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Twisted differential cohomology
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We construct multiplicative twisted versions of differential cohomology theories for
all highly structured ring spectra and twists. We prove existence and give a full
classification of differential refinements of twists under mild assumptions. Various
concrete examples are discussed and related to earlier approaches.
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1632 Ulrich Bunke and Thomas Nikolaus

1 Introduction

1.1 On the contents of the paper

The main goal of the present paper is the construction of twisted generalized differential
cohomology theories and the comprehensive statement of its basic functorial properties.
Technically it combines the homotopy-theoretic approach to (untwisted) generalized
differential cohomology developed by Hopkins and Singer [32] and Bunke and Gepner
[10; 9] with the 1–categorical treatment of twisted cohomology by Ando, Blumberg
and Gepner [2]. One of the main motivations for twisted differential cohomology is
the theory of integration (or pushforward) in nonorientable situations. Our approach
leads to such a theory, which will be discussed elsewhere.

Following an idea of the second author, a neat way to state all the properties of a twisted
generalized differential cohomology is to say that it forms a sheaf of graded ring spectra
on the category of smooth manifolds where the underlying sheaf of gradings is the Picard
stack of differential twists. This formulation incorporates the multiplicative structure
of twisted cohomology (which adds twists), automorphisms of twists, Mayer–Vietoris
sequences as well as the functoriality in the underlying manifold.

Given the approach of [10] the construction of twisted generalized differential cohomol-
ogy is actually easy once the differential twists are understood. So the main emphasis of
the present paper is on the investigation of the Picard groupoid of differential twists. Our
main results concern the existence of differential refinements of topological twists and
the classification of such refinements. As an interesting aspect of the theory we show
that for a commutative ring spectrum R there is a map (anticipated eg by Distler, Freed
and Moore [16]) from a version of differential bgl1.R/–cohomology to differential
R–twists.

We now explain the structure of the paper in detail. It consists of three parts and a
technical appendix. In Part I we develop twisted generalized differential cohomology in
general. In Part II we consider in detail the differential form part of differential twists
and discuss the existence and uniqueness of differential refinements of topological
twists. Part III contains more concrete material and examples.

In Part I we develop the general theory of twisted generalized differential cohomology,
starting with the notion of a graded ring spectrum in Section 2. In Section 3 we review
the homotopy-theoretic version of twisted cohomology using the language of graded
ring spectra. In Section 4 we introduce the Picard-1–stack of differential twists and
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Twisted differential cohomology 1633

construct the sheaf of graded ring spectra representing twisted generalized cohomology.
Part I is concluded with Section 5, where we list explicitly some of the functorial
structures of twisted differential cohomology.

In Part II we investigate differential twists in detail. While the definition of differential
twists given in Section 4 is straightforward, it is not at all obvious whether a given
topological twist has a differential refinement at all, and how many of such refinements
exist. In the preparatory Section 6 we introduce a particular class of Rham models
which can conveniently be used in the construction of differential twists. In Section 7 we
show under mild assumptions that the extension of a topological twist to a differential
twist is unique up to noncanonical equivalence. The existence of differential twists is
studied in Section 8.

Part III is devoted to special cases and examples. While the general theory works for
arbitrary commutative ring spectra all examples of interest satisfy a set of particular
assumptions termed differentially simple in Section 9. This assumption simplifies the
choice of suitable de Rham models considerably. In Section 10 we show that cycles for
differential bgl1.R/–cohomology determine differential R–twists. This provides one
explicit way to construct differential twists. In this framework we discuss, in particular,
the construction of differential twists from higher geometric gerbes. In Section 12
we show how one can determine the de Rham part of the differential twist refining
a topological twist E from the knowledge of differentials of the Atiyah–Hirzebruch
spectral sequence associated to E.

In the second subsection of this introduction we explain some new contributions of
this paper in the example of complex K–theory.

1.2 The case of complex K –theory

The study of field theories involving higher-degree differential forms on manifolds
with B –field backgrounds led to quantization conditions which could conveniently be
explained by the requirement, that the field strength represents the Chern character of
a twisted K–theory class; see Freed [19] for a nice account. Subsequently, various
models of twisted K–theory have been constructed. It was clear from the beginning,
that twisted K–theory fixes the topological background, and the actual fields are
classified by twisted differential K–theory classes. It turned out to be important to
understand the twists themselves in the framework of differential cohomology. For
a detailed description of the physical motivation we refer to Freed and Hopkins [20],
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1634 Ulrich Bunke and Thomas Nikolaus

and for the details of how exactly differential K–theory appears in type II superstring
theory see Distler, Freed and Moore [16; 17].

Twisted complex K–theory and its differential version have been investigated to some
extent by Donovan and Karoubi [18], Tu, Xu and Laurent-Gengoux [48], Atiyah and
Segal [6; 5], Freed, Hopkins and Teleman [23; 21; 22], Barcenas and Velasquez [7],
Bouwknegt, Carey, Mathai, Murray and Stevenson [8], Gomi [24], Harju [28], Mickels-
son and Pellonpää [40] and Harju and Mickelsson [29] (we refrain from listing papers
dealing with nontwisted differential K–theory).

In most of the literature and applications one restricts to the subset of topological
twists which are classified by third cohomology. In the present paper we consider the
degree as part of the twist. Therefore, given a manifold M, an integer n 2 Z and a
cohomology class z 2H 3.M IZ/, one has a twisted K–theory group KnCz.M/. A
classical calculation of twisted K–theory is (see Example 3.14)

K1Cz.S3/Š Z=kZ; K0Cz.S3/D 0

if z 2H 3.S3IZ/ is the kth multiple of the canonical generator and k ¤ 0. Twisted
K–theory has a product (which is trivial in the S3–example)

[W KnCz.M/˝Kn
0Cz0.M/! KnCn

0CzCz0.M/:

So far this picture of twisted K–theory has the drawback that the group KnCz.M/ is
only defined up to noncanonical isomorphism. In order to fix this group itself, one must
choose a cycle for the cohomology class z . In general, the automorphisms of cycles act
nontrivially on the twisted K–theory groups. A detailed picture of this phenomenom
has been explained in an axiomatic way by Bunke and Schick [12, Section 3.1].

The precise meaning of a cycle for a twist depends on the particular construction of
twisted K–theory. In the literature cycles are taken as U.1/–gerbes, principal PU–
bundles, bundles of Fredholm operators or maps to a model of the Eilenberg–Mac Lane
space K.Z; 3/. In the language of the present paper such a map would be considered
as an object of the Picard-1–groupoid K.Z; 3/.M/.

We work with the Picard-1–groupoid of all topological twists of complex K–theory
on M, which is denoted by Picloc

K .M/. The specialization to third cohomology is
obtained via a map of Picard-1–stacks K.Z; 3/! Picloc

K which is essentially unique
by Antieau, Gepner and Gómez [4].
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Our way to phrase the dependence of twisted K–theory on the cycle, the action of
the automorphism groups of cycles, and the multiplicative structure is to say that the
association

K.��� /.M/W Ho Picloc
K .M/! Ab

is a lax symmetric monoidal functor. Here Ho Picloc
K .M/ is the homotopy category of

twists on M and Ab denotes the category of abelian groups. After specialization to
K.Z; 3/ this realizes the axioms listed in [12, Section 3.1] and includes in addition the
multiplicative structure. In the language of the present paper, the functor K.��� /.M/ is
a graded ring, graded by the homotopy category Ho Picloc

K .M/ of topological twists
of K on M.

The real model for the untwisted complex K–theory of a manifold M is the 2–periodic
de Rham complex ��.M/Œb; b�1�, where deg.b/D�2. It receives a multiplicative
Chern character transformation

chW K�.M/!H�.��.M/Œb; b�1�/;

which becomes an isomorphism after tensoring the domain with R provided M is
compact. If V !M is a complex vector bundle and r is a connection on V , then
ch.ŒV �/ is represented by the closed form

(1) Tr exp
�
b

2�i
Rr

�
2Z0.��.M/Œb; b�1�/:

We now come back to the twisted case and consider an equivalence class of twists
coming from a class z 2 H 3.M IZ/. Then one considers a closed three form ! 2

Z3.��.M// representing the image of the class z in de Rham cohomology and forms
the twisted de Rham complex .��.M/Œb; b�1�; d C b!/ by perturbing the de Rham
differential with b! . The twisted de Rham complex is the correct real model of z–
twisted K–theory. This is justified by the existence of a twisted version of the Chern
character

(2) chW K�Cz.M/!H�.��.M/Œb; b�1�; d C b!/;

which again becomes an isomorphism after tensoring the domain with R for compact M.
This twisted Chern character has been constructed in various models — see Mathai and
Stevenson [36; 37], Tu and Xu [47] and Gomi and Terashima [25] — and is in general
(with the exception of [25]) based on an infinite-dimensional generalization of Chern–
Weyl theory and the formula (1). One consequence of our work is a homotopy-theoretic
construction of the twisted Chern character.
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Since the twisted K–group is determined by the class z only up to noncanonical
isomorphism, it is impossible to say that the twisted Chern character is natural in
the twist or compatible with products etc. Improvements in this direction have been
addressed in the literature. We provide a solution of the problem as a consequence of
the construction of a differential twisted complex K–theory.

As a start we fix the commutative differential graded algebra RŒb; b�1� (with trivial
differential and deg.b/ D �2) as a real model of complex K–theory. In fact, there
exists a map of commutative ring spectra

cW K!HRŒb; b�1�

(where H is the Eilenberg–Mac Lane equivalence between chain complexes and HZ–
module spectra), which becomes an equivalence after forming the product of K with
the Moore spectrum MR ' HR. The fact that complex K–theory admits such a
simple real model is a consequence of the property of being differentially simple
(Definition 9.1). We call the triple yK WD .K;RŒb; b�1�; c/ a differential refinement
of K.

In [10; 9] the choice of such a differential refinement was the starting point for the
construction of a multiplicative (untwisted) differential complex K–theory. We show
that this choice also suffices to construct twisted differential complex K–theory.

In Definition 4.10 we define, functorially in the manifold M, a Picard-1–groupoid
TwyK.M/ of differential twists of K on M. A differential twist of K on M is essentially
a triple .E;M; d / consisting of

� a topological K–twist E 2 Picloc
K .M/,

� a sheaf of real chain complexes M over M which is additionally a DG–module
over the sheaf �RŒb; b�1� (given by U 7!��.U /Œb; b�1�), and

� an equivalence d which identifies M with a real version ER of E .

By Example 11.7 the groupoid TwyK.M/ in particular contains twists of the form

(3) yE WD .E; .�RŒb; b�1�; d C b!/; d/;

where E is a topological K–twist classified by a class z 2 H 3.M IZ/ and ! 2

Z3.��.M// represents the de Rham class of z .

Twisted differential complex K–theory on M is, by Corollary 4.14, a lax symmetric
monoidal functor (ie a graded ring)

yK.��� /.M/W Ho TwyK.M/! Ab:
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An important piece of the structure of twisted differential cohomology is the differential
form contribution. More precisely, the construction of twisted differential K–theory
provides a morphism of abelian groups

CurvW yK.E;M;d/.M/!Z0M.M/;

where Z0M.M/ are the zero-cycles in the DG–��.M/Œb; b�1�–module M.M/.
The morphism Curv maps a differential cohomology class to its underlying “curvature
form”. This transformation can be considered as a multiplicative differential form level
refinement of the Chern character (2) which is natural in the twist.

Let us make this transparent for the twist (3). In this case we get a map

CurvW yK yE.M/!Z0.��.M/Œb; b�1�; d C b!/���.M/Œb; b�1�:

For x2 yK yE.M/ the form Curv.x/2��.M/Œb; b�1� satisfies the twisted cycle condition
.d C b!/ Curv.x/ D 0, and its cohomology class represents ch.I.x// in twisted de
Rham cohomology, where I.x/ 2 KE.M/ is the underlying twisted K–theory class
of x and ch is the twisted Chern character map (2).

We continue this example and investigate the action of automorphisms of twists. As
an application of the differential cohomology interpretation of differential twists ex-
plained in Section 10, in particular Remark 11.3(8), we have a map yH 2.M;Z/!

AutHoTwyK.M/. yE/. If a class � 2 yH 2.M;Z/ in second ordinary differential coho-
mology gives rise to such an automorphism of yE, then it in particular acts on the
complex ��.M;RŒb; b�1�/. In this case the action is given by multiplication by
exp.�b Curv.�// with Curv.�/ 2�2.M/. Moreover, the diagram

yK yE.M/
Curv

oo

�

��

yK yE.M/
Curv

oo

Z0.��.M/Œb; b�1�; dCb!/

exp.�b Curv.�//

��

Z0.��.M/Œb; b�1�; dCb!Cb Curv.�//

commutes. This can be interpreted as part of the statement of naturality of the twisted
Chern character forms.

Given a second differential twist yE 0 of the form (3) we can form the product of
differential twists

yEC yE 0 D
�
ECE 0; .�RŒb; b�1�; d C b.!C!0//; d C d 0

�
:
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The fact that Curv is a symmetric monoidal transformation in particular says that the
diagram

yK yE.M/˝yK yE
0

.M/
Curv˝Curv

oo

[
��

yK yEC yE
0

.M/
Curv

oo

Z0.��.M/Œb;b�1�;dCb!/˝Z0.��.M/Œb;b�1�;dCb!0/

^

��

Z0.��.M/Œb; b�1�; dCb.!C!0//

commutes. This is a differential form level statement of the fact that the twisted Chern
character is compatible with products.

So far we have discussed consequences of the construction of twisted differential
K–theory for the Chern character. A major mathematical motivation for considering
differential cohomology (and its twisted versions) is the fact that it receives secondary
invariants. The application (see the examples discussed in [9, Section 4]) of differential
cohomology to the construction of secondary invariants is usually related to the exact
sequences stated in general in Proposition 5.1. In the literature, a major part of the
effort is invested in the construction of these sequences. In fact, their verification is
important in order to state that the respective construction really produces a version of
(twisted) differential cohomology. In our approach, similar as in [32], these sequences
are immediate consequences of the construction.

Observe that the theory developed in the present paper does not completely provide the
mathematical background for the constructions envisaged in [16]. For this it would be
necessary to include group actions, orbifolds and equivariant twists.

While the advantage of our homotopy-theoretic construction of twisted differential
K–theory is that it is easy to verify functorial properties and construct maps out of
twisted differential K–theory, a shortcoming is the difficulty of constructing maps into
differential twisted K–theory from differential geometry or analytic objects (see [10]
for a more detailed discussion).

Conventions We will freely use the language of 1–categories and symmetric monoi-
dal 1–categories following Joyal and Lurie, with Lurie’s books [33; 34] as our main
sources and we will mostly follow the notation therein. The reader unfamiliar with the
theory might also consult Groth [27] or Cisinski [15].

Acknowledgements We would like to thank David Gepner and Michael Völkl for
helpful discussions. The authors are supported by the Collaborative Research Centre
1085, Higher invariants.
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Part I Twisted cohomology via graded ring spectra

2 Graded ring spectra

In this section we will, generalizing commutative (more precisely E1 ) ring spectra,
define the notion of a commutative graded ring spectrum. As motivation we first explain
the simpler case of the generalization from commutative rings to commutative graded
rings.

If A is an abelian monoid, then a commutative A–graded ring is given by the datum
of an abelian group Ra for every a 2 A together with morphisms Ra˝Rb ! Rab

which must satisfy associativity and commutative conditions. We let A be the discrete
category on the underlying set of A, ie the objects of A are the elements of A and there
are only identity morphisms. The monoid structure of A turns A into a symmetric
monoidal category. With this in mind, a commutative A–graded ring can be considered
as the datum of a lax symmetric monoidal functor from A! Ab, where Ab denotes
the symmetric monoidal category of abelian groups.

It makes sense to replace A by an arbitrary symmetric monoidal category C and define
the category of commutative C–graded rings to be the category of lax symmetric
monoidal functors from C to abelian groups,

GrRingC WD Fun˝lax.C;Ab/:

Lax symmetric monoidal here means that the monoidal coherence morphisms are
possibly noninvertible. The direction is such that a lax monoidal functor sends algebra
objects in C to algebra objects in Ab. The assignment

(4) SymMon! Catop; C 7! GrRingC;

defines a contravariant functor from the 2–category of symmetric monoidal categories
and lax symmetric monoidal functors SymMon to the 2–category of categories.

Definition 2.1 The 2–category GrRing is defined as the Grothendieck construction
of the functor (4).

Thus, objects in GrRing are pairs .C; R�/, where C is a symmetric monoidal category
and R� is a C–graded ring. Moreover, there is a functor U W GrRing! SymMon
given by .C; R�/ 7! C .

Algebraic & Geometric Topology, Volume 19 (2019)
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We now want to generalize the notion of graded rings to graded ring spectra. Since
spectra form an 1–category it is most natural to allow indexing categories which are
themselves symmetric monoidal1–categories instead of ordinary symmetric monoidal
categories. We consider the 1–category of symmetric monoidal 1–categories and
lax monoidal functors1 SymMon1 as the home of the following web of full reflective
1–subcategories:

(5)

Ab //

��

CGrp.S/

��

SymMon

��

AbMon // CMon.S/ // SymMon1

of commutative groups and monoids in the category of sets and the 1–category S of
spaces. We will not write these inclusions explicitly and hope that this abuse will not lead
to confusion. Commutative groups in spaces are also called Picard-1–groupoids. Thus,
a Picard-1–groupoid is a symmetric monoidal 1–category such that the underlying
1–category is an 1–groupoid with the property that every object has a tensor inverse.
Note that the 1–loop space functor �1 provides an equivalence of the 1–category
of connective spectra Sp�0 with the 1–category of Picard-1–groupoids.

Recall that the 1–category Sp of spectra is a symmetric monoidal 1–category with
respect to the smash product (see [34, Section 6.3.2]).

Definition 2.2 Let C be a symmetric monoidal1–category. A commutative C–graded
ring spectrum is a lax symmetric monoidal functor C! Sp.

In the following we illustrate this definition by relating some special cases with more
classical notions.

Examples 2.3 (1) Let C be the trivial symmetric monoidal 1–category, ie a point
considered as a group object in spaces. Then a C–graded ring spectrum is just a
commutative ring spectrum.

(2) Let R� be an ordinary commutative C–graded ring as in Definition 2.1, where C
is an ordinary symmetric monoidal category. Then the collection of Eilenberg–
Mac Lane spectra HR� has the structure of a C–graded-ring spectrum.2

1This is defined as the full subcategory of the 1–category of 1–operads spanned by symmetric
monoidal 1–categories; see [34].

2Here we should strictly speaking write NC for the symmetric monoidal 1–category associated to C ,
but we suppress this by our general language abuse.
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(3) If C is an ordinary abelian monoid considered as a discrete symmetric monoidal
1–category, then a C–graded ring spectrum is given by the following set of
data:

(a) for every element a 2 C , a spectrum Ra ,

(b) for every pair of elements a; b 2 C , a morphism Ra ^Rb!Rab ,

(c) for triples a; b; c 2 C , coherence cells filling the obvious diagram.

There is moreover an infinite list of higher coherence cells, which is made precise
by the above definition.

(4) Let us consider a C–graded ring spectrum R . If we apply the functor �0W Sp!
Ab, then we get a lax monoidal functor C!Ab. It has a canonical factorization
over a lax monoidal functor Ho C! Ab, where Ho C is the homotopy category
of C . Thus, the homotopy of a C–graded ring spectrum R is a Ho C–graded
ring �0.R/.

In the following we define an1–category of commutative graded spectra. We let Cat1
denote the 1–category of 1–categories. We consider the functor

(6) SymMonop
1! Cat1; C 7! Fun˝lax.C;Sp/:

For the Grothendieck construction in 1–categories see [33, Chapter 3].

Definition 2.4 The 1–category of graded ring spectra GrRingSp is defined to be
the Grothendieck construction of the functor (6).

Thus, roughly speaking, an object in GrRingSp is a pair .C; R/ of a symmetric monoi-
dal 1–category C and a C–graded ring spectrum R . A morphism .u; f /W .C; R/!
.C0; R0/ consists of a lax symmetric monoidal functor f W C! C0 and a morphism of
graded ring spectra uW R! f �R0. Moreover, we have a canonical forgetful functor
GrRingSp! SymMon1 .

The following lemma is an immediate consequence of the definitions:

Lemma 2.5 There is a functor

GrRingSp! GrRing; .C; R/ 7! .Ho C; �0.R//:

We have collected some technical facts about graded ring spectra in Appendix A.
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3 Twisted cohomology

A classical instance of twisted cohomology is the cohomology of a space with coeffi-
cients in a locally constant sheaf, for example the orientation sheaf. Twisted K–theory
was introduced in [18]. Much later, motivated by applications in physics it became an
intensively studied object; see Section 1.2 of the introduction. General approaches to
twisted cohomology are given in [39; 1; 2; 42]. The reference [2] can be considered as
a starting point for the approach taken in the present paper.

In this section we review twisted cohomology and phrase it in the framework of graded
rings and graded ring spectra. The construction serves as a model for the slightly more
involved case of twisted differential cohomology.

We first need some sheaf-theoretic notation. We consider sheaves with values in a
presentable 1–category C . An ordinary category is considered as an 1–category via
its nerve. By Mf we denote the site of smooth manifolds with the pretopology of open
coverings. By ShC we denote the 1–category of sheaves on the site Mf with target C .
We use the symbol ShC.M/ in order to denote the category of sheaves on the restricted
site Mf=M. For a sheaf A 2 ShC we let AjM 2 ShC.M/ denote the restriction of A
to Mf=M. For presheaves we will use similar conventions and the symbol PSh. A
reference for sheaves with values in 1–categories is [33]. See also the note [11] for
some sheaf theory in this setting.

The diagram of reflective subcategories (5) induces a corresponding diagram of reflective
subcategories of sheaves on Mf or any other site with values in the respective 1–
categories. We will use these inclusions without further notice. Sheaves of groupoids
will also be referred to as stacks. In particular, a sheaf of Picard-1–groupoids is called
a Picard-1–stack.

An object X 2 C gives rise to a constant presheaf CX 2 PShC defined by CX .N / WDX
for all objects N 2Mf. By yCX 2 ShC we denote its sheafification.

Definition 3.1 Let M be a smooth manifold. A sheaf F 2 ShC.M/ is called constant
if there exists an object X 2 C and an equivalence . yCX /jM Š F.

A sheaf F 2 ShC.M/ is called locally constant if every point m 2M has a neighbour-
hood U �M such that F jU 2 ShC.U / is constant. We write

Shloc
C .M/� ShC.M/

for the full subcategory of locally constant sheaves.

Algebraic & Geometric Topology, Volume 19 (2019)
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Definition 3.2 For an object X 2 C of a presentable 1–category C we define the
sheaf X 2ShC such that its evaluation on the manifold M is given by X.M/ WDXM

top
.

In this definition, M top is the underlying space of M, and we use that a presentable1–
category is cotensored over spaces. We refer to the appendix of [10] for the verification
of the following facts.

Proposition 3.3 (1) The presheaf M 7!XM
top

is indeed a sheaf.

(2) The sheaf X is constant. In fact, we have an equivalence X Š yCX .

If C is a (closed) symmetric monoidal 1–category, then the categories PShC.M/,
ShC.M/ and Shloc

C .M/ also carry (closed) symmetric monoidal structures given by
the objectwise tensor product. Thus, it makes sense to speak of (commutative) algebra
and module objects in these categories. It turns out that algebras in (locally constant)
sheaves are the same as (locally constant) sheaves of algebras.

Proposition 3.4 Let C be a (closed) presentable symmetric monoidal 1–category.
Then we have equivalences

CAlg.ShC.M//' ShCAlg.C/ and CAlg.Shloc
C .M//' Shloc

CAlg.C/.M/:

If X 2 C is a commutative algebra object, the sheaf X is a locally constant sheaf of
commutative algebras and we have similar equivalences

ModX .M/' ShModX .M/ and Modloc
X .M/' Shloc

ModX .M/:

Proof We give the proof for the first equivalences. The argument for the second
assertion is similar. For categories of presheaves we have an evident equivalence
CAlg.PShC.M//' PShCAlg.C/ which directly follows from the definition and universal
property of the pointwise tensor product on functor categories [34, Section 2.2.5].
Thus, it is enough to check that, under this equivalence, sheaves and locally constant
sheaves are preserved. For the case of sheaves this follows since the sheaf condition is
a limit condition and the forgetful functor which forgets algebra structures commutes
with limits in any closed symmetric monoidal 1–category [34, Section 3.2.2]. For
the second equivalence we use that the first obviously commutes with restriction. It
therefore suffices to show the equivalence for constant sheaves. Here we use again
that the forgetful functor that forgets the algebra structure commutes with limits, so
in particular with the tensoring used in Proposition 3.3 in order to define constant
sheaves.
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For a commutative ring spectrum R the 1–category of module spectra over R will
be denoted by ModR . By PicR we denote the maximal Picard-1–groupoid inside
of ModR , ie the objects are R–module spectra which admit a tensor inverse, and the
morphisms are the invertible R–module maps. Similarly, by Picloc

R .M/ we denote the
maximal Picard-1–groupoid inside the 1–category Shloc

ModR.M/ of locally constant
sheaves of R–modules on M.

Definition 3.5 The objects of Picloc
R .M/ are called R–twists on M.

Let us list a few properties of R–twists that we will need later. The proofs are given in
Appendix B.

Proposition 3.6 (1) The assignment M 7! Picloc
R .M/ itself forms a Picard-1–

stack on Mf, ie

(7) Picloc
R 2 ShCGrp.S/:

(2) For every manifold M there is a canonical equivalence of Picard-1–groupoids

Picloc
R .M/Š .PicR/M

top
D PicR.M/:

(3) Every R–twist E 2Picloc
R .M/ on M is homotopy-invariant. That means that for

every map N !N 0 in Mf=M which is a homotopy equivalence (not necessarily
over M ) the induced map E.N 0!M/! E.N !M/ is an equivalence of
R–modules.

For any manifold M the evaluation provides a lax symmetric monoidal transformation

�W Picloc
R .M/! Sp; E 7! �.M;E/ WDE.M/:

Hence, the pair .Picloc
R .M/; �/ is a graded ring spectrum, which we denote by R.M/.

Proposition 3.7 Let R 2 CAlg.Sp/ be a commutative ring spectrum. Then the
assignment M 7! R.M/ canonically refines to a sheaf of graded ring spectra R 2
ShGrRingSp .

Proof By Proposition A.9 we have an object

(8) F 2 ShGrRingSp; Mf 3M 7! F.M/ WD .ShSp.M/; �.M; : : : //:
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We now want to change the grading component of F to Picloc
R . Therefore, we apply

the change of grading (Proposition A.5) to F, the sheaf G WD Picloc
R 2 ShSymMon1 ,

and the transformation �W Picloc
R ! ShSp which forgets invertibility of objects and

morphisms and the R–module structure in order to get a new sheaf of graded ring
spectra R 2 ShSp .

The construction of the graded ring spectrum R from R is even functorial in R . More
precisely we have:

Proposition 3.8 The construction R 7!R naturally refines to a functor

CAlg.Sp/! ShGrRingSp:

Proof We describe the adjoint functor CAlg.Sp/�Mfop ! GrRingSp. We apply
the change of grading statement (Proposition A.5) together with the sheaf refinement
given in Proposition A.9 to the 1–category D WD CAlg.Sp/�Mfop , the functors

F W CAlg.Sp/�Mfop pr2�!Mfop (8)
�! GrRingSp

and
GW CAlg.Sp/�Mfop

! SymMon1; .R;M/ 7! PichR.M/;

and the lax symmetric monoidal transformation

�W G! ShSp; PichR.M/! ShSp.M/:

We can now define twisted cohomology. In order to simplify the notation we write
E.M/ for the evaluation of a sheaf E on Mf=M on M id

�!M.

Definition 3.9 Given a manifold M with R–twist E 2Ho Picloc
R .M/ we define the

E–twisted R–cohomology of M by

RE.M/ WD �0.E.M//:

Remark 3.10 The reader might wonder why there is no degree in the twisted coho-
mology groups RE.M/, and might also know that cohomology groups are usually
twisted by classes in ŒM;BGL1.R/�, where GL1.R/ is the space of units of R . The
reason is that Picloc

R .M/ encodes both the degree and the twist.

More precisely, homotopy classes of maps ŒM;BGL1.R/� classify those R–twists
E 2HoPicloc

R .M/ which are trivial when restricted to points. For such a twist E and
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integer n 2 Z, the twisted cohomology of degree n can be expressed in the present
language in the form REŒn�.M/, where EŒn� 2Ho Picloc

R .M/ is the shift of n.

In general, Picloc
R .M/ contains more than just locally trivial twists (do not confuse this

with locally constant) and shifts. For example the E.1/–local sphere contains exotic
elements in its Picard group [31]. Another example is given by the Eilenberg–Mac Lane
spectrum HR for R a Dedekind ring with nontrivial class group, such as ZŒ

p
�5�.

Corollary 3.11 For each manifold M the twisted cohomology R�.M/ forms a graded
ring which is graded over the homotopy category Ho Picloc

R .M/. Moreover, the
assignment

M 7! .Ho Picloc
R .M/;R�.M//

forms a functor Mfop! GrRing.

Corollary 3.11 says more concretely that we have the following structures:

(1) For every R–twist E 2HoPicloc
R .M/ on M we have an abelian group RE.M/.

(2) For every pair E and E 0 of R–twists on M we have a multiplication morphism

RE.M/˝RE
0

.M/!RECE
0

.M/;

where ECE 0 denotes the symmetric monoidal pairing in HoPicloc
R .M/. The

multiplication is associative, commutative and has a unit in the obvious sense.

(3) For every morphisms E!E 0 between R–twists on M we have an isomorphism

RE.M/ ��!RE
0

.M/

of abelian groups. This assignment is functorial and compatible with the product
in the obvious sense.

(4) For every smooth map f W M !N and R–twist E on M we have a morphism

RE .N /!Rf
�E.M/

which is compatible with all the other structures.

Further features of twisted cohomology are:

(5) For every map of commutative ring spectra uW R ! R0 and R–twist E 2
Ho Picloc

R .M/ we get an R–twist u�E 2Ho Picloc
R0 .M/ and a map

u�W R
E.M/!R0;u�E.M/:
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(6) If E is an R–twist on M and U; V �M are open subsets such that M DU [V ,
then we have a long exact Mayer–Vietoris sequence

(9) � � �!RE.M/!RE jU .U /˚RE jV .V /!RE jU\V .U\V /!REŒ1�.M/!� � �

which is compatible with the various other structures. This follows from the fact
that R is a sheaf of graded ring spectra.

The idea to calculate RE.M/ using a Mayer–Vietoris sequence (9) is to cover the
manifold M by open subspaces on which the twist can be trivialized. This allows us to
express the twisted cohomology of these subspaces in terms of untwisted cohomology.
It remains to determine the maps in this sequence.

Example 3.12 In the following we consider this problem when M is a sphere Sk for
some k 2N . In this case we can determine the maps explicitly in terms of an invariant
of the twist defined in Definition 3.13. This invariant will also play an important role
in our general theory later, eg in the proof of Lemma 8.10.

We identify Sk � SkC1 with the equator and choose a basepoint p 2 Sk . We further
let D˙ � SkC1 be the complements of the north and south poles.

Assume that E 2 Picloc
R .S

kC1/ is a twist which locally is a shift of R . Then we can
choose an identification Ejp ŠRŒn� of R–modules for some n 2 Z.

Since E is homotopy-invariant by Proposition 3.6, we can extend this identification to
trivializations

�˙W EjD˙
��!RŒn�jD˙ :

Definition 3.13 For k � 0 we define the class

�.E/ 2

�
�k.R/ if k � 1;
�0.R/

� if k D 0;

such that 1˚ �.E/ 2R0.Sk/Š �0.R/˚�k.R/ is the image of 1 2R0.DC/ under
the map

R0.DC/ �

��1
C
��! �0.EŒ�n�jDC.DC//

restr:
��! �0.EŒ�n�jSk .S

k//Š �0.EŒ�n�jD�.S
k//

�

��
��!R0.Sk/:

One easily checks that �.E/ does not depend on the choices. In fact, the trivializations
�˙ are uniquely determined up to equivalence by the choice of the trivialization at the
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point p . In the construction of �.E/ we compose ��1
C

with �� , so that this choice
drops out.

The twisted cohomology RE.SkC1/ can be calculated using the Mayer–Vietoris se-
quence (9). Using the class �.E/ this sequence can be identified with the explicit
sequence

� � � ! �1�n.R/˚�kC1�n.R/!RE.Sk/! ��n.R/˚��n.R/

.xy/7!.
x�y
�.E/x/

���������! ��n.R/˚�k�n.R/! � � � :

Example 3.14 The reader may have seen the example of twisted complex K–theory.
Let K denote the complex K–theory spectrum. Locally trivial unshifted K–twists E
of S3 are classified up to equivalence by the invariant �.E/2�2.K/Š�3.BGL1.K//.
Let us identify �2i .K/Š Z for all i 2 Z using powers of the Bott element. If �.E/
corresponds to the integer n 2 Z, then KEŒ1�.S3/ fits into the sequence

0! Z˚Z
.xy/ 7!.

x�y
nx /

��������! Z˚Z! KEŒ1�.S3/! 0:

This implies the usual calculation: KEŒ1�.S3/Š Z=nZ, and, by a similar argument,
KE.S3/D 0.

4 Twisted differential cohomology

In this section we introduce twisted differential cohomology. The idea of differential
cohomology is to combine cohomology classes on manifolds with corresponding
differential form data in a homotopy-theoretic way. Using differential cohomology one
can encode local geometric information. For example, while the K–theory class of a
vector bundle only encodes homotopy-theoretic data, the differential K–theory class
of a vector bundle with connection contains the information on Chern character forms;
see [32; 13; 46] for a detailed account. Differential extensions of arbitrary generalized
cohomology theories were first defined in [32]. We refer to [10; 9] for the approach to
differential cohomology on which the present paper is based. More specifically, in [11,
Section 4.4] the model for differential cohomology as homotopy groups of a pullback
of spectra is made explicit. This definition goes back to [32] and is called the Hopkins–
Singer model. We also display this pullback in diagram (31) in Section 10 below.

The main goal of the present section is to develop a general theory of twisted and
multiplicative differential cohomology based on the notion of graded ring spectra.
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We note that there is also a more abstract perspective on the structure of twisted
differential cohomology given in Section 4.1.2 of [44], based on the abstract description
of differential cohomology developed by the authors in [11]. We will rather give a
concrete definition and shall therefore not employ this perspective here.

A commutative ring spectrum R represents a multiplicative cohomology theory. As
explained in [10; 9], in order to define the multiplicative differential R–cohomology
on manifolds we have to choose a differential refinement of R . In Section 3 we have
seen that R gives rise to a twisted cohomology theory which is naturally encoded in
the sheaf of graded ring spectra R. We shall see in the present section that the choice
of a differential refinement of R naturally determines a sheaf of graded ring spectra
(Proposition 4.12) which encodes the twisted differential R–cohomology. In order to
be able to study transformations between different differential cohomology theories,
we introduce the 1–category of differential ring spectra.

Let Ch denote the ordinary symmetric monoidal category of chain complexes. If
we formally invert the class of quasi-isomorphisms in Ch, then we obtain an 1–
category Ch1 . The natural map �W Ch! Ch1 is a lax symmetric monoidal func-
tor. Furthermore, the Eilenberg–Mac Lane equivalence gives an equivalence (see
[34, Theorem 8.1.2.13] for details) of symmetric monoidal 1–categories

H W Ch1 ��!ModHZ;

where ModHZ denotes module spectra over the Eilenberg–Mac Lane spectrum HZ.
By abuse of notation, for C 2 Ch we write HC WDH�.C /. Note that the category
of commutative algebras CAlg.Ch/ in Ch is the category of commutative differential
graded algebras (CDGAs). Hence, for a CDGA A we get a commutative algebra
spectrum HA 2 CAlg.ModHZ/. We consider R as a CDGA concentrated in degree 0
and get the commutative algebra HR. We write ChR WDModR for the category of chain
complexes of real vector spaces. Note that CAlg.ChR/ is the category of real commuta-
tive differential graded algebras (CDGAs). The composition of the localization and the
Eilenberg–Mac Lane equivalence restricts to a functor CAlg.ChR/! CAlg.ModHR/.

Definition 4.1 A differential refinement of a commutative ring spectrum R is a triple
.R;A; c/ consisting of a CDGA A over R together with an equivalence

cW R^HR ��!HA

in CAlg.ModHR/.
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It has been shown in [45] that one can model every HR–algebra by a CDGA. In our
language this means that the functor

CAlg.ChR/! CAlg.ModHR/; A 7!HA;

is essentially surjective. In particular, every commutative ring spectrum admits a
differential refinement.

Definition 4.2 We define the 1–category of commutative differential ring spectra as
the pullback

1Rings //

��

CAlg.ChR/

H

��

CAlg.Sp/ ^HR
// CAlg.ModHR/

By construction, the objects of 1Rings are differential refinements of commutative ring
spectra.

Remark 4.3 In many relevant cases there exists a differential refinement of R whose
underlying CDGA is the graded ring ��.R/˝ R with trivial differentials. In this
case, R^HR is called formal. For example, if ��.R/˝R is free as a commutative
R–algebra or arises from a free algebra by inverting elements, then R ^ HR is
formal. In this case there is an equivalence c which is uniquely determined up to
homotopy by the property that it induces the canonical identification on homotopy
groups [9, Section 4.6].

Examples 4.4 (1) For the Eilenberg–Mac Lane spectrum HZ of Z we choose a
real model whose underlying CDGA is R concentrated in degree 0.

(2) For the complex K–theory spectrum K we have a real model with underlying
CDGA given by RŒb; b�1� with trivial differentials, where deg.b/D�2. The
isomorphism c is the Chern character.

(3) For the connective spectrum tmf of topological modular forms we can choose a
real model with underlying CDGA given by RŒc4; c6� with trivial differentials,
where deg.c4/ D 8 and deg.c6/ D 12. Again, the map c is unique up to
equivalence.

Note that there exist nonformal examples.
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The sheaf of smooth real differential forms with the de Rham differential is a sheaf of
CDGAs on the site of smooth manifolds, ie an object ��2ShCAlg.ChR/ which associates
to every smooth manifold M the smooth real de Rham complex .��.M/; d/. For a
CDGA A over R we define the sheaf of CDGAs of differential forms with values in A
by

�A WD�˝RA 2 ShCAlg.ChR/;

where A is the constant sheaf of CDGAs associated to A (see Definition 3.2 and
Proposition 3.3)

In general, a presheaf with values in the 1–category of chain complexes M 2 PShCh is
a sheaf precisely if for every n 2 Z its degree-n component Mn is a sheaf of abelian
groups. This property can easily be checked in the case of � or �A.

We now extend the localization �W Ch! Ch1 to presheaves by postcomposition. Let
us consider a sheaf M 2 ShCh . Then, in general, �.M/ is only a presheaf with values
in Ch1 . But if M is a complex of modules over the sheaf of rings of smooth real-
valued functions on Mf, then it is a sheaf. The argument employs the existence of
smooth partitions of unity. In particular, �.�/ and �.�A/ are sheaves. More generally,
the objectwise localization Mod�A!Mod�.�A/ preserves sheaves.

Example 4.5 On the other hand, consider for example the sheaf of complexes R

concentrated in degree zero given by locally constant R–valued functions. Then �.R/
is not a sheaf but �.R/! �.�/ is the sheafification.

We now fix a smooth manifold M. A morphism between objects in Mod�A.M/

becomes an equivalence under the localization �W Mod�A.M/!Mod�.�A/.M/ if and
only if it is a quasi-isomorphism between complexes of sheaves.

Definition 4.6 (1) A sheaf M 2Mod�A.M/ is called K–flat if the functor

M˝�AjM � � � W Mod�A.M/!Mod�A.M/

preserves quasi-isomorphisms [30].

(2) A sheaf M2Mod�A.M/ is called invertible if there is an object N 2Mod�A.M/

such that M˝�AjM N is isomorphic to �A.

(3) A sheaf M 2Mod�A.M/ is called weakly locally constant if �.M/ is locally
constant.

Algebraic & Geometric Topology, Volume 19 (2019)



1652 Ulrich Bunke and Thomas Nikolaus

(4) By Picwloc;fl
�A 2 ShCGrp.S/ we denote the Picard-1–stack (which is actually a

Picard-1–stack) which associates to every manifold M the Picard-1–groupoid
Picwloc;fl

�A .M/ of invertible, K–flat and weakly locally constant objects in
Mod�A.M/.

Example 4.7 Note that �A is weakly locally constant. In fact, it is weakly constant
since we have an equivalence �.A/ ��! �.�A/. The groupoid Picwloc;fl

�A .M/ is therefore
well defined and contains all modules that are shifts of �AjM , ie modules of the form
�AŒn�jM for n 2Z. But �AŒn�jM and �AŒm�jM can be isomorphic if A is periodic,
ie contains a unit in degree m�n.

Remark 4.8 Because of the additional conditions of K–flatness and weakly locally
constantness, in general the inclusion Picwh,fl

�A � Pic�A is proper, as the following
example shows.

We shall give an example of a weakly locally constant non-K–flat object in Pic�A .
Let L�! S1 be the flat 1–dimensional real vector bundle with connection r� with
holonomy � 2R>0 and �.S1; L�/ be the complex of smooth forms with coefficients
in L. It is a module over the de Rham complex �.S1/Š�.S1; L1/, and we have the
rule

�.S1; L�/˝�.S1/�.S
1; L�0/Š�.S

1; L��0/:

In particular, �.S1; L�/ 2 Pic�.S1/ , and its tensor inverse is given by �.S1; L��1/.
The complex �.S1; L�/ can be identified with

C1.S1/! C1.S1/; f 7! f 0� log.�/f:

We have
H�.�.S1; L�//Š

�
R˚RŒ1� if �D 1;
0 if �¤ 1:

If � 2 R>0 n f1g, then the morphism 0! �.S1; L�/ is a quasi-isomorphism. Its
tensor product with �.S1; L��1/ is 0!�.S1/, which is not a quasi-isomorphism.
It follows that �.S1; L��1/ is not K–flat. Thus, if we set A WD�.S1/, then M WD
�˝R�.S

1; L2/ 2 Pic�A is weakly locally constant but not K–flat.

We observe that for every manifold M the transformation

(10) Picwloc;fl
�A .M/!Modloc

�.�A/.M/
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is symmetric monoidal (and not just lax symmetric monoidal). More concretely, the
condition of K–flatness ensures that the tensor product of sheaves of complexes is
equivalent to the derived tensor product. Hence, it preserves invertible objects. If we
further compose (10) with the symmetric monoidal Eilenberg–Mac Lane equivalence
Modloc

�.�A/
��!Modloc

H�A then we obtain a symmetric monoidal transformation

(11) H W Picwloc;fl
�A ! Picloc

H�A:

The de Rham equivalence is a canonical equivalence of sheaves

(12) H�A ��!HA

in CAlg.ModHR/; see [9, Section 4.6].

Let us fix a commutative ring spectrum R and a differential refinement yRD .R;A; c/.
If we compose the inverse of the de Rham equivalence (12) with the sheafification of
the equivalence cW R^HR!HA, we obtain the equivalence

R^HR ��!H�A

in CAlg.ModHR/. Using this equivalence we will consider R^HR as an object in
Picloc

H�A .

Definition 4.9 A differential R–twist over a manifold M is a triple .E;M; d / con-
sisting of a topological R–twist E 2 Picloc

R .M/, an object M 2 Picwloc;fl
�A .M/ and an

equivalence
d W E ^HR ��!HM

in Picloc
H�A.M/. We call the triple .E;M; d / a differential refinement of the topolog-

ical twist E.

Definition 4.10 The 1–stack of differential R–twists is defined by the pullback in
ShCGrp.S/ ,

(13)

Tw yR

��

// Picwloc;fl
�A

��

Picloc
R

^HR
// Picloc

H�A

By construction, the objects of Tw yR.M/ are differential R–twists over M.
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Now let .E;M; d / be a differential twist of a differential spectrum .R;A; c/ over M.
By M�0 we denote the naive truncation of the sheaf of complexes to nonnegative
degrees. We have a canonical inclusion i WM�0 !M. Furthermore, let �W E !
E ^HR be the canonical map.

Definition 4.11 The twisted differential function spectrum for a differential twist
.E;M; d / is the sheaf of spectra defined by the pullback in ShSp.M/,

Diff.E;M; d / //

��

HM�0

i
��

E
dı�

// HM

In the square above all objects are considered as sheaves of spectra, ie we neglected
to write the forgetful functors ModR.M/! ShSp.M/ and ModH�A ! ShSp.M/

explicitly.

Note that pullbacks in sheaves of spectra are computed objectwise, ie we get a similar
pullback after evaluation at M or more generally every manifold over M. In order to
properly describe the functorial properties of the twisted differential function spectrum
we use the same procedure as in the case of the classical twisted cohomology. Roughly
speaking we consider the functor that assigns to a differential twist .E;M; d / over M
the spectrum Diff.E;M; d /.M/, thus defining a graded ring spectrum.

Proposition 4.12 Definition 4.11 of the twisted differential function spectrum refines
to a sheaf

yR 2 ShGrRingSp; M 7! .Tw yR.M/; Diff.� � � /.M//:

Proof We again consider the functor F introduced in (8). We set

G WD Tw yR 2 ShSymMon1 :

In order to apply Proposition A.5 we must construct a lax symmetric monoidal trans-
formation

(14) �W Tw yR! ShSp

such that �.M/.E;M; d /ŠDiff.E;M; d /. Therefore, let J be the indexing category
for pullback diagrams, ie J D�Œ1�[�Œ0��Œ1�. The limit functor

limJ W ShJSp! ShSp
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admits a lax symmetric monoidal refinement. This refinement is constructed using
that limJ is right adjoint to the diagonal functor, which admits a canonical monoidal
structure. Then we employ the fact that the right adjoint to a monoidal functor inherits
a lax monoidal structure as shown in [34, Corollary 8.3.2.7]. Thus, in order to construct
the transformation (14) it suffices to construct a symmetric monoidal transformation

Tw yR! ShJSp:

By definition we have the pullback decompositions

Tw yR Š Picwloc;fl
�A �Picloc

H�A
Picloc

R ; ShJSp Š Sh�Œ1�Sp �Sh�Œ0�Sp
Sh�Œ1�Sp :

Therefore, it suffices to write down a transformation between these diagrams, ie lax
symmetric monoidal transformations

f1W Picwloc;fl
�A ! Sh�Œ1�Sp ; f2W Picloc

R ! Sh�Œ1�Sp ; f0W PichH�A! Sh�Œ0�Sp

and fillers. The transformation

f0W Picloc
H�A!ModH�A! ShSp

is a composition of lax symmetric monoidal transformations.

f1.M/ WD .HM�0!HM/; M 2 Picwloc;fl
�A .M/

and

f2.E/ WD .�W E!E ^HR/; E 2 Picloc
R .M/;

where we again omit to write various forgetful functors to ShSp .

Definition 4.13 Given a manifold M with a differential twist .E;M; d / we define
the twisted differential cohomology group by

yR.E;M;d/.M/ WD �0.Diff.E;M; d /.M//:

Corollary 4.14 For each manifold M the twisted differential cohomology yR�.M/

forms a graded ring, which is graded over the homotopy category Ho Tw yR.M/. More-
over, the assignment

M 7! .Ho Tw yR.M/; yR�.M//

forms a functor Mfop! GrRing.
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Theorem 4.15 The construction of the twisted differential function spectrum refines
to a functor

1Rings! ShGrRingSp:

Proof The proof works similarly to the proof of Proposition 3.8. We consider the
functors

F W 1Rings�Mfop pr2�!Mfop (8)
�! GrRingSp

and
GW 1Rings�Mfop

! SymMon1; . yR;M/ 7! Tw yR.M/;

and the lax symmetric monoidal transformation �W G! ShSp constructed similarly to
the one in the proof of Proposition 4.12

5 Properties of twisted differential cohomology

In this section we list the basic properties of differential cohomology. The more
advanced properties, such as orientation and integration theory, will be discussed
elsewhere.

The following list of structures just decodes the fact that Diff is a sheaf of graded ring
spectra and correspond to similar structures in the topological case listed in Section 3.
We fix a commutative ring spectrum R and a differential refinement yR .

(1) For every differential twist .E;M; d / 2HoTw yR.M/ we have an abelian group
yR.E;M;d/.M/.

(2) For every pair .E;M; d /; .E 0;M0; d 0/ 2HoTw yR.M/ of differential twists we
have a multiplication morphism

[W yR.E;M;d/.M/˝ yR.E
0;M0;d 0/.M/! yR.E;M;d/C.E 0;M0;d 0/.M/;

where .E;M; d /C .E 0;M0; d 0/ denotes the symmetric monoidal pairing in
HoPic yR.M/. The multiplication is associative, commutative and has a unit in
the obvious sense.

(3) For every morphisms .E;M; d /! .E 0;M0; d 0/ in HoTw yR.M/ we have an
isomorphism

R.E;M;d/.M/ ��!R.E
0;M0;d 0/.M/:

This assignment is compatible with composition and the product in the obvious
sense.
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(4) For every smooth map f W M ! N and .E;M; d / 2HoPic yR.N / we have a
morphism

R.E;M;d/.N /!Rf
�.E;M;d/.M/

which is compatible with all the other maps.

The following structures are typical for differential cohomology and immediately
follow from the definition of the twisted differential function spectrum by a pullback.
In the following proposition, if not said differently, M is a smooth manifold and
.E;M; d / 2 Tw yR.M/ is a differential twist.

Proposition 5.1 (1) We have a map of sheaves of graded rings spectra

I W yR!R:

It induces a map of abelian groups

yR.E;M;d/
!RE

which is compatible with the products, the action of morphisms between differ-
ential twists and smooth maps between manifolds in the natural sense.

(2) We have a natural transformation

CurvW yR! Z;

where the presheaf of graded rings Z 2 PShGrRing is given by

M 7!
�
Picwloc;fl

�A .M/ 2M 7! ZM.M/ WDZ0.M.M//
�
:

It induces a map of abelian groups

CurvW yR.E;M;d/.M/!Z0.M.M//

which is compatible with the product, the action of morphisms between differen-
tial twists and smooth maps between manifolds.

(3) There is a canonical homomorphism

aWM�1.M/=Im.d/! yR.E;M;d/.M/

which is natural in M and such that it becomes a homomorphism of Tw yR.M/–
graded groups (not rings!). Moreover, we have the rule

a.!/[ x D a.! [ Curv.x//

in yR.E;M;d/C.E 0;M0;d 0/.M/ for !2M�1.M/=Im.d/ and x2 yR.E
0;M0;d 0/.M/.
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(4) The following diagram commutes:

yR.E;M;d/.M/

I
��

Curv
// Z0.M.M//

��

RE.M/ // H 0.M.M//

where the lower horizontal map is induced by the map E �
�!E^HR d

�!HM.

(5) We have the equality

Curv ı aD d

of maps M�1.M/=im.d/!Z0.M.M//.

(6) The following sequences are exact:

RE�1.M/!M�1.M/=Im.d/! yR.E;M;d/.M/!RE.M/! 0;

RE�1.M/!H�1.M.M//! yR.E;M;d/.M/

!Z0.M.M//�H0.M.M//R
E.M/! 0:

Proof This follows as in the untwisted case from the construction of yR.E;M;d/ as a
pullback. For more details we refer to the corresponding results in [10; 9].

The fact that yR.E;M;d/ is a sheaf implies a Mayer–Vietoris sequence for twisted
differential cohomology. By abuse of notation we denote �0 of the evaluation of the
sheaf E ^MR=Z (which is not a twist) on M by RE^MR=Z.M/, where MR=Z is
the Moore spectrum of the abelian group R=Z.

Proposition 5.2 (Mayer–Vietoris) Let M D U [V be a decomposition of a smooth
manifold as a union of two open subsets and .E;M; d / 2 Tw yR.M/ be a differential
twist. Then we have the long exact sequence

� � � //R.E�2/^MR=ZjU .U /˚R.E�2/^MR=ZjV .V / //R.E�2/^MR=Z.U\V /

00 yR.E;M;d/.M/ // yR.E;M;d/jU .U /˚ yR.E;M;d/jV .V / // yR.E;M;d/jU\V .U\V /

00REC1.M/ //R.EC1/jU .U /˚R.EC1/jV .V / // � � � :
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Finally we explain the consequence of the fact that the construction

1Rings 3 yR 7! yR 2 ShGrRingSp

is functorial. Let f W R! R0 be a morphism of commutative ring spectra. Assume
that we have chosen a lift of this morphisms to differential refinements

yf W yRD .R;A; c/! .R0; A0; c0/D yR0:

Then we have a morphism of sheaves of graded commutative ring spectra yf W yR! yR0 .
Let us spell out some pieces of this structure. If .E;M; d / 2 Tw yR is a differential
twist of yR , then we get a differential twist yf�.E;M; d /DW .E 0;M0; d 0/. In greater
detail,

E 0 ŠE ^R R
0; M0 ŠM˝�A�A0:

We further get an induced map

yR.E;M;d/.M/! yR0.E
0;M0;d 0/.M/

which is compatible with corresponding maps on the level of forms and underlying
twisted cohomology classes. Furthermore, these maps preserve the products and are
functorial and natural with respect to morphisms of differential twists and smooth
manifolds. We refrain from writing out these details.

Example 5.3 Here is a typical example. We consider the Atiyah–Bott–Shapiro orienta-
tion f W MSpinc!K. Since both spectra are formal we can take canonical differential
refinements. We can further choose a differential ABS orientation yf W 2MSpinc ! yK.
In this way we obtain a transformation

yAW3MSpinc!bK
of sheaves of graded ring spectra.

Part II De Rham models

6 Twisted de Rham complexes

In Definition 4.9 we have introduced differential twists on a smooth manifold M as
triples .E;M; d / consisting of a topological twist E together with a sheaf M of
K–flat, invertible and weakly locally constant DG–�A–modules and an equivalence

Algebraic & Geometric Topology, Volume 19 (2019)



1660 Ulrich Bunke and Thomas Nikolaus

d W E ^HR ��!HM of H�A–modules. In this section we show how examples of
such sheaves M can be constructed from differential geometric data on M.

We consider a CDGA A. The following condition on A will play an important role
below:

Definition 6.1 The CDGA A is called split if the differential d W A�1!A0 vanishes.

By Picloc,fl
A 2ShCGrp.S/ we denote the Picard-1 stack which associates to a manifold M

the groupoid Picloc,fl
A .M/ of K–flat, locally constant sheaves of invertible A–modules

on Mf=M. Our basic example of such a sheaf is AjM .

Note that Picloc,fl
A .M/ is an ordinary groupoid. In the following we calculate the

homotopy groups �i .Picloc,fl
A .M// for i D 0; 1. For a manifold M let …1.M/ denote

the fundamental groupoid of M. The objects are points in M, and the morphisms are
homotopy classes of smooth paths in M. By definition the Picard groupoid

Picfl
A WD Picloc,fl

A .�/

is the groupoid of K–flat invertible A–modules. Covering theory provides a natural
identification

Picloc,fl
A .M/Š Fun.…1.M/; Picfl

A/:

For every X 2 Picfl
A we have a canonical identification of abelian groups

AutPicfl
A
.X/ŠZ0.A/�:

To see this, first of all note that the action of A on X provides an identification
A0 Š EndA].X

]/, where .� � � /] indicates the operation of forgetting the differential.
The condition that a 2 A preserves the differential translates to a 2Z0.A/. Finally, if
a induces an isomorphism, then a 2Z0.A/� .

Proposition 6.2 If M is a connected smooth manifold with a given basepoint m 2M,
then we have natural isomorphisms

�0.Picloc,fl
A .M//Š �0.Picfl

A/˚H
1.M IZ0.A/�/

and
�1.Picloc,fl

A .M/;X/ŠZ0.A/�

for all X 2 Picloc,fl
A .M/.
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For a sheaf A 2 Picloc,fl
A .M/ we define the sheaf of DG–�AjM –modules

M.A/ WD�jM ˝R A 2Mod�A.M/:

Lemma 6.3 We have M.A/ 2 Picwloc;fl
�A .M/.

Proof We must show that M.A/ is

(1) K–flat,

(2) invertible, and

(3) weakly locally constant.

(1) We have a canonical isomorphism M.A/Š�AjM ˝AA. If X ! Y is a quasi-
isomorphism in Mod�A.M/, then we can identify the induced morphism

M.A/˝�AjM X !M.A/˝�AjM Y

with A˝AX !A˝A Y . Here we consider X and Y as sheaves of A–modules by
restriction along the inclusion A 7!�AjM This shows that K–flatness of A implies
K–flatness of M.A/.

(2) If A 2 Picloc,fl
A .M/, then there exists B 2 Picloc,fl

A .M/ such that A˝A BŠ AjM .
We see that then M.A/˝�AjM M.B/Š�AjM . Hence, M.A/ is invertible.

(3) Let U �M be such that AjU ŠX jU for some K–flat invertible A–module X.
Then we have M.A/jU Š�AjU ˝AX jU Š�jU ˝RX jU . The equivalence �.R/ ��!
�.�/ induces the equivalence �.X/jU ��! �.�jU ˝RX jU /.

We thus get a symmetric monoidal transformation of Picard stacks

MW Picloc,fl
A ! Picwloc;fl

�A :

We consider a manifold M and an object A 2 Picloc,fl
A .M/. We use the symbol d

in order to denote the differentials of �A and of M.A/. An element ! 2 �A.M/

induces a multiplication map !WM.A/] !M.A/] of modules over the sheaf of
graded commutative algebra �A]jM (recall that ] stands for forgetting differentials).
Furthermore we have the identity d! D Œd; !�. If ! 2�A1.M/, then !2 D 0, and if
! is in addition closed, then .d C!/2 D d2C Œd; !�C!2 D 0. Hence, a cycle

! 2Z1.�A.M//

can be used to deform this differential d to d C! .
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Definition 6.4 We let M.A; !/ 2Mod�A.M/ denote the sheaf of �AjM –modules
M.A/ with new differential d C! .

More precisely, if f W N !M is an object of Mf=M, then M.A; !/.N !M/ is the
complex M.A/.N !M/ with the new differential d Cf �! .

In the following we analyze when M.A; !/ is invertible, weakly locally constant and
K–flat.

Lemma 6.5 Let A2Picloc,fl
A .M/ and ! 2Z1.�A.M//. Then M.A; !/ is invertible.

Proof For A;A0 2 Picloc,fl
A .M/ and !;!0 2Z1.�A.M//, we have the rule

(15) M.A; !/˝�AjM M.A0; !0/DM.A˝AA0; !C!0/:

Hence, if B 2 Picloc,fl
A .M/ is such that A˝A B Š AjM , then by (15) we get

M.A; !/˝�AjM M.B;�!/Š�AjM :

Let ˇ 2 F 1�A0.M/, where F p�A.M/��A.M/ denotes the subcomplex of forms
with differential form degree � p . Then ˇ is nilpotent and the multiplication by
exp.ˇ/ provides an isomorphism

(16) exp.ˇ/WM.A; !C dˇ/ ��!M.A; !/:

Lemma 6.6 We assume that A is split. Let A2Picloc,fl
A .M/ and !2Z1.F 2�A.M//.

Then the �AjM –module M.A; !/ is K–flat and weakly locally constant.

Proof K–flatness and the condition of being weakly locally constant can be checked
locally. Let Œ!� denote the cohomology class of the cycle ! . If m 2M, then Œ!�jm D
Œ!jm� D 0 by the filtration condition. Let U �M be a contractible neighbourhood
of m. Since the cohomology of �A is homotopy-invariant, we get that !jU D dˇ
for some ˇ 2 �A0.U /. Let us write ˇ D

P
i2N ˇ

i , where ˇi 2 .�i ˝ A�i /.U /,
and set ˇ�1 WD

P1
iD1 ˇ

i . Since A is split we still have dˇ�1 D !jU . We get an
isomorphism exp.�ˇ/WM.A; !/jU ŠM.A/jU in Mod�A.U /. Since M.A/jU is
K–flat and weakly locally constant by Lemma 6.3, so is M.A; !/jU .

A homomorphism of abelian groups d W X!Y defines a Picard groupoid with objects Y
and morphisms xW y! y0 for y; y0 2 Y and x 2X with yC dx D y0 .

Remark 6.7 As a Picard-1–groupoid it is equivalent to �1H.X ! Y /, where we
consider X ! Y as a chain complex with Y in degree 0.
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In order to make the following definition we assume that A is split.

Definition 6.8 We let Z1
A 2 ShCGrp.S/ denote the Picard-1–stack induced by the

map

(17) F 1�A0 d
�!Z1.F 2�A/

of sheaves of abelian groups.

Indeed, the condition that A is split ensures that d increases the filtration.

Proposition 6.9 Assume that A is split. Then the assignment .A; !/ 7!M.A; !/
refines to a faithful transformation

(18) MW Picloc,fl
A �Z1

A! Picwloc;fl
�A

between symmetric monoidal stacks.

Proof The formula in the statement of the proposition describe the action of the functor
on objects. Let .�; ˇ/W .A; !/! .A0; !0/ be a morphism in .Picloc,fl

A �Z1
A/.M/. Then

M.�; ˇ/WM.A; !/!M.A0; !0/ is given by

M.A; !/
id�AjM˝�
��������!M.A0; !/ exp.ˇ/

���!M.A0; !0/;

where !0 D !Cdˇ . The symmetric monoidal structure on M given by the canonical
maps.

Finally we must show that M is faithful. Assume that

(19) M.�; ˇ/DM.�0; ˇ0/:

We conclude that � D �0 by considering the restriction of the equality (19) to all points
m 2M. It remains to show that ˇ D ˇ0 .

The ring of endomorphisms of an object in Picloc,fl
�A .M/ is naturally isomorphic to the

ring Z0.�A.M//. The automorphism M.�; ˇ0/�1 ıM.�; ˇ/ DM.id; ˇ � ˇ0/ is
given by multiplication with the cycle exp.ˇ�ˇ0/ 2 1CF 1�A0.M/. The inverse of
the exponential is given by the logarithm

logW 1CF 1�A0.M/! F 1�A0.M/; log./ WD �
1X
nD1

. � 1/n

n
:

Hence, we can recover ˇ � ˇ0 from the composition M.�; ˇ0/�1 ıM.�; ˇ/. If
M.�; ˇ0/�1 ıM.�; ˇ/D id, then ˇ D ˇ0 .
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Let k 2N and ! 2Z1.F 1�A.SkC1//. The sheaf M.A; !/2 Picwloc;fl
�A .SkC1/ gives

rise to an object HM.A; !/ 2 Picloc
HA.S

kC1/. In the following we calculate the
invariant

�.HM.A; !// 2 �k.HA/ŠeHA0.Sk/
defined in Definition 3.13. Here and below z� indicates reduced cohomology.

The composition of the de Rham equivalence with the suspension isomorphism provides
an isomorphism

� W zH 1.�A.SkC1// ��!eHA1.SkC1/ ��!eHA0.Sk/:
Lemma 6.10 We assume that A is split. Then we have �.HM.A; !//D �.Œ!�/.

Proof We use the notation introduced in order to state Definition 3.13. We can find
ˇ˙ 2�A

0.D˙/ with dˇ˙ D !jD˙ . We can normalize ˇ so that ˇ˙jp D 0. Since A
is split, we then, as in the proof of Lemma 6.6 or Lemma 7.2, can modify ˇ further so
that ˇ˙ 2F 1�A0.D˙/. Then, by the usual description of the suspension isomorphism
in de Rham cohomology, we have

�.Œ!�/D ŒˇCjSk �ˇ�jSk � 2
zH 0.�A.Sk//ŠeHA0.Sk/:

The trivializations �˙WM.A; !/jD˙
��!�AjD˙ are now given by �˙ WD exp.�ˇ˙/.

According to Definition 3.13 we have

�.HM.A; !//D Œexp.ˇCjSk �ˇ�jSk /�� 1D ŒˇCjSk �ˇ�jSk �:

7 Uniqueness of differential refinements of twists

Let .R;A; c/ be a differential refinement (Definition 4.1) of a commutative ring spec-
trum R . In this section we show the following theorem:

Theorem 7.1 Let M be a smooth manifold and assume that A is split. Then the
forgetful functor which projects to the underlying topological twist induces an injective
homomorphism

�0.Tw yR.M//! �0.Picloc
R .M//:

In particular, if an R–twist on M admits a differential refinement, then this refinement
is unique up to (noncanonical) equivalence.

The proof of this theorem will be finished, after some preparations, at the end of this
section.
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Lemma 7.2 If A is split, then

Z0.�A.M//� //

��

H 0.�A.M//�

��

Z0.�A.M// // H 0.�A.M//

is a pullback diagram.

Proof We first observe that it suffices to show the assertion under the additional
assumption that M is connected.

We consider a cycle ! 2Z0.�A.M// such that Œ!� 2H 0.�A.M//� . We then must
show that ! 2Z0.�A.M//� .

We pick a point m 2 M. Then Œ!�jm 2 H 0.A/� . We write ! D
P
i2N !

i , where
!i 2 .�i˝A�i /.M/. Since A is split we have ddR!0D 0 and therefore !0D 1˝x ,
where x 2 Z0.A/ represents Œ!�jm 2 H 0.A/. Since A is split we have Z0.A/ Š
H 0.A/. Since Œ!�jm is a unit we conclude that x is a unit. This implies that ! is a
unit, since ! �!0 is nilpotent.

Lemma 7.3 We consider an object Y 2 Picwloc;fl
�A .M/. Then we have an isomorphism

�0
�
MapMod�.�A/.M/.�.�A/jM ; �.Y //

�
ŠH 0.Y.M//:

Proof The evaluation at M fits into an adjunction

F W Ch1� Mod�.�A/.M/ Wevaluation at M

such that F.�.Z//D �.�A/jM . This gives the equivalence

MapMod�.�A/.M/.�.�A/jM ; �.Y //Š MapCh1

�
�.Z/; �.Y.M//

�
:

We now use the fact that �0
�
MapCh1

�
�.Z/; �.Y.M//

��
ŠH 0.Y.M//.

In order to formulate the following lemma we use the fact that Mod�A.M/ has a
natural enrichment to a DG–category. In particular the notion of chain homotopy is
well defined in Mod�A.M/.

Lemma 7.4 Assume that X; Y 2 Picwloc;fl
�A .M/. Then the following assertions hold

true:
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(1) The map

(20) HomMod�A.M/.X; Y /! �0
�
MapMod�.�A/.M/.�.X/; �.Y //

�
is surjective.

(2) If f; f 0 2 HomMod�A.M/.X; Y / are equivalent in Mod�.�A/.M/, ie they induce
the same point in �0

�
MapMod�.�A/.M/.�.X/; �.Y //

�
, then f and f 0 are chain

homotopic.

Proof (1) We first assume that X D�AjM . Then we have the isomorphism

HomMod�A.M/.�AjM ; Y /ŠZ
0.Y.M//:

Furthermore, we have the isomorphism

�0
�
MapMod�.�A/.M/.�.�A/jM ; �.Y //

�
ŠH 0.Y.M// (by Lemma 7.3).

The assertion now follows from the fact that the projection Z0.Y.M//!H 0.Y.M//

is surjective.

In the general case we have the commuting diagram

HomMod�A.M/.X; Y /

˝X�1

��

//�0
�
MapMod�.�A/.M/.�.X/; �.Y //

�
˝�.X�1/

��

HomMod�A.M/.�AjM ; X
�1˝�AjM Y /

//�0
�
MapMod�.�A/.M/.�.�A/jM ; �.X

�1˝�.�A/jM Y //
�

The vertical maps are both bijective. Hence, the upper horizontal map is surjective
since the lower one is.

(2) For the second assertion, as for (1), we can reduce to the case where X D�AjM .
In this case the map (20) reduces to the projection Z0.Y.M//!H 0.Y.M// and the
assertion is obvious.

Proposition 7.5 If A is split, then the canonical functor

�W Picwloc;fl
�A .M/!Ho Picloc

�.�A/.M/

is full.

Proof Assume we are given objects X and Y in Picwloc;fl
�A .M/ and a morphism

F W �.X/! �.Y / in the homotopy category Ho Picloc
�.�A/

.M/. By Lemma 7.4(1) we
can conclude that there is a morphism f W X! Y in Mod�A.M/ such that �.f /D F .
It remains to show that f is an isomorphism.
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Since F is invertible there exists an inverse GW �.Y /! �.X/ in Ho Picloc
�.�A/

.M/, ie
G ıF and F ıG are equivalent to the identities. By the first assertion of Lemma 7.4
there exists a morphism gW Y !X such that �.g/DG. By the second assertion of the
lemma the compositions g ıf and f ıg are chain-homotopic to the corresponding
identities.

We can identify HomMod�A.M/.X;X/ Š Z0.�A.M// as a ring and H 0.�A.M//

with chain-homotopy equivalence classes of endomorphisms such that multiplication
corresponds to composition. Since the chain-homotopy class of g ıf is invertible, it
follows from Lemma 7.2 that g ı f itself is invertible. Similarly, we see that f ıg is
invertible. This implies that f is an isomorphism.

Remark 7.6 More generally, the assertion of Proposition 7.5 holds true for K–flat
invertible �A–modules, ie the assumption of being weakly locally constant can be
dropped.

Proof of Theorem 7.1 By Proposition 7.5 and the long exact sequence in homotopy
the fibre of

Picwloc;fl
�A .M/ �

�! Picloc
�.�A/.M/Š Picloc

H�A.M/

is connected. By the diagram (13) of Tw yR.M/, as a pullback the fibre of the map

Tw yR.M/! Picloc
R .M/

is connected, too.

8 Existence of differential refinements of twists

We consider a differential refinement .R;A; c/ of a commutative ring spectrum R

(Definition 4.1). In the statement of the following theorem we use the fact that if
W is an R–module spectrum, then its realification W ^HR has the structure of an
HA–module via c . In this section we show the following theorem:

Theorem 8.1 We assume that the CDGA A is split. Let M be a connected smooth
manifold with a basepoint m2M and E be a topological R–twist on M. Then the twist
E admits a differential refinement .E;M; d / if and only if there exists an invertible
K–flat DG–A–module X such that there exists an equivalence E.fmg/^HRŠHX

of HA modules.
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Remark 8.2 The verification of the condition in the theorem boils down to check
whether the spectrum E.fmg/ ^HR allows a real chain complex model. In fact,
one can always find a DG–A–module which models this spectrum. But we require
in addition that this DG–A–module is strictly invertible and K–flat, which is not
automatic.

The following twists satisfy the condition:

(1) Shifts of the spectrum R .

(2) Twists classified by a map to BGL1.R/.

(3) Twists that are pointwise of the form of a shift of R . These are exactly the twists
classified by a map to the spectrum of periodic units considered by Sagave [43].

The proof of this theorem requires some work and will be finished at the end of
this section. The main point is to find the corresponding object M in Picwloc;fl

�A .M/.
The idea is to take, as a first approximation, the sheaf M.X/, where X is the DG–
A–module realizing the twist over the basepoint m 2 M. This approximation is,
by definition, correct at the basepoint m. In a second step we try to modify this
sheaf M.X/ by tensoring with a sheaf of the form M.A; !/, where A 2 Picloc,fl

A .M/

satisfies AjmŠA. In order to ensure the existence of this correction we must understand
the map

�0.HM.�//W �0.Picloc,fl
A .M/�Z1

A.M//! �0.Picloc
HA.M//

in some detail. The calculation of this map is stated in Corollary 8.12.

We consider a spectrum p . For every topological space X we have the Atiyah–
Hirzebruch filtration

� � � � F 2p�.X/� F 1p�.X/� F 0p�.X/D p�.X/

of the p–cohomology groups. By definition, for k 2N a class c 2 p�.X/ belongs to
F kp�.X/ if and only if f �cD 0 for every map f W Y !X from a k�1–dimensional
complex Y . The associated graded group Grp�.X/ is calculated by the Atiyah–
Hirzebruch spectral sequence (AHSS). If p is a commutative ring spectrum, then
the Atiyah–Hirzebruch filtration turns the cohomology p�.X/ into a filtered graded
commutative ring.

For k 2 Z we let phki ! p denote the k–connected covering of P. We have
�i .phki/D 0 for i � k and an isomorphism �i .phki/

��! �i .p/ for all i > k . The
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following assertions are checked easily using the naturality of the AHSS. If X is a
space, then the natural map ph0i ! p induces isomorphisms

(21) ph0i0.X/ ��! F 1p0.X/; ph0i1.X/ ��! F 2p1.X/:

Similarly, the maps ph1i ! p and ph�1i ! p induce isomorphisms

(22) ph1i0.X/ ��! F 2p0.X/; ph�1i1.X/ ��! F 1p1.X/:

The sheaf of CDGAs �A has a decreasing filtration

� � � � F 2�A� F 1�A� F 0�AD�A;

where F k�A WD
Q
i�k �

i˝A. For every manifold M we obtain an induced filtration
on the cohomology groups H�.�A.M//. Recall the de Rham equivalence (12).

Lemma 8.3 The de Rham equivalence induces an isomorphism of filtered commutative
graded algebras

H�.�A.M// ��!HA�.M/:

Proof The main new point is that the de Rham equivalence preserves the filtration.
This will be shown in Lemma 12.1 in a more general situation.

Let p be a spectrum and P WD�1p 2 CGrp.S/ be its infinite loop space. Then we
obtain a constant Picard-1–stack P 2 ShCGrp.S/ ; see Definition 3.2. Note that

�i .P .M//Š p�i .M/

for all i � 0. Recall the definition (7) of the Picard-1–stack Picloc
R . We have the

equivalence

PicR Š Picloc
R .�/I

see Proposition 3.6. We further let picR be the connective spectrum such that

�1picR WD PicR:

Proposition 3.6 also shows that we have equivalences and an isomorphism,

(23)
Picloc

R .M/Š PicM
top

R Š�1Map.†1CM
top; picR/;

�0.Picloc
R .M//Š pic0R.M/;
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ie R–twists are classified by a cohomology group. In particular, we get an induced
decreasing Atiyah–Hirzebruch filtration

� � � � F 2�0.Picloc
R .M//� F 1�0.Picloc

R .M//� �0.Picloc
R .M//

on the abelian group of isomorphism classes of R–twists on M.

The cohomology theory of the spectrum of units gl1.R/ of the commutative ring
spectrum R is characterized by the natural isomorphism

(24) gl1.R/
0.X/ŠR0.X/�

for all spaces X. We have an equivalence of connective spectra

(25) picRh0i Š bgl1.R/ WD gl1.R/Œ1�:

In calculations below we use the following fact:

Lemma 8.4 For k � 0 the isomorphism

picRh0i
0.SkC1/

(25)
Š bgl01.S

kC1/
susp:
Š

Bgl01.S
k/

(24)
Š

�
�k.R/ if k � 1;
�0.R/

� if k D 0;
is given by

picRh0i
0.SkC1/ 3E 7! �.E/;

where �.E/ is as defined in Definition 3.13.

Since picR is a connective spectrum, we have, for every connected space X with
basepoint, canonical isomorphisms

(26) pic0R.X/Š �0.picR/˚ gl1.R/
1.X/; pic�1R .X/Š gl1.R/

0.X/:

By (21) we have identifications

(27) gl1.R/h0i
0.X/ �

(24)
�! 1CF 1R0.X/; F 2gl1.R/h1i

0.X/ ��! 1CF 2R0.X/:

In general it is quite complicated to understand the spectrum of units gl1.R/ from the
structure of R . But if R is rational, then one can use a homotopy-theoretic version of
the exponential map in order to relate R with its units. The details are as follows.

Lemma 8.5 Assume that Q is a commutative algebra in HQ–modules. Then there
exists an equivalence of spectra

expQW Qh0i
��! gl1.Q/h0i
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which induces for every space X the exponential map

(28) Qh0i0.X/! gl1.Q/h0i
0.X/; ˇ 7!

1X
nD0

1

nŠ
ˇn:

Moreover, expQ is unique up to homotopy with this property.

Proof The spectra Qh0i, gl1.Q/ and gl1.Q/h0i are HQ–modules. A map between
connective HQ–modules is determined up to homotopy by a map of H –spaces
between the underlying infinite loop spaces (this follows from the Milnor–Moore
theorem [41]). Furthermore, a map of rational H –spaces is determined up to equiv-
alence by the transformation of abelian group-valued functors on the category of
finite CW–complexes represented by them since there are no phantom maps between
rational spectra. Therefore, in order to define and characterize the exponential map
expQ it suffices to check that (28) is a well-defined transformation between abelian
group-valued functors on finite CW–complexes.

Every element ˇ 2Qh0i0.X/Š F 1Q0.X/ is nilpotent. Therefore, the power series
reduces to a finite sum and determines an element

1X
nD0

1

nŠ
ˇn 2 1CF 1Q0.X/Š gl1.Q/h0i

0.X/:

Additivity is checked as usual.

Remark 8.6 The exponential map constructed in the lemma is only determined up
to homotopy and not up to contractible choices. But we will see in Remark 10.7 that
a choice of chain complex modelling the rational spectrum Q allows one to make a
preferred choice which is well defined up to contractible choices.

Lemma 8.7 For every manifold M we have a natural isomorphism

ExpW F 2H 1.�A.M//! F 2�0.Picloc
HA.M//:

Proof By Lemma 8.3 the de Rham equivalence induces an isomorphism

F 2H 1.�A.M// ��! F 2HA1.M/:

By (21) we have an isomorphism

F 2HA1.M/ŠHAh0i1.M/:
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The exponential map expHA induces an isomorphism

expHAW HAh0i
1.M/ ��! gl1.HA/h0i

1.M/:

Finally, we have the isomorphism

gl1.HA/h0i
1.M/ ��! bgl1.HA/h1i

0.M/ �
(25)
�! picHAh1i

0.M/

(22)–(23)
����! F 2�0.Picloc

HA.M//:

The isomorphism Exp is defined as the composition of the isomorphisms above.

In Proposition 6.96 we have constructed a symmetric monoidal transformation

MW Z1
A! Picwloc;fl

�A ; ! 7!M.A; !/:

Its composition with the localization Picwloc;fl
�A ! Picloc

�.�A/
and Eilenberg–Mac Lane

equivalence Picloc
�.�A/

��! Picloc
HA yields a symmetric monoidal transformation

HMW Z1
A! Picloc

HA:

It immediately follows from the definition of Z1
A that �0.Z1

A.M//ŠF 2H 1.�A.M//.

Proposition 8.8 We assume that A is split. For every manifold M the following
diagram commutes:

(29)

F 2H 1.�A.M//

Exp
��

Š
// �0.Z

1
A.M//

HM
��

F 2�0.Picloc
HA.M// // �0.Picloc

HA.M//

where the lower horizontal map is the inclusion.

The proposition follows from the following two lemmas.

Lemma 8.9 In order to show Proposition 8.8 it suffices to show that the diagram (29)
commutes in the case M D Sk for all k 2N .

Proof Using some natural isomorphisms discussed above we can rewrite the diagram
(29) as follows:

HAh0i1.M/

Exp
��

HAh0i1.M/

HM
��

picHAh1i
0.M/ // pic0HA.M/
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This makes clear that all corners are functors represented by rational H –spaces. The
horizontal maps represented by maps of H –spaces by construction. The transformations
of abelian group-valued functors Exp and HM are as well represented by a map
between H –spaces which are uniquely determined up to homotopy. Finally, the
resulting diagram

(30)

HAh0iŒ1�

Exp
��

HAh0iŒ1�

HM
��

picHAh1i // picHA

of maps between rational H –spaces commutes up to homotopy if and only if it
commutes on the level of homotopy groups.

Lemma 8.10 The diagram (29) commutes for M D Sk for all k 2N .

Proof Note that HM takes values in the subgroup

F 1�0.Picloc
HA.S

kC1//Š picHAh0i
0.SkC1/:

By Lemma 8.4 the equivalence class of the element HM.A;!/2F 1�0.Picloc
HA.S

kC1//

is completely determined by the class �.HM.A; !// 2 �k.HA/ of Definition 3.13.

On the one hand, by Lemma 6.10 we have �.HM.A; !// D �.Œ!�/. On the other
hand, by Lemma 8.4 and the construction of Exp we have the following equality in
HA0.SkC1/:

1C ��1
�
�.Exp.Œ!�//

�
D exp.Œ!�/D 1C Œ!�:

We conclude that �.Exp.Œ!�//D �.Œ!�/.

Proposition 8.11 We assume that A is split. Then there exists a canonical equivalence
of spectra

gl1.HA/ŠH.H
0.A/�/�HAh0i:

Proof We consider the fibre sequence

gl1.HA/h0i ! gl1.HA/!H.H 0.A/�/:

Since A is split, we have a natural map of CDGAs,

H 0.A/ŠZ0.A/! A;
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which induces a split of the fibre sequence H.H 0.A/�/! gl1.HA/. The required
equivalence is now constructed using the exponential equivalence, Lemma 8.5:

gl1.HA/ŠH.H
0.A/�/� gl1.HA/h0i

id�exp�1HA
�������!H.H 0.A/�/�HAh0i:

Using (26), (23) and (21) we get:

Corollary 8.12 We assume that A is split. For every connected manifold M with a
fixed basepoint we have natural isomorphisms

�0.Picloc
HA.M//Š �0.picHA/˚H.H

0.A/�/1.M/˚F 2HA1.M/

and

�1.Picloc
HA.M/;X/ŠH 0.A/�˚F 1HA0.M/

for every X 2 Picloc
HA.M/.

Corollary 8.13 We assume that A is split. For a connected manifold M with a fixed
basepoint, the transformation

�0.HM/W �0.Picloc,fl
A .M/�Z1

A.M//! �0.Picloc
HA.M//

is given in terms of components of the decompositions obtained in Proposition 6.2 and
Corollary 8.12 as the map

�0.Picfl
A/˚H.Z

0.A/�/1.M/˚F 2HA1.M/

! �0.picHA/˚H.H
0.A/�/1.M/˚F 2HA1.M/

with the following description:

(1) The first component maps the isomorphism class of X2Picfl
A to the isomorphism

class of HX in �0.picHA/.

(2) Since A is split we have an isomorphism Z0.A/ŠH 0.A/ which induces the
second component,

H.Z0.A/�/1.M/ŠH.H 0.A/�/1.M/:

(3) The third component is the identity, by Proposition 8.8 and the construction of
the split in Proposition 8.11.
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The transformation

�1.HM/W �1.Picloc,fl
A .M/�Z1

A.M//! �1.Picloc
HA.M//

is given in terms of components

Z0.A/�˚Z0.F 1�A.M//!H 0.A/�˚F 1HA0.M/

as follows:

(1) The first component is the isomorphism Z0.A/� ��!H 0.A/� .

(2) The second component maps the cycle ! 2 Z0.F 1�A.M// to its de Rham
cohomology class Œ!� 2 F 1HA0.M/.

In particular, the functor HoHMW Ho Z1
A!Ho Picloc

HA is full.

Proof of Theorem 8.1 We choose X 2 Picfl
A such that HX ŠE.m/^HR as HA–

modules. Then we have E.m/^HR�HX.m/ Š 0 in PicHA . By Corollary 8.13
there exists an object A2 Picloc,fl

A .M/ with A.m/ŠA and ! 2Z1.F 2�A.M// such
that E ^HRŠHX CM.A; !/ 2 Picloc

HA.M/. Then there exists an equivalence

d W E ^HRŠM.A˝AX;!/:

Hence, we obtain a differential refinement

.E;M.A˝AX;!/; d/ 2 Tw yR.M/

of E.

Part III Examples

9 Differentially simple spectra

For a general commutative ring spectrum R 2 CAlg.Sp/ it seems to be difficult to
single out a good choice of a differential extension .R;A; c/. In the present section
we introduce the notion of a differentially simple commutative ring spectrum. This
class contains all examples which have been considered in applications so far. For a
differentially simple commutative ring spectrum we have a very good canonical choice
of a differential extension and control of differential twists.

Definition 9.1 We call a commutative ring spectrum R differentially simple if it has
the following properties:
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(1) R is formal, ie there exists an equivalence

cW R^HR ��!H.��.R/˝R/

in CAlg.ModHR/ that induces the identity on homotopy groups.

(2) R is rationally connected, ie �0.R/˝RŠR.

(3) Rationally, the ring spectrum R has no exotic twists, ie the canonical assignment

Z! �0.PicHA/; n 7!HAŒn�;

surjects onto the image of �0.PicR/! �0.PicHA/.

In general, the hard piece to check in the above definition is condition (3). However,
when R is connective, condition (3) is automatic, as follows from the following result:

Proposition 9.2 (Gepner and Antieau [3, Theorem 7.9]) If a commutative ring
spectrum E is connective and �0.E/ is a local ring, then �0.PicE /D Z.

Corollary 9.3 If R is connective and satisfies conditions (1) and (2) in Definition 9.1,
then it also satisfies condition (3).

Proof If R satisfies conditions (1) and (2) in Definition 9.1, then, according to
Proposition 9.2, the group �0.PicHA/ consists of the isomorphism classes of the
shifts HAŒn�, and these can be realized by the isomorphism classes of the shifts AŒn�
in �0.PicA/.

Recall also that every ring spectrum whose real homotopy is a free graded commutative
R–algebra is formal.

Example 9.4 The following spectra are differentially simple:

� ordinary cohomology HZ;

� the sphere spectrum S;

� connective complex K–theory ku and periodic K–theory K;

� connective real K–theory ko and the periodic version KO ;

� connective topological modular forms tmf and the periodic version TMF.

Proof All examples follow from the last corollary except for the periodic K–theories
and TMF. But it follows from results of Lennart Mayer and Akhil Mathew [38] that
�0.PicK/ D Z=2 and �0.PicKO/ D Z=8 and �0.PicTMF/ D Z=576. In particular,
all classes are represented by shifts.
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Theorem 9.5 Assume that R is a differentially simple spectrum and .R;A; c/ is the
canonical differential extension with AD ��.R/˝R and equivalence cW R^HR ��!

HA in CAlg.ModHR/. Then we have the following assertions:

� Every topological R–twist E on a manifold M admits a differential refinement
.E;M; d / which is unique up to (noncanonical ) equivalence.

� The sheaf M of �A–modules can be chosen in the form

MDM.L˝RA;w/Œn�

where L is an invertible locally constant sheaf of R–vector spaces (ie the sheaf
of parallel sections of a flat real line bundle) and ! 2Z1.F 2�A.M//.

� The isomorphism class of L and the de Rham class of ! are uniquely determined
by the topological twist E.

Proof The uniqueness in the first statement follows from Theorem 7.1 and the existence
from Theorem 8.1. The second part follows from the fact that Z0.A/� ŠR�

10 From differential bgl1 to twists

The main goal of the present section is to construct differential twists from classes
in differential bgl1.R/–cohomology. A more precise statement will be given as
Theorem 10.1, after the introduction of necessary notation.

First we review ordinary (nontwisted, nonmultiplicative) differential cohomology in
the setup of [10; 9]. Let p be a spectrum, B be a chain complex of real vector spaces
and eW p^HR!HB be an equivalence in ModHR . The triple .p; B; e/ is called a
differential datum (this is the nonmultiplicative version of a differential ring spectrum
as introduced in Definition 4.1). For every n 2 Z we define a differential function
spectrum Diffn.p; B; e/ 2 ShSp as the pullback

(31)

Diffn.p; B; e/

��

// H.�B�n/

��

p
e

// HB

where the right vertical map is induced by the inclusion of chain complexes �B�n!
�B and the de Rham equivalence H�B ŠHB .

Algebraic & Geometric Topology, Volume 19 (2019)



1678 Ulrich Bunke and Thomas Nikolaus

For a smooth manifold M the homotopy groups of the differential function spectrum
are given by

(32) �i .Diffn.p; B; e/.M//Š

8<:
p�i .M/ if i < �n;
pR=Z�i�1.M/ if i > �n;
yp�n.M/ if i D�n;

where

ypn.M/ WD ��n.Diffn.p; B; e/.M//

is, by definition, the nth differential p–cohomology of M. We refer to [10] for further
details. For notational reasons we temporarily use the notation q�0 WD qh�1i for
connective covers. For n 2 Z and k 2N we define

Diffnk.p; B; e/ WD .Diffn�k.p; B; e/Œn�/�0:

Note that Diffn
k
.p; B; e/ is a sheaf of connective spectra, but not a sheaf of spectra. We

now consider a commutative ring spectrum R and a differential refinement .R;A; c/.
We assume that A is split. In this case we consider the complex

(33) B WD � � � ! A�2! A�1! 0! 0! � � � ;

where A�1 sits in degree �2. The complex B will serve as a real model of bgl1.R/h1i.
In the following theorem we use the term canonical differential data as in [10]. Recall
that every spectrum admits canonical differential data. But, in general, such data is not
unique. So the main achievement in the first part of the theorem is contained in the
word preferred.

Theorem 10.1 Let .R;A; c/ be a differential datum with A split. The spectrum
bgl1.R/h1i admits a preferred canonical differential datum

4bgl1.R/h1i WD .bgl1.R/h1i; B; e
�1/:

Furthermore, there exists a canonical map of Picard-1–stacks

(34) �1Diff01.4bgl1.R/h1i/! Tw yR:

The remainder of the present section is devoted to the proof of this theorem. In particular,
the map e will be defined in Proposition 10.5. Let us start with more details about the
spectra Diffn

k
.p; B; e/ in the general situation.
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Lemma 10.2 (1) The homotopy groups of Diffn
k
.p; B; e/.M/ are given by

�i .Diffnk.p; B; e/.M//Š

8̂̂̂<̂
ˆ̂:
0 if i < 0;
pn�i .M/ if 0� i < k;
ypn�k.M/ if i D k;
pR=Zn�i�1.M/ if i > k:

(2) The sheaf of connective spectra Diffn
k
.p; B; e/ can be written as the pullback

in ShSp�0

(35)

Diffn
k
.p; B; e/

��

// H.�Bhn� k; : : : ; ni/Œn�

��

.pŒn�/
�0

e
// ..HB/Œn�/�0

where �Bhn� k; : : : ; ni is the sheaf in ShCh�n;1 ,

�Bn�k!�Bn�kC1! : : :!�Bn�1!Zn.�B/;

where Zn.�B/ sits in degree n.

(3) There are natural morphisms

Diffn0.p; B; e/! Diffn1.p; B; e/! Diffn2.p; B; e/! � � � :

Proof (1) The statement follows immediately from the calculation of homotopy
groups of Diffn.p; B; e/ as listed in (32).

(2) Note that shifting and taking connective covers both commutes with pullbacks.
Thus, applying the two operations to the pullback diagram (31) yields (35).

(3) This result finally follows from the description of Diffn
k
.p; B; e/ as a pullback

together with the obvious inclusions

�Bhn; : : : ; ni !�Bhn� 1; : : : ; ni !�Bhn� 2; : : : ; ni ! � � � :

Example 10.3 Let P DHZ be the ordinary Eilenberg–Mac Lane spectrum, B WDRŒ0�

and eW HZ^HR!HB be the canonical map. Then the spectrum Diffn
k
.P;B; e/

has the following interpretation for various values of n and k :

(1) Diff20.P;B; e/.M/ is a 1–type, as we see from the homotopy groups. As such
it can be identified with the groupoid of line bundles with connection.
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(2) Diff21.P;B; e/.M/ is the 1–type, namely the groupoid of line bundles without
connection.

(3) Diff30.P;B; e/.M/ is a 2–type. It can be identified with the 2–groupoid of
gerbes with connection.

(4) Diff31.P;B; e/.M/ is a 2–type which can be identified with the 2–groupoid
of gerbes with connection and invertible gerbe bimodules.

(5) Diff32.P;B; e/.M/ is a 2–type which can be identified with the 2–groupoid
of gerbes without connection.

We now turn our attention to the case Diff01.p; B; e/ appearing in the theorem. We
give a categorical interpretation of the morphism

H.�Bh�1; : : : ; 0i/ŠH.�Bh�1; : : : ; 0i/�0!H.�B/�0 Š .HB/�0;

which is the right vertical map in the diagram (35) that defines Diff01.p; B; e/. Note
that .HB/�0 is a homotopy-invariant sheaf of connective spectra. The canonical
inclusion of homotopy-invariant sheaves into all sheaves fits into an adjunction

ihW ShhSp�0 � ShSp�0 ;

and we call ih the homotopification. Given a sheaf F we shall also refer to the unit
F ! ihF as homotopification.

Lemma 10.4 The morphism H.�Bh�1; : : : ; 0i/ ! .HB/�0 is equivalent to the
homotopification.

Proof This follows immediately from Lemma 7.15 of [11] together with the fact
that the Eilenberg–Mac Lane functor from chain complexes to spectra commutes with
homotopification and the de Rham equivalence.

We now specialize to the situation of the theorem and set p WD bgl1.R/h1i and B as
in (33). Note that

�Bh�1; : : : ; 0i Š F 1�A0!Z1.F 2�A/:

In Definition 6.8 this two-step complex gave rise to the Picard stack Z1
A . By Remark 6.7

we have a canonical equivalence

(36) �1H.�Bh�1; : : : ; 0i/ŠZ1
A

of Picard-1–stacks.
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Recall that we constructed a transformation (restrict (18) to fAg �Z1
A )

MW Z1
A! Picwloc;fl

�A ; ! 7!M.A; !/;

of Picard-1–stacks.

Proposition 10.5 There is a canonical equivalence of spectra

(37) eW HB! bgl1.R/h1i ^HR

and a commutative diagram in ShCGrp.S/

(38)

Z1
A

M
//

��

Picwloc;fl
�A

��

�1HB //

�1e

((

Picloc
H�A

Š

��

�1.bgl1.R/h1i ^HR/

66

// PicHA

Proof From Lemma 10.4, the equivalence of categories ShSp�0 Š ShCGrp.S/ and (36),
we conclude that the left vertical morphism in diagram (38) is the homotopification.
Note that the sheaf Picloc

H�A Š Picloc
HA in the lower-right corner of diagram (38) is

homotopy-invariant. We get the dotted arrow

�1HB! Picloc
H�A

and the upper square from the universal property of the homotopification.

The constant functor
CGrp.S/! ShCGrp; X 7!X;

is fully faithful. Hence, the map

�1HB! Picloc
H�A Š PicHA

induces the arrow marked by Š in the following diagram in CGrp.S/:

(39)

�1.bgl1.R/h1i ^HR/

��

�1HB

�1e
55

Š
// PicHA
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We now observe that

bgl1.R/h1i ^HRŠ bgl1.R^HR/h1i Š bgl1.HA/h1i Š picHAh1i

and that, under this identification, the right vertical arrow in (39) is just the structure
map of a 1–connected covering. Since �1HB is 1–connected, the triangle (39) is
unique up to equivalence. It induces the corresponding triangle in (38).

Definition 10.6 Let .R;A; c/ be a differential ring spectrum. Then the equivalence
(37) determines a preferred canonical differential datum

4bgl1.R/h1i WD .bgl1.R/h1i; B; e
�1/:

Remark 10.7 In homotopy the map e induces the map Exp discussed in Proposition
8.8. But this proposition only determines the homotopy class of e , while here we fix
the map itself up to contractible choice. This fact is important to make the domain of
the transformation (34) well defined.

We now construct the asserted canonical map of Picard-1–stacks

�1Diff01.4bgl1.R/h1i/! Tw yR:

According to Lemma 10.2 the Picard-1–stack �1Diff01.4bgl1.R/h1i/ is defined as
the pullback of the diagram

�1bgl1.R/h1i !�1HB Z1
A :

Recall that Tw yR was defined as the pullback of Picard-1–stacks

Picloc
R ! Picloc

H�A Picwloc;fl
�A :

Thus, it suffices to exhibit a canonical morphism between the two diagrams. To this
end we consider the diagram

bgl1.R/h1i //

''

��

HB

Š e

��

Z1
A

oo

M

��

bgl1.R/h1i ^HR

��

Picloc
R

// Picloc
H�A Picwloc;fl

�A
oo
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The right-hand part comes from (38). The dotted arrow is the realification map, which
induces the upper-left horizontal map since e is an equivalence. The lower-left square
commutes since it is equivalent to the sheafification of the realification applied to the
1–connective covering map PicRh1i ! PicR .

This finishes the proof of Theorem 10.1.

Corollary 10.8 There is a canonical map of Picard-1–stacks

(40) �1Diff00.4bgl1.R/h1i/! Tw yR:

Proof Compose the canonical map

�1Diff00.4bgl1.R/h1i/!�1Diff01.4bgl1.R/h1i/

from Lemma 10.2 with the canonical map

�1Diff01.4bgl1.R/h1i/! Tw yR

from Theorem 10.1

Remark 10.9 It is a natural question whether one can extend the map (40) to a map
from a differential version of TwR . In fact this can be done, but one has to make some
additional choices. We will refrain from doing so here.

11 Examples of twists

We fix an integer n 2 N n f0g and consider the Picard-1–groupoid K.Z; n/ (cor-
responding to the respective Eilenberg–Mac Lane space). Applying the symmetric
monoidal functor †1

C
from spaces to spectra, we obtain a commutative ring spectrum

†1
C
K.Z; n/.

Proposition 11.1 The commutative ring spectrum †1
C
K.Z; n/ is differentially simple

(Definition 9.1). In particular, it admits a canonical refinement to a differential spectrum

5†1CK.Z; n/ WD .†1CK.Z; n/; SymRR.Œn�/; �/:

Proof We have isomorphisms of rings

��.†
1
CK.Z; n/^HR/ŠH�.†

1
CK.Z; n/;R/ŠH�.K.Z; n/IR/Š SymR.RŒn�/:

Since the homotopy of K.Z; n/^HR is a polynomial algebra, this ring spectrum is
formal by Remark 4.3. It also obviously satisfies the remaining conditions for being
differentially simple according to Definition 9.1.
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From the universal property of the functor GL1 we get a canonical map of Picard-1–
groupoids

K.Z; n/C! GL1.†1CK.Z; n//;

which induces a map of connective spectra

.HZ/ŒnC 1�! bgl1.†
1
CK.Z; n//:

Since .HZ/ŒnC 1� is 1–connected we get a canonical factorization over a map

(41) .HZ/ŒnC 1�! bgl1.†
1
CK.Z; n//h1i:

From Theorem 10.1 we get a preferred canonical differential datum

2bgl1.†
1
CK.Z; n//h1i WD

�
bgl1.†

1
CK.Z; n//h1i; SymRR.Œn�/Œ1�; e�1

�
:

The spectrum .HZ/ŒnC 1� has a canonical differential datum

5.HZ/ŒnC 1� WD ..HZ/ŒnC 1�;RŒnC 1�; c/:

Lemma 11.2 The map of spectra (41) induces a unique equivalence class of maps of
canonical differential data,

5.HZ/ŒnC 1�! 8bgl1.†
1
CK.Z; n//:

Proof By [10, Section 2.4] there exists such a map whose equivalence class is unique
up to the action of Y

k2Z

Hom
�
.RŒnC 1�/�k; .SymRR.Œn�/Œ1�/�k�1

�
:

Since this group is trivial, the assertion follows.

This map of differential data induces an equivalence class of maps of differential
function spectra,

Diff01.5.HZ/ŒnC 1�/! Diff01
�bbgl1.†

1
CK.Z; n//

�
:

If we compose this map with the map given in Theorem 10.1, then we get the maps
between Picard-1–stacks

�1Diff00.5.HZ/ŒnC 1�/!�1Diff01.5.HZ/ŒnC 1�/! Tw 3†1
C
K.Z;n/

:
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Let M be a smooth manifold. We obtain a commutative diagram of ordinary Picard
categories

bHZnC1.M/

Curv

yy

I //HZnC1.M/
.i/ //�0.Picloc

†1
C
K.Z;n/

.M//

Ho�1Diff00.4.HZ/ŒnC1�/.M/
 //

Š

��

�0

OO

Ho�1Diff01.4.HZ/ŒnC1�/.M/ //

.ii/ Š

��

�0

OO

Ho Tw3†1
C
K.Z;n/

.M/

��

OO

Ho�1HBh0; : : : ; 0i.M/ //

Š

��

Ho�1HBh�1; : : : ; 0i.M/ //

Š

��

Picwloc;fl
�SymR.RŒn�/

.M/

ZnC1.�.M// //
�
�n.M/!ZnC1.�.M//

� .iii/ //Picwloc;fl
�SymR.RŒn�/

.M/

where the arrows marked by Š are induced by the upper horizontal in (35).

Remark 11.3 Let us spell out what this diagram means. Let us call an object

yx 2Ho�1Diff00.5.HZ/ŒnC 1�/.M/

a differential cycle for the differential cohomology class Œyx� 2 bHZnC1.M/. Let
Curv.Œyx�/ 2 ZnC1.�.M// and I.Œyx�/ 2 HZnC1.M/ denote the curvature and the
underlying integral cohomology class of Œyx�.

(1) We choose an identification SymR.RŒn�/ Š RŒb�, where b 2 SymR.RŒn�/ is a
nonzero element of degree �n. The functor (iii) maps a form ! 2Zn.�.M// to the
sheaf of DG–�RŒb�jM –modules .�RŒb�jM ; d C b!/ and a form ˇ 2�n.M/ to the
map

exp.�ˇb/W .�RŒb�jM ; d C b!/! .�RŒb�jM ; d C b!
0/;

where !0 WD !C dˇ .

(2) The second horizontal line associates to a differential cycle yx a differential twist,
which we denote by .E;M; d /.

(3) The equivalence class of this differential twist, or what is the same by Theorem 7.1,
the equivalence class of the underlying †1

C
K.Z; n/–twist E, is determined by the

underlying integral cohomology class I.Œyx�/.

(4) The differential cycle yx determines a closed form ! 2 Curv.Œyx�/2ZnC1.�/. The
lower horizontal line of the diagram maps this form to the sheaf of DG–�RŒb�jM –
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modules
M WD .�RŒb�jM ; d C b!/;

which is part of the datum of the differential twist .E;M; d /.

(5) We now observe that the differential cohomology class Œyx� 2 bHZnC1.M/ deter-
mines the equivalence class of the †1

C
K.Z; n/–twist E and the complex M. This

additional information contained in the cycle yx is needed to fix the map d .

(6) Let us now fix a second differential cycle yx0 which gives rise to a differential twist
.E 0;M0; d 0/, where M0 WD .�RŒb�jM ; d C b!0/ with !0 WD Curv.Œyx0�/. We further
consider a morphism f W  .yx/ !  .yx/0 . This morphism induces an equivalence
morphism of differential twists .E;M; d /! .E 0;M0; d 0/.

(7) Using the diagram we can explicitly describe the induced map M!M0 . The
map (ii) associates to the morphism f a form ˇ 2 �n.M/ such that !C dˇ D !0 .
Therefore, the morphism M!M0 is multiplication by exp.�bˇ/. If the morphism
f is in the image of  , then MDM0 and it acts as the identity.

(8) Since �1.Diff01.5.HZ/ŒnC1�/.M//Š bHZn.M/, the second line induces an ac-
tion of the differential cohomology group bHZn.M/ by automorphisms on differential
†1
C
K.Z; b/–twist. On M this action is given by multiplication by exp.�b Curv.y//.

Proposition 11.4 Let R be a commutative ring spectrum and yR WD .R;A; c/ be a
differential refinement of R . A morphism of commutative ring spectra

gW †1CK.Z; n/!R

can be extended to a morphism of differential ring spectra

ygW 5†1CK.Z; n/! yR
whose equivalence class is unique up to the action of the group An�1=im.d/.

Proof The space of morphism of differential ring spectra from 5†1
C
K.Z; n/ to yR is

given by a pullback

MapbRings
.5†1
C
K.Z; n/; yR/

��

// MapCAlg.ChR/
.RŒb�; A/

��

MapCAlg.Sp/.†
1
C
K.Z; n/; R/ // MapCAlg.ModHR/

.HRŒb�;HA/
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We must calculate the fibre of the left vertical map at g , which can be identified with the
fibre X of the right vertical map at the image of g . Since CAlg.ChR/ is a 1–category
the upper-right corner is discrete. Since RŒb� is freely generated by an element b of
cohomological degree �n we get

�k.MapCAlg.ChR/
.RŒb�; A//Š

�
Z�n.A/ if k D 0;
0 if k � 1;

and
MapCAlg.ModHR/

.HRŒb�;HA/Š MapCAlg.ChR;1/
.�.RŒb�/; �.A//

Š MapChR;1
.�.RŒn�/; �.A//

Š�1..HA/Œ�n�/;

and therefore

�k.MapCAlg.ModHR/
.HRŒb�;HA//ŠH�n�k.A/:

We deduce that, for k � 1,
�k.X/ŠH

�n�k.A/

and �0.X/ fits into the exact sequence

0!H�n�1.A/! �0.X/! Bn.A/! 0:

In particular, X is not empty, and its components are parametrized by �0.X/ Š

A�n�1=im.d/.

Corollary 11.5 If A�n�1 D 0 in the above setting, then the extension yg is unique up
to noncanonical equivalence.

Assume that we have a morphism of commutative ring spectra gW †1
C
K.Z; n/!R

and a differential refinement .R;A; c/ with A�1�n D 0. Then by composing the
morphism Tw 3†1

C
K.Z;n/

! Tw yR induced by the map yg from Proposition 11.4 we
obtain a morphism of Picard-1–stacks

Z��1Diff01.4HZŒnC 1�/! Tw yR.M/;

where the additional Z–factor introduces degree shifts. Restricting the grading of the
twisted function spectrum (Definition 4.11) to Z��1Diff01.4HZŒnC 1�/ thus yields
a sheaf of graded ring spectra

M 7! .Z��1Diff01.4HZŒnC 1�/.M/; Diff.� � � /.M//

and a functor

Mfop
! GrRing; M 7! .Z�Ho�1Diff01.4HZŒnC 1�/.M/; yR:::.M//:
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Remark 11.6 Using Remark 11.3 (and the notation introduced there) we obtain the
following:

(1) For every differential cycle yx 2�1Diff00.4HZŒnC 1�/.M/ and integer k 2 Z

we obtain an abelian group yRkC .yx/ .

(2) The curvature map for this group takes values in Zk.�A; d C!b/, where ! D
Curv.Œyx�/, and we use that A is an RŒb�–module.

(3) For every morphism f W  .yx/! .yx0/ we get an isomorphism  .f /W yRkC�.yx/!

yRkC�.yx
0/ and a form ˇ 2�n�1 such that dˇC! D !0 , and

yRkC .yx/
 .f /

//

Curv
��

yRkC .yx
0/

Curv
��

Zk.�A; d C!b/
exp.�ˇb/

// Zk.�A; d C!0b/

commutes.

(4) For a pair of differential cycles yx and yx0 and integers k; k0 2Z we have a diagram

yRkC .yx/˝ yRk
0C .yx0/ //

Curv˝ Curv
��

yRkCk
0C .yx/C .yx0/

Curv
��

Zk.�A; d C!b/˝Zk
0

.�A; d C!0b/
mult: // ZkCk

0

.�A; d C!bC!0b/

Example 11.7 A trivial example where the above applies is R WD†1
C
K.Z; n/ and

g the identity. But the classical example is complex K–theory. It is known by [4]
that there is an essentially unique equivalence class of maps of Picard-1–groupoids
K.Z; 2/! GL1.K/ (see also Examples 11.8(1)). We therefore get a canonical map
†1
C
K.Z; 2/ ! K of commutative ring spectra. Since K is even, Corollary 11.5

applies. We therefore get a differential twisted K–theory bKU :::.M/ which is graded
by Z � �1Diff01.2HZŒ3�/.M/. The structures spelled out in Remark 11.6 have
partially been constructed using explicit models in [14; 25]. In particular, the real
approximation is given by the usual periodic de Rham complex M.RŒb; b�1�; !b/,
where ! D Curv.Œyx�/ 2Z3.�/ and deg.b/D�2.

Examples 11.8 Other examples of interesting maps of ring spectra †1
C
K.Z; n/!R

can be constructed following ideas of Ando, Blumberg and Gepner [1]. We consider

Algebraic & Geometric Topology, Volume 19 (2019)



Twisted differential cohomology 1689

the Picard-1–groupoid BO WD�1KOh0i. Assume that we are given a sequence of
maps between Picard-1–groupoids

(42) K.Z; n/!X ! BO

such that the composition is nullhomotopic. The Thom spectrum construction

M W CGrp.S/=BO! CAlg.Sp/; .X ! BO/ 7!MX;

functorially associates to every Picard-1–groupoid over BO a commutative ring spec-
trum. Since we assume that K.Z; n/!BO is nullhomotopic, we have an equivalence
MK.Z; n/Š†1

C
K.Z; n/. Hence, the sequence (42) induces a map

†1CK.Z; n/!MX:

In the following we discuss examples of sequences (42) from maps between classical
groups:

(1) The central extension

1! U.1/! Spinc! SO! 1

together with the identification BU.1/ŠK.Z; 2/ and the map BSO! BO induces
the sequence

K.Z; 2/! BSpinc! BO:

The construction produces a morphism of commutative ring spectra,

†1CK.Z; 2/!MSpinc :

Note that �3.MSpinc/˝QD 0, so we can apply Corollary 11.5. If we compose this
morphism with the Atiyah–Bott–Shapiro orientation AW MSpinc!K, then we get the
map

†1CK.Z; 2/! K

discussed in Example 11.7.

(2) We have a fibre sequence

K.Z; 3/! BString! BSpin:

It provides a morphism of commutative ring spectra

†1CK.Z; 3/!MString:
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If we compose this with the string orientation MString! tmf of the spectrum of
topological modular forms tmf (constructed by Ando, Hopkins and Rezk), we get a
map

†1CK.Z; 3/! tmf

of commutative ring spectra.

Since �4.MString/˝QD 0 and �4.tmf/˝QD 0, we can apply Corollary 11.5 to
both cases.

Further, note that �3.MString/˝QD0 and �3.tmf/˝QD0. Therefore, in both cases,
for every differential 4–cycle the curvature of the corresponding twisted MString–
or tmf–cohomology takes values in the cycles of the untwisted de Rham complexes
.�.��.MString/˝R/; d/ or .�.��.tmf/˝R/; d/, and morphisms between differ-
ential cycles act by the identity on the form level.

12 The twisted Atiyah–Hirzebruch spectral sequence

We consider a commutative ring spectrum R and a differential refinement yRD .R;A; c/.
Assume that we are given an R–twist E 2Picloc

R .M/ which is trivial on the 1–skeleton
of M, ie E is classified by a map M ! BGL1.R/h1i. We have shown in Section 8
that there exists a twisted de Rham complex MDM.A; !/ with ! 2Z1.F 2�A.M//

such that E refines to a differential twist .E;M; d /. In this section we demonstrate
how the cohomology class of ! can effectively be determined by the differentials in
the Atiyah–Hirzebruch spectral sequence associated to the twist E. This connects back
to the motivation for the whole construction, as explained in the introduction, since
it was the Atiyah–Hirzebruch spectral sequence for nondifferential twisted K–theory
in [35] that suggested that twisted K–theory has anything to do with string theory. For
a more refined discussion of this connection we refer the reader to [26].

More generally, consider A 2 Picloc,fl
A .M/ and the sheaf M.A; !/ of DG–�AjM –

modules introduced in Definition 6.4. It has a decreasing filtration

F pM.A; !/ WD��pjM ˝R A;

which turns it in into a sheaf of filtered DG–modules over the similarly filtered sheaf
of DG–algebras �AjM . This filtration induces a filtration of the complex of global
sections M.A; !/.M/ and therefore a spectral sequence .M.A;!/Er ; dr/ which con-
verges to H�.M.A; !/.M//. The spectral sequence has the structure of a module
over the corresponding spectral sequence .�AEr ; dr/ for �AjM .
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We let sing.M/ denote the smooth singular complex of M and

jsing.M/j WD
[
n2N

sing.M/Œn���n=�

be its geometric realization. We have a canonical evaluation map �W jsing.M/j !M

such that �.�; t/ D �.t/, where � W �n!M is a point in sing.M/Œn� and t 2 �n .
We consider jsing.M/j as a piecewise smooth manifold on which we can consider
differential forms and sheaves of spectra. The map � is piecewise smooth.

The piecewise smooth manifold jsing.M/j has an increasing filtration

∅D sing.M/�1 � jsing.M/j0 � jsing.M/j1 � � � �

by skeleta.

Let X 2 ShSp.M/. Then we can consider the pullback ��X 2 ShSp.jsing.M/j/.3

The filtration of jsing.M/j induces, by definition, the Atiyah–Hirzebruch spectral
sequence .XEr ; dr/ which converges to ��.X.M//.

Lemma 12.1 We have a canonical isomorphism of spectral sequences .M.A;!/Er ; dr/

and .HM.A;!/Er ; dr/ for r � 2.

Proof The filtration of jsing.M/j induces a decreasing filtration of the complex

� � � � zF 1M.��A; ��!/.jsing.M/j/� zF 0M.��A; ��!/.jsing.M/j/

DM.��A; ��!/.jsing.M/j/;

where zF kM.��A; ��!/.jsing.M/j/ is the kernel of the restriction to jsing.M/jk�1 .
We let . zEr ; zdr/ be the associated spectral sequence.

The piecewise smooth map � induces a morphism of complexes

��WM.A; !/.M/!M.��A; ��!/.jsing.M/j/

and satisfies

��F pM.A; !/.M/� zF p.M.��A; ��!/.jsing.M/j//:

We therefore get a map of spectral sequences .M.A;!/Er ; dr/! . zEr ; zdr/.

We check that it is an isomorphism on the second page and therefore on all higher
pages. To this end we calculate zE2 . We have

zE
p;q
0 Š F pM.��A; ��!/qCp.jsing.M/j/=F p�1M.��A; ��!/qCp.jsing.M/j/:

3This is actually an abuse of notation since jsing.M/j is not an object of Mf . Nevertheless, we think
that it is clear from the context what is meant here.
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This complex calculates the relative sheaf cohomology

H qCp.sing.M/p; sing.M/p�1IM.��A; ��!//:

This group is a product over the cohomology of all p–simplices in jsing.M/j relative
to their boundaries with coefficients in the restrictions of M.��A; ��!/. Since the
data ��A and ��! can be trivialized on the simplices, each p–simplex contributes a
factor of H q.A/. Using the fact that ! belongs to F 2.�A.M//, we now observe that
. zE

p;q
1 ; zd1/ Š .C

p.sing.M/;H q.A//; d1/ is exactly the reduced singular complex
associated to the local system H�.A/. Hence, we get

zE
p;q
2 ŠHp.sing.M/IH q.A//:

We now consider the spectral sequence .M.A;!/Er ; dr/ in greater detail. We have

M.A;!/E
p;q
0 Š .�p˝Aq/.M/; d0 D 1˝ dA:

We get

M.A;!/E
p;q
1 Š .�p˝H q.A//.M/; d1 D d�˝ 1:

It follows that

M.A;!/E
p;q
2 ŠHp.M IH q.A//:

Since the Eilenberg–Mac Lane equivalence is an equivalence between sheaves of
complexes and sheaves of HZ–modules, the descent spectral sequences for the pairs
.HM.A;!/Er ; dr/ and . zEr ; zdr/ associated to the skeletal filtration of jsing.M/j are
isomorphic.

This finally implies the assertion.

Lemma 12.2 The spectral sequence .�AEr ; dr/ degenerates at the second page.

Proof If X Š QjM is the constant sheaf generated by a spectrum Q 2 Sp, then
.XEr ; dr/ is the classical Atiyah–Hirzebruch spectral sequence. It is a well-known fact
that it degenerates at the second page if Q is a rational spectrum. Since �AŠHA
and HA is rational, we conclude that .�AEr ; dr/Š .HAEr ; dr/ degenerates at the
second page.

We write !D
P
n�2 !

n , where !n2 .�n˝A1�n/.M/. Let r 2N be such that !nD0
for all n < r . Then we have .1˝dA/!r D 0 and .d�˝1/!r D .�1/r.1˝dA/!rC1 .
We see that !r represents a class Œ!r � 2H r.M IH 1�r.A//Š �AE

r;1�r
2 .
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In the following lemma we write d.!/r for the differential of M.A;!/E
p;q
r and dr for

the differential of �AE
p;q
r .

Lemma 12.3 For 2� i � r we have

M.A;!/E
p;q
i Š �AE

p;q
i ;

and d.!/i D 0 for all 2� i < r . Furthermore, d.!/r D dr C Œ!r �.

Proof This is a consequence of the fact that we have a canonical identification of the
filtered Z–graded vector spaces M.A; !/.M/] Š�A.M/] and the difference of the
differentials, d.!/� d D ! , increases the filtration by r steps.

Lemma 12.4 The following assertions are equivalent:

(1) We have an isomorphism M.A; !/ŠM.A; 0/ of DG–module sheaves over �A.

(2) The class Œ!� 2H 1.�A.M// vanishes.

(3) The spectral sequence .M.A;!/Er ; d.!/r/ degenerates at the second page.

Proof We show .2/D) .1/D) .3/D) .2/.

If Œ!�D 0, then M.A; !/ŠM.A; 0/ by (16).

We now assume that M.A; !/ŠM.A; 0/. In this case, as a consequence of Lemmas
12.1 and 12.2, the spectral sequence .M.A;!/Er ; d.!/r/ degenerates at the second
page.

We now assume that the spectral sequence .M.A;!/Er ; d.!/r/ degenerates at the
second page. We argue by contradiction and assume that Œ!�¤ 0. Then there exists a
maximal r � 2 with Œ!� 2 F rH 1.M;A/. We can assume that ! 2 Z1.F r�A.M//

and Œ!r � 2H r.M;H 1�r.A//D �AE
r;1�r
2 does not vanish. The unit 1 2 A induces

a unit 1˝ 1 2�0˝A with image 1 2H 0.�A.M//. This unit is detected by a unit
1r 2E

0;0
r . By Lemma 12.3 we have 0D d.!/r.1r/D Œ!r �. This is a contradiction.

We can now describe an algorithm which allows us to determine the real approximation
MDM.A; !/ of a given R–twist E 2 Picloc

R .M/. The main point is to determine
the cohomology class of ! such that

.E ^HR/^H�AHM.A;�!/ŠH�A:
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Since we assume that E is trivialized on the 1–skeleton of M, we have an isomorphism

.E^HR/^H�AHM.A;�!/E
p;q
2 ŠHp.M;H q.A//Š �AE

p;q
2 :

We write zdr for the differential of the spectral sequence on the left-hand side.

Assume that we have found ! 2Z1.F 2�A.M// such that this isomorphism extends to
an isomorphism of the pages 2; : : : ; r . Then we consider the difference . zdr�dr/.1r/DW
x 2�AE

r;1�r
2 . It follows from the module structure over �AEr that, then, zdr�dr Dx .

There exists � 2Z1.F r�A.M// such that the cohomology class of � is detected by x .
After replacing ! by !C � we can assume that x D 0 and our isomorphism of pages
persists to the .rC1/st page.

We now proceed by induction on r . Since M is finite-dimensional, after finitely many
iterations we have found a form ! 2Z1.F 2�A.M// such that the spectral sequence
for .E ^HR/^H�AHM.A;�!/ degenerates at the second term. It now follows
from Lemma 12.4 that E ^HRŠHM.A; !/.

Example 12.5 We illustrate this procedure in the classical case of twisted complex K–
theory, which has already been considered in Example 11.7. In this case the procedure
terminates after the first iteration and reproduces a well-known fact.

The map of Picard-1–groupoids K.Z; 2/! GL1.K/ induces a map of spaces

K.Z; 3/! BGL1.K/

by 1–fold delooping. This map classifies a twist E 2 Picloc
K .K.Z; 3//.

The Atiyah–Hirzebruch spectral sequence .EEr ; dr/ has been investigated in Section 4
of [6]. Let � 2H 3.K.Z; 3/IZ/ denote the canonical class. It induces a class

�b 2H 1.K.Z; 3/IRŒb; b�1�/:

The calculation of Atiyah–Segal shows that E^HRE
p;q
3 ŠHp.K.Z; 3/IRŒb; b�1�q/

and d3 D �b . Note that rationally K.Z; 3/ behaves like S3 . One checks that

E^HRE4 D 0.

Now let f W M ! K.Z; 3/ be a map from a smooth manifold representing a class
x 2H 3.M IZ/. Then, if we take a form ! 2Z3.�.M// such that Œ!�D x˝R, there
exists an equivalence

f �E ^HRŠHM.RŒb; b�1�; !b/:

Thus, our procedure reproduces the complex found in Example 11.7.
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Appendix A Technical facts about graded ring spectra

Here we will prove some technical facts about graded ring spectra (defined in Section 2).
More precisely we show that the constructions that are required to define twisted and
differential twisted cohomology admit good functorial properties.

Let .Cat1/? denote the total space of the universal cocartesian fibration over Cat1 .
See [33, Section 3.3.2] for more details. Roughly speaking, objects of .Cat1/? are
given by 1–categories with a chosen basepoint. However, the morphisms in .Cat1/?
are not required to preserve this object up to isomorphism, but only up to a possible
noninvertible morphism. Thus, the overcategory .Cat1/�= is a subcategory of .Cat1/?
with the same objects but fewer morphisms. We will also refer to the category .Cat1/?
as the lax slice of Cat1 under the point.

Remark A.1 The categories Cat1 and .Cat1/? are neither small nor large. The
reason is that Cat1 contains all large categories. Thus, we need to work with a third
universe, which we call very large. Then Cat1 is very large. But the fibres of the
universal fibration are large. Thus, Cat1 classifies cocartesian fibrations X ! S

between 1–categories X and S which itself are allowed to be very large, but with
essentially large fibres Xs �X for all s 2 S.

As a convention from now on, we consider all 1–categories to be large, unless we
explicitly allow them to be very large.

Lemma A.2 For every (large) 1–category C the assignment c 7! C=c defines a
functor C ! Cat1 . Picking for every c 2 C the object idc 2 C=c as the basepoint,
this functor even refines to a functor C ! .Cat1/? .

Proof We consider the cocartesian fibration C�Œ1� ev1
�! C. Since the slices are large

this fibration is classified by a functor C ! Cat1 . Thus, there is a pullback diagram

C�Œ1� //

��

.Cat1/?

��

C // Cat1

Now we take the canonical section id.�/W C ! C�Œ1� and obtain the functor C !
.Cat1/? as a composition.
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By definition of GrRingSp (see Definition 2.4) there is a pullback diagram

(43)

GrRingSp //

U

��

.Cat1/
op
?

��

SymMon1
Funlax.�;Sp/

// Catop
1

where SymMon1 denotes the very large category of (large) symmetric monoidal
categories and lax symmetric monoidal functors. We denote the left vertical functor that
associates to every graded ring spectrum its underlying grading symmetric monoidal
1–category by U. Here the right vertical morphism is just the opposite of the universal
cocartesian fibration, and hence is the universal cartesian fibration.

Note that for an arbitrary (large) 1–category C, the presheaf category Fun.C op;Sp/
becomes a symmetric monoidal 1–category such that evaluation for every object
c 2 C is a monoidal functor Fun.C op;Sp/! Sp. Thus, for any object c 2 C the pair
.Fun.C op;Sp/; evc/ defines a graded ring spectrum. We now want to show that this
assignment is even functorial in .C; c/.

Lemma A.3 There is a functor

.Cat1/
op
? ! GrRingSp; .C; c/ 7! .Fun.C op;Sp/; evc/:

Proof Let gW Catop
1 ! SymMon1 be any functor. Since GrRingSp fits into the

pullback diagram (43), a functor f W .Cat1/
op
? !GrRingSp covering g is then uniquely

determined (up to a contractible space of choices) by a commuting diagram

.Cat1/
op
?

f 0
//

��

.Cat1/
op
?

��

Catop
1

g
// SymMon1

Funlax.�;Sp/
// Catop
1

For our concrete construction we define the functor g by g.C / WD Fun.C;Sp/. Since
the right vertical morphism in the diagram is the universal cocartesian fibration, a
functor f 0 that makes the diagram commute can be written as a functor into the
fibration classified by the lower horizontal composition g0. Moreover, the source of f 0

is itself a Grothendieck construction, described by the identity functor. Thus, the
functor f 0 (and therefore also the original functor f ) can equivalently be described as
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a transformation of functors id) g0 from Cat1 to itself. Such a transformation is
given as follows: for every 1–category C it is the assignment

C ! Funlax.Fun.C;Sp/;Sp/; c 7! evc ;

which can be easily seen to exist functorially in C using the definitions of the functor
categories.

Now let M be an arbitrary, essentially small 1–category, for example the category of
smooth manifolds. Then for every object M 2M we define the category of presheaves
of spectra on M as

PShSp.M/ WD Fun..M=M /
op;Sp/;

which becomes a symmetric monoidal 1–category with the pointwise tensor product.
There is a global sections functor

�.�;M/W PShSp.M/! Sp;

which is in our case just evaluation at the identity of M. The last two lemmas imply
the following functoriality statement:

Corollary A.4 The assignment M 7! .PShSp.M/; �.�;M// refines to a functor

1PShSpWMop
! GrRingSp:

Proof We apply Lemma A.2 with C DM and obtain a functor M! .Cat1/? . Then
we take the opposite and compose this functor with the functor .Cat1/

op
? !GrRingSp

from Lemma A.3.

The last corollary establishes the basic example of a presheaf of graded ring spectra.
We now want to show how to derive new examples from this one.

Proposition A.5 (change of grading) Assume that we have an 1–category D to-
gether with functors

F W D! GrRingSp; GW D! SymMon1;

and a transformation � from G to the composition D F
�! GrRingSp U

�!SymMon1 .
Then there is a functor

��F W D! GrRingSp; d 7!
�
G.d/;G.d/

�
�! U.F.d//

F.d/
��! Sp

�
:
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Proof We write the transformation � as a morphism D��Œ1�! SymMon1 . Then
we have a commuting square

D F
//

.�;1/

��

GrRingSp

��

D��Œ1�
�
// SymMon1

We want to show that there is a lift LW D��Œ1�!GrRingSp in the diagram with the
property that for every d 2 D the edge L.idd ; 0! 1/ is cartesian. Then the desired
functor is given by the restriction of L to D� 0.

Now we want to show that such a lift L exists. This is equivalent to a cartesian lift in
the diagram

�Œ0� //

��

Fun.D;GrRingSp/

��

�Œ1�
�
// Fun.D;SymMon1/

But the right vertical morphism is a cartesian fibration since GrRingSp! SymMon1
is one by definition and exponentials of cartesian fibrations are again cartesian fibrations,
as shown in [33, Proposition 3.1.2.1]. Thus, there is an essentially unique cartesian lift,
as desired.

Remark A.6 Let M be an 1–category. From Corollary A.4 we have an object
PShSp 2 Fun.Mop;SymMon1/ together with a lift 1PShSp 2 Fun.Mop;GrRingSp/.
Together with the change of grading statement we can obtain new examples of functors

��1PShSp 2 Fun.Mop;GrRingSp/

from a natural transformation �W G ! PShSp for any G 2 Fun.Mop;SymMon1/.
All examples in this paper will arise in this way. This is not a coincidence, since one
can show that all examples of functors in Fun.Mop;GrRingSp/ can be constructed
from PShSp using the change of grading statement. In other words the object 1PShSp

over PShSp is the universal presheaf of graded ring spectra over M. We refrain from
giving the proof here since it is technically involved and we do not need the statement.

Lemma A.7 We assume that I is a small 1–category and let v2IG be the cone point.
Then every functor F W IG!GrRingSp induces a functor zF W IG!GrRingSpU.F .v// .
Hence, for every c 2 U.F.v// (see (43) for U ) we obtain a functor zF c W IG! Sp.
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Proof Apply the change of grading Proposition A.5 to the functor F, the constant
functor GW IG! SymMon1 with image U.F.v// 2 SymMon1 , and the obvious
natural transformation G ! U ıF. Explicitly, this transformation is given as the
composition

�W IG ��Œ1�! IG! GrRingSp! SymMon1;

where the first functor is the identity on IG � f1g and carries IG � f0g to the cone
point.

Now we want to give a short discussion of limits of graded ring spectra. This will be
important when imposing descent conditions for presheaves of graded ring spectra.
The following result is essentially due to Lurie [33, Section 4.3.1] and holds more
generally, but we state it explicitly in the form needed below:

Proposition A.8 (1) The 1–category GrRingSp admits limits and the projection
GrRingSp! SymMon1 preserves limits.

(2) A diagram F W IG! GrRingSp is a limit diagram if and only if the following
conditions are satisfied:
� The induced diagram IG! GrRingSp! SymMon1 is a limit diagram.
� For every object c 2 U.F.v// the resulting diagram zF c W IG ! Sp (see

Lemma A.7) is a limit diagram.

Proof (1) We first observe that the functor U W GrRingSp! SymMon1 admits a
left adjoint given by the functor SymMon1! GrRingSp that maps every C to the
initial object of the fibre GrRingSpC D Fun˝lax.C;Sp/; see [33, Proposition 2.4.4.9]
for the existence of this functor and [33, Proposition 5.2.4.3] for the fact that it is left
adjoint to U. This shows that U preserves all limits.

We now want to show that GrRingSp has all limits. It follows from Remark 4.3.1.5
of [33] that a diagram F W IG! GrRingSp is a limit diagram if IG! GrRingSp!
SymMon1 is a limit diagram and F is a U –limit diagram (this is a relative limit, as
discussed in [33, Section 4.3.1]). Thus, using the fact that SymMon1 has all limits,
we conclude that we can extend any diagram I ! GrRingSp to a square

I //

��

GrRingSp

��

IG // SymMon1
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where the lower horizontal morphism is a limit diagram. Then we need to show that
we can find a lift IG!GrRingSp in this diagram that is a U –limit. But the existence
of such a lift is shown in [33, Corollary 4.3.1.11] under the condition that:

� The fibres GrRingSpC D Fun˝lax.C;Sp/ have all limits for all C 2 SymMon1 .

� The functor GrRingSpC !GrRingSpC 0 associated to a morphism C 0!C in
SymMon1 preserves all limits.

These conditions are satisfied, as shown in [34, Section 3.2.2].

(2) Assume F W IG ! GrRingSp is given. The above discussion shows that the
assertion that F is a limit diagram is equivalent to:

� The induced diagram IG! GrRingSp! SymMon1 is a limit diagram.

� The diagram F is a U –limit diagram.

We now want to show that the second condition (F is a U –limit diagram) is equivalent
to the second condition of the proposition. Therefore, we claim that it follows from
[33, Proposition 4.3.1.9] that this condition is equivalent to the condition:

� The diagram zF W IG! GrRingSpU.F .v// (see Lemma A.7) is a limit diagram.

To see this note that zF comes by construction with a natural transformation zF ! F

which satisifies the assumption of [33, Proposition 4.3.1.9]. Now we only need to
observe that limits in

GrRingSpU.F .v// D Fun˝lax.U.F.v//;Sp/

are computed pointwise, ie they can be detected by evaluation at each c 2U.F.v//.

Let M be a Grothendieck site, ie an 1–category equipped with a Grothendieck
topology on its homotopy category Ho.M/. In Corollary A.4 we constructed a presheaf
of graded ring spectra 1PShSp . Now we want to discuss a variant and consider for
M 2M the full subcategory

ShSp.M/� PShSp.M/

of sheaves on the overcategory M=M, which also becomes a site when equipped with
the induced Grothendieck topology. This defines a presheaf of symmetric monoidal cat-
egories ShSp 2 PShSymMon1.M/. Then the change of grading statement immediately
allows us to refine this to a presheaf of graded ring spectra

bShSp 2 PShGrRingSp.M/:
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We now want to show that this assignment is a sheaf of graded ring spectra. First note
that PShSp and ShSp both form sheaves of symmetric monoidal categories as opposed
to presheaves.

Proposition A.9 Let M be a Grothendieck site.

(1) The assignment M 7! .ShSp.M/; �.�;M// refines to a sheaf of graded ring
spectra on M,

bShSp 2 ShGrRingSp.M/:

(2) Let F WMop ! GrRingSp be a sheaf of graded ring spectra, GWMop !

SymMon1 be a sheaf of symmetric monoidal categories and �W G! U ıF be
a natural transformation. Then the functor ��F WMop! GrRingSp obtained
by change of grading is also a sheaf of graded ring spectra.

(3) The functor
ShGrRingSp.M/! ShSymMon1.M/

induced by U is a cartesian fibration.

Proof In order to show (1) let M 2M be an object and fUi !M gi2I be a cover-
ing family. Forming the Čech nerve and applying the functor bShSp , we obtain the
augmented cosimplicial object

bShSp.U�/W �
G
! GrRingSp:

We have to show that this augmented cosimplicial object is a limit diagram. According
to Proposition A.8 we have to check that:

� The induced diagram ShSp.U�/W �
G! SymMon1 is a limit diagram.

� For every object c 2 Sh.M/ the resulting diagram c.U�/W I
G! Sp is a limit

diagram.

The first condition is precisely the sheaf condition for ShSpWMop! SymMon1 and
therefore true as remarked before the proposition. The second condition is precisely
the sheaf condition for cW .M=M/op! Sp and is also satisfied since c is a sheaf.

Now we want to show (2). The proof works similarly to the proof of (1). One has to
show that a diagram

��F.U�/W �
G
! GrRingSp
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is a limit diagram. In this case the two diagrams that have to be identified as limits
according to Proposition A.8 are

G.U�/W �
G
! SymMon1 and zF d .U�/W �

G
! Sp

for c 2 G.M/ and d D �M .c/ 2 U.F.M// (see Lemma A.7 for the notation zF d ).
The first follows from the fact that G is a sheaf and the second from the fact that F
was a sheaf.

Finally, for (3) first note that the induced functor

U�W PShGrRingSp.M/! PShSymMon1.M/

restricts to a functor of sheaves

yU�W ShGrRingSp.M/! ShSymMon1.M/

as stated since U preserves limits, as shown in Proposition A.8. The next step is to
observe that the inclusion i W ShGrRingSp.M/! PShGrRingSp.M/ has the following
property:

Let eW �Œ1�! ShGrRingSp.M/ be an edge such that i.e/ is U�–cartesian. Then e is
yU�–cartesian.

This basically follows since the inclusion of sheaves into presheaves is full. To show
that yU� is a cartesian fibration we have to show that yU� is an inner fibration and
every edge in ShSymMon1.M/ with a given lift of the target has a yU�–cartesian lift
to ShGrRingSp.M/. We observe that yU� is an inner fibration since the inclusion of
presheaves into sheaves is full and U� is an inner fibration. For the lifting property
we use statement (2) of the proposition to lift to an edge e in ShGrRingSp.M/ whose
image i.e/ is U� cartesian. Then we can conclude that e is yU�–cartesian, as remarked
above.

Appendix B Locally constant sheaves

Let C be a presentable 1–category and M be a smooth manifold. Recall that a
C–valued sheaf on a manifold M (more precisely the site Mf=M ) is called constant
when it is equivalent to the restriction . yCX /jM of a constant sheaf yCX 2 ShC for an
object X 2 C . Also recall that we have an equivalence of yCX with the sheaf

X 2 ShC; M 7!X…1.M/
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(see Remark B.3 for the notation …1.M/) as shown in [10, Lemma 6.7]; see Proposition
3.3. A locally constant sheaf was defined in Section 3 as follows:

Definition B.1 A sheaf F 2 ShC.M/ is called locally constant if every point m 2M
has a neighbourhood U �M such that F jU 2 ShC.U / is constant. We write

Shloc
C .M/� ShC.M/

for the full subcategory of locally constant sheaves.

We want to prove the following statement, which is a 1–categorical generalization of
the classification of local systems using covering theory:

Theorem B.2 There is an equivalence of1–categories Shloc
C .M/'Fun.…1.M/; C/

which is natural in M.

Remark B.3 � The 1–groupoid …1.M/ is the simplicial version of the fun-
damental 1–groupoid of the space M. Its homotopy category is the ordinary
fundamental groupoid Ho.…1.M//'…1.M/. Therefore, if C is a 1–category,
Theorem B.2 reduces to the well-known classification of ordinary local systems.

� If C is symmetric monoidal, then the equivalence is compatible with the induced
monoidal structures.

We now want to prove Theorem B.2 in several steps.

Lemma B.4 � The presheaves

Shloc
C .�/WMfop

! Cat1 and Fun.…1.�/; C/WMfop
! Cat1

are sheaves of 1–categories on the site of smooth manifolds.

� There are functors FM W Fun.…1.M/; C/! Shloc
C .M/ which are natural in M

such that the diagram

(44)

C
const

xx

.�/

##

Fun.…1.M/; C/
FM

// Shloc
C .M/

commutes for every M.
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Proof To see that Shloc
C .�/ is a sheaf it suffices to observe that ShC.�/ is a sheaf and

the condition of being locally constant is a local condition. For the second statement
we consider the category C 2 Cat1 as an object in the (very large) presentable cate-
gory of (large) 1–categories. Then C induces the constant sheaf yCC 2 ShCat1 . As
we have remarked above (for general target categories) it is equivalent to the sheaf
Fun.…1.�/; C/ 2 ShCat1 . In particular, Fun.…1.�/; C/ is constant. In order to
construct a transformation

Fun.…1.�/; C/! Shloc
C .�/

it therefore suffices to construct a transformation of 1–category-valued sheaves

yCC! Shloc
C :

Such a transformation is clearly given by the transformation of presheaves

C Š CC.M/! Shloc
C .M/; C 7! C ;

for every M.

Remark B.5 The proof of Lemma B.4 shows that the sheaf Fun.…1.�/; C/ is con-
stant as a sheaf of categories. Thus, the equivalence Fun.…1.M/; C/ Š Shloc

C .M/

(which still has to be proven) shows that also Shloc
C .�/ is constant as a sheaf of

categories. This underlines the general philosophy that locally constant objects are
sections in a constant sheaf.

As a next step we need a technical lemma about limits in Cat1 .

Lemma B.6 Assume we have two cosimplicial 1–categories C� and D� (ie functors
�! Cat1 ) together with a cosimplicial functor F�W C�!D� such that Fi is fully
faithful for each i 2�. Then we have the following assertions:

(1) The functor lim�C�! lim�D� is fully faithful.

(2) The diagram
lim�C� //

��

lim�D�

��

C0 // D0

is a pullback in the 1–category Cat1 .
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Proof The first part is true for any limit, not just limits indexed by �. This follows
from the observation that a functor F W C !D is fully faithful precisely if the diagram

C�Œ1� //

��

D�Œ1�

��

C �C // D �D

is a pullback. If F is a limit of functors Fi then this diagram is the limit of the
corresponding diagrams for the functors Fi since all operations commute with limits.
Therefore, if all the Fi –diagrams are pullbacks, it follows that also the limit diagram
is a pullback.

To show the pullback property we want to show that the natural map

'W lim�C�! C0 �D0 lim�D�

is an equivalence. Therefore, we first note that the functor C0�D0 lim�D�! lim�D�
is fully faithful as the pullback of a fully faithful functor. Also, from the first assertion
we know that lim�C�! lim�D� is fully faithful. Thus, we really compare two full
subcategories of lim�D� and it suffices to compare their essential images. This means
that it suffices to check that the fibre of

lim�F�W lim�C�! lim�D�

at every object of lim�D� is equivalent to the fibre of

F0W C0!D0:

The fibre of lim�F� is given by the limit of the fibres of the Fi , and hence a limit of
categories which are either a singleton or empty (since the Fi are fully faithful). This
limit is either empty or a singleton depending on whether the corresponding diagram
consists entirely of empty categories or singletons. In particular, it is empty if and
only if the fibre of F0W C0!D0 is empty. This implies the second assertion of the
lemma.

Corollary B.7 We assume F and G are sheaves of 1–categories on some Grothen-
dieck site M and �W F ! G is a morphism of sheaves such that �M W F.M/ !

G.M/ is fully faithful for every element M 2M. Then for every covering family
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fUi !M gi2I the diagram
F.M/ //

��

G.M/

��Q
i2I F.Ui /

//
Q
i2I G.Ui /

is a pullback diagram in Cat1 . In particular, an object x 2G.M/ lies in the essential
image of �M W F.M/!G.M/ precisely if there exists a covering family fUi!M gi2I

such that for every i 2 I the restriction xjUi 2 G.Ui / lies in the essential image of
�Ui W F.Ui /!G.Ui /.

Proof of Theorem B.2 We want to show that the functors FM W Fun.…1.M/; C/!
Shloc

C .M/ constructed in Lemma B.4 are equivalences for every M. We first assume that
M is contractible. Then using diagram (44) we see that the functor FM is equivalent
to the functor

C! Shloc
C .M/; C 7! C :

This functor is clearly fully faithful since one easily computes

MapShloc
C .M/.C ;D/' MapShC.M/.C ;D/' MapPShC.M/.constC ;D/

' MapC.C;D
…1M /

' MapC.C;D/:

Thus, we know that the functor FM is fully faithful for contractible M.

For arbitrary M we can choose a good open cover fUig, ie an open cover that has
the property that all finite intersections Ui1;:::;ik WD Ui1 \ � � � \Uik are contractible.
Then, using the fact that Fun.…1.�/; C/ and Shloc

C .�/ are sheaves as established in
Lemma B.4, we can write the functor FM as the limit of functors

FUi1;:::;ik
W Fun.…1.Ui1;:::;ik /; C/! Shloc

C .Ui1;:::;ik /:

Using that all these functors are fully faithful since Ui1;:::;ik is contractible and the first
claim of Lemma B.6, we can conclude that FM is also fully faithful for any M.

Finally, we want to show that FM W Fun.…1.M/; C/! Shloc
C .M/ is essentially sur-

jective. Therefore, let F 2 Shloc
C .M/. Since F is locally constant we find an open

cover fUig of M such that F jUi is constant. But constant sheaves clearly lie in the
essential image of the functors FUi W Fun.…1.Ui /; C/! Shloc

C .Ui / which can be seen
from diagram (44). But then Corollary B.7 implies that F lies in the essential image
of FM .
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Corollary B.8 Every locally constant sheaf F 2 Shloc
C .M/ is homotopy-invariant, ie

for a morphism N
f
�!N 0!M of manifolds over M with f a homotopy equivalence,

the induced morphism F.N 0/! F.N / is an equivalence in C .

Proof It suffices to show that for a locally constant sheaf F on M and a homotopy
equivalence f W N !M the global sections F.M/ and f �F.N / are equivalent in C .
Thus, we need to show that the diagram

Shloc
C .M/

f �
//

evM
##

Shloc
C .N /

evN
{{

C

commutes. By the classification of locally constant sheaves as in Theorem B.2 we
know that f � is an equivalence.

We now use that the global sections functors are right adjoint to the functors C !
Shloc

C .M/ and C ! Shloc
C .N / which are given by the inclusion of constant sheaves.

Thus, the commutativity of the diagram above is equivalent to the commutativity of the
diagram of right adjoints. The right adjoint of f � is its inverse. But when we replace
this inverse by f � we arrive at the point where we have to check that the diagram

Shloc
C .M/

f �
// Shloc

C .N /

C
. yC.�//jM

cc

. yC.�//jN

;;

commutes, which is obvious.
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