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Occupants in simplicial complexes

STEFFEN TILLMANN

Let M be a smooth manifold and K �M be a simplicial complex of codimension
at least 3 . Functor calculus methods lead to a homotopical formula of M nK in
terms of spaces M nT where T is a finite subset of K . This is a generalization of
the author’s previous work with Michael Weiss (Contemp. Math. 682, Amer. Math.
Soc., Providence, RI (2017) 237–259), where the subset K is assumed to be a smooth
submanifold of M and uses his generalization of manifold calculus adapted for
simplicial complexes.

57R19; 55P65

1 Introduction

Let K be a simplicial complex — that is, the geometric realization of an abstract
simplicial complex. Let M be a smooth manifold with codimension dimM�dimK�3.
Throughout this paper we assume that K is a subset of M such that each (closed)
simplex of K is smoothly embedded in M. We would like to recover the homotopy
type of M nK from the homotopy types of the spaces M n T where T is a finite
subset of K . The finite subset T �K could be regarded as a finite set of occupants.

It turns out that it is possible to find such a homotopical formula, but only if we allow
standard thickenings of the finite subsets T � K and inclusions between them. We
get an interesting poset regarded as a category — the configuration category con.K/
of K . The objects of con.K/ are pairs .T; �/ where T is a finite subset of K and
�W T ! .0;1/ is a function which assigns to each element t 2 T the radius �.t/
of the corresponding thickening using a standard metric on K . These pairs have to
fulfill certain conditions, eg the thickenings of the elements t 2 T are pairwise disjoint
(for a precise definition, see Section 3.1). For each object .T; �/ in con.K/, we get
a corresponding open subset VK.T; �/ �K , which is the disjoint union of the open
balls of radius �.t/ about the points t 2 T . We note that for each element .T; �/ of the
configuration category, there is an inclusion

M nK!M nVK.T; �/
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1266 Steffen Tillmann

and thus a map from M nK into the associated homotopy limit. The following theorem
is our (technical) main result:

Theorem 1.1 If the codimension dimM � dimK is at least 3, the canonical map

M nK! holim
.T;�/2con.K/

M nVK.T; �/

is a weak equivalence.

The condition on the codimension is essential, that is, the result is not true for co-
dimension � 2. A nice counterexample is given in Tillmann and Weiss [11, 1.3.3].

Theorem 1.1 is an application of manifold calculus adapted for simplicial complexes,
as developed in Tillmann [10]. In this paper the configuration category con.K/ is
a convenient replacement of the category of special open subsets

S
k Ok.K/ there.

Recall: the objects of
S
k Ok.K/ are those open subsets V of K which have finitely

many components and where each component of V is stratified isotopy equivalent to
the open star of some simplex � in K (intersection of the open stars of the vertices
of � ). Roughly speaking, a stratified isotopy equivalence is a simplexwise smooth
isotopy equivalence.

As is to be expected from manifold calculus, there is a stronger version of our main
result with restricted cardinalities (see Theorem 4.1). More precisely, the map from
M nK into the homotopy limit over the full subcategory of con.K/ of the set with
restricted cardinality is highly connected, depending on that cardinality.

Now let M be a Riemannian manifold with boundary and let L�M n@M be a smooth
submanifold without boundary. Using Theorem 1.1, we can prove an approximation
theorem of M nL in some cases where no conditions on the codimension of M and L
is needed. More precisely, we can recover the homotopy type of M n L from the
homotopy types of the spaces M n T where T is a finite subset of L. Again, we
need to allow thickenings of the finite subsets T in L and inclusions between them.
Therefore, we consider the configuration category con.L/ of L (see Section 5.3 for a
precise definition). For each object .T; �/ in con.L/, we have again a corresponding
open subset VL.T; �/ (using the Riemannian metric), which is the union of the open
balls of radius �.t/ about the points t 2 T . The inclusions

M nL!M nVL.T; �/

induce a map from M nL into the homotopy limit taken over the category con.L/.
Assume now that L is a smooth thickening of a compact simplicial complex K � L,
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as defined in Definition 5.2. In particular, this means that K is a retract of L weakly
equivalent to it. This is our main application:

Theorem 1.2 If the codimension dimM � dimK is at least 3, the canonical map

M nL! holim
.T;�/2con.L/

M nVL.T; �/

is a weak equivalence.

In particular, we can prove an approximation theorem for the boundary of the manifold
in some cases. Namely, if M n @M is a smooth thickening of a compact simplicial
complex K �M n @M, we get the following corollary:

Corollary 1.3 If the codimension dimM � dimK is at least 3, the canonical map

@M ! holim
.T;�/2con.Mn@M/

M nVMn@M .T; �/

is a weak equivalence.

In this case we also have a stronger version with restricted cardinalities (see Corollary
5.11) and it generalizes one of the main results in [11]. In the absence of the calculus
for simplicial complexes as developed in [10], there we had to assume the existence of
a smooth disk fiber bundle M ! L with fiber dimension c � 3 where L is a closed
smooth submanifold of M. This condition is a special case of our smooth thickening
condition here (see Examples 5.4).

The ideas and strategies of [11] and of the generalization here thus intersect, so we
feel compelled to indicate the substantial technical issues needed to establish the
generalization. The main issue is to reformulate the key definitions. We give two basic
examples: First, the definition of the configuration category con.K/ of a simplicial
complex K is quite different from its analogue, the configuration category of a smooth
manifold (see Remark 4.4 for a comparison). Since we will apply manifold calculus for
simplicial complexes, the technical conditions introduced in [10] go into the definition
of con.K/. Using these technical conditions, it becomes clear that in order to prove the
main theorem, we also have to solve new technical challenges. Second, the definition
of a smooth thickening of a simplicial complex involves various technical conditions.
Again we have to verify that this definition is a convenient replacement of its analogue,
the smooth fiber bundle condition, in [11].

In an application we will study the following question: Let M be a smooth manifold
with boundary. It is well known that the boundary @M can be recovered as the
homotopy link of the basepoint in M=@M Š .M n @M/[1. Therefore, it is possible
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to say that there is an action of the homeomorphism group homeo.M n @M/ on the
pair .M; @M/ by homotopy automorphisms, ie each homeomorphism of M n @M
determines a homotopy automorphism of the pair .M; @M/. But it is also well known
that there is a canonical map of topological grouplike monoids (if an explanation is
needed, see Section 6)

homeo.M n @M/ ,! hautNFin.con.M n @M//;

where NFin is the nerve of the category of finite sets and maps between finite
sets and hautNFin.con.M n @M// is the space of the homotopy automorphisms of
con.M n @M/ over NFin. In [14] Weiss studies the question in what cases the action
of homeo.M n @M/ on the pair .M; @M/ by homotopy automorphisms extends to an
action of hautNFin.con.M n @M// on the pair .M; @M/ by homotopy automorphisms.
This has also applications in Weiss [15]. We can generalize his result (see Theorem 6.5):
the action can be extended if the condition in Theorem 1.2 is satisfied.

Our paper with Weiss [11] attracted attention in applied topology because of possible
relevance in the study of sensor network problems (for an introduction from the
topological point of view see Adams and Carlsson [1] and de Silva and Ghrist [9]).
At the moment there is no application of the theory developed in this paper outside
the smooth setting, but we give a short explanation why there are potential ones in
the context of sensor networks: In [1] movable sensor networks and evasion paths are
studied. More concretely, let X be a subspace of a euclidean space. Assume we have
a collection of points in X, each point equipped with a sensor. Each sensor covers a
neighborhood of its location, for simplicity a ball of fixed radius. Then an evasion path
is a specific embedding of a one-dimensional space into X minus the sensor region,
which is the space covered by the union of all sensors. The spaces involved are usually
not equipped with a smooth manifold structure, so the authors explicitly ask for an
extension of the Goodwillie–Weiss manifold calculus to the setting of nonmanifold
spaces [1, Section 7]. In particular, the theory developed in this paper could be a relevant
application of manifold calculus for simplicial complexes because complements in
manifolds are studied and the sensor region can be represented as a simplicial complex.

Outline

In Section 2 we recall the basic results of manifold calculus adapted for simplicial
complexes. Using Goodwillie’s homotopy functor calculus, we give general criteria for
when a functor is analytic or polynomial and manifold calculus can be applied.
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In Section 3 we will introduce the configuration categories of a simplicial complex
and a smooth manifold. The configuration category carries a continuous structure. We
will take this into account when we define homotopy limits. This leads to the notion
of the continuous homotopy limit. We prove that in cases important to us it is weakly
equivalent to the ordinary (or discrete) homotopy limit.

In Section 4 we will formulate Theorem 1.1 more precisely as well as the stronger
version with restricted cardinalities and compare it with the situation in [11], where K
is replaced by a smooth submanifold. Then we use manifold calculus (adapted for
simplicial complexes) to prove it.

In Section 5 we will define a smooth thickening of a simplicial complex embedded in a
smooth manifold and explain how this is a generalization of a smooth disk bundle over
a smooth manifold. We will prove Theorem 1.2 and its stronger version with restricted
cardinalities. In Section 6 these results will be applied in our study of homotopy
automorphisms of the pair .M; @M/.

Notation The category .Top/ is the category of topological spaces. By a simplex
S of a simplicial complex, we mean a nondegenerate closed simplex. For such a
simplex S, we denote by op.S/ the open simplex. For a positive integer k , we set
Œk� WD f0; 1; : : : ; kg and k WD f1; : : : ; kg.

Acknowledgements

This paper is a part of the author’s PhD thesis under the supervision of Michael Weiss.
It is a pleasure to thank him for suggesting this interesting topic and for his unfailing
support. I am also indebted to an anonymous referee for various helpful comments on
an earlier version of this paper.

2 Manifold calculus adapted for simplicial complexes

In [10] we develop a generalization of manifold calculus where the smooth manifold
is replaced by a simplicial complex. The main results of this paper are applications
of this theory. Therefore, we introduce the constructions and main results of [10] and
compare them with the homotopy functor calculus. The comparison leads to criteria
which help us to apply manifold calculus (adapted to simplicial complexes).
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2.1 Definitions and main results

All the constructions and results can be found in [10]. We define the category ODO.K/
as follows: the objects are the open subsets of K and the morphisms are inclusions,
ie for U; V 2 O there is exactly one morphism U ! V if U � V and there are no
morphisms otherwise.

Definition 2.1 Let U; V 2 O be open subsets and let f0; f1W U ! V be two maps
such that fi jU\S is a smooth embedding from U \S into V \S for all simplices S
of K and i D 0; 1. We call f0 and f1 stratified isotopic if there is a continuous map
H W U � Œ0; 1�! V such that

H j.U\S/�Œ0;1�W .U \S/� Œ0; 1�! .V \S/

is a smooth isotopy from f0jU\S to f1jU\S for all simplices S of K . In this case
we call H a stratified isotopy (from f0 to f1 ).

Note: for an n–dimensional simplex S, we can regard U \ S as a subspace in the
euclidean space RnC1 .

Definition 2.2 Let U; V 2O be two open subsets with U �V . The inclusion i W U!V

is a stratified isotopy equivalence if there is a map eW V ! U such that ejV\S is an
embedding from V \S into U \S for all simplices S of K and i ı e (resp. e ı i ) is
stratified isotopic to idV (resp. idU ).

In the manifold calculus of Goodwillie and Weiss we consider functors which take
smooth isotopy equivalences between open subsets of a fixed manifold to weak equiv-
alences. In the version for simplicial complexes, stratified isotopy equivalences are
replacing these smooth isotopy equivalences.

Definition 2.3 A contravariant functor F W O! .Top/ is good if:

(1) F takes stratified isotopy equivalences to weak homotopy equivalences.

(2) For every family fVigi2N of objects in O with Vi � ViC1 for all i 2 N, the
following canonical map is a weak homotopy equivalence:

F

�[
i

Vi

�
! holim

i
F.Vi /:

Recall: For a positive integer k , let P.Œk�/ be the power set of Œk�. Then a functor
from P.Œk�/ to topological spaces is a .kC1/–cube of spaces.
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Definition 2.4 Let � be a cube of spaces. The total homotopy fiber of � is the
homotopy fiber of the canonical map

�.∅/! holim
∅¤T�Œk�

�.T /:

If this map is a weak homotopy equivalence, we call the cube � (weak homotopy)
cartesian.

Now we define polynomial functors. To this end, let F be a good functor, let V 2O
be an open subset of K and let A0; A1; : : : ; Ak be pairwise disjoint closed subsets
of V (for a positive integer k ). Define a k–cube by

(2-1) T 7! F

�
V n

[
i2T

Ai

�
:

Definition 2.5 The functor F is polynomial of degree � k if the k–cube defined
in (2-1) is cartesian for all V 2O and pairwise disjoint closed subsets A0; A1; : : : ; Ak
of V .

Notation Let x 2 K be given and let Sx be the open star of the open simplex
containing x , ie Sx WD

S
S op.S/, where the union ranges over all closed simplices S

of K such that x is an element of S.

Definition 2.6 For a positive integer k , we define a full subcategory Ok.K/D Ok
of O . Its objects are the open subsets V �K with the following properties: V has at
most k connected components and, for each component V0 of V , there is an x 2K
such that V0 � Sx and the inclusion V0! Sx is a stratified isotopy equivalence. An
element of Ok (for some k ) is called a special open set.

Theorem 2.7 Let F1! F2 be a natural transformation between two k–polynomial
functors. If F1.V / ! F2.V / is a weak equivalence for all V 2 Ok , it is a weak
equivalence for all V 2O .

Let F W O! .Top/ be a good functor. There is a concept of (relative) handle index in a
simplicial complex [10, Section 3.1]. We can use it to define analyticity for F . To this
end, let P be a compact codimension-zero subobject of K and let � be a fixed integer.
Suppose A0; A1; : : : ; Ar are pairwise disjoint compact codimension-zero subobjects
of K n int.P / with relative handle index qAi

� � (relative to P ). For T � Œr�, we set
AT WD

S
i2T Ai and assume r � 1.
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Definition 2.8 The functor F is called �–analytic with excess c if, in these circum-
stances, the cube

T 7! F.int.P [AT //; T � Œr�;

is
�
cC

Pr
iD0.��qAi

/
�
–cartesian for some integer c .

Theorem 2.9 [10, Theorem 3.6] Let F be a �–analytic functor with excess c and
let V 2O be an open subset. Then the map

�k�1.V /W F.V /! Tk�1F.V /

is .cCk.��dimK//–connected for every k > 1.

Remark 2.10 Theorem 2.9 is weaker than [10, Theorem 3.6], which uses the homotopy
dimension of V [10, Definition 3.4] in order to increase the connectivity. For our
purposes we do not need this stronger version.

Corollary 2.11 Let F be a �–analytic functor with � > dimK . For all open sets
V 2O.K/, the canonical map

F.V /! T1F.V /D holim
k

TkF.V /

is a weak equivalence.

2.2 Comparison with homotopy functor calculus

In the last section we introduced a version of manifold calculus for simplicial complexes.
We saw that in order to apply the approximation theorem, Theorem 2.9, we need to
assume analyticity of the functor. Therefore, we should look for criteria which imply
that a functor is analytic. Surprisingly, the homotopy functor calculus introduced by
Goodwillie [6] helps to find such criteria.

Functor calculus investigates (covariant) homotopy functors from topological spaces
to themselves. A functor GW .Top/! .Top/ is called homotopy functor if it takes
weak equivalences to weak equivalences. If G is such a functor, we can compose it
with a contravariant functor F from O.K/ to .Top/. The composition G ı F is a
contravariant functor from O.K/ to .Top/. We will examine this composition.

Definition 2.12 A cube of spaces is called strongly cocartesian if each sub-2–face is
a homotopy pushout.
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Definition 2.13 A homotopy functor G from .Top/ to itself is called polynomial of
degree � k if it takes any strongly cocartesian .kC1/–cube to a weakly cartesian
.kC1/–cube.

Let V 2O.K/ be an open subset of K , let A0; A1; : : : ; Ak be pairwise disjoint closed
subsets of V (for a positive integer k ) and let AT WD

S
i2T Ai , where T is a subset

of Œk�. The following proposition is an easy observation:

Proposition 2.14 Let F W O.K/ ! .Top/ be a good (contravariant) functor (see
Definition 2.3) such that

F.V nAT\T 0 /

��

// F.V nAT /

��

F.V nAT 0 /
// F.V nAT[T 0 /

is a homotopy pushout for all T; T
0

� Œk� and all choices of V;A0; : : : ; Ak as above
and let GW .Top/! .Top/ be a (covariant) homotopy functor. We suppose that G is
k–polynomial in the sense of homotopy functor calculus (see Definition 2.13). Then
the composition G ıF is k–polynomial in the sense of manifold calculus (adapted for
simplicial complexes).

We would like to have a similar statement for analyticity.

Definition 2.15 Let � be an integer and let � be a cocartesian k–cube of spaces such
that the maps �.∅/!�.fig/ are ki –connected with ki >� for all i 2 Œk�. A homotopy
functor G is called �–analytic with excess c if the cube G ı� is

�
cC

P
i2Œk�.ki��/

�
–

cartesian (for all choices of �).

Example 2.16 According to the Blakers–Massey theorem [5], for any strongly co-
cartesian cube � where the map �.∅/! �.fig/ is �i –connected for each i 2 Œk�,
the cube � is �–cartesian with � D 1C

P
i2Œk�.�i � 1/. Therefore, by definition, the

identity functor idW .Top/! .Top/ is 1–analytic with excess 1.

Let F W O.K/! .Top/ be a good functor (see Definition 2.3). Recall that there is
a concept of relative handle index in a simplicial complex [10, Section 3.1]. Let P
be a compact codimension-zero subobject of K and let � be a fixed integer. Sup-
pose A0; A1; : : : ; Ar are pairwise disjoint compact codimension-zero subobjects of
K n int.P / with relative handle index qAi

� � (relative to P ). For T � Œk�, we set
AT WD

S
i2T Ai and assume k � 1.
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Proposition 2.17 Suppose that the cube

T 7! F.int.P [AT //; T � Œk�;

is strongly cocartesian and suppose that there is a positive integer ı such that the maps

F.int.P [AŒk�//! F.int.P [AŒk�nfig//

are .ı�qAi
/–connected. Then F is .ı�1/–analytic with excess 1 (in the sense of

Definition 2.8).

Proof The idea is to apply the Blakers–Massey theorem. By assumption, the cube
T 7! F.int.P [AT // is strongly cocartesian. We consider the cube

T 7! id ıF.int.P [AT //; T � Œk�:

By applying Example 2.16, we deduce that the cube is
�
1C

P
i2Œk�.ı�qAi

�1/
�
–

cartesian.

Remark 2.18 In the last proposition we use the analyticity of the identity map in
topological spaces to find a criteria for analyticity of F , where F is a good functor. More
generally, the following statement holds: for a �–analytic functor GW .Top/! .Top/
with excess c and F as above, the composition G ıF is a .ı��/–analytic functor
with excess c and where ı is as above.

For an additional short note on the relationship of manifold calculus (for smooth
manifolds) and homotopy functor calculus, see [11, Remark 1.3.2].

3 Background

In this section we provide some background which we will need for the discussions in
the next sections. We introduce the configuration category of a simplicial complex and
the continuous homotopy limit.

3.1 Configuration category of a simplicial complex

We will need the configuration category of a manifold as well as the configuration
category of a simplicial complex. First, we recall the Riemannian model of the configu-
ration category of a smooth manifold. Note that there are several equivalent definitions
of the configuration category of a manifold [2].
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Let M be a smooth manifold without boundary of dimension m and suppose that we
have fixed a Riemannian metric on M. Then the configuration category con.M/ of M
is a topological poset. The objects are pairs .T; �/ where T is a finite subset of M
and �W T ! .0;1/ is a function such that:

(1) For each t 2 T , the exponential map expt is defined and regular on the compact
disk of radius �.t/ about the origin in the tangent space TtM.

(2) The images in M of these disks under the exponential maps expt are pairwise
disjoint.

For such a pair .T; �/, let VM .T; �/�M be the union of the open balls of radius �.t/
about t 2T . Then VM .T; �/ is an open subset of M which is diffeomorphic to T �Rm .
All these pairs form a topological poset con.M/ by

.T; �/� .T 0; �0/ () VM .T; �/� VM .T
0; �0/:

This poset can also be regarded as a category. We would like to adapt this definition and
introduce the configuration category con.K/ of the simplicial complex K . Therefore,
we should start with the following observation:

Remark 3.1 Let x be an element of K and let Sx be the open star neighborhood
of x in K . The closure Kx WD cl.Sx/ of Sx in K carries a canonical metric d D dx
induced by the euclidean structure of each simplex. The precise definition is technical
and can be done by distinguishing the following two cases: If two elements y; y0 2Kx
are in the same simplex, we can use the euclidean structure of the simplex to define
d.y; y0/ 2 Œ0;1/ as the distance between y and y0 in the euclidean space. If they are
not in the same simplex, we set

d.y; y0/ WD min
z2Sy\Sy0

d.y; z/C d.z; y0/;

where Sy (resp. Sy0 ) is the simplex of maximal dimension which includes y (resp. y0 ).
By definition, we can use again the euclidean structure.

We wrote d instead of dx to avoid the index x . In fact, d.y; y0/ is independent of
the element x in K : if x and x0 are two elements of K with y; y0 2 Sx \Sx0 , then
dx.y; y

0/D dx0.y; y
0/.

Now we introduce the configuration category con.K/. The objects are again pairs .T; �/
where T is a finite subset of K and �W T ! .0;1/ is a function fulfilling the following
two conditions:
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(1) For each t 2 T , there is an element x 2K such that t 2 Sx and the open ball
Bd
�.t/
.t/�Kx D cl.Sx/ of radius �.t/ about t determined by the metric d D dx

is a subset of the open star neighborhood Sx and the inclusion Bd
�.t/
.t/ ,! Sx is

a stratified isotopy equivalence (see Definition 2.2). In particular, Bd
�.t/
.t/ 2O1

is a special open set (see Definition 2.6).

(2) The open balls Bd
�.t/
.t/�K with origin t and radius �.t/ are pairwise disjoint.

For such a pair .T; �/, let VK.T; �/�M be the union of the open balls Bd
�.t/
.t/�K

of radius �.t/ about t 2 T . Then VK.T; �/ is a special open subset of K (see
Definition 2.6). By analogy with the manifold case, we form the topological poset
con.K/ by

.T; �/� .T 0; �0/ () VK.T; �/� VK.T
0; �0/:

This poset can also be regarded as a category.

Remark 3.2 Since this is a very technical notion, we feel compelled to give a short
explanation why this category con.K/ is nonempty. Let T be a configuration in K . If
we choose � small enough, then the function �W T ! .0;1/ mapping all elements of T
to � fulfills all conditions in the definition of con.K/. More precisely, the inclusion
of the open ball Bd� .t/ about an element t 2 T of radius � into the open star St of t
is a stratified isotopy equivalence. If � is small enough, the open balls for different
elements of T are also pairwise disjoint.

Now we want to take a closer look at the configuration category con.K/. But note that
the following results are also true for con.M/, the configuration category of a smooth
manifold M (without boundary).

Remark 3.3 The configuration category con.K/ is a topological poset, ie the objects
as well as the morphisms form a topological space. More generally, if N.con.K// is
the nerve of the category con.K/, then Nr.con.K// is a topological space for all r � 0.
This is obvious since Nr.con.K// is the space of all strings

.T0; �0/� .T1; �1/� � � � � .Tr ; �r/;

where .Ti ; �i / for 0� i � r is an element of con.K/.

Now we want to investigate the homotopy type of the configuration category con.K/
as a topological space. It is very reminiscent of the configuration spaces.
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Definition 3.4 We define Cr.K/ to be the space of unordered configurations of r
points in K : Let Fr.K/ be the space of ordered r –configurations of K given by

Fr.K/ WD f.x1; : : : ; xr/ 2K
r
j xi ¤ xj for all i ¤ j g:

The symmetric group †r acts freely on Fr.K/. Then

Cr.K/ WD Fr.K/=†r

is the space of unordered r –configurations.

Remark 3.5 What is the relation between the configuration category and the config-
uration spaces? Let r � 0 be a fixed integer. We define the space C fat

r .K/ to be the
space of all pairs .T; �/ 2 con.K/ with jT j D r . Then we have a forgetful projection
map

C fat
r .K/! Cr.K/;

which is a fiber bundle with contractible fibers. Therefore, this map is a weak equiva-
lence of spaces.

3.2 Continuous homotopy limit

Let con.K/ be the configuration category of K and let N.con.K// be its nerve. We
saw that Nr.con.K// is a topological space for all r �0. We are studying the functor ˆ
from con.K/ to topological spaces defined by

ˆ..T; �// WDM nVK.T; �/

and its homotopy limit

holim
con.K/

ˆD holim
.T;�/2con.K/

M nVK.T; �/:

During our study of this homotopy limit, we would like to integrate the continuous
structure of the nerve of con.K/. To this end, we will introduce the continuous
homotopy limit of ˆ using the topological structure of the configuration category.

We recall that the ordinary (or discrete) homotopy limit holimcon.K/ˆ of the contra-
variant functor ˆ is defined to be the totalization of the cosimplicial space

Œr� 7!
Y

.T0;�0/�����.Tr ;�r /2Nr .con.K//

ˆ..Tr ; �r//:
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By definition, the right-hand side is equal to the space of all sections from Nr.con.K//
equipped with the discrete topology toa

.T0;�0/�����.Tr ;�r /2Nr .con.K//

ˆ..Tr ; �r//:

Equivalently, it is equal to the space of all maps f W Nr.con.K//!M such that

f ..T0; �0/� � � � � .Tr ; �r// 2M nVK.Tr ; �r/;

where Nr.con.K// is again given the discrete topology. Using the continuous structure
of con.K/, we introduce the following notation:

Definition 3.6 We define �r.ˆ/ as the space of all continuous maps f WNr.con.K//!
M such that f ..T0; �0/� � � � � .Tr ; �r// 2M nVK.Tr ; �r/.

If we define EŠr.ˆ/ to be the spacea
.T0;�0/�����.Tr ;�r /2Nr .con.K//

ˆ..Tr ; �r//

equipped with the subspace topology of Nr.con.K//�M, then the projection map
EŠr.ˆ/ ! Nr.con.K// is a fiber bundle and �r.ˆ/ is the space of all continuous
sections of this fiber bundle.

Definition 3.7 The continuous homotopy limit ctsholimcon.K/ˆ of ˆ is defined to be
the totalization of the cosimplicial space Œr� 7! �r.ˆ/.

Lemma 3.8 The canonical inclusion map

ctsholim
con.K/

ˆ! holim
con.K/

ˆ

is a weak equivalence.

We skip the proof because it is equal to the proof of [11, Lemma 1.2.1]. (If we replace
the manifold L appearing in [11, 1.2.1] by the simplicial complex K , then we get a
proof for Lemma 3.8.)

Using this result, we can work in the following with either of these homotopy limits —
the discrete homotopy limit or the continuous homotopy limit.

Remark 3.9 For an open subset U of K , let con.K/jU be the full subcategory of
con.K/ such that the objects are all elements .T; �/ in con.K/ with VK.T; �/ � U.
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For r � 0, let �r.ˆ/jU be the space of all continuous maps f W Nr.con.K/jU /!M

such that
f ..T0; �0/� � � � � .Tr ; �r// 2M nVK.Tr ; �r/:

Now we define ctsholimcon.K/jUˆ to be the totalization of the cosimplicial space
r 7! �r.ˆ/jU . There is a canonical inclusion map

ctsholim
con.K/jU

ˆ! holim
con.K/jU

ˆ;

which is a weak equivalence. The proof is equal to that of Lemma 3.8.

Remark 3.10 The cosimplicial space r 7! �r.ˆ/jU is Reedy fibrant for every open
subset U of K . The verification is the same as that in [11, 1.1.3]. Recall that for a
map X ! Y between cosimplicial spaces which is a degreewise weak equivalence,
the map of their totalizations Tot.X/! Tot.Y / is a weak equivalence.

4 The main theorem

We formulate the main theorem and apply manifold calculus (adapted to simplicial
complexes) in order to prove it.

4.1 The formulation of the problem

We remind the reader that M is a smooth manifold and K �M is a simplicial complex
such that each (closed) simplex of K is smoothly embedded in M. For each element
.T; �/ of the configuration category con.K/, there is an inclusion map

M nK!M nVK.T; �/;

where VK.T; �/ is the open subset of K corresponding to the pair .T; �/. If we
define a contravariant functor ˆ from con.K/ to topological spaces by ˆ..T; �// WD
M nVK.T; �/, then the inclusion maps induce a canonical map

(4-1) M nK! holim
con.K/

ˆ:

We can ask if the canonical map is a weak equivalence. There is a variant with
restricted cardinalities. Let n� 0 be an integer. Then we define con�n.K/ to be the
full subcategory of con.K/ where the objects are all elements .T; �/ of con.K/ with
jT j � n. Again, we get a canonical map

(4-2) M nK! holim
con�n.K/

ˆ
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induced by inclusions. In this case we do not expect that this map is a weak equivalence.
But, we can ask if it is highly connected. In the following theorem we use the notation
m WD dimM and � WD dimK .

Theorem 4.1 If �C 3�m, then the canonical map (4-1) is a weak equivalence and
(4-2) is .1C.nC1/.m���2//–connected.

Remark 4.2 The homotopy limit appearing in (4-1) is the ordinary (or discrete)
homotopy limit. By Lemma 3.8, we could also use the continuous homotopy limit
and the theorem would still hold. Using similar arguments, we could also use the
continuous homotopy limit in (4-2).

Remark 4.3 We assumed that the codimension of K in M is at least three. In fact,
the theorem would be false without this assumption. There is a nice counterexample in
codimension two [11, Remark 1.3.3].

Remark 4.4 The theorem is a generalization of [11, Theorem 1.1.1]. Let L be a
compact, smooth submanifold (without boundary) of M where the codimension of L
in M is at least three. We can choose a triangulation of L and get a simplicial
complex K , ie K D L as a topological space but the configuration categories con.L/
and con.K/ are quite distinct because the structure of K as a simplicial complex goes
into the definition of con.K/.

Let
S
k Ok.L/ be the category of all special open subsets of L [12]. These are all the

open subsets of L which are diffeomorphic to a disjoint union of open disks. Then we
have the inclusions of categories

con.L/ ,!
[
k

Ok.L/ - con.K/

and we get a zigzag

holim
.T;�/2con.L/

ˆ..T; �// holim
U2

S
k Ok.L/

M nU ! holim
.T;�/2con.K/

ˆ..T; �//:

These projection maps of homotopy limits given by inclusion of categories are both
weak equivalences.

4.2 A good functor

In order to prove Theorem 4.1, we would like to apply manifold calculus (adapted to
simplicial complexes). Naively, one could suggest to apply the approximation theorem
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(Theorem 2.9) to the contravariant functor which maps an open subset V �K to the
topological space M nV . Unfortunately, this functor is not good because in general it
does not take stratified isotopy equivalences to weak equivalences (for a counterexample,
see [11, 1.3]). Therefore, we need a modification.

Definition 4.5 We define the functor F from the category O.K/ of open subsets
of K to topological spaces by

F.V / WD holim
C�V

M nC;

where C runs over all compact subsets of V .

We will see that F is an appropriate replacement of the functor V 7!M nV . The proof
in the following lemma is similar to that of [11, 1.3.1]. For the sake of completeness,
we will give all required arguments.

Lemma 4.6 The functor F is good (in the sense of Definition 2.3).

Proof First, we notice that the (co)limit axiom is fulfilled. This is obvious. In
order to show that the functor takes stratified isotopy equivalences to weak homotopy
equivalences, we will use the reformulation of stratified isotopy equivalences as given
in Remark 4.7. To this end, let V0 and V1 be two open subsets of K with V0 � V1 and
let et W V0! V1 for t 2 Œ0; 1� be a stratified isotopy such that e0 is the inclusion and,
for each simplex S of K , e1 is a homeomorphism such that e1jS W S \V0! S \V1

can be extended to a diffeomorphism (see Remark 4.7).

Let fCigi�0 be a sequence of compact subsets of V1 such that Ci �CiC1 for all i � 0
and such that, for every compact subset C of V1 , there is an element Ci of this
sequence with C � Ci . By definition, the inclusion

fCigi�0! fC � V1 j C compactg

is homotopy terminal. (Note that the morphisms are the inclusions of compact subsets.)
Therefore, the canonical map

F.V1/! holim
i

M nCi

is a weak equivalence. Now we define the compact sets Ct;i WD et .e�11 .Ci //. Note
that C1;i D Ci . By definition, the inclusion

fC0;igi�0! fC � V0 j C compactg
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is homotopy terminal and induces a weak equivalence

F.V0/! holim
i

M nC0;i :

We fix the notation

Yi WD fwW Œ0; 1�!M j w.t/ …M nCt;ig:

There are evaluation maps Yi ! M n C0;i and Yi ! M n C1;i . Using the isotopy
extension theorem [8, 6.5], it is straightforward to find homotopy inverses. For a
comment on the isotopy extension theorem for stratified spaces, see Remark 4.8. We
get homotopy equivalences

M nC0;i  ! Yi  !M nC1;i :

Since the evaluation maps are natural, we get weak equivalences

holim
i

M nC0;i  holim
i

Yi ! holim
i

M nC1;i

To summarize, we have shown that the spaces F.V1/ and F.V0/ are weakly equivalent.
Now we have to argue that the canonical map F.V1/! F.V0/ induced by inclusion
is a weak equivalence.

Let gW N!N be a monotone injective function such that for every i 2N and t 2 Œ0; 1�,
the compact set Ct;i is a subset of C1;g.i/ . We consider the composition

‰W holim
i

M nC1;i ! holim
i

M nC1;g.i/! holim
i

M nC0;i ;

where the first map is induced by the inclusion fC1;g.i/gi ! fC1;igi of categories and
the second map is induced by the inclusions C0;i ,! C1;g.i/ of spaces for i 2N . In
order to verify that the composition ‰ is a weak equivalence, we consider the homotopy
commutative triangle

holimi Yi
Š

//

Š

''

holimi M nC1;i

‰vv

holimi M nC0;i

It does not seem to be trivial that the triangle is homotopy commutative. But, by careful
inspection, the definition of the homotopy limit provides a homotopy whereby the
triangle is homotopy commutative. Using the same argument, we get a homotopy
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commutative square
F.V1/

Š

��

// F.V0/

Š

��

holimi M nC1;i
‰
// holimi M nC0;i

Since ‰ is a weak equivalence, the canonical map F.V1/! F.V0/ is also a weak
equivalence.

Remark 4.7 We need a slight reformulation of a stratified isotopy equivalence. Ac-
cording to Definition 2.2, an inclusion i W V0! V1 of open subsets of K is a stratified
isotopy equivalence if there is a continuous map eW V1! V0 such that ejV1\S is a
smooth embedding from V1\S into V0\S for all simplices S of K and if there are
a stratified isotopy from i ı e to idV1

and a stratified isotopy from e ı i to idV0
. The

following definition would also be appropriate: we could call an inclusion i W V0! V1

of open subsets of K a stratified isotopy equivalence if i is stratified isotopic to a
homeomorphism eW V0! V1 such that ejV0\S is a diffeomorphism from V0\S to
V1\S for all simplices S of K . (Note that S is not a manifold, so more precisely we
should say: the map ejV0\S from V0\S to V1\S can be extended to a diffeomorphism
using that S is canonically embedded in an euclidean space.)

Why is the second definition of stratified isotopy equivalences also appropriate? We
do not know if these definitions are equivalent, but it is straightforward to verify the
following claim: Let GW O.K/! .Top/ be a contravariant functor. Then G takes
stratified isotopy equivalences as in Definition 2.2 to weak equivalences if and only if
G takes stratified isotopy equivalences as in the second definition to weak equivalences.

Remark 4.8 In the proof of the last lemma we can use a continuous version of the
isotopy extension theorem for stratified spaces as provided in [8, 6.5]: Let C � V0 be a
compact subset, where V0 �K is an open subset as above. We consider a continuous
family of open topological embeddings ft W C!K for 0� t � 1, with f0D idC . Then
there is a continuous family of homeomorphisms Ht W K!K such that Ht jC D ft
and H0 D idK .

We can use this theorem in the proof above as follows: Let et W V0! V1 for t 2 Œ0; 1�
be a stratified isotopy as above. In particular, e0 is the inclusion of V0 into V1 and
e1 is a homeomorphism. For a positive integer i , we define C WD e�11 .Ci / and
ft WD et jC W C ! V1 �K . Using the isotopy extension theorem, we get a continuous
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family of homeomorphisms Ht W K!K such that Ht jC D ft and H0 D idK . Then
a homotopy inverse of the evaluation map Yi !K nC0;i given by w 7! w.0/ can be
defined by x 7! .t 7!Ht .x//.

4.3 Proof of the main theorem

Now we prove Theorem 4.1, ie we show that the top horizontal arrow in the commutative
diagram

M nK

��

// holim
.T;�/2con.K/

M nVK.T; �/

��

F.K/ // holim
.T;�/2con.K/

F.VK.T; �//

is a weak equivalence. The left vertical arrow is a weak equivalence because K is a
maximal element in the category (poset) of all compact subsets of K . The right vertical
arrow is a weak equivalence because for every .T; �/ 2 con.K/, the category of all
compact subsets of VK.T; �/ has a directed subcategory which is homotopy terminal.
Therefore, we have to show that the bottom horizontal arrow is a weak equivalence.
To this end, we will use the good properties of the functor F and manifold calculus
(adapted to simplicial complexes). The bottom arrow equals the composition

F.K/! holim
U2

S
k Ok.K/

F.U /! holim
.T;�/2con.K/

F.VK.T; �//;

where the first map is the canonical map and the second map is induced by the inclusion
of posets

con.K/!
[
k

Ok.K/

given by .T; �/ 7! VK.T; �/. Therefore, the following two lemmas complete the proof.
(The proof of the case with restricted cardinalities follows similar lines.)

Lemma 4.9 The canonical projection map

holim
U2

S
k Ok.K/

F.U /! holim
.T;�/2con.K/

F.VK.T; �//

induced by the inclusion con.K/!
S
k Ok.K/ is a weak equivalence.

Proof By [3, Theorem 6.14], it remains to show that the canonical map

F.U /! holim
.T;�/2con.K/jU

F.VK.T; �//
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is a weak equivalence for all U 2
S
k Ok.K/. Recall that con.K/jU is the full

subcategory of con.K/ where the objects are all elements .T; �/ in con.K/ with
VK.T; �/�U. For a fixed U 2

S
k Ok.K/, we choose an element .T 0; �/2 con.K/jU

such that the map F.U /!F.Vk.T; �// is a weak equivalence. We set W WDVK.T 0; �/
and consider the commutative diagram

F.U /

��

// holim
.T;�/2con.K/jU

F.VK.T; �//

��

F.W / // holim
.T;�/2con.K/jW

F.VK.T; �//

The bottom arrow is a weak equivalence because W is a maximal element in con.K/jW .
In order to show that the right vertical arrow is a weak equivalence, we will consider the
two homotopy limits as continuous homotopy limits. This is allowed by Remark 3.9.
Then we compare the two spaces con.K/jW and con.K/jU . By definition of their
topologies, the inclusion con.K/jW ! con.K/jU is a weak equivalence. Similarly,
the maps of section spaces �r.ˆ/jU ! �r.ˆ/jW are weak equivalences for all r � 0.
So they induce a weak equivalence of continuous homotopy limits.

Lemma 4.10 If dimKC 3� dimM , the canonical map

F.K/! holim
U2

S
k Ok.K/

F.U /

is a weak equivalence.

Proof Note that we have already shown that F is good (Lemma 4.6). Let P be a
smooth compact codimension-zero subobject of K and let A0; A1; : : : ; Ar be compact
codimension-zero subobjects of K n int.P / with relative handle index qAi

(relative
to P ). For T � Œr�, we define

WT WD int
�
P [

[
i2T

Ai

�
;

where int.�/ is the interior in K . We have to show that the cube

T 7! F.WT /; T � Œr�;

is strongly cocartesian and that, for every 0� i � r , the maps

F.WŒr�/! F.WŒr�nfig/
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are ..m�1/�qAi
/–connected, where m is the dimension of M. Note that WS is the

interior of a compact codimension-zero subobject of K . Therefore, instead of using
the functor F , we can work with the cube

T 7!G.WT / WDM nWT :

Why can we use this cube? Because of the special assumption, there is a directed
homotopy terminal subcategory in the category of all compact subsets of WT . Thus,
the canonical map G.WT /! F.WT / is a weak equivalence.

Let i; j 2 Œr� be two distinct elements. In order to show that the cube induced by G is
strongly cocartesian, we need to investigate if the canonical map from the homotopy
pushout of

G.WŒr�nfig/ G.WŒr�/!G.WŒr�nfj g/

to G.Wrnfi;j g/ is a weak equivalence. But this can easily be seen. In fact, using the
assumptions that all Ai are pairwise disjoint, we can find a copy of G.Wrnfi;j g/ in
the homotopy pushout which is a retract of the homotopy pushout. Likewise, it is not
difficult to check that for a fixed i 2 Œr�, the map

G.WŒr�/!G.WŒr�nfig/

is .m�qAi
�1/–connected since the target is homotopy equivalent to the source with

attached cells of dimension �m� qAi
.

5 Occupants in the interior of a manifold

In this section, let M be a manifold with boundary and let L be a smooth submanifold
without boundary. We discuss Theorem 1.2, where the homotopy type of M nL is
recovered from the homotopy types of the spaces M nT with T � L finite. To this
end, we give the definition of a smooth thickening of a simplicial complex (in M ) and
discuss first observations and examples. Then we prove the tube lemma, Lemma 5.6,
which we will need in order to prove Theorem 1.2.

5.1 Smooth thickenings of a simplicial complex

We consider the following situation: Let M be a manifold with boundary. Let L �
M n @M be a smooth submanifold without boundary of dimension l .
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Definition 5.1 Let K � L be a simplicial complex. We say that pW L!K is a nice
projection map if the following conditions hold:

(1) pjK D idK .

(2) The open set p�1.VK.T; �//�L is diffeomorphic to T �Rl for every element
.T; �/ of the configuration category con.K/ of K .

Definition 5.2 We say that L is a smooth thickening of K in M if each (closed)
simplex of K is smoothly embedded in L and if there exists a nice projection map
pW L!K such that the inclusion M np�1.V /!M nV is a weak equivalence for
all open sets V 2O.K/.

Definition 5.3 If M n@M is a smooth thickening of K in M, then we just say that M
(which is a manifold with boundary) is a smooth thickening of K .

Examples 5.4 (1) The definition of smooth thickening weakens the strong condition
in [11, 2.1.1] in the following sense: Let L be a smooth closed manifold and let
pW M ! L be a smooth disk bundle, ie a smooth fiber bundle where each fiber is
diffeomorphic to a (closed) disk Dr of fixed dimension r � 0. Then L can be
considered as a subset of M by using the zero section of p . We can choose a
triangulation of L and then L is a smooth thickening of its triangulation in M.

(2) We consider the 1–dimensional simplicial complex K with four vertices fa;b;c;dg
and 1–simplices ffa; bg; fa; cg; fb; cg; fb; dg; fc; dgg, ie we have two triangles which
coincide in exactly one simplex, namely fb; cg. Now it is an easy exercise to build up a
compact manifold M of dimension mD 2 such that the interior M n @M is a smooth
thickening of K in M, ie M is a smooth thickening of K . We ought to consider M
as a manifold with four 0–handles and five 1–handles. This example can easily be
generalized to all dimensions m� 2 and/or to an one-dimensional simplicial complex
which consists of more than two triangles.

Lemma 5.5 We assume that dimKC 3�m and that L is a smooth thickening of K
in M. Let pW L!K be a nice projection map. Then the canonical map

M nL! holim
.T;�/2con.K/

M np�1.VK.T; �//

is a weak equivalence.
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Proof We consider the five homotopy equivalences

M nL'M nK

'M n .K [ @M/

' holim
.T;�/

M n .VK.T; �/[ @M/

' holim
.T;�/

M nVK.T; �/

' holim
.T;�/

M np�1.VK.T; �//;

where the three homotopy limits are taken over all .T; �/ in con.K/. By definition
of smooth thickenings in M, the first equivalence can be verified, as well as the fifth
equivalence. By Theorem 4.1, the third map is a weak equivalence. The second and
the fourth map are weak equivalences since M ŠM n @M.

5.2 Tube lemma

Now we adapt the results of [11, 2.2] for a nice projection map. Note that for the
following lemma we do not have to require that the codimension be at least three. It
could also be zero.

Lemma 5.6 Let L be a smooth manifold without boundary and let K be a compact
simplicial complex K . Let pW L!K be a nice projection map (see Definition 5.1).
Then the canonical map

hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

�
! Cn.L/(5-1)

is a weak equivalence.

Proof We are going to show that the map is a microfibration with contractible fibers.
Then the lemma will follow [13, Lemma 2.2]. Let T be an element of the configuration
space Cn.L/. The fiber of the map (5-1) over the configuration T is identified with
the classifying space of the poset of all .T; �/ 2 con.K/ with T 2 p�1.VK.T; �//, ie
p.T / 2 VK.T; �/. The inclusion of the directed posetn

.T; �/ 2 con.K/ j 9n 2N 8t 2 T �.t/D
1

n

o
into the above described poset is a homotopy initial functor. (We consider the posets as
categories.) Therefore, the fiber is contractible.
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Now we verify the lifting condition. We start with an observation: The projection map
and the map (5-1) determine an injective, continuous map

hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

�
! jN con.K/j �Cn.L/:

(This map is not an embedding, ie a homeomorphism onto its image. See also
Remark 5.7.) We call this map g D .g1; g2/.

Let Z be a compact CW–space. We consider the diagram

Z

��

// hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

�
��

Z � I // Cn.L/

We call the upper horizontal map f and we can consider it as a pair of maps f D
.f1; f2/ if we define fi WD gi ıf for i D 1; 2. We call the bottom horizontal map h.
The right vertical arrow is equal to g2 . We can define a small lift

H W Z � Œ0; ��! hocolim
.T;�/2con.K/

Ck
�
p�1.VK.T; �//

�
by H WD .f1; h/.

How can we describe the map H ? Let z 2Z be given. By the formula H WD .f1; h/,
the map

fzg � Œ0; �� H�! hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

� g1
�!N con.K/

is constant; more precisely, g1 ıH.fzg � Œ0; ��/D ff1.z/g.

How can we find an � > 0 such that H is well defined? Let S be an r –simplex of
jN con.K/j, let E be the corresponding open simplex and let .T0; �0/� � � � � .Tr ; �r/
be the corresponding element in Nrcon.K/. We define

ZS WD f
�1
1 .S/D f �1.g�11 .S//�Z;

ZE WD f
�1
1 .E/D f �1.g�11 .E//�Z:

We take a close look at the map

f2jZS
W ZS

f
�! hocolim

.T;�/2con.K/
Cn
�
p�1.VK.T; �//

� g2
�! Cn.L/:

First, we note that f2.ZE /� Cn
�
p�1.VK.T0; �0//

�
by definition. By definition (of

smooth thickening), p�1.VK.Tj ; �j // is a special open set for every 0� j � r . In the
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spirit of Remark 5.7, we conclude that f2.ZS / is also a subset of Cn
�
p�1.VK.T0; �0//

�
.

(For an easier example of this argument, see [11, 2.2.1].) Since f2.ZS /D h.ZS �f0g/
is compact, there is an �S > 0 with

h.ZS � Œ0; �S �/� Cn
�
p�1.VK.T0; �0//

�
:

The image of Z is contained in a finite union of open cells of jN con.K/j. Therefore,
there is a finite number of simplices S such that ZS is nonempty. We can define � to
be the minimum of all �S , where the minimum ranges over all simplices S such that
ZS is nonempty.

Remark 5.7 Let U 2Rn be a bounded open subset. Then the mapping cylinder of the
inclusion U !Rn is not homeomorphic to a subspace of RnC1 . The quotient topology
equips the mapping cylinder with a different structure. In fact, it is not metrizable
[11, 2.2.2].

Corollary 5.8 The canonical map

hocolim
.T;�/2con.K/

N0con
�
p�1.VK.T; �//

�
!N0con.L/

determined by the inclusions is a weak equivalence.

Proof We remind the reader that for an open set U �K , we defined con.U / to be
the full subcategory of con.K/ with all objects .T; �/ such that VK.T; �/ is a subset
of U. There is a commutative square

hocolim
.T;�/2con.K/

N0con
�
p�1.VK.T; �//

�
��

// N0con.L/

��

hocolim
.T;�/2con.K/

`
n Cn

�
p�1.VK.T; �//

�
//
`
n Cn.L/

where the vertical arrows are weak equivalences (the left one is induced by a natural
transformation). Therefore, we only have to verify that the bottom map is a weak
equivalence. But this follows from the fact that the homotopy colimit commutes with
disjoint union.

Corollary 5.9 For every r � 0, the canonical map

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
!Nrcon.L/

induced by the inclusions is a weak equivalence.
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Proof We consider the commutative square

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
��

// Nrcon.L/

��

hocolim
.T;�/2con.K/

N0con
�
p�1.VK.T; �//

�
// N0con.L/

Here the vertical arrows are given by the ultimate target operator and the horizontal
arrows are the canonical maps induced by the inclusions. We can check that this is a
(strict) pullback square and that the right vertical arrow is a fibration. Since .Top/ is a
proper model category [7, 13.1.11] and the bottom arrow is a weak equivalence, we
conclude that the upper arrow is also a weak equivalence.

5.3 Boundary recovered

Let M be a manifold with boundary @M and let L be a smooth submanifold without
boundary. We recover the homotopy type of M nL from the homotopy types of the
spaces M nT where T is a finite subset of L. Again, we need to allow thickenings
of the finite subsets T and inclusions between them. We recall that for each object
.T; �/ in the configuration category con.L/ of L, there is a corresponding open subset
VL.T; �/ in L. We can define a contravariant functor  from con.L/ to the category
of topological spaces by  ..T; �// WDM nVL.T; �/. We get a canonical map

(5-2) M nL! holim
.T;�/2con.L/

M nVL.T; �/;

induced by the inclusions M nL!M nVL.T; �/. We can ask if this map is a weak
equivalence. There is also a variant with restricted cardinalities. Let con�n.L/ be the
full subcategory of con.L/ where the objects are all pairs .T; �/2 con.L/ with jT j�n.
Again, we get a canonical map

(5-3) M nL! holim
.T;�/2con�n.L/

M nVL.T; �/;

induced by inclusions. We can ask whether this map is highly connected and whether
there is a lower bound for the connectivity. The following theorem, where we use again
the notation � WD dimK and m WD dimM, answers these questions.

Theorem 5.10 The canonical map (5-2) is a weak equivalence if the following con-
dition holds: there is a compact simplicial complex K � M of dimension � with
�C 3�m such that L is a smooth thickening of K in M (see Definition 5.2). In this
case, the canonical map (5-3) is .1C.nC1/.m���2//–connected.
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Corollary 5.11 The canonical map

@M ! holim
.T;�/2con�n.Mn@M/

M nVMn@M .T; �/

is a weak equivalence if the following condition holds: there is a compact simplicial
complex K �M of dimension � with �C 3�m such that M is a smooth thickening
of K (see Definition 5.3). In this case, the canonical map

@M ! holim
.T;�/2con�n.Mn@M/

M nVMn@M .T; �/

is .1C.nC1/.m���2//–connected.

Remark 5.12 In (5-2) and (5-3), the discrete (or ordinary) homotopy limit can be
replaced by the continuous homotopy limit without changing the (weak) homotopy
type. This can be justified with arguments which are provided in [11, 1.2] (and in
Section 2.2).

Remark 5.13 This corollary is a generalization of [11, Theorem 2.1.1]; compare
Example 5.4(2). It can be applied in the proof of [14, Theorems 5.2.1 and 5.3.1],
whereby we get a weaker condition in these theorems (this will extensively be studied
in Section 6).

In order to prove that (5-2) is a weak equivalence, we consider the following diagram,
where all arrows are the canonical maps and pW L!K is a nice projection map:

M nL

��

// holim
.T;�/2con.K/

M np�1.VK.T; �//

��

holim
.T 0;�/2con.L/

 .T 0; �/ // holim
.T;�/2con.K/

holim
.T 0;�/2con.L/

p.VL.T
0;�//�VK.T;�/

 .T 0; �/

It commutes because both compositions factorize through the ordinary limit and the
two maps through the ordinary limit are clearly the same. In Lemma 5.5 we have
already shown that the upper horizontal arrow is a weak equivalence. Therefore, the
first part of the theorem follows from the next two lemmas.

Lemma 5.14 The right vertical arrow is a weak equivalence.

Proof Let .T; �/ 2 con.K/ be fixed. Since the map under investigation is induced by
a natural transformation, it suffices to show that the map

M np�1.VK.T; �//DM nU ! holim
.T 0;�/2con.U /

 .T 0; �/
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is a weak equivalence, where, for simplicity, U is defined to be the open set

U WD p�1.VK.T; �//� L:

Note that by definition, the open set U is diffeomorphic to T �Rl . We consider the
composition of maps

M nU ! holim
.T 0;�/2con.U /

 .T 0; �/! holim
.T 0;�/2con.U /

F.VK.T
0; �//;

where F is the functor from the category O.U / of open subsets of U to topological
spaces given by F.W / WD holimC�W M n C, where C runs through the compact
subsets of W . Note that the category of all compact subsets of VK.T 0; �/ has a
directed subcategory which is homotopy terminal. Therefore, the canonical map
 .T 0; �/! F.VK.T

0; �// is a weak equivalence for every .T 0; �/ 2 con.U /. Using
the homotopy invariance of the homotopy limit, the second map is a weak equivalence.
So, in order to prove that the first map is a weak equivalence, we have to show that the
composition is a weak equivalence. To this end, we consider another composition

M nU ! F.U /! holim
W 2

S
k Ok.U /

F.W /! holim
.T 0;�/2con.U /

F.VK.T
0; �//:

First of all, we note that the two compositions give the same map since both compositions
factorize through the ordinary limit and the two maps through the ordinary limit are
clearly the same. The first map in this composition is a weak equivalence because the
category of all compact subsets of U has a directed subcategory which is homotopy
terminal. The third map is a weak equivalence by an argument which we have seen
in Lemma 4.9. The second map is a weak equivalence because the open set U is a
maximal element in

S
k Ok.U /.

Lemma 5.15 The bottom horizontal arrow is a weak equivalence.

Proof If replace the homotopy limit by the continuous homotopy limit, the source
is the totalization of the cosimplicial space Œr� 7! �r.‰/, where �r.‰/ is the space
of all sections from NrP.L/ to EŠ.‰/. (All notation is introduced in Section 3.2.)
If replace the second homotopy limit in the target by the continuous homotopy limit
(compare Remark 3.9), the target is isomorphic to the totalization of the cosimplicial
space Œr� 7! z�r.‰/, where z�r.‰/ is the space of all sections from

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
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to EŠ.‰/. The bottom horizontal arrow in the above diagram is induced by composition
with the map in Corollary 5.9,

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
!Nrcon.L/!EŠ.‰/:

Using Corollary 5.9, this map is a weak equivalence.

Now we investigate the case with restricted cardinalities. To this end, we fix n � 0.
Let j be an integer with 0� j � n be given. There is the following modification of
the tube lemma, Lemma 5.6. The canonical map

hocolim
.T;�/2con�n.K/

Cj
�
p�1.VK.T; �//

�
! Cj .L/

is a weak equivalence. The proof is the same: The projection map is a microfibration
with contractible fibers. Why do we need that j � n? In the proof of Lemma 5.6 we
introduced a homotopy initial subposet, in order to show that the fibers are contractible.
In the restricted case, this poset is defined if and only if j � n.

Using this observation, the proof of the restricted case follows similar lines. In particular,
there is a commutative diagram

M nL

��

// holim
.T;�/2con�n.K/

M np�1.VK.T; �//

��

holim
.T 0;�/2con�n.L/

 .T 0; �/ // holim
.T;�/2con�n.K/

holim
.T 0;�/2con�n.L/

p.VL.T
0;�//�VK.T;�/

 .T 0; �/

By Theorem 4.1 (and Lemma 5.5), the top horizontal map is .1C.nC1/.m�k�2//–
connected. Using a modification of Corollary 5.9, the bottom horizontal arrow is a
weak equivalence. In order to justify that the right vertical arrow is a weak equivalence,
we can use arguments which we have seen in Lemma 5.14.

6 Homotopy automorphisms

Let M be a smooth, compact manifold with boundary.

Definition 6.1 We define the homotopy link holink.M=@M;�/ of the basepoint in
M=@M to be the space of paths  W Œ0; 1� ! M=@M which satisfy the condition

Algebraic & Geometric Topology, Volume 19 (2019)



Occupants in simplicial complexes 1295

�1.f�g/D f0g. The topology is the compact–open topology. We define the map

qM W holink.M=@M;�/!M n @M

by  7! .1/.

Remark 6.2 It is well known that the map qM is a good homotopical substitute for
the inclusion map @M ,!M : if we define ZM to be the space of paths  W Œ0; 1�!M

which satisfy the condition �1.@M/D f0g (with the compact–open topology), we
get a homotopy commutative diagram

holink.M=@M; ?/
qM

// M n @M

'

��

ZM

'

OO

'
// @M

� � // M

Let homeo.M/ be the homeomorphism group of M. Evidently, there is a canonical
action of homeo.M/ on the complete diagram. This action extends to an action of the
homeomorphism group homeo.M n @M/ on qM . But, unfortunately, the action does
not extend to an action of the homeomorphism group homeo.M n@M/ on the inclusion
map @M ,!M. We are interested in this extension. That is why we introduced the
homotopical substitute qM .

Definition 6.3 Let c be an object in a model category C . We define haut.c/ to be the
space of derived homotopy automorphisms of c in C , ie haut.c/ is the union of the
homotopy invertible path components of the derived mapping space Rmap.c; c/. With
composition, haut.c/ is a grouplike topological or simplicial monoid. (For a suitable
definition of simplicial mapping spaces, we follow [4].)

Note that the map qM can be regarded as a functor from the totally ordered set f0; 1g
to the category of topological spaces. The category of such functors has well-known
standard model category structures. If we choose one of them, we can study the
space of derived homotopy automorphisms haut.qM / of qM . In particular, since
homeo.M n@M/ acts on qM , each homeomorphism of M n@M determines a (derived)
homotopy automorphism of qM . Therefore, we get a map

Bhomeo.M n @M/! Bhaut.qM /(6-1)

of classifying spaces.
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Let Fin be the category of finite sets and maps between them. The nerve NFin is
a simplicial set. We introduced the Riemannian model of the configuration category
con.M n @M/. The nerve of this category is a simplicial space over NFin.

Definition 6.4 Let X be a simplicial space over NFin. We define hautNFin.X/ to
be the space of derived homotopy automorphisms of X over NFin, ie haut.X/ is
the union of the homotopy invertible path components of the derived mapping space
RmapNFin.X;X/ of X over NFin. (If an introduction to derived mapping spaces of
simplicial spaces is needed, we refer the reader to [14, Section 3].) With composition,
hautNFin.X/ is a grouplike topological or simplicial monoid.

If we use the particle model [2, Section 3.1; 14, Section 1] of the configuration category
con.M n @M/, it is easy to see that each homeomorphism of M n @M determines a
(derived) homotopy automorphism of the nerve of con.M n @M/ over NFin.

Particle model In this model, the space of objects of the configuration category
con.M n @M/ is a

k�0

emb.k;M n @M/:

A morphism from f 2 emb.k;M n @M/ to g 2 emb.l;M n @M/ is a map vW k! l

and a homotopy
.t /t2Œ0;a�W k!M n @M

from f to gv which satisfies the stickiness condition: if s.b1/D s.b2/ for s 2 Œ0; a�
and b1; b2 2 k , then t .b1/ D t .b2/ for all t 2 Œs; a�. Therefore, the space of
morphisms of the configuration category con.M n @M/ in the particle model isa

k;l�0; vWk!l

ƒ.v/:

Here ƒ.v/ is the space of all triples .f; g; / where f 2 emb.k;M n @M/, g 2
emb.l;M n @M/ and  is a homotopy from f to gv which satisfies the stickiness
condition. The Riemannian model of the configuration category and the particle model
are equivalent [2, Section 3.2].

Using the particle model of the configuration category con.M n@M/, there is an inclu-
sion of topological grouplike monoids from homeo.Mn@M/ to hautNFin.con.Mn@M//.
We get a map of classifying spaces

(6-2) Bhomeo.M n @M/! BhautNFin.con.M n @M//:
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Now we can ask whether the map (6-1) has a factorization through the map (6-2).

Theorem 6.5 We assume that the following condition holds: there is a compact
simplicial complex K � M of dimension � with � C 3 � m such that M is a
smooth thickening (see Definition 5.3) of K . Then the broken arrow in the homotopy
commutative diagram

Bhomeo.M n @M/
(6-1)

// Bhaut.qM /

Bhomeo.M n @M/
(6-2)

// BhautNFin.con.M n @M//

OO

can be supplied.

Using Corollary 5.11, the proof is equal to that of [14, Theorem 5.2.1]. There is
also a variant with restricted cardinalities. Following [14, 5.3], we need a Postnikov
decomposition of the map qM . It is well known that for each integer a � 0, there is a
decomposition

@M ! }a@M !M

of the inclusion map @M ,!M such that the homotopy groups of }a@M are zero in
dimension � aC 2 and equal to the homotopy groups of @M in dimension � aC 1.
(}a@M is obtained from @M, as a space over M, by killing the relative homotopy
groups of @M !M in dimensions � aC 2.) By analogy with this construction, there
is a decomposition

holink.M=@M;�/! }a.qM /!M n @M

of the map qM , where }a.qM / has the same properties as }a@M.

Theorem 6.6 We assume that the following condition holds: there is a compact
simplicial complex K � M of dimension � with � C 3 � m such that M is a
smooth thickening (see Definition 5.3) of K . Then the broken arrow in the homotopy
commutative diagram

Bhomeo.M n @M/
action

// Bhaut.}.jC1/.m���2/.qM //

Bhomeo.M n @M/
action

// BhautNFin.con�j .M n @M//

OO

can be supplied. Here the two action maps are the maps (6-1) and (6-2) applied to the
restricted case.
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