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Representing the deformation1–groupoid

DANIEL ROBERT-NICOUD

Our goal is to introduce a smaller, but equivalent version of the deformation 1–
groupoid associated to a homotopy Lie algebra. In the case of differential graded Lie
algebras, we represent it by a universal cosimplicial object.

17B55; 18G55, 55U10

1 Introduction

The fundamental principle of deformation theory, due to Deligne, Grothendieck and
many others and recently formalized and proved in the context of 1–categories by
Pridham and Lurie, states that:

Every deformation problem in characteristic 0 is encoded in the space of
Maurer–Cartan elements of a differential graded Lie algebra.

Therefore, one is naturally led to the study of Maurer–Cartan elements of differential
graded Lie algebras and, more generally, homotopy Lie algebras.

In order to encode the Maurer–Cartan elements, gauge equivalences between them,
and higher relations between gauge equivalences, Hinich [14] introduced the Deligne–
Hinich 1–groupoid. It is a Kan complex associated to any complete L1–algebra
modeling the space of its Maurer–Cartan elements. Since it is a very big object,
E Getzler introduced in [11] a smaller but weakly equivalent Kan complex � which,
however, is more difficult to manipulate. In this paper, we introduce another simplicial
set associated to any L1–algebra, for which we prove the following nice properties:

(1) it is weakly equivalent to the Deligne–Hinich 1–groupoid,

(2) it is a Kan complex,

(3) it is contained in the Getzler 1–groupoid � , and

(4) if we restrict to the category of complete dg Lie algebras, there is an explicit
cosimplicial dg Lie algebra mc� representing this object.
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The cosimplicial dg Lie algebra mc� was already introduced in the work of Buijs, Félix,
Murillo and Tanré [4] in the context of rational homotopy theory. We show here that it
plays a key role in deformation theory.

Results coming from operad theory play a crucial role throughout the paper, especially
in the second part. In particular, we use the explicit formulas for the 1–morphisms
induced by the homotopy transfer theorem given by Loday and Valette [17] and various
theorems proven by Robert-Nicoud [18].

Shortly after the appearance of the present article, Buijs, Murillo, Félix and Tanré gave
an alternative proof of Corollary 5.3 in [5]. Their proof doesn’t rely on general operadic
results, but rather on explicit combinatorial computations.

The author was made aware by Marco Manetti in a private conversation that many of
the results of this article are already present in the unpublished PhD thesis [1] of his
student Ruggero Bandiera (now also appeared in [2]). We acknowledge this, but we
consider that the present article remains interesting in that the methods used to prove
the results are different. In particular, in view of Bandiera’s results, Sections 3 and 4
can be interpreted as an alternative construction of the Getzler 1–groupoid � with
new proofs of its properties.

Structure of the paper

In Section 2 we give a short review of the Deligne groupoid, the Deligne–Hinich
1–groupoid and the main theorems in this context. In Section 3 we state and prove
our main theorem, giving a new simplicial set encoding the Maurer–Cartan space of
L1–algebras. Next, in Section 4, we study some properties of this object. In particular,
we prove that it is a Kan complex, and that it is “small” in a precise sense. Finally,
we focus on the special case of dg Lie algebras in Section 5, showing that our Kan
complex is represented by a cosimplicial dg Lie algebra in this situation.

Notation and conventions

We work over a fixed field K of characteristic 0.

We abbreviate “differential graded” by dg, and sometimes omit it completely. All
algebras are differential graded unless stated otherwise.
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Since we work with differential forms, we adopt the cohomological convention. There-
fore, we work over cochain complexes, and Maurer–Cartan elements of dg Lie and L1–
algebras (ie homotopy Lie algebras) are in degree 1, not �1. All cochain complexes
are Z–graded.

We use the letter s to denote a formal element of degree 1. If C� is a cochain complex,
then sC� denotes the suspension of C� , which is sometimes written as C�Œ1�.

We sometimes denote the identity maps by 1.

By a filtered L1–algebra we mean a pair .g; F�g/ where g is an L1–algebra and
F�g is a descending filtration of g such that F1gD g and

(1) for all n� 1, we have dg.Fng/� Fng,

(2) for all k � 2 and n1; : : : ; nk � 1 we have

`k.Fn1g; : : : ; Fnkg/� Fn1C���Cnkg;

and

(3) the L1–algebra g is complete with respect to the filtration, ie

gŠ lim
 ��
n

g=Fng

as L1–algebras.

When the context is clear, we write g.n/ WD g=Fng. For details about (filtered) L1–
algebras and the definitions and basic properties about (filtered) 1–morphisms we
refer the reader to V A Dolgushev and C L Rogers [7].
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2 The deformation1–groupoid

An object of fundamental interest in deformation theory is the Deligne groupoid Del.g/
associated to a complete dg Lie algebra g. There is a higher generalization of the
Deligne groupoid in the form of the Deligne–Hinich 1–groupoid. It is a simplicial set
with nice properties and whose 1–truncation gives back the Deligne groupoid. It was
introduced in [14] and then studied in depth and further generalized in [11].

2.1 The Deligne groupoid

Let g be a dg Lie algebra. Then we can associate a groupoid Del.g/ to g, called the
Deligne groupoid, as follows. The objects of the Deligne groupoid are the Maurer–
Cartan elements of g, ie the degree 1 elements ˛ 2 g1 satisfying the Maurer–Cartan
equation

d˛C 1
2
Œ˛; ˛�D 0:

Definition 2.1 The set of Maurer–Cartan elements of g is denoted by MC.g/.

We have the set of objects of Del.g/; we still need to define its morphisms. To an
element � 2 g0 , one can associate a “vector field” by sending ˛ 2 g1 to

d�C Œ�; ˛� 2 g1:

It is tangent to the Maurer–Cartan locus, in the sense that if ˛.t/ is the flow of �, that
is,

d

dt
˛.t/D d�C Œ�; ˛.t/�

with ˛.0/ 2MC.g/, then ˛.t/ 2MC.g/ for all t , whenever it exists. We say that two
Maurer–Cartan elements ˛0; ˛1 2MC.g/ are gauge equivalent if there exists such a
flow ˛.t/ such that ˛.i/ D ˛i for i D 0; 1. The Deligne groupoid is the groupoid
associated to this equivalence relation, which means that the morphisms are

Del.g/.˛0; ˛1/ WD f� 2 g0 j the flow of � starting at ˛0 gives ˛1 at time 1g:

For further reference, see for example [13].

The assignment of the Deligne groupoid to a dg Lie algebra is functorial and has a
good homotopical behavior: it sends filtered quasi-isomorphisms to equivalences of
groupoids, as can be seen by the Goldman–Millson theorem, which was first proven
in [13], and then generalized for example in [22].
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2.2 Generalization: the deformation 1–groupoid

Let g be a nilpotent L1–algebra. The Maurer–Cartan equation can be generalized to

dxC
X
n�2

1

nŠ
`n.x; : : : ; x/D 0

for x 2 g1 . Again, we denote by MC.g/ the set of all elements satisfying this equation.

Remark 2.2 The condition that g be nilpotent is sufficient to make it so that the
left-hand side of the Maurer–Cartan equation is well defined.

2.2.1 The Deligne–Hinich 1–groupoid

Definition 2.3 The Sullivan algebra is the simplicial dg commutative algebra

�n WDKŒt0; : : : ; tn; dt0; : : : ; dtn�
.� nX

iD0

ti D 1;

nX
iD0

dti D 0

�
with jti j D 0 and endowed with the unique differential satisfying d.ti /D dti .

This object was introduced by Sullivan in the context of rational homotopy theory [21].
At level n, it is the algebra of polynomial differential forms on the standard geometric
n–simplex. Now let g be a nilpotent L1–algebra. Then tensoring g with �n gives us
back a nilpotent L1–algebra, of which we can consider the Maurer–Cartan elements.

Definition 2.4 The Deligne–Hinich 1–groupoid is the simplicial set

MC�.g/ WDMC.g˝��/:

This association is natural in g, and thus defines a functor

MC�W fnilpotent L1–algebrasg ! sSet:

We will rather consider the following slight generalization: Let .g; F�g/ be a filtered
L1–algebra; then

gŠ lim
 ��
n

g=Fng

is the limit of a sequence of nilpotent L1–algebras. Thus, we can define

MC�.g/ WD lim
 ��
n

MC�.g=Fng/:

Notice that the elements in MC�.g/ in this case are not polynomials with coefficients
in g anymore, but rather power series with some “vanishing at infinity” conditions. We
state all the following results in this setting.
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Theorem 2.5 Let either

� [11, Proposition 4.7] g and h be nilpotent L1–algebras and ˆW g! h be a
surjective strict morphism of L1–algebras, or

� [20, Theorem 2] g and h be filtered L1–algebras and ˆW g h be a filtered
1–morphism that induces a surjection at every level of the filtrations.

Then
MC�.ˆ/W MC�.g/!MC�.h/

is a fibration of simplicial sets. In particular, for any filtered L1–algebra g, the
simplicial set MC�.g/ is a Kan complex.

This result was originally proven by Hinich [14, Theorem 2.2.3] for strict surjections
between nilpotent dg Lie algebras concentrated in positive degrees, and then generalized
by Getzler and by Rogers to the version stated above.

Generalizing the Goldman–Millson theorem, Dolgushev and Rogers [7, Theorem 2.2]
proved that the Deligne–Hinich 1–groupoid behaves well with respect to homo-
topy theory: it sends filtered quasi-isomorphisms of filtered L1–algebras to weak
equivalences.

2.2.2 Basic forms, Dupont’s contraction and Getzler’s functor � The Sullivan
algebra has a subcomplex C� linearly spanned by the basic forms

!I WD kŠ

kX
jD1

.�1/j tij dti0 � � �
�dt ij � � � dtik 2�n

for I D fi0 < i1 < � � �< ikg � f0; : : : ; ng. This is in fact the (co)cellular complex for
the standard geometric n–simplex �n . In order to prove a simplicial version of the de
Rham theorem, J L Dupont [10] introduced a homotopy retraction

�� C�
p�

i�

h�

where all the maps are simplicial. Homotopy retraction means that we have

p�i� D 1 and 1� i�p� D dh�C h�d:

Moreover, the maps satisfy the side conditions

h�i� D 0; p�h� D 0 and h2
�
D 0:
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A homotopy retraction satisfying the side conditions is called a contraction.

This contraction will be a fundamental ingredient in the rest of the paper. As the
Deligne–Hinich 1–groupoid is always a big object, Getzler defined the following
subobject:

Definition 2.6 The Getzler1–groupoid is the subsimplicial set �.g/ of the Deligne–
Hinich 1–groupoid MC�.g/ given by

n.g/ WD f˛ 2MCn.g/ j hn˛ D 0g:

Theorem 2.7 [11] The simplicial set �.g/ is a Kan complex, and it is weakly
equivalent to the Deligne–Hinich 1–groupoid MC�.g/.

A part of the definition of h� and p� which we will need in what follows is the (formal)
integration of a form in the Sullivan algebra over a simplex, which is given byZ

�n
t
a1
1 � � � t

an
n dt1 � � � dtn WD

a1Š � � � anŠ

.a1C � � �C anCn/Š
:

It corresponds to the usual integration when working over KDR.

Remark 2.8 We have Z
�p
!I D 1

for pC 1D jI j, where �p is the subsimplex of �n with vertices indexed by I.

Definition 2.9 A form ˛ 2 n.g/ is said to be thin ifZ
�n
˛ D 0:

Theorem 2.10 [11] For every horn in �.g/, there exists a unique thin simplex filling
it.

Remark 2.11 The existence of a set of thin simplices such that every horn has a unique
thin filler is what is meant by Getzler when he speaks of an 1–groupoid. We use the
term simply to mean Kan complex (for example when speaking of the Deligne–Hinich
1–groupoid).
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3 Main theorem

In this section, we give a reminder on the homotopy transfer theorem for commutative
and for L1–algebras, before going on to state and prove the main theorem of the
article.

3.1 Reminder on the homotopy transfer theorem

Let V and W be cochain complexes, and suppose that we have a retraction

V W;
p

i

h

that is, we have
ip� 1D dhC hd

and pi D 1. Furthermore, we can always suppose that

h2 D 0; hi D 0 and phD 0I

see for example [15, page 365]. The homotopy transfer theorem tells us that we can
coherently transfer algebraic structures from V to W . More precisely, the specific
cases of interest to us are the following ones:

Theorem 3.1 (homotopy transfer theorem for commutative algebras) Suppose V
is a commutative algebra. There is a C1–algebra structure on W such that p and i

extend to 1–quasi-isomorphisms p1 and i1 of C1–algebras between V and W

endowed with the respective structures.

Theorem 3.2 (homotopy transfer theorem for L1–algebras) Suppose V is an L1–
algebra. There is an L1–algebra structure on W such that p and i extend to 1–
quasi-isomorphisms p1 and i1 of L1–algebras between V and W endowed with
the respective structures.

For details on this theorem, see for example [17, Section 10.3], where it is proven in
the general context of algebras over operads. See also [17, Sections 10.3.5–10.3.6] for
the explicit formulas for the 1–morphisms p1 and i1 .

3.2 Statement of the main theorem

Let g be a complete L1–algebra. The Dupont contraction induces a contraction

g˝�� g˝C�
1˝p�

1˝ i�

1˝h�
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of g˝�� to g˝C� . Applying the homotopy transfer theorem to this contraction, we
obtain a simplicial L1–algebra structure on g˝C� . We also know that we can extend
the maps 1˝p� and 1˝ i� to simplicial 1–morphisms of simplicial L1–algebras
.1˝ p�/1 and .1˝ i�/1 . Notice that these 1–morphisms are indeed simplicial
because they are given by sums of compositions of copies of 1˝ i� , 1˝p� , 1˝h�
and the brackets of g˝�� , all of which respect the simplicial structure. We denote by
P� and I� the induced maps on Maurer–Cartan elements. We will also use the notation

.1˝ r�/1 WD .1˝ i�/1.1˝p�/1;

and we dub R� the map induced by .1˝ r�/1 on Maurer–Cartan elements.

Theorem 3.3 Let g be a filtered L1–algebra. The maps P� and I� are inverse to
each other in homotopy, and thus provide a weak equivalence

MC�.g/'MC.g˝C�/

of simplicial sets which is natural in g.

Remark 3.4 The simplicial L1–algebra g˝C� has the advantage of being quite a
bit smaller than g˝�� , since Cn is finite-dimensional for each n. The price to pay is
that the algebraic structure is much more convoluted.

3.3 Proof of the main theorem

The rest of this section is dedicated to the proof of this result. We begin with the
following lemma:

Lemma 3.5 We have
P�I� D idMC.g˝C�/:

Proof This is because .1˝p�/1.1˝i�/1 is the identity — see for example Theorem 5
of [9] — and the functoriality of the Maurer–Cartan functor MC.

Therefore, it is enough to prove that the map

R� D I�P�W MC�.g/!MC�.g/

is a weak equivalence. The idea is to use the same methods as in [7]. The situation
is however slightly different, as the map R� is not of the form ˆ˝ 1�� , and thus
Theorem 2.2 of [7] cannot be directly applied. The first, easy step is to understand
what happens at the level of the zeroth homotopy group.
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Lemma 3.6 The map

�0.R�/W �0MC�.g/! �0MC�.g/

is a bijection.

Proof We have �0 D C0 DK, and the maps i0 and p0 both are the identity of K.
Therefore, the map R0 is the identity of MC0.g/, and thus obviously induces a bijection
on �0 .

For the higher homotopy groups, we start with a simplified version of Proposition 2.4
of [7], which gives in some sense the base for an inductive argument. If the L1–
algebra g is abelian, ie all of its brackets vanish, then so do the brackets at all levels
of g˝�� . In this case, the Maurer–Cartan elements are exactly the cocycles of the
underlying cochain complex, and therefore MC�.g/ is a simplicial vector space.

Lemma 3.7 If the L1–algebra g is abelian, then R� is a weak equivalence of simpli-
cial vector spaces.

Proof Recall that the Moore complex of a simplicial vector space V� is defined by

M.V�/n WD s
nVn

endowed with the differential

@ WD

nX
iD0

.�1/idi ;

where the maps di are the face maps of the simplicial set V� . It is a standard result that

�0.V�/DH0.M.V�//; �i .V�; v/Š �i .V�; 0/DHi .M.V�//

for all i �1 and v2V0 , and that a map of simplicial vector spaces is a weak equivalence
if and only if it induces a quasi-isomorphism between the respective Moore complexes
[12, Corollary 2.5, Section III.2].

In our case,
V� WDMC�.g/D Z1.g˝��/

is the simplicial vector space of 1–cocycles of g˝�� . As in [7], it can be proven that
the map

M.1˝p�/WM.Z1.g˝��//!M.Z1.g˝C�//
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is a quasi-isomorphism. But, as the bracket vanishes, this is exactly P� . Now

M.1˝p�/M.1˝ i�/D 1M.Z1.g˝��//;

which implies that M.1˝ i�/ also is a quasi-isomorphism. It follows that R� is a weak
equivalence, concluding the proof.

Now we basically follow the structure of [7, Section 4]. We define a filtration of g˝��
by

Fk.g˝��/ WD .Fkg/˝��:

We write

.g˝��/
.k/
WD g˝��=Fk.g˝��/D g.k/˝��:

The composite .1˝ i�/.1˝p�/ induces an endomorphism .1˝ i�/
.k/.1˝p�/

.k/ of
.g˝��/

.k/ . All the 1–morphisms coming into play obviously respect this filtration,
and moreover 1˝ h� passes to the quotients, so that we have

1.g˝��/.k/ � .1˝ i�/
.k/.1˝p�/

.k/
D d.1˝ h�/

.k/
C .1˝ h�/

.k/d

for all k , which shows that .1˝ r�/1 is a filtered 1–quasi-isomorphism.

The next step is to reduce the study of the homotopy groups with arbitrary basepoint to
the study of the homotopy groups with basepoint 0 2MC0.g/.

Lemma 3.8 Let ˛ 2MC.g/, and let g˛ be the L1–algebra obtained by twisting g

by ˛ , that is, the L1–algebra with the same underlying graded vector space, but with
differential

d˛.x/ WD dxC
X
n�2

1

.n�1/Š
`n.˛; : : : ; ˛; x/

and brackets

`˛.x1; : : : ; xm/ WD
X
n�m

1

.n�m/Š
`n.˛; : : : ; ˛; x1; : : : ; xm/:

Let

Shift˛W MC�.g˛/!MC�.g/

be the isomorphism of simplicial sets induced by the map given by

ˇ 2 g 7! ˛Cˇ 2 g˛:
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Then the following diagram commutes:

MC�.g˛/
Shift˛

//

R˛�
��

MC�.g/

R�
��

MC�.g˛/
Shift˛

// MC�.g/
where

R˛
�
.ˇ/ WD

X
k�1

.1˝ r�/
˛
k.ˇ
˝k/

and

.1˝ r�/
˛
k.ˇ1˝ � � �˝ˇk/ WD

X
j�0

1

j Š
.1˝ r�/kCj .˛

˝j
˝ˇ1˝ � � �˝ˇk/

is the twist of .1˝ r�/1 by the Maurer–Cartan element ˛ . Here, we identified ˛ 2 g
with ˛˝ 1 2 g˝�� .

Proof The proof in [8, Lemma 4.3] goes through mutatis mutandis.

Remark 3.9 The L1–algebra g˛ in Lemma 3.8 is endowed with the same filtration
as g.

Now we proceed by induction to show that R.k/ is a weak equivalence from MC�.g.k//
to itself for all k � 2. As the L1–algebra .g˝��/.2/ is abelian, the base step of the
induction is given by Lemma 3.7.

Lemma 3.10 Let m� 2. Suppose that

R.k/
�
W MC.g.k//!MC.g.k//

is a weak equivalence for all 2� k �m. Then R.mC1/
�

is also a weak equivalence.

Proof The zeroth homotopy set �0 has already been taken care of in Lemma 3.6.
Thanks to Lemma 3.8, it is enough to prove that R.mC1/

�
induces isomorphisms of

homotopy groups �i based at 0 for all i � 1.

Consider the commutative diagram

0 // Fm.g˝��/
FmC1.g˝��/

��

// .g˝��/
.mC1/

.1˝r�/
.mC1/
1

��

// .g˝��/
.m/

.1˝r�/
.m/
1

��

// 0

0 // Fm.g˝��/
FmC1.g˝��/

// .g˝��/
.mC1/ // .g˝��/

.m/ // 0

Algebraic & Geometric Topology, Volume 19 (2019)
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where the leftmost vertical arrow is given by the linear term .1 ˝ i�/.1 ˝ p�/ of
.1 ˝ r�/1 since all higher terms vanish, as can be seen by the explicit formulas
for the 1–quasi-isomorphisms induced by the homotopy transfer theorem given in
[17, Sections 10.3.5–10.3.6]. Therefore, it is a weak equivalence as the L1–algebras
in question are abelian. The first term in each row is the fiber of the next map, which
is surjective. By Theorem 2.5, we know that applying the MC functor makes the
horizontal maps on the right into fibrations of simplicial sets, while the objects we
obtain on the left are easily seen to be the fibers. Taking the long sequence in homotopy
and using the five lemma, we see that all we are left to do is to prove that R.mC1/

�

induces an isomorphism on �1 . Notice that it is necessary to prove this, as the long
sequence is exact everywhere except on the level of �0 .

The long exact sequence of homotopy groups (truncated on both sides) reads

�2MC�.g.m//
@
�! �1MC�

�
Fmg

FmC1g

�
! �1MC�.g.mC1//

! �1MC�.g.m//
@
�! �0MC�

�
Fmg

FmC1g

�
;

where in the higher homotopy groups we left the basepoint implicit (as it is always 0).
The map

@W �1MC�.g.m//! �0MC�

�
Fmg

FmC1g

�
DH 1.FmC1g=Fmg/

is seen to be the obstruction to lifting an element of �1MC�.g.m// to an element of
�1MC�.g.mC1// (for example [12, Lemma 7.3]).

The map �1.R
.mC1/
� / is surjective Let y 2 �1MC�.g.mC1// and denote by xy

its image in �1MC�.g.m//. By the induction hypothesis, there exists a unique xx 2
�1MC�.g.m// which is mapped to xy under R.m/

�
. As xy is the image of y , we

have @.xy/ D 0, and this implies that @.xx/ D 0, too. Therefore, there exists x 2
�1MC�.g.mC1// mapping to xx . Denote by y0 the image of x under R.mC1/

�
. Then

y0y�1 is in the kernel of the map

�1MC�.g.mC1//! �1MC�.g.m//:

By exactness of the long sequence and the fact that R� induces an automorphism of
�1MC�.FmC1g=Fmg/, there exists an element z 2 �1.MC�.FmC1g=Fmg// mapping
to y0y�1 under the composite

�1MC�

�
FmC1g

Fmg

�
R�
�! �1MC�

�
FmC1g

Fmg

�
! �1MC�.g.mC1//:
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Let x0 be the image of z in �1MC�.g.mC1//; then .x0/�1x maps to y under R.mC1/
�

.
This proves the surjectivity of the map �1.R.mC1/�

/.

The map �1.R
.mC1/
� / is injective Assume x; x0 2�1MC�.g.mC1// map to the same

element under R.mC1/
�

. Then x.x0/�1 maps to the neutral element 0 under R.mC1/
�

.
It follows that there is a z 2 �1MC�.FmC1g=Fmg/ mapping to x.x0/�1 , which must
be such that its image w is itself the image of some zw 2 �2MC�.g.m// under the
map @. But, by the induction hypothesis and the exactness of the long sequence, this
implies that z is in the kernel of the next map, and thus that x.x0/�1 is the identity
element. Therefore, the map �1.R.mC1/�

/ is injective.

This ends the proof of the lemma.

Finally, we can conclude the proof of Theorem 3.3.

Proof of Theorem 3.3 Lemma 3.10, together with all that we have said before, shows
that R.m/

�
is a weak equivalence for all m� 2. Therefore, we have the commutative

diagram
:::

��

:::

��

MC�.g.4//

��

� // MC�.g.4//

��

MC�.g.3// � //

��

MC�.g.3//

��

MC�.g.2// � // MC�.g.2//

where all objects are Kan complexes, all horizontal arrows are weak equivalences and
all vertical arrows are (Kan) fibrations by Theorem 2.5. It follows that the collection
of horizontal arrows defines a weak equivalence between fibrant objects in the model
category of towers of simplicial sets; see [12, Section VI.1]. The functor from towers of
simplicial sets to simplicial sets given by taking the limit is right adjoint to the constant
tower functor, which trivially preserves cofibrations and weak equivalences. Thus, the
constant tower functor is a left Quillen functor, and it follows that the limit functor is
a right Quillen functor. In particular, it preserves weak equivalences between fibrant
objects. Applying this to the diagram above proves that R� is a weak equivalence.

Algebraic & Geometric Topology, Volume 19 (2019)



Representing the deformation 1–groupoid 1467

Remark 3.11 As an anonymous referee pointed out, there is an alternative, shorter
proof of the fact that the map R� induces a bijection on all higher homotopy groups:
A Berglund [3, Theorem 1.1] gave an explicit group isomorphism

BW Hn.g/! �nC1MC�.g/; n� 0;

for any complete L1–algebra g. One can use this map together with the explicit
formula for the map R� derived from the homotopy transfer theorem to immediately
derive the result.

In [19] an alternative proof of Berglund’s theorem will be given which relies on the
results of the present article. It is therefore important to have a demonstration of
Theorem 3.3 which does not depend on it.

4 Properties and comparison

Theorem 3.3 shows that the simplicial set MC.g˝C�/ is a new model for the Deligne–
Hinich 1–groupoid. This section is dedicated to the study of some properties of this
object. We start by showing that it is a Kan complex, then we give some conditions on
the differential forms representing its simplices. We show how we can use it to rectify
cells of the Deligne–Hinich 1–groupoid, which provides an alternative, simpler proof
of [7, Lemma B.2]. Finally we compare it with Getzler’s functor � , proving that our
model is contained in Getzler’s. Independent results by Bandiera [1; 2] imply that the
two models are actually isomorphic.

4.1 Properties of MC�.g˝C�/

The following proposition is the analogue to Theorem 2.5 for our model:

Proposition 4.1 Let g; h be two filtered L1–algebras and suppose that �W g! h is a
morphism of L1–algebras inducing a fibration of simplicial sets under the functor MC�
(see for example Theorem 2.5 for possible sufficient conditions). Then the induced
morphism

MC.�˝ idC�/W MC.g˝C�/!MC.h˝C�/

is also a fibration of simplicial sets. In particular, for any filtered L1–algebra g, the
simplicial set MC.g˝C�/ is a Kan complex.

Proof By assumption, the morphism

MC�.�/W MC�.g/!MC�.h/
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is a fibration of simplicial set, and by Lemma 3.5 the following diagram exhibits
MC.�˝ idC�/ as a retract of MC�.�/:

MC.g˝C�/ MC�.g/ MC.g˝C�/

MC.g˝C�/ MC�.g/ MC.g˝C�/

I� P�

I� P�

MC.�˝idC� / MC�.�/ MC.�˝idC� /

As the class of fibrations is closed under retracts, this concludes the proof.

We consider the composite R� D I�P� , which is not the identity.

Definition 4.2 We call the morphism

R�W MC�.g/!MC�.g/

the rectification map.

The following result is a wide generalization of [7, Lemma B.2], as well as a motivation
for the name “rectification map” for R� :

Proposition 4.3 We consider an element

˛ WD ˛1.t0; : : : ; tn/C � � � 2MCn.g/;

where the dots indicate terms in g1�k˝�kn with 1�k�n. Then ˇ WDR�.˛/2MCn.g/
is of the form

ˇ D ˇ1.t0; : : : ; tn/C � � �C �˝!0:::n;

where the dots indicate terms in g1�k ˝ �kn with 1 � k � n � 1, where � is an
element of g1�n , and where ˛1 and ˇ1 agree on the vertices of �n . In particular, if
˛ 2MC1.g/, then ˇ D F.˛/ 2MC1.g/ is of the form

ˇ D ˇ1.t/C�dt

for some � 2 g0 , and satisfies

ˇ1.0/D ˛1.0/ and ˇ1.1/D ˛1.1/;

so that � gives a gauge equivalence between ˛1.0/ and ˛1.1/.

Remark 4.4 As R� is a projector, this proposition in fact gives information on the
form of all the elements of MC.g˝C�/.
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Proof First notice that the map R� commutes with the face maps and is the identity
on 0–simplices, thus evaluation of the part of ˇ in g1˝�0n at the vertices gives the
same result as evaluation at the vertices of ˛1 . Next, we notice that ˇ is in the image
of I� . We use the explicit formula for .1˝ in/1 of [17, Section 10.3.5]: the operator
acting on arity k � 2 is given, up to signs, by the sum over all rooted trees with 1˝ in
put at the leaves, the brackets `n of the corresponding arity at all vertices, and 1˝ h
at the inner edges and at the root. But the 1˝ h at the root lowers the degree of the
part of the form in �n by 1, and thus we cannot get something in g1�n˝�nn from
these terms. The only surviving term is therefore the one coming from .1˝ in/.P�.˛//,
given by �˝!0:::n for some � 2 g1�n .

4.2 Comparison with Getzler’s 1–groupoid �

Finally, we compare the simplicial set MC.g˝C�/ with Getzler’s Kan complex �.g/.
We start with an easy result that follows directly from our approach, before presenting
Bandiera’s result that these two simplicial sets are actually isomorphic.

Lemma 4.5 We have
I�MC.g˝C�/� �.g/:

Proof We have h�i� D 0. Therefore, by the explicit formula for .i�/1 given in
[17, Section 10.3.5], we have h�.ˇ/D 0 for any ˇ 2 g˝�� in the image of I� . Thus,

h�.MC.g˝C�//D h�I�P�.MC�.g//D 0;

which proves the claim.

In his thesis [1], Bandiera proves the following:

Theorem 4.6 [1, Theorem 2.3.3 and Proposition 5.2.7] The map

.P�; 1˝ h�/W MC�.g/!MC.g˝C�/� .Im.1˝ h�/\ .g˝��/1/

is bijective. In particular, its restriction to �.g/ D ker.1˝ h�/ \MC�.g/ gives an
isomorphism of simplicial sets

P�W �.g/!MC.g˝C�/:

Remark 4.7 Thanks to our approach, we immediately have an inverse for the map P� :
it is of course the map I� .
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As a consequence of Bandiera’s result and of Proposition 4.3, we can partially charac-
terize the thin elements of �.g/.

Lemma 4.8 For each n� 1, the thin elements contained in n.g/ are those with no
term in g1�n˝�nn .

Proof By Proposition 4.3 and Theorem 4.6, we know that if ˛ 2 n.g/, then ˛ is of
the form

˛ D � � �C �˝!0:::n

for some � 2 g1�n , where the dots indicate terms in g1�k ˝�kn for 0 � k � n� 1,
which will give zero after integration. Integrating, we getZ

�n
˛ D �˝

Z
�n
!0:::n D �˝ 1:

Therefore, ˛ is thin if and only if � D 0.

5 The case of Lie algebras

In this section, we focus on the case where g is actually a dg Lie algebra. In this
situation, we are able to represent the functor MC.g˝C�/ by a cosimplicial dg Lie
algebra. The main tools used here are results from [18].

5.1 Reminder on the complete cobar construction

What we explain here is a special case of [17, Sections 11.1–11.3], namely where we
take P D Lie and only consider the canonical twisting morphism � W BLie! Lie,
where BLie is the bar construction of the operad Lie encoding Lie algebras. In
fact, we consider a slight variation on the material presented there, as we remove the
conilpotency condition on coalgebras but additionally add the requirement that algebras
be complete. See also [18, Section 6.2].

Let X be a dg BLie–coalgebra. The complete cobar construction of X is the complete
dg Lie algebra

y��X WD .cLie.X/; d WD d1C d2/;

where cLie.X/ WD
Y
n�1

Lie.n/˝Sn X
˝n

and where the differential d is composed by the following two parts:
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(1) The differential �d1 is the unique derivation extending the differential dX of X.

(2) The differential �d2 is the unique derivation extending the composite

X
�X
�! bBLie.X/ �ı1X���! cLie.X/:

Notice that as X is not assumed to be conilpotent, the decomposition map �X
really lands in the product

bBLie.X/ WD
Y
n�0

.BLie.n/˝X˝n/Sn

and not the direct sum. Thus, it is necessary to consider the free complete Lie
algebra over X. Also, there is a passage from invariants to coinvariants that is left
implicit here, as the decomposition map lands in invariants, but the elements of
the complete free Lie algebra bLie.X/ are coinvariants. This introduces factors
of the form 1=nŠ when computing explicit formulas for d2 .

The complete cobar construction y�� defines a functor from dg BLie–coalgebras to
complete dg Lie algebras.

5.2 Representing MC.g˝C�/

Using the Dupont contraction, the homotopy transfer theorem produces the structure
of a simplicial C1–algebra to C� . As the underlying cochain complex Cn is finite-
dimensional for each n, it follows that its dual is a cosimplicial B.S ˝Lie/–coalgebra.
Therefore, the desuspension sC_

�
is a cosimplicial BLie–coalgebra, and we can take

its complete cobar construction.

Definition 5.1 We denote this cosimplicial dg Lie algebra by mc� WD y��.sC
_
�
/.

Theorem 5.2 Let g be a complete dg Lie algebra. There is a canonical isomorphism

MC.g˝C�/Š homdgLie.mc�; g/:

It is natural in g.

Proof By [18, Theorem 5.1], the L1–algebra structure we have on g˝C� is the
same as the structure that we obtain on the tensor product of the dg Lie algebra g

with the simplicial C1–algebra C� by using [18, Theorem 3.4] with P DQ D Lie
and ‰ D idLie . Therefore, we can apply [18, Corollary 6.6], which gives the desired
isomorphism.
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With this form for MC.g˝C�/, Theorem 3.3 reads as follows:

Corollary 5.3 Let g be a complete dg Lie algebra. There is a weak equivalence of
simplicial sets

MC�.g/' homdgLie.mc�; g/;

natural in g.

We can completely characterize the first levels of the cosimplicial dg Lie algebra mc� .
Recall from [16] the Lawrence–Sullivan algebra: it is the unique free complete dg Lie
algebra generated by two Maurer–Cartan elements in degree 1 and a single element
in degree 0 such that the element in degree 0 is a gauge between the two generating
Maurer–Cartan elements.

Proposition 5.4 The first two levels of the cosimplicial dg Lie algebra mc� are as
follows:

(1) The dg Lie algebra mc0 is isomorphic to the free dg Lie algebra with a single
Maurer–Cartan element as the only generator.

(2) The dg Lie algebra mc1 is isomorphic to the Lawrence–Sullivan algebra.

Proof For (1), we have �0 ŠKŠ C0 , both p0 and i0 are the identity, and h0 D 0.
It follows that, as a complete graded free Lie algebra, mc0 is given by

mc0 D cLie.sK/:

We denote the generator by ˛ WD s1_ . It has degree 1. Let g be any complete dg Lie
algebra; then a morphism

�W mc0! g

is equivalent to the Maurer–Cartan element

�.˛/˝ 1 2MC.g˝C�/ŠMC.g/:

Conversely, through P0 , every Maurer–Cartan element of g induces a morphism
mc0! g. As this is true for any dg Lie algebra g, it follows that ˛ is a Maurer–Cartan
element.

To prove (2), we start by noticing that

C1 WDK!0˚K!1˚K!01
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with !0 and !1 of degree 0 and !01 of degree 1. Writing ˛i WD s!_i and � WD s!_01 ,
we have

mc1 D cLie.˛0; ˛1; �/

as a graded Lie algebra. Let g be any dg Lie algebra; then a morphism

�W mc1! g

is equivalent to a Maurer–Cartan element

�.˛0/˝!0C�.˛1/˝!1C�.�/˝!01 2MC.g˝C1/I

see [18, Sections 6.3–6.4]. Applying I1 , as in the proof of Proposition 4.3 we obtain

I1.�.˛0/˝!0C�.˛1/˝!1C�.�/˝!01/D a.t0; t1/C�.�/˝!01 2MC1.g/

with a.1; 0/D �.˛0/ and a.0; 1/D �.˛1/. The Maurer–Cartan equation for

a.t0; t1/C�.�/˝!01

then shows that �.�/ is a gauge from �.˛0/ to �.˛1/. Conversely, if we are given
the data of two Maurer–Cartan elements of g and a gauge equivalence between them,
then this data gives us a Maurer–Cartan element of g˝�1 . Applying P1 then gives
back a nontrivial morphism mc1! g. As this is true for any g, it follows that mc1 is
isomorphic to the Lawrence–Sullivan algebra.

Remark 5.5 Alternatively, one could write down explicitly the differentials for
both mc0 (which is straightforward) and mc1 (with the help of [6, Proposition 19]).
An explicit description of mc� is made difficult by the fact that one needs to know the
whole C1–algebra structure on C� in order to write down a formula for the differential.

5.3 Relations to rational homotopy theory

The cosimplicial dg Lie algebra mc� has already made its appearance in the literature
not long ago, in [4], in the context of rational homotopy theory, where it plays the role
of a Lie model for the geometric n–simplex. With the goal of simplifying comparison
and interaction between our work and theirs, we provide here a short review and a
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dictionary between our vocabulary and the notation used in [4]:

This paper [4]

mc� L� or L��
�� APL.�

�/

B� Quillen functor C
homdgLie.mc�;�/ h�i

homdgCom.�; ��/ h�iS

Remark 5.6 The fact that the cosimplicial dg Lie algebra mc� is isomorphic to L� is
immediate from [4, Definition 2.1 and Theorem 2.8].

The following theorem has nonempty intersection with our results. We say a dg Lie
algebra is of finite type if it is finite-dimensional in every degree and if its degrees are
bounded either above or below.

Theorem 5.7 [4, Theorem 8.1] Let g be a dg Lie algebra of finite type with
Hn.g; d / D 0 for all n > 0. Then there is a homotopy equivalence of simplicial
sets

homdgLie.mc�; g/' homdgCom.B�.sg/_; ��/:

We can easily recover an analogous result, which works on complete dg Lie algebras
of finite type such that g�1 D 0, but without restrictions on the cohomology, using our
main theorem and some results of [18].

Proposition 5.8 Let g be a complete dg Lie algebra of finite type such that g�1 D 0.
Then there is a weak equivalence of simplicial sets

homdgLie.mc�; g/' homdgCom.B�.sg/_; ��/:

Proof The proof is given by the sequence of equivalences

homdgCom.B�.sg/_; ��/Š homdgCom. y��.s
�1g_/;��/

ŠMC.g˝��/

' homdgLie.mc�; g/:

In the first line we used the natural isomorphism

B�.sg/_ Š y��.s�1g_/:
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Notice that the assumptions on g make it so that g_ is a Lie_–coalgebra. In the second
line we used a slight generalization of [18, Corollary 6.6] for Q DP D Com and ‰
the identity morphism of Com. Notice that here the assumption that g�1 D 0 makes it
so that

homdgCom. y��.s
�1g_/;��/Š hom.s�1g_; ��/0

even though �� is not complete. Finally, in the third line we used our Corollary 5.3.
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