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The Lannes–Zarati homomorphism
and decomposable elements

NGÔ A TUẤN

Let X be a pointed CW–complex. The generalized conjecture on spherical classes
states that the Hurewicz homomorphism H W ��.Q0X /! H�.Q0X / vanishes on
classes of ��.Q0X / of Adams filtration greater than 2 . Let 'M

s W ExtsA.M;F2/!

.F2˝A RsM /� denote the sth Lannes–Zarati homomorphism for the unstable A–
module M. When M D zH�.X / , this homomorphism corresponds to an associated
graded of the Hurewicz map. An algebraic version of the conjecture states that the
sth Lannes–Zarati homomorphism, 'M

s , vanishes in any positive stem for s > 2 and
for any unstable A–module M.

We prove that, for M an unstable A–module of finite type, the sth Lannes–Zarati
homomorphism, 'M

s , vanishes on decomposable elements of the form ˛ˇ in positive
stems, where ˛ 2 ExtpA.F2;F2/ and ˇ 2 ExtqA.M;F2/ with either p � 2 , q > 0

and p C q D s , or p D s � 2 , q D 0 and stem.ˇ/ > s � 2 . Consequently, we
obtain a theorem proved by Hưng and Peterson in 1998. We also prove that the fifth
Lannes–Zarati homomorphism for zH�.RP1/ vanishes on decomposable elements
in positive stems.

55P47, 55Q45, 55S10, 55T15

1 Introduction and statement of results

Let X be a pointed CW–complex. Let Q0X D�1
0

S1X be the basepoint component
of QX D�1S1X. It is a classical unsolved problem to compute the image of the
Hurewicz homomorphisms

H W �S
� .X /D ��.Q0X /!H�.Q0X /:

Here and throughout the paper, homology and cohomology are taken with coefficients
in F2 , the field of two elements. The classical conjecture on spherical classes for
X D S0 states that the Hopf invariant-one and the Kervaire invariant-one classes are
the only elements in �S

� .S
0/Š ��.Q0S0/ detected by the Hurewicz homomorphism.

Nguyễn H V Hưng states the generalized conjecture on spherical classes as follows
(see Hưng and Tuấn [14]).
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Conjecture 1.1 Let X be a pointed CW–complex. Then the Hurewicz homomorphism
H W ��.Q0X / ! H�.Q0X / vanishes on classes of ��.Q0X / of Adams filtration
greater than 2.

(See Curtis [4], Snaith and Tornehave [21] and Wellington [22] for a discussion with
X D S0 .)

An algebraic version of this problem goes as follows.

Let Ps D F2Œx1; : : : ;xs � be the polynomial algebra on s indeterminates x1; : : : ;xs ,
each of degree 1. Let the general linear group GLsDGL.s;F2/ and the mod 2 Steenrod
algebra A both act on Ps in the usual way. The Dickson algebra of s variables, Ds , is
the algebra of invariants

Ds WD F2Œx1; : : : ;xs �
GLs :

As the action of A and that of GLs on Ps commute with each other, Ds is an algebra
over A.

Let M be an unstable A–module. The Singer construction RsM of M is the
Ds –submodule of Ps ˝M generated by Sts M, where Sts denotes the Steenrod
homomorphism defined as follows. Given a homogeneous element z 2M of degree
jzj, we set for convention St0.z/D z , and define by induction

St1.xI z/D
jzjX

iD0

xjzj�i
˝Sqi.z/;

Sts.x1; : : : ;xsI z/D St1.x1ISts�1.x2; : : : ;xsI z//:

Note that RsM is an A–submodule of Ps˝M. (See Lannes and Zarati [16, Definition-
Proposition 2.4.1].)

Let us denote by

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /i
�

the sth Lannes–Zarati homomorphism for an unstable A–module M, defined in [16].
Here .F2˝A RsM /i

� is the F2 –dual of .F2˝A RsM /i . When M D zH�.X /, this
homomorphism corresponds to an associated graded of the Hurewicz map. The proof
of this assertion is unpublished, but it is sketched by Lannes [15] and by Goerss [7].

The Hopf invariant-one and the Kervaire invariant-one classes are represented by
certain permanent cycles in Ext1;�A .F2;F2/ and Ext2;�A .F2;F2/, respectively, on which
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the Lannes–Zarati homomorphisms are nonzero (see Adams [1], Browder [3] and
Lannes and Zarati [16]). Hưng stated the so-called algebraic version of the generalized
conjecture on spherical classes for M D zH�.S0/ D F2 in [9] and for any unstable
A–module M in [14].

Conjecture 1.2 (the generalized algebraic spherical class conjecture) The Lannes–
Zarati homomorphism

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /i
�

vanishes in any positive stem i for s > 2, and for any unstable A–module M.

The conjecture was established for the case M D zH�.S0/ with s D 3, 4 and 5,
respectively, in Hưng [10; 11] and Hưng, Quỳnh and Tuấn [13]. That the Lannes–Zarati
homomorphism for M D zH�.S0/ vanishes for s > 2 on decomposable elements in
ExtsA.F2;F2/ was proved in [12]. The conjecture was also established for the case
M D zH�.RP1/ with s D 3; 4 in [14].

One of the main results of the paper is the following theorem:

Theorem 1.3 Let M be an unstable A–module of finite type. Then the sth Lannes–
Zarati homomorphism for M,

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /�i ;

vanishes on the elements of the form ˛ˇ in any positive stem i , where ˛ 2ExtpA.F2;F2/

and ˇ 2 ExtqA.M;F2/ with either p � 2, q > 0 and pC q D s , or p D s � 2, q D 0

and stem.ˇ/ > s� 2.

Theorem 1.3 gives evidence supporting Conjecture 1.2, in particular providing a result
valid for all unstable A–modules of finite type M.

Using Theorem 1.3 for the case M D F2 , we obtain the following theorem, which was
first proved in [12]:

Theorem 1.4 (Hưng and Peterson [12]) The sth Lannes–Zarati homomorphism
for F2 ,

'F2
s W Exts;sCi

A .F2;F2/! .F2˝A Ds/
�
i ;

vanishes on the decomposable elements in any positive stem i for s � 3.
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In [12], Hưng and Peterson proved Theorem 1.4 by showing that '� D
L

s '
F2
s is a

homomorphism of algebras and, more importantly, that the product of the nonunital
algebra

L
s>0.F2˝ADs/

� is trivial, except for the case .F2˝AD1/
�˝.F2˝AD1/

�!

.F2˝A D2/
� . The methods used to prove Theorem 1.3 are different from the methods

of Hưng and Peterson. The important new ingredient is the usage of the chain level
representation of the dual of the Lannes–Zarati homomorphism (see Theorem 2.1).
Moreover, the advantage of using the chain level representation of the dual of the
Lannes–Zarati homomorphism is that the proof of Theorem 1.3 is short and elementary.
The proof of Theorem 1.3 is based upon the key Lemma 3.3.

Hưng and the author [14] established a relation between the Lannes–Zarati homo-
morphisms for zH�.RP1/ and for zH�.S0/. The relation comes from the so-called
algebraic Kahn–Priddy theorem (see [17, Theorem 1.1]). By using the algebraic Kahn–
Priddy theorem, Hưng and Tuấn showed that if ' zH

�.RP1/
s�1

vanishes in positive stems,
then so does ' zH

�.S0/
s , for s � 1 (see [14, Proposition 10.2]). So, Conjecture 1.2 with

M D zH�.RP1/ is interesting. In this paper, by using Theorem 1.3 and the fact that
'

F2

5
and ' zH

�.RP1/
4

vanish in positive stems (see [13, Theorem 1.4; 14, Theorem 1.8]),
we obtain the following proposition:

Proposition 1.5 The fifth Lannes–Zarati homomorphism for zH�.RP1/,

'
zH �.RP1/

5
W Ext5;5Ci

A . zH�.RP1/;F2/! .F2˝A R5
zH�.RP1//�i ;

vanishes on the decomposable elements in any positive stem i .

Note that Ext�A.M;F2/ is a module over Ext�A.F2;F2/ (see Section 2); the notation of
the submodule of decomposables is the usual one.

The paper is divided into three sections and organized as follows. Background and
references are provided in Section 2. Theorems 1.3 and 1.4 and Proposition 1.5 are
proved in Section 3.

2 Background

We start this section by sketching briefly Singer’s invariant-theoretic description of the
lambda algebra.

Let Ts be the Sylow 2–subgroup of GLs consisting of all upper triangular s � s

matrices with 1 on the main diagonal. The Ts –invariant ring, Ms D P
Ts
s , is called the

Algebraic & Geometric Topology, Volume 19 (2019)



The Lannes–Zarati homomorphism and decomposable elements 1529

Mùi algebra. In [19], Mùi shows that P
Ts
s is a polynomial algebra

PTs
s D F2ŒV1; : : : ;Vs �;

on elements Vk of degree 2k�1 , where

Vi D Vi.x1; : : : ;xi/D
Y

aj2F2

.a1x1C � � �C ai�1xi�1Cxi/:

Recall that the Dickson algebra Ds was computed in [5]:

Ds D F2ŒQs;0; : : : ;Qs;s�1�:

Here the Dickson invariant Qs;i of degree 2s � 2i can inductively be defined by

Qs;i DQ2
s�1;i�1CQs�1;iVs;

where, by convention, Qs;s D 1 and Qs;i D 0 for i < 0 (see [5; 19]). (For the action
of Steenrod algebra on Vi and Qs;i , see [8].)

Let L.s/� Ps be the multiplicative subset generated by all the nonzero linear forms
in Ps . Let .Ps/L.s/ be the localization given by inverting all the nonzero linear forms
in Ps . Using the results of Dickson [5] and Mùi [19], Singer notes in [20] that

�s WD ..Ps/L.s//
Ts D F2ŒV

˙1
1 ; : : : ;V ˙1

s �;

�s WD ..Ps/L.s//
GLs D F2ŒQs;s�1; : : : ;Qs;1;Q

˙1
s;0 �:

Further, he sets

v1 D V1; vk D Vk=V1 � � �Vk�1 .k � 2/;

so that

Vk D v
2k�2

1 v2k�3

2 � � � vk�1vk .k � 2/:

Then, he obtains

�s D F2Œv
˙1
1 ; : : : ; v˙1

s �;

with deg vi D 1 for every i .

Singer defines �Cs to be the F2 –subspace of �s DDs ŒQ
�1
s;0
� spanned by all monomials

 DQ
is�1

s;s�1
� � �Q

i0

s;0
with is�1; : : : ; i1 � 0; i0 2Z, and i0Cdeg  � 0. He also shows

in [20] that the homomorphism

@sW �s˝N !�s�1˝N; @s.v
j1

1
� � � vjs

s ˝ z/D v
j1

1
� � � v

js�1

s�1
˝SqjsC1 z;
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maps �Cs ˝N to �C
s�1
˝N . Here N is an arbitrary left A–module. Moreover, it is a

differential on �CN D
L

s.�
C
s ˝N /. He also proves that

Hs.�
CN /Š TorAs .F2;N /:

Let ƒ be the (opposite) lambda algebra, in which the product in lambda symbols is writ-
ten in the order opposite to that used in [2]. It is bigraded by putting bideg.�i/D .1; i/,
where �i 2ƒ

1;i . Singer proves in [20] that the F2 –linear map

`sW �
C
s ! .ƒs/�; v

j1

1
� � � vjs

s 7! .�j1
� � ��js

/�;

is an isomorphism for each s � 0. Here the duality � is taken with respect to the basis
of admissible monomials of ƒ. Recall that for each s � 1, a basis for ƒs is given by
the set of admissible monomials

f�j1
�j2
� � ��js

j 0� j1; j1 � 2j2; : : : ; js�1 � 2jsg;

while ƒ0 is spanned by the unit (see [20]).

Suppose N is a left A–module which is finitely generated in every degree. Let N �

be the F2 –dual of N which is a right A–module by transposing the left A–module
on N . The tensor product ƒ˝N � is bigraded by

.ƒ˝N �/s;t D
X

k

ƒs;t�k
˝N �k :

For any sequence I D .i1; : : : ; is/ of nonnegative integers, we write �I to denote
�i1
� � ��is

2ƒ. For m� 2N � , we write �I m� to denote �I ˝m� 2ƒ˝N � and let
m� D 1m� . So ƒ˝N � is a bigraded differential left ƒ–module with the action of ƒ
on it given by

�J .�I m�/D �J �I m�;

where J is a sequence of nonnegative integers. Moreover, the differential of ƒ˝N �

is given by

ı.�I m�/D ı.�I /m
�
C

X
j�0

�I�j m� SqjC1 :

(For the differential ı on the lambda algebra, see [2; 18].) Then Exts;sCt
A .N;F2/D

H s;t .ƒ˝N �; ı/ (see [2; 18]). By means of the differential, one recognizes that the
left action of ƒ on ƒ˝N � induces a left action of Ext�;�A WD Ext�;�A .F2;F2/ on
Ext�;�A .N;F2/. Hence, the latter becomes a left Ext�;�A –module.
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In the remaining part of this section, we recall some results used to prove the main
results in this paper.

Theorem 2.1 (Hưng and Tuấn [14]) Let M be an unstable A–module. Then, for
any s � 0, the map

.e'M
s /�W RsM ! �Cs M; c Sts.z/ 7! cQ

jzj
s;0
˝ z;

for c 2Ds and a homogeneous element z of degree jzj in M, is a chain-level represen-
tation of the dual of the Lannes–Zarati homomorphism

.'M
s /�W .F2˝A RsM /i! TorAs;sCi.F2;M /:

This map is natural with respect to A–homomorphisms of unstable A–modules.

As RsM is a free Ds –module (see [16, Definition-Proposition 2.4.1]), the map is well
defined.

An element in Ds is called A–decomposable if it is in xADs , where xA denotes the
augmentation ideal of the Steenrod algebra A.

Giambalvo and Peterson showed in [6] a sufficient condition for a monomial in Ds to
be A–decomposable as follows:

Theorem 2.2 (see [6, Corollary 4.8]) Let s � 2 and assume that I D .i0; : : : ; is�1/

is a s–tuple of nonnegative integers and QI DQ
i0

s;0
� � �Q

is�1

s;s�1
2Ds with i0 > s� 2.

Then QI is A–decomposable.

3 On the vanishing of the Lannes–Zarati homomorphism on
decomposable elements

The goal of this section is to prove Theorems 1.3 and 1.4 and Proposition 1.5.

In [20], Singer defines an algebra isomorphism  p;qW �s!�p˝�q by

 p;q.vi/D

�
vi ˝ 1 if 1� i � p;

1˝ vi�p if pC 1� i � s;

for any pair of nonnegative integers p and q for which pCqD s . Here we understand
�0 D F2 ,  s;0.x/D x˝ 1 and  0;s.x/D 1˝x . Then, he shows that

(3.0.1)  p;q.Qs;i/D
X
j�0

Q2q�2j

p;0 Q2j

p;i�j ˝Qq;j
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for each i with 0� i < s . Suppose c DQ
t0

s;0
� � �Q

ts�1

s;s�1
2Ds ; then

 p;q.c/D

s�1Y
iD0

 p;q.Qs;i/
ti (since  p;q is an algebra isomorphism)

D

s�1Y
iD0

�minfi;qgX
jD0

Q2q�2j

p;0 Q2j

p;i�j ˝Qq;j

�ti

.by (3.0.1)/

D

s�1Y
iD0

X
j˛i jDti

diD1

Q˛i .by the binomial theorem/;

where

di D
ti !

k
.i/
0

! � � � k
.i/

minfi;qg!
; ˛i D .k

.i/
0
; : : : ; k

.i/

minfi;qg/; j˛i j D k
.i/
0
C � � �C k

.i/

minfi;qg

and

Q˛i D

minfi;qgY
jD0

.Q2q�2j

p;0 Q2j

p;i�j ˝Qq;j /
k

.i/

j :

So, for c 2Ds , we have  p;q.c/D
P

QI ˝QJ with QI 2Dp and QJ 2Dq .

Lemma 3.1 Suppose c 2Ds and  p;q.c/D
P

QI ˝QJ , pCqD s . Then each QI

has the form Q
i0

p;0
� � �Q

ip�1

p;p�1
, where i1 D n1C 2m1; : : : ; ip�1 D np�1C 2mp�1 and

i0 � .2
q � 1/.n1C � � �C np�1/ for n1; : : : ; np�1;m1; : : : ;mp�1 nonnegative integers.

Proof Suppose c DQ
t0

s;0
� � �Q

ts�1

s;s�1
2Ds . From the above calculation, we see that

each QI has the form Qi0
p;0
� � �Qip�1

p;p�1
with

i0 � .2
q
� 1/.k

.0/
0
C k

.1/
0
C � � �C k

.s�1/
0

/;

i1 D k
.1/
0
C 21k

.2/
1
C � � �C 2qk.qC1/

q ;

i2 D k
.2/
0
C 21k

.3/
1
C � � �C 2qk.qC2/

q ;
:::

ip�1 D k
.p�1/
0

C 21k
.p/
1
C � � �C 2qk.s�1/

q :

Set niDk
.i/
0

and miD
Pq

jD1
2j�1k

.iCj/
j for 1� i �p�1. Then i1Dn1C2m1 , : : : ,

ip�1 D np�1C 2mp�1 and i0 � .2
q � 1/.n1C � � �C np�1/.

The lemma follows.
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Suppose N is an A–module of finite type. By ambiguity of notation, the following F2 –
linear map is also denoted by the same notation as the isomorphism `sW �

C
s ! .ƒs/�

(see [20, page 689]):

`sW �
C
s ˝N ! .ƒs

˝N �/�; v
j1

1
� � � vjs

s ˝ z 7! hz; � ih`s.v
j1

1
� � � vjs

s /; � i:

This map is an F2 –isomorphism for each s � 0.

The following lemma was first proved for N D F2 by Singer in [20, page 689].

Lemma 3.2 The diagram

�Cs ˝N
`s

//

@
��

.ƒs˝N �/�

ı�

��

�C
s�1
˝N

`s�1
// .ƒs�1˝N �/�

commutes for s � 1. Here, N is an A–module of finite type.

Proof Use an argument similar to the proof of [20, Proposition 8.2].

Suppose N is an A–module of finite type. Let h � ; � i be the usual dual paring
TorAs .F2;N /˝ExtsA.N;F2/!F2 . We note that this dual paring is induced in homology
by the dual paring .�Cs ˝N /˝ .ƒs˝N �/! F2 that allows us to identify �Cs ˝N

with the dual of ƒs˝N � , as mentioned in Lemma 3.2. We also denote by h � ; � i the
dual paring .F2˝A RsM /˝ .F2˝A RsM /�! F2 for M an unstable A–module.

Let N be an A–module. Suppose ˛ is an element in Exts;tA .N;F2/. Then, stem.˛/ is
given by stem.˛/D t � s .

Lemma 3.3 Let M be an unstable A–module of finite type. Let c Sts.z/ be an
element of RsM for c 2Ds and a homogeneous element z of degree jzj in M. Then,
for ˛ 2 ExtpA.F2;F2/ and ˇ 2 ExtqA.M;F2/, p > 0, q � 0 and pC q D s ,

hŒc Sts.z/�; 'M
s .˛ˇ/i D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

hŒQIQ
2q jzj
p;0

�; 'F2
p .˛/ihŒQJ Stq.z/�; 'M

q .ˇ/i:

Here QI and QJ appear in  p;q.c/D
P

QI ˝QJ .
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Proof Suppose ˛ D Œx� 2 ExtpA.F2;F2/ and ˇ D Œy� 2 ExtqA.M;F2/, where x is a
cycle in ƒp and y is a cycle in ƒq˝M � . Then we have

hŒc Sts.z/�; 'M
s .˛ˇ/i

D h.'M
s /�.Œc Sts.z/�/; ˛ˇi

D hŒcQ
jzj
s;0
˝ z�; ˛ˇi .by Theorem 2.1/

D hcQ
jzj
s;0
˝ z;xyi

D h p;q.cQ
jzj
s;0
/˝ z;x˝yi .see [20, page 688]/

D

DX
QIQ

2q jzj
p;0
˝QJQ

jzj
q;0
˝ z;x˝y

E
.since  p;q.Qs;0/DQ2q

p;0˝Qq;0/

D

X
hQIQ

2q jzj
p;0

;xihQJQ
jzj
q;0
˝ z;yi:

We note that QIQ
2q jzj
p;0

and QJQ
jzj
q;0
˝ z are cycles in �Cp and �Cq ˝M, respectively.

So, we get

hŒc Sts.z/�; 'M
s .˛ˇ/i

D

X
hŒQIQ

2q jzj
p;0

�; ˛ihŒQJQ
jzj
q;0
˝ z�; ˇi

D

X
h.'F2

p /�ŒQIQ
2q jzj
p;0

�; ˛ih.'M
q /�ŒQJ Stq.z/�; ˇi .by Theorem 2.1/

D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

h.'F2
p /�ŒQIQ

2q jzj
p;0

�; ˛ih.'M
q /�ŒQJ Stq.z/�;ˇi

D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

hŒQIQ
2q jzj
p;0

�; 'F2
p .˛/ihŒQJ Stq.z/�; 'M

q .ˇ/i:

We recall the following lemma, which was first proved in [12]. We give a proof to
make the paper self-contained.

Lemma 3.4 (Hưng and Peterson [12]) Let c DQ
i0

p;0
� � �Q

ip�1

p;p�1
2Dp with i0 > 0.

If im � 0 .mod 2/ for some m> 0, then c is A–decomposable.

Proof We prove this by induction on the smallest m > 0 with im � 0 .mod 2/. If
mD 1, then Sq1.Q

i0�1
p;0

Q
i1C1
p;1
� � �Q

ip�1

p;p�1
/D c . For the induction step,

Sq2m�1

.Q
i0

p;0
� � �Q

im�1�1
p;m�1

QimC1
p;m � � �Q

ip�1

p;p�1
/D cC

X
QK ;

where each QK has the form Q
k0

p;0
� � �Q

kp�1

p;p�1
with km�1� 0 .mod 2/ and k0> 0.
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The following repeats Theorem 1.3 from the introduction:

Theorem 3.5 Let M be an unstable A–module of finite type. Then the sth Lannes–
Zarati homomorphism for M

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /�i

vanishes on the elements of the form ˛ˇ in any positive stem i , where ˛2ExtpA.F2;F2/

and ˇ 2 ExtqA.M;F2/ with either p � 2, q > 0 and pC q D s , or p D s � 2, q D 0

and stem.ˇ/ > s� 2.

Proof We will show that 'M
s .˛ˇ/D 0, where ˛ 2 ExtpA.F2;F2/; ˇ 2 ExtqA.M;F2/

with either p � 2, q > 0 and pC q D s , or p D s � 2, q D 0 and stem.ˇ/ > s� 2.

Case 1 (p � 2, q > 0) By Lemma 3.3, for any c Sts.z/ 2 RsM with c 2 Ds , a
homogeneous element z 2M of degree jzj and  p;q.c/D

P
QI˝QJ with QI 2Dp

and QJ 2Dq , we have

hŒc Sts.z/�; 'M
s .˛ˇ/i D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

hŒQIQ
2q jzj
p;0

�; 'F2
p .˛/ihŒQJ Stq.z/�; 'M

q .ˇ/i:

We see that  p;q.cQ
jzj
s;0
/D

P
QIQ

2q jzj
p;0
˝QJQ

jzj
q;0

. So, by Lemma 3.1, QIQ
2q jzj
p;0

has
the form Qi0

p;0
� � �Qip�1

p;p�1
, where i0� .2

q�20/.n1C� � �Cnp�1/, i1D n1C2m1 , : : : ,
ip�1 D np�1C 2mp�1 . We will prove that QIQ

2q jzj
p;0

is A–decomposable.

If i0D 0, then 0� .2q�20/.n1C� � �Cnp�1/. So, it implies that n1D � � � D np�1D 0.
We get

QIQ
2q jzj
p;0
DQ

2m1

p;1
� � �Q

2mp�1

p;p�1
D Sq.2

p�21/m1C���C.2
p�2p�1/mp�1.Q

m1

p;1
� � �Q

mp�1

p;p�1
/:

Hence, QIQ
2q jzj
p;0
2 xADp

If i0 > 0 and one of the nonnegative integers n1; : : : ; np�1 is even, then by Lemma 3.4
we have QIQ

2q jzj
p;0
DQ

i0

p;0
� � �Q

ip�1

p;p�1
2 xADp .

If i0 > 0 and all of the nonnegative integers n1; : : : ; np�1 are odd, then

i0 � .2
q
� 20/.n1C � � �C np�1/� p� 1> p� 2:

Hence, by Theorem 2.2, we obtain QIQ
2q jzj
p;0
DQ

i0

p;0
� � �Q

ip�1

p;p�1
2 xADp .

So, we get hŒQIQ
2q jzj
p;0

�; '
F2
p .˛/i D hŒ0�; '

F2
p .˛/i D 0. We conclude that 'M

s .˛ˇ/D 0.
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Case 2 (p D s � 2, q D 0 and stem.ˇ/ > s� 2) By Lemma 3.3, for any c Sts.z/ 2
RsM with c 2Ds , a homogeneous element z 2M of degree jzj and  s;0.c/D c˝1,
we have

hŒc Sts.z/�; 'M
s .˛ˇ/i D hŒcQ

jzj
s;0
�; 'M

s .˛/ihŒz�; ˇi:

If jzj ¤ stem.ˇ/, then hŒz�; ˇi D 0. So hŒc Sts.z/�; 'M
s .˛ˇ/i D 0.

If jzj D stem.ˇ/, then jzj > s � 2 (since stem.ˇ/ > s � 2). By Theorem 2.2, we
have cQ

jzj
s;0
2 xADs . We conclude that hŒcQ

jzj
s;0
�; 'M

s .˛/i D hŒ0�; 'M
s .˛/i D 0. Hence,

hŒc Sts.z/�; 'M
s .˛ˇ/i D 0.

The theorem is proved.

Consequently, when M D F2 , we obtain the following theorem, which was first proved
by Hưng and Peterson in [12]. Recall that Hưng and Peterson proved this theorem by
showing that '� D

L
s '

F2
s is a homomorphism of algebras and, more importantly,

that the product of the nonunital algebra
L

s>0.F2˝A Ds/
� is trivial, except for the

case .F2˝A D1/
�˝ .F2˝A D1/

�! .F2˝A D2/
� .

The following repeats Theorem 1.4 from the introduction:

Theorem 3.6 (Hưng and Peterson [12]) The sth Lannes–Zarati homomorphism

'F2
s W Exts;sCi

A .F2;F2/! .F2˝A Ds/
�
i

vanishes on the decomposable elements in any positive stem i for s � 3.

Proof We must show that 'F2
s .˛ˇ/D0, where ˛2ExtpA.F2;F2/ and ˇ2ExtqA.F2;F2/

with p > 0, q > 0 and pC q D s . Since the algebra Ext�;�A .F2;F2/ is commutative,
we have left to consider the case p � 2 and q > 0. In this case, by Theorem 3.5, we
have 'F2

s .˛ˇ/D 0.

The theorem is proved.

For brevity, zH�.RP1/ will be denoted by zP. The following repeats Proposition 1.5
from the introduction:

Proposition 3.7 The fifth Lannes–Zarati homomorphism for zP,

'
zP

5 W Ext5;5Ci
A . zP ;F2/! .F2˝A R5

zP /�i ;

vanishes on the decomposable elements in any positive stem i .
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Proof We must prove that ' zP
5
.˛ˇ/D0, where ˛2ExtpA.F2;F2/ and ˇ2ExtqA. zP ;F2/

with p > 0, q � 0 and pC q D 5. We will consider the following three cases:

Case 1 (p � 2, q > 0) By Theorem 3.5, we have ' zP
5
.˛ˇ/D 0.

Case 2 (p D 5, q D 0) Then, for any c St5.z/ 2R5
zP with c 2D5 and a homoge-

neous element z 2 zP of degree jzj, we have  5;0.c/D c˝ 1, and

hŒc St5.z/�; '
zP

5 .˛ˇ/i D hŒcQ
jzj
5;0
�; '

F2

5
.˛/ihŒSt0.z/�; '

zP
0 .ˇ/i (by Lemma 3.3)

D 0;

where the last equality follows from the fact that 'F2

5
.˛/D 0 (see [13, Theorem 1.4]).

Case 3 (pD 1, qD 4) Then, for any c St5.z/ 2R5
zP with c 2D5 , a homogeneous

element z 2 zP of degree jzj and  1;4.c/D
P

QI˝QJ with QI 2D1 and QJ 2D4 ,
we have

hŒc St5.z/�; '
zP

5 .˛ˇ/i D
X

jQIQ
24jzj

1;0
jDstem.˛/

jQJ St4.z/jDstem.ˇ/

hŒQIQ
24jzj
1;0

�; '
F2

1
.˛/ihŒQJ St4.z/�; '

zP
4 .ˇ/i

(by Lemma 3.3)

D 0;

where the last equality follows from the fact that ' zP
4
.ˇ/D 0 (see [14, Theorem 1.8]).

The proposition is completely proved.

Remark 3.8 From the proof of Proposition 3.7, and Theorem 3.5, we can see that for
s � 3, and for any unstable A–module M of finite type, if 'F2

s and 'M
s�1

vanish in
positive stems, then 'M

s vanishes on the decomposable elements in positive stems.
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