating. Moreover, the process arises in a directed first-passage percolation model known
as the Seppäläinen model [18] with ‘origin’ (0,0), where Y(n) corresponds to the vector of instants at which the sites
(n,0), . . . , (n,N − 1) become wet.

An important process arises if we scale Y as in the law of small numbers, i.e., by setting pi = αi/M and con-
sidering Y(�Mt�) for t ∈ R+ as M → ∞. In the case of equal rates, the resulting continuous-time Markov process
describes, after a deterministic shift, the positions of N particles in the (continuous-time) TASEP. This is the frame-
work originally studied by Schütz [17], who derives the transition kernel of this process. It has recently been extended
to particles hopping at different rates by Rákos and Schütz [16].

The same continuous-time process is also of significant importance for series Jackson queueing networks as well
as for a corner-growth model. In the queueing context, it represents the cumulative number of departures from each
of the queues; see [5]. In the corner-growth model, it represents the height of the first N columns. We refer to König’s
survey paper [11] for these and further connections, such as the relation between the N th component of this process
and directed last-passage percolation with exponentially distributed travel times.

Case C: Geometric jumps with blocking. Once again particles are labelled from right to left, so YN(n) ≤ YN−1(n) ≤
· · · ≤ Y1(n). Between time n − 1 and n each particle attempts to move a geometrically distributed number of steps to
the right, starting with the leftmost particle. As in case B, a particle is blocked by the closest particle to its right if it
tries to overtake another particle, but this time it is the old position of that particle that acts as a block.

The evolution is generated from a family (ξ(k, n); k ∈ {1,2, . . . ,N}, n ∈ N) of independent geometric random
variables satisfying P(ξ(k, n) = r) = (1 − pk)p

r
k for r = 0,1,2, . . . , via the recursions Y1(n) = Y1(n − 1) + ξ(1, n),

and for k = 2,3, . . . ,N ,

Yk(n) = min
(
Yk(n − 1) + ξ(k,n),Yk−1(n − 1)

)
.

As laid out by Draief et al. [6], this recursion arises in the study of so-called tandem stores in series. The random
vector Y represents the cumulative demand met at each of the stores when the first store is saturated. Alternatively, Y

can be interpreted as the minimum-weight vector of certain weighted lattice paths.

Case D: Bernoulli jumps with pushing. Now it is natural to label particles left to right, so Y1(n) ≤ Y2(n) ≤ · · · ≤
YN(n). We update from right to left, and preserve the ordering by pushing particles to the right. The evolution is
generated from a family (ξ(k, n); k ∈ {1,2, . . . ,N}, n ∈ N) of independent Bernoulli random variables satisfying
P(ξ(k, n) = +1) = 1 − P(ξ(k, n) = 0) = pk , via the recursions Y1(n) = Y1(n − 1) + ξ(1, n), and for k = 2,3, . . . ,N ,

Yk(n) = max
(
Yk(n − 1) + ξ(k,n),Yk−1(n)

)
.

The process Y is the discrete-time analogue of a particle system studied by Alimohammadi et al. [1], which has been
studied further by Borodin and Ferrari [3]. It also plays an important role in the directed last-passage analogue of the
Seppäläinen model.

We summarize the description of the four cases in Table 1.

Table 1
Summary of the four cases

Case A B C D

Jump distribution geometric Bernoulli geometric Bernoulli
Interaction pushing blocking blocking pushing
Updating from left from right from left from right
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We need some well-known symmetric functions in order to present the Markov transition kernel of Y in each of
the four cases. The r th complete homogeneous symmetric polynomials in the indeterminates α1, . . . , αN are given by

hr(α) =
∑

k1≥0,...,kN≥0;k1+k2+···+kN=r

α
k1
1 α

k2
2 · · ·αkN

N .

By convention h0 = 1 and hr = 0 for r < 0. Now for 1 ≤ i < j ≤ N , let h
(ij)
r (α) = hr(α

(ij)) where α(ij) is the
N -vector (0, . . . ,0, αi+1, αi+2, . . . , αj ,0, . . .0) obtained from α by setting the first i weights, and the last N − j

weights equal to 0. Equivalently it is the r th complete homogeneous symmetric polynomial in the indeterminates
αi+1, . . . , αj . We set h

(jj)
r (α) = 1(r = 0).

We also need er , the r th elementary symmetric function defined as

er(α) =
∑

k1<k2<···<kr

αk1 · · ·αkr .

In analogy with the complete homogeneous symmetric functions, we use the conventions e
(jj)
r (α) = 1(r = 0) and

e0 = 1. We also set e
(ij)
r (α) = er(α

(ij)) and er = 0 for r < 0.
Given a function f on Z and a vector α ∈ RN+ , we write

f (ij)
α (k) =

{∑i−j

�=0(−1)�e
(ji)
� (α)f (k + �) if j ≤ i,∑∞

�=0 h
(ij)
� (α)f (k + �) if i ≤ j ,

(1)

and

f̂ (ij)
α (k) =

{∑i−j

�=0(−1)�e
(ji)

� (α)f (k − �) if j ≤ i,∑∞
�=0 h

(ij)
� (α)f (k − �) if i ≤ j ,

provided all series converge absolutely. Our main theorem uses this notation for functions f belonging to two different
families, (wn;n ∈ Z) and (vn;n ∈ Z), for which the desired convergence holds. These families are defined through

wn(k) =
(

n − 1 + k

k

)
1(k ≥ 0;n ≥ 0) and vn(k) =

(
n

k

)
1(0 ≤ k ≤ n;n ≥ 0).

We write w
(ij)
n,α for f

(ij)
α with f = wn, and define ŵ

(ij)
n,α , v

(ij)
n,α , and v̂

(ij)
n,α similarly. Moreover, we abbreviate the vector

(p−1
1 , . . . , p−1

N ) by p−1, and define the vector π through πi = pi/(1 − pi).

Theorem 1. The transition kernel Qn of the process Y is given by the following expressions:
Case A: Geometric jumps with pushing. We have for y, y′ ∈ ŴN ,

Qn

(
y, y′) =

N∏
k=1

[
(1 − pk)

np
y′
k−yk

k

]
det

{
ŵ

(ij)

n,p−1

(
y′
i − yj + i − j

)}
.

Case B: Bernoulli jumps with blocking. We have for y, y′ ∈ WN ,

Qn

(
y, y′) =

N∏
k=1

[
(1 − pk)

nπ
y′
k−yk

k

]
det

{
v

(ij)
n,π

(
y′
i − yj − i + j

)}
.

Case C: Geometric jumps with blocking. We have for y, y′ ∈ WN ,

Qn

(
y, y′) =

N∏
k=1

[
(1 − pk)

np
y′
k−yk

k

]
det

{
w

(ij)
n,p

(
y′
i − yj − i + j

)}
.
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Case D: Bernoulli jumps with pushing. We have for y, y′ ∈ ŴN ,

Qn

(
y, y′) =

N∏
k=1

[
(1 − pk)

nπ
y′
k−yk

k

]
det

{
v̂

(ij)

n,π−1

(
y′
i − yj + i − j

)}
.

The remainder of this paper is devoted to a proof of this theorem.

3. The RSK correspondence and its variants

In each of the four cases considered in the previous section, the Markov process of interest (Y (n);n ∈ N) is constructed
from a family (ξ(k, n); k ∈ {1,2, . . . ,N}, n ∈ N) of random innovations. In this section we will construct a second
Markov process Z from the same innovations data, using the RSK algorithm or one of its variants. In each case, we
will be able to find the (Karlin–McGregor-type) transition semigroup of Z and show that it is intertwined with the
transition semigroup of Y .

We give some definitions in order to describe the RSK-type algorithms in the form we need. A partition λ with
k parts is an integer vector λ1, . . . , λk satisfying λ1 ≥ λ2 ≥ · · · ≥ λk . Consider an array of strictly positive integers
T = (Tij ;1 ≤ i ≤ k,1 ≤ j ≤ λi) of shape λ satisfying Tij ≤ Ti+1,j and Tij ≤ Ti,j+1 (interpret Tij as infinity if it is
undefined). We write T ∈ Tn,∧

N if the integers in T do not exceed n and increase strictly down the columns, while λ

consists of at most N parts. In the terminology of enumerative combinatorics, Tn,∧
N consists of semi-standard Young

tableaux (SSYT) with at most N rows and content {1, . . . , n}. Similarly, we write T ∈ Tn,<
N if the integers in T do not

exceed n and increase strictly along the rows, while λ consists of at most N parts. We write sh(T ) for the shape of T ,
which we consider to be an element of WN by padding the vector with zeros if necessary (N is fixed throughout).

We study four different ways to associate a TN,∧
N -valued process (P (n);n ≥ 0) to the data (ξ(k, n); k ∈

{1, . . . ,N}, n ∈ N), each corresponding to a different variant of RSK. More details on the different variants can for
instance be found in [7,8].

We begin by noting two methods for constructing a two-line array of the form(
a1 a2 a3 · · ·
b1 b2 b3 · · ·

)

from the innovation data, where the ai are nondecreasing. Both methods have the property that the column
(
a
b

)
appears

ξ(b, a) times in the array. The first method, lexicographic array construction, requires that bi ≤ bi+1 if ai = ai+1. The
second method requires that bi ≥ bi+1 if ai = ai+1, and we therefore call it the anti-lexicographic array construction.

Next we describe two methods for constructing a sequence (P (n);n ≥ 0) of SSYT in TN,∧
N from the given two-line

array. Both constructions are inductive, and start with an empty SSYT P (0). Given P (n), the SSYT P (n+1) is found
by inserting the elements bi for which ai = n + 1. If there are M such elements, the methods construct a sequence
P 1(n), . . . , P M(n) such that P 1(n) = P (n) and P (n + 1) = P M(n). The SSYT P i+1(n) is constructed from P i (n)

by inserting the next unused b-element of the two-line array. The first method, row insertion, inserts an element b into
P i+1(n) using the following rules:

• If every entry in the first row of P i (n) is smaller than or equal to b, then b is appended to the end of the row.
• Otherwise, b is used to replace the leftmost entry in the row which is strictly larger than b.

The entry replaced is inserted in the same manner into the second row, and this process continues until an entry is
either placed at the end of a row or it is placed in the first position of an empty row. The second method, column
insertion, is a modification of the above procedure. Instead of inserting entries along the rows, the entries are now
inserted down the columns. Now the following rules are followed:

• If every entry in the column is strictly smaller than b, then b is appended to the end of the column.
• Otherwise, b is used to replace the uppermost entry in the column which is greater than or equal to b.

Four combinations of ξ -values, array constructions, and insertion algorithms are of special interest, as there is
a combinatorial correspondence underlying the above construction of the process P . To explain this, let Q(n) be
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Table 2
The four correspondences

Correspondence RSK Dual RSK Burge Dual Burge

Innovations data 0,1,2, . . . 0,1 0,1,2, . . . 0,1
Range (P (n), Q(n)) (2) (3) (2) (3)
Insertion algorithm row column column row
Array construction lexicographic lexicographic anti-lexicographic anti-lexicographic

the unique array of integers for which the entries 1, . . . ,m form an array with the same shape as P (m) for m ≤ n.
Depending on the RSK variant chosen, the pair (P (n), Q(n)) belongs either to{

(S,T ) ∈ TN,∧
N × Tn,∧

N : sh(S) = sh(T )
}

(2)

or to {
(S,T ) ∈ TN,∧

N × Tn,<
N : sh(S) = sh(T )

}
. (3)

The four combinatorial correspondences map the sequence (ξ(k,m); k ∈ {1,2, . . . ,N},m ∈ {1,2, . . . , n}) bijectively
to (P (n), Q(n)) for any n ≥ 1. We present these four combinations in Table 2, along with the name under which the
resulting bijection (correspondence) is known.

It is our next aim to relate the four correspondences to the interacting-particle framework of Section 2. Further
analysis is facilitated by a second process Z = (Z(n);n ≥ 0) arising from the process P . We define this process by
letting Z(n) be the shape of P (n), so Z takes values in WN . After giving the transition kernel of Z, we prove that the
transition semigroup of Y is intertwined with the transition semigroup of Z.

The semi-standard Young tableaux in TN,∧
N play an important role in our analysis since the process P is

TN,∧
N -valued, and we need some further definitions for such tableaux. For T ∈ TN,∧

N , we let ledge(T ) be the N -vector
for which element i is the number of i’s in row i (the terminology ‘ledge’ is motivated in the next section). This vector
may contain zeros and we always have ledge(T ) ∈ WN . Similarly, we let redge(T ) be the N -vector for which the ith
entry is the number of elements in the first row that do not exceed i; we always have redge(T ) ∈ ŴN . For a vector
α = (α1, α2, . . . , αN) of weights, we define the weight αT of T ∈ TN,∧

N by

αT =
N∏

i=1

α
ni(T )
i ,

where ni(T ) is the number of i’s in T . This is the usual definition for the weight of a SSYT.

Case A: Geometric jumps with pushing. Consider the RSK algorithm, i.e., lexicographic array construction and
row insertion. The row-insertion algorithm shows that the vector-valued process (redge(P (n));n ≥ 0) is exactly the
same as the process (Y (n);n ≥ 0). Note also that Y is Markov relative to the filtration of the Markov process P .

The dynamics of the RSK algorithm show that Q(n) is a SSYT. Therefore, using the bijective property of RSK we
obtain for S ∈ TN,∧

N ,T ∈ Tn,∧
N ,

P
(

P (n) = S, Q(n) = T
) =

N∏
k=1

[1 − pk]npS1
(
sh(S) = sh(T )

)
. (4)

Using the fact that Q(n) encodes the shapes (Z(m);m ≤ n), as argued in [12], Section 3.2, we can use (4) to compute
the law of the shape process Z. Indeed, summing (4) over appropriate S ∈ TN,∧

N ,T ∈ Tn,∧
N we obtain for m ≤ n,

P
(
Z(n) = z(n),Z(m) = z(m), . . . ,Z(1) = z(1)

) =
N∏

k=1

[1 − pk]nsz(n)(p)gn−m
z(n)/z(m)

,
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provided the left-hand side is nonzero. Here sz(p) = ∑
T ∈TN,∧

N ;sh(T )=z
pT is a symmetric function (in p) known

as a Schur polynomial. Also, gk
λ/μ is the number of skew SSYT with shape λ/μ and entries from {1, . . . , k} [20],

Section 7.10. The Jacobi–Trudi identity [20], Theorem 7.16.1, implies

gk
λ/μ = det

{
wk(λi − μj − i + j)

}
,

and we thus find that Z is a Markov chain on WN with transition kernel given by

Pn

(
z, z′) =

N∏
k=1

[1 − pk]n sz′(p)

sz(p)
det

{
wn

(
z′
i − zj − i + j

)}
.

A similar reasoning, now summing (4) over S ∈ TN,∧
N with redge(S) = y ∈ ŴN and sh(S) = Z(n), shows that

P
(
Y(n) = y|Z(m),m ≤ n

) = K̂p

(
Z(n), y

)
,

where

K̂α(z, y) = 1

sz(α)

∑
T ∈TN,∧

N ;sh(T )=z, redge(T )=y

αT .

Note that P(Y (n) = y|Z(m),m ≤ n) depends on (Z(m);m ≤ n) only through Z(n). This yields for y ∈ ŴN and
m ≤ n,

P
(
Y(n) = y|Z(k), k ≤ m

) = P
[
P
(
Y(n) = y|Z(k), k ≤ n

)|Z(k), k ≤ m
]

= P
[
K̂p

(
Z(n), y

)|Z(k), k ≤ m
]

=
∑

z∈WN

Pn−m

(
Z(m), z

)
K̂p(z, y).

On the other hand, the left-hand side can be written as

P
(
Y(n) = y|Z(k), k ≤ m

) = P
[
P
(
Y(n) = y|P (k), k ≤ m

)|Z(k), k ≤ m
]

= P
[
Qn−m

(
Y(m), y

)|Z(k), k ≤ m
]

=
∑

y′∈ŴN

K̂p

(
Z(m), y′)Qn−m

(
y′, y

)
.

On combining these two displays, we deduce the intertwining relationship PnK̂p = K̂pQn, where the product PK̂

of the kernel P with domain WN × WN and the kernel K̂ with domain WN × ŴN is defined as PK̂(z, y) =∑
z′∈WN P (z, z′)K̂(z′, y). The next section investigates the intertwining relationship in detail to find the kernel Qn.

Case B: Bernoulli jumps with blocking. Under lexicographic array construction and column insertion,
(ledge(P (n));n ≥ 0) is exactly the same as the process (Y (n);n ≥ 0). The bijective property of the dual RSK shows
that for S ∈ TN,∧

N ,T ∈ Tn,<
N ,

P
(

P (n) = S, Q(n) = T
) =

N∏
k=1

[1 − pk]nπS1
(
sh(S) = sh(T )

)
.
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As in [12], Section 3.3 on combining this with the dual Jacobi–Trudi identity, we find that Z is a Markov chain on
WN with transition kernel

Pn

(
z, z′) =

N∏
k=1

[1 − pk]n sz′(π)

sz(π)
det

{
vn

(
z′
i − zj − i + j

)}
.

After setting

Kα(z, y) = 1

sz(α)

∑
T ∈TN,∧;sh(T )=z, ledge(T )=y

αT ,

we may derive the intertwining PnKπ = KπQn along the lines of case A.

Case C: Geometric jumps with blocking. The dynamics of the column insertion algorithm show that (ledge(P (n));
n ≥ 0) is exactly the same as the process (Y (n);n ≥ 0). Moreover, since the law of the process Z is invariant under
the choice of the insertion algorithm, Z is Markovian with the same kernel as in case A. The intertwining is PnKp =
KpQn.

Case D: Bernoulli jumps with pushing. Now (redge(P (n));n ≥ 0) is exactly the same as the process (Y (n);n ≥ 0).
The process Z is Markovian with the same kernel as in case B, and we have the intertwining PnK̂π = K̂πQn.

4. Determinantal intertwining kernels

It is the aim of this section to show how the kernel Qn of Y can be recovered from any of the intertwining identities
PnK̂α = K̂αQn and PnKα = KαQn, where Pn is the (known) Karlin–McGregor-type kernel of the process Z. In fact,
we prove the stronger assertion that the intertwining kernels Kα and K̂α are invertible.

In what follows, it is convenient to embed TN,∧
N in a space parametrized by an array of variables x = (x1, . . . , xN)

with xk = (xk
1 , xk

2 , . . . , xk
k ) ∈ Zk , such that the coordinates satisfy the inequalities

xk
k ≤ xk−1

k−1 ≤ xk
k−1 ≤ xk−1

k−2 ≤ · · · ≤ xk
2 ≤ xk−1

1 ≤ xk
1

for k = 2, . . . ,N . The pattern x corresponding to a given SSYT in TN,∧
N is found by letting x

j
i mark the position

of the last entry in row i whose label does not exceed j . We write KN for the set of all x satisfying the above
constraint, and say that any x ∈ KN is a Gelfand–Tsetlin (GT) pattern. In contrast to the tableau setting, it is not
required that x has non-negative entries. For x ∈ KN , we set sh(x) = (xN

1 , xN
2 , . . . , xN

N ), ledge(x) = (x1
1 , . . . , xN

N ),

and redge(x) = (x1
1 , . . . , xN

1 ); these definitions are consistent with those given for a SSYT in TN,∧
N . For a vector

α = (α1, α2, . . . , αN) of weights, we define the weight αx of a GT pattern x by

αx = α
x1

1
1

N∏
k=2

α

∑
xk
i −∑

xk−1
i

k ,

in accordance with our previous definition for tableaux in TN,∧
N .

Instead of studying Kα and K̂α , it is equivalent but more convenient to work with modified versions which do
not involve Schur functions but have a polynomial prefactor. It is natural to start with the kernel Kα , since this is a
‘square’ WN × WN matrix. We define, suppressing the dependence on α,

Λ(z, y) = α
−y1
1 · · ·α−yN

N

∑
x∈KN ;sh(x)=z, ledge(x)=y

αx. (5)

We first show that Λ(z, y) can be written as a determinant.
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Proposition 2. For y, z ∈ WN , we have

Λ(z, y) = det
{
h

(jN)
zi−yj −i+j (α)

}
.

Proof. The proof is a variant of a well-known argument using non-intersecting lattice paths to derive the Jacobi–Trudi
formulae, see for example [20]. Fix z and y belonging to WN with zN = yN . Each Gelfand–Tsetlin pattern x ∈ KN

having sh(x) = z and ledge(x) = y can be encoded as a non-intersecting (N − 1)-tuple of paths (P1,P2, . . . ,PN−1)

on the edges of the square lattice with vertex set Z2. Paths always traverse edges in the direction of increasing co-
ordinates: either ‘upwards’ or ‘rightwards’. The path Pk begins at the vertex (yk − k, k + 1), ends at (zk − k,N), and
contains the ‘horizontal’ edges from (xr−1

k − k, r) to (xr
k − k, r), for r = k + 1, k + 2, . . . ,N . This correspondence

between patterns and paths is a bijection and consequently we may write the sum defining Λ(z, y) as

∑
(P1,...,PN−1)

w(P1) · · ·w(PN−1),

where the sum is over all non-intersecting paths which have starting points and end points given in terms of y and z

as above, and where the weight w(Pk) is defined to be

N∏
r=k+1

αe(r)
r ,

with e(r) denoting the number of horizontal edges at height r contained in the path Pk . By the Gessel–Viennot formula
(see Theorem 2.7.1 of [19]), this sum for Λ(z, y) is equal to det(M) where M is an (N − 1) × (N − 1) matrix with
(i, j)th entry given by

∑
P w(P ) where P runs through all paths connecting (yj − j, j + 1) to (zi − i,N). This

latter quantity is easily found to equal h
(jN)
zi−yj −i+j (α). The proposition follows on noting that h

(NN)
zi−yN−i+N(α) = 0 for

i = 1,2,3, . . . ,N − 1 and that h
(NN)
zN−yN

(α) = 1(zN = yN). �

We will use the following identity that is easily checked by means of generating functions,

∑
r∈Z

(−1)re(iN)
r (α)h

(jN)
n−r (α) =

{
h

(ji)
n (α) if j ≤ i,

(−1)ne
(ij)
n (α) if i ≤ j .

(6)

Recall also the Cauchy–Binet formula

∑
z∈WN

det
{
φi(zj − j)

}
det

{
ψj(zi − i)

} = det

{∑
z∈Z

φi(z)ψj (z)

}
. (7)

Proposition 3. The WN × WN matrix Λ is invertible. Its inverse is given by the WN × WN matrix Π defined as

Π(y, z) = det
{
(−1)yi−zj −i+j e

(iN)
yi−zj −i+j (α)

}
.

Proof. We first show that Π is a left inverse of Λ. From the Cauchy–Binet formula we deduce that

ΠΛ
(
y, y′) = det

{
m

(ij)

yi−y′
j −i+j

}
, (8)

where

m
(ij)
n =

{
h

(ji)
n if j ≤ i,

(−1)ne
(ij)
n if i ≤ j .
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Observe that m
(ij)
r is zero if either i ≤ j and r > j − i or if i ≥ j and r < 0. In particular the product of the diagonal

elements appearing in the determinant on the right-hand side of (8) is
∏

i 1(y′
i = yi). We need to show that this is

the only contribution to the determinant. Suppose that π is a permutation of {1,2, . . . ,N} other than the identity, and
consider the product of the (i,π(i))th entries. It is easy to see that there must be integers i1 and i2 such that i1 < i2,
π(i1) > i1, π(i2) < i2 and π(i1) > π(i2). Now the (i1,π(i1))th entry is zero if yi1 > y′

π(i1)
, and the (i2,π(i2))th entry

is zero if yi2 ≤ y′
π(i2)

. But since yi1 ≥ yi2 and y′
π(i1)

≤ y′
π(i2)

, at least one of these previous inequalities holds, and
hence the product is zero.

The key ingredient for showing that Π is a right inverse of Λ is the trivial identity

Π
(
y, z′) =

∑
�1,...,�N∈Z

(−1)�1e
(0N)
�1

· · · (−1)�N e
(NN)
�N

det
{
1
(
yi − i = z′

j − j + �i

)}
.

Observe that the sum over the � is finite since the summand is zero unless 0 ≤ �i ≤ N − i for all i. We therefore have
for any function f on ZN and 0 ≤ �i ≤ N − i,∑

y∈WN

f (y1 − 1, . . . , yN − N)det
{
1
(
yi − i = z′

j − j + �i

)}

=
∑

σ∈SN

sgn(σ )f
(
z′
σ(1) + �1, . . . , z

′
σ(N) − σ(N) + �N

) ∑
y∈WN

N∏
m=1

1
(
ym − m = z′

σ(m) − σ(m) + �m

)

= f
(
z′

1 − 1 + �1, . . . , z
′
N − N + �N

)
,

where SN is the set of permutations on {1, . . . ,N}. After absorbing the sum over the � in the determinant, we obtain
ΛΠ(z, z′) = det{m(ij)

zi−z′
j −i+j

} = 1(z = z′). �

By virtue of this proposition, the intertwining ΛQ = PΛ yields Q = ΠPΛ, and a straightforward computation
using the Cauchy–Binet formula and (6) implies the following corollary: Recall the definition of f

(ij)
α in (1).

Corollary 4. Suppose that P is a WN × WN matrix of the form

P
(
z, z′) = det

{
f

(
z′
i − zj − i + j

)}
for some function f on Z. Suppose that Q is another WN × WN matrix and that the intertwining relation PΛ = ΛQ

holds. Then we have for y, y′ ∈ WN ,

Q
(
y, y′) = det

{
f (ij)

α

(
y′
i − yj − i + j

)}
.

We will also consider a second intertwining kernel that arises by replacing the left edge of the pattern with the right
edge in (5): for z ∈ WN , y ∈ ŴN , we set

Λ̂(z, y) = α
−y1
1 · · ·α−yN

N

∑
x∈KN ;sh(x)=z, redge(x)=y

αx.

For x ∈ KN , define x̂ ∈ KN by x̂k
i = −xk

k−i+1. The correspondence x �→ x̂ is bijective and it is easily verified that

αx̂ = βx where β = α−1 = (α−1
1 , . . . , α−1

N ). Using this correspondence and our results for Λ we obtain the following
proposition.

Proposition 5. For z ∈ WN and y ∈ ŴN , we have

Λ̂(z, y) = det
{
h

(jN)
yj −zN−i+1−i+j

(
α−1)}.
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Moreover, Λ̂ is invertible with inverse Π̂ given by, for y ∈ ŴN and z ∈ WN ,

Π̂(y, z) = det
{
(−1)zN−j+1−yi−i+j e

(iN)
zN−j+1−yi−i+j

(
α−1)}.

The analogue of Corollary 4 follows immediately from this proposition.

Corollary 6. Suppose that P is a WN × WN matrix of the form

P
(
z, z′) = det

{
f

(
z′
i − zj − i + j

)}
for some function f on Z. Suppose that Q is a ŴN × ŴN matrix and that the intertwining relation PΛ̂ = Λ̂Q holds.
Then we have for y, y′ ∈ ŴN ,

Q
(
y, y′) = det

{
f̂

(ij)

α−1

(
y′
i − yj + i − j

)}
.
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