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Commensurability invariance for abelian splittings of
right-angled Artin groups, braid groups

and loop braid groups

MATTHEW C B ZAREMSKY

We prove that if a right-angled Artin group A� is abstractly commensurable to a
group splitting nontrivially as an amalgam or HNN extension over Zn , then A� must
itself split nontrivially over Zk for some k � n . Consequently, if two right-angled
Artin groups A� and A� are commensurable and � has no separating k –cliques
for any k � n , then neither does � , so “smallest size of separating clique” is a
commensurability invariant. We also discuss some implications for issues of quasi-
isometry. Using similar methods we also prove that for n � 4 the braid group Bn

is not abstractly commensurable to any group that splits nontrivially over a “free
group–free” subgroup, and the same holds for n� 3 for the loop braid group LBn .
Our approach makes heavy use of the Bieri–Neumann–Strebel invariant.

20F65; 20F36, 57M07

Introduction

We say two groups are abstractly commensurable or for brevity commensurable if
they contain isomorphic finite-index subgroups. It has been an ongoing problem to
understand commensurability for right-angled Artin groups, or RAAGs for short. This
can mean either to understand when a group is commensurable to a given RAAG, or to
understand when two RAAGs are commensurable to each other. For instance, a RAAG
is commensurable to a nonabelian free group if and only if it itself is a nonabelian
free group, and on the other hand Zn is not commensurable to any RAAG except
itself. Related questions include all of the above replacing “commensurable” with
“quasi-isometric” everywhere, and the “rigidity” question asking for which RAAGs
does quasi-isometry imply commensurability.

Recall that for a finite simplicial graph � , the RAAG A� is defined by the presentation
with a generator for each vertex of � and the relations that two generators commute
if and only if their corresponding vertices span an edge in � . A great deal of work
has been done toward understanding the above questions for RAAGs A� assuming
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various restrictions on � . For example, in [14] Huang proved that if A� has finite
outer automorphism group, which is equivalent to saying that � has no separating
closed stars and no instances of lk v � stw for vertices v ¤ w , then a RAAG A� is
commensurable to A� if and only if it is quasi-isometric. Moreover, if A� and A� both
have finite outer automorphism group then they are quasi-isometric if and only if �Š�.
Other examples of past work include Huang [13; 15], Casals-Ruiz, Kazachkov and
Zakharov [6], Casals-Ruiz [5], Behrstock, Januszkiewicz and Neumann [2] and Kim
and Koberda [16; 17]. In all of these examples, results are shown assuming the RAAG
or RAAGs in question have defining graphs falling into certain classes. For example,
there are results if the graph is a tree, or a join, or an atomic graph, or a cyclic graph,
or has some other such global structure.

In this paper we do not focus on any particular graph or class of graphs, but rather inspect
the commensurability problem in terms of some more local features of the graph, with
an eye on separating cliques. These correspond to nontrivial splittings over free abelian
groups. Recall that a nontrivial splitting of a group G over a subgroup C is a decom-
position GDA�C B with G¤A;B or GDA�C with G¤A. Our main results are:

Theorem 3.5 Let � be a finite simplicial nonclique graph with no separating k –
cliques for any k�n. Then A� is not commensurable to any group splitting nontrivially
over Zn .

Corollary 3.6 If A� and A� are commensurable and � has no separating k –cliques
for any k � n, then neither does �.

An equivalent way to phrase Theorem 3.5 is to say that such an A� does not virtually
split nontrivially over Zn . Another equivalent formulation is: if a RAAG virtually splits
nontrivially over Zn then it must actually split nontrivially over Zk for some k � n.
Corollary 3.6 can be phrased informally as “‘smallest size of separating clique’ is a
commensurability invariant for RAAGs”. We suspect that the conclusion of Theorem 3.5
is true even if we only assume � has no separating n–cliques, though proving this
would require new ideas (for instance, even in the proof of Proposition 2.3, concerning
when A� itself splits, we cannot precisely control the size of the cliques that arise).

Say that a group is NF if it contains no nonabelian free subgroups (so, colloquially, it
is a “free group–free group”). It is a fact that RAAGs satisfy a strong Tits alternative,
namely every NF subgroup of a RAAG is abelian; even more strongly, every pair of
elements in a RAAG either commute or generate a copy of F2 ; see Baudisch [1],
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Carr [4] and Kim and Koberda [18]. This leads to the following corollary in the case
when � has no separating cliques at all:

Corollary 3.7 Let � be a finite simplicial nonclique graph with no separating cliques.
Then A� is not commensurable to any group splitting nontrivially over an NF subgroup.

The key to proving Theorem 3.5 is understanding the Bieri–Neumann–Strebel (BNS)
invariant well enough to produce nontrivial characters of the groups of interest that
contain certain prescribed subgroups in their kernels while still lying in the BNS
invariant. The BNS invariant of an arbitrary RAAG is known from work of Meier and
VanWyk [22]. There has been some other recent interest in using the BNS invariants
of RAAGs to distinguish groups; for instance, Koban and Piggott [20] determined
precisely when the pure symmetric automorphism group of a RAAG is itself a RAAG,
and Day and Wade [11] used a new homology theory to produce similar results for the
“outer” version.

Using the BNS invariant to approach questions of commensurability is a natural en-
deavor, but to the best of our knowledge it has not been exploited in the literature. We
expect that our techniques could be used in the future to get similar commensurability
results for other groups whose BNS invariants are known. In the interest of providing
other explicit examples, we inspect braid groups and loop braid groups, and use similar
methods to those used for RAAGs to get the following results:

Theorem 5.1 For n� 4 the braid group Bn is not commensurable to any group that
splits nontrivially over an NF subgroup.

Theorem 5.2 For n� 3 the loop braid group LBn is not commensurable to any group
that splits nontrivially over an NF subgroup.

The BNS invariant of the (loop) braid group is known but turns out not to be useful here,
since it is too small (characters tend to become trivial as soon as they kill interesting
subgroups). Instead we use the BNS invariants of the pure braid group PBn and pure
loop braid group PLBn , which are known from work of Koban, McCammond and
Meier [19] and Orlandi-Korner [23], and are robust enough to use for these purposes.
Another relevant comment here is that Clay, Leininger and Margalit proved that for
n� 4 the group Bn is not commensurable to any RAAG [9].

This paper is organized as follows. In Section 1 we recall the BNS invariant and
establish some results about kernels of characters. In Section 2 we discuss RAAGs and
their BNS invariants, and refine a result of Groves and Hull [12] about which RAAGs
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split over which abelian subgroups. In Section 3 we prove our main commensurability
results, Theorem 3.5 and Corollaries 3.6 and 3.7, about RAAGs, and in Section 4 we
discuss the consequences our results have for questions of quasi-isometry. Finally, in
Section 5 we prove related commensurability results, Theorems 5.1 and 5.2, about
braid groups and loop braid groups.

Acknowledgements Thanks are due to Matt Brin, Matt Clay, Thomas Koberda, Ric
Wade and Stefan Witzel for helpful discussions, useful comments, clarification of
results and general encouragement. I am also grateful to Jingyin Huang for Lemma 4.1.
Finally, I thank the anonymous referee for helpful remarks, including pointing out a
more concise way to phrase Theorem 3.5.

1 Characters of a group

A character of a group G is a homomorphism G!R. In this section we recall the
definition of the BNS invariant and establish some facts about the behavior of kernels
of characters.

1.1 The BNS invariant

The BNS invariant †1.G/ of a finitely generated group G is a certain subset of the
character sphere

S.G/ WD fŒ�� j 0¤ � 2 Hom.G;R/g

of G. Here Œ�� is the equivalence class of the character � 2 Hom.G;R/ under the
equivalence relation given by �� �0 whenever �D a�0 for some a 2R>0 . The char-
acter sphere is thus the “sphere at infinity” for the euclidean vector space Hom.G;R/.
The invariant †1.G/ is the subset of S.G/ defined as follows:

Definition 1.1 (BNS invariant) Let G be a finitely generated group and let Cay.G/
be its Cayley graph with respect to some finite generating set. For 0¤ � 2Hom.G;R/
let Cay.G/��0 be the induced subgraph of Cay.G/ supported on those vertices g with
�.g/� 0. The BNS invariant †1.G/ is defined to be

†1.G/ WD fŒ�� 2 S.G/ j Cay.G/��0 is connectedg.

Denote by †1.G/c the complement S.G/ n†1.G/. For various reasons it will be
convenient to adopt the convention that the trivial character 0 lies in †1.G/c (but note
that this runs counter to the definition).
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In general the BNS invariant can be very difficult to compute. It contains a huge
amount of information; for example, it reveals exactly which (normal) subgroups
N �G containing ŒG;G� are finitely generated or not, namely N is finitely generated
if and only if Œ�� 2†1.G/ for all 0¤ � such that �.N /D 0.

Even if †1.G/ is completely known, it can still be very difficult to compute †1.H /

for H a finite-index subgroup of G. There is a region of S.H / that can be understood
based just on knowing †1.G/, namely the region given by characters of H that are
restrictions of characters of G :

Citation 1.2 [24, Proposition B1.11] Let G be a finitely generated group and H

a finite-index subgroup. Let � 2 Hom.G;R/ and consider the restriction �jH 2

Hom.H;R/ of � to H. We have that Œ�jH � 2†1.H / if and only if Œ�� 2†1.G/.

1.2 Kernels of characters

In this subsection we find a way to control which generators of a group must lie in the
kernel of a character, given the knowledge that some prescribed subgroup lies in the
kernel. The main result is Proposition 1.4.

Fix a finitely generated group G. Let V denote the R–vector space .G=ŒG;G�/˝R.
Let �W G!V be the “euclideanization” map obtained by composing the abelianization
map G!G=ŒG;G� with the map G=ŒG;G�! .G=ŒG;G�/˝R.

Definition 1.3 Given a subset A of G , define the radical
p

A of A to be the set
fg 2G j gq 2A for some q 2Znf0gg. Note that A�

p
A�G, and if A is a subgroup

of G containing ŒG;G� then
p

A is a subgroup of G.

For J �G, if a character � 2 Hom.G;R/ contains J in its kernel then it necessarily
contains

p
J ŒG;G�. This next proposition says, first, that � does not necessarily

contain more than this, and, second, that under an addition restriction on G (which will
be satisfied by our future groups of interest), the number of generators of J controls
the number of generators of G that can lie in ker.�/.

Proposition 1.4 (kill J and little else) Let G be a finitely generated group, and let
J �G. Then there exists � 2 Hom.G;R/ with ker.�/D

p
J ŒG;G�. Moreover, if G

admits a finite generating set S such that dimR.V /D jS j, and J is generated by n

elements, then at most n elements of S lie in ker.�/.

Proof The quotient G=
p

J ŒG;G� is a finitely generated torsion-free abelian group (ie
a free abelian group), and hence can be embedded in R. Composing this embedding
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with G!G=
p

J ŒG;G� yields a character � 2Hom.G;R/ with ker.�/D
p

J ŒG;G�.
Now suppose G admits a finite generating set S such that dimR.V / D jS j, and
J is generated by n elements j1; : : : ; jn . We claim that the image of

p
J ŒG;G�

in V spans a subspace W of dimension at most n. It suffices to prove that every
element of

p
J ŒG;G� maps under � to a vector of V in the span of the �.ji/. Let

g 2
p

J ŒG;G�, say gq D jc for q ¤ 0, j 2 J and c 2 ŒG;G�. Then �.g/ D
1
q
�.gq/D 1

q
�.jc/D 1

q
�.j /, which indeed lies in the span of the �.ji/. Now, since

dimR.V /D jS j and �.S/ spans V , we must have that � is injective on S and �.S/
is also linearly independent. Hence, at most n elements of S can map into W , and
hence at most n elements of S can lie in

p
J ŒG;G�D ker.�/.

2 Right-angled Artin groups

A right-angled Artin group or RAAG is a group admitting a finite presentation in which
each relator is a commutator of two generators. Given a finite simplicial graph � ,
with vertex set V .�/ and edge set E.�/, we get a RAAG, denoted by A� , by taking
a generator for each vertex and declaring that two vertices commute if and only if
they share an edge. For example, if E.�/D∅ then A� Š FjV .�/j , the free group on
jV .�/j generators, and if � is a clique, ie a graph where every pair of vertices spans
an edge, then A� Š ZjV .�/j .

The BNS invariants of RAAGs were fully computed by Meier and VanWyk [22]. We
recall the computation here.

Definition 2.1 (living/dead subgraph) Given a character �2Hom.A� ;R/, define the
�–living subgraph ��� to be the induced subgraph of � supported on those vertices v

with �.v/¤0, and the �–dead subgraph �|
� to be the induced subgraph of � supported

on those vertices v with �.v/D 0.

Citation 2.2 (BNS of RAAG [22]) Œ��2†1.A�/ if and only if the �–living subgraph
��� is connected and dominating in � .

Here a subgraph � of � is called dominating (in � ) if every vertex of � n� is adjacent
to a vertex of �.

In [12], Groves and Hull proved that the only way a nonabelian RAAG can split
nontrivially over an abelian subgroup is if its defining graph admits a (possibly empty)
separating clique. Recall that a subgraph � of � is called separating ( for � ) if � n�
is disconnected.
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We now inspect the details of Groves and Hull’s proof of their Theorem A to get the
following refined result:

Proposition 2.3 (splittings and cliques) Let � be a finite simplicial graph that is
not a clique. The minimal n � 0 such that A� splits nontrivially over Zn equals
the minimal n � 0 such that � admits a separating n–clique, with n taken to be 1
whenever such splittings or cliques do not exist.

To clarify, by n–clique we mean a clique with n vertices, ie the 1–skeleton of an
.n�1/–simplex.

Proof of Proposition 2.3 The nD1 case is immediate from [12, Theorem A], so
assume n<1. Note that if � has a separating n–clique then A� splits nontrivially
over Zn , so the thing to prove is that if A� splits nontrivially over Zn then � admits a
separating k –clique for some k � n. The splitting gives us an action of A� on a tree T

with edge stabilizers isomorphic to Zn , no global fixed points and no edge inversions,
and we will inspect this action using the proof of Theorem A in [12] as an outline.

First suppose some v 2 V .�/ acts hyperbolically on T . Let e be any edge of the axis
of v in T , so StabA�

.e/ Š Zn . Let u be a vertex in lk� v , so u stabilizes the axis
of v in T . Hence, there exist nu;mu 2Z with nu¤ 0 such that unuvmu fixes this axis
pointwise, and in particular unuvmu 2 StabA�

.e/. Since this holds for every u 2 lk� v ,
and since StabA�

.e/ is abelian, we conclude that Œunu ; wnw �D 1 for any u; w 2 lk� v ,
which implies that lk� v is a clique (this conclusion is also in [12]), and, even more
precisely, since StabA�

.e/ŠZn we conclude that lk� v is a k –clique for some k � n.
Since lk� v separates v from � n st� v (and the latter is nonempty since � is not a
clique but st� v is), we have our separating k –clique.

Now assume that every v 2 V .�/ acts elliptically on T . Groves and Hull define a
map F W �! T that in particular takes each v 2 V .�/ to some point of T that it fixes.
There is a special point p , at the midpoint of an edge, that is the image under F of
every v fixing it. Since the action does not invert edges, all these v even fix the edge
containing p . As Groves and Hull show, F�1.p/ is a separating clique in � , but even
more precisely it is a separating k –clique for some k � n, since the edge stabilizer
is isomorphic to Zn .

As a remark, the reason to exclude the case when � is a clique is that while cliques
have no separating cliques, technically Zn does split nontrivially over Zn�1 , as the
HNN extension Zn D Zn�1�t where the stable element t conjugates Zn�1 to itself
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via the identity map. Another remark is that the nD 1 case was previously proved by
Clay [8], and Groves and Hull remarked in [12, Remark 0.1] that their approach could
recover Clay’s result. Finally, to reiterate a point made in the introduction, the reason
that the statement of the proposition is only about the minimal n is that in the proof
we cannot control the size of the cliques produced, only an upper bound. However, we
suspect that the stronger statement “A� splits nontrivially over Zn if and only if �
admits a separating n–clique” is true.

3 Commensurability results for RAAGs

In this section we prove our main results about RAAGs, Theorem 3.5 and Corollaries 3.6
and 3.7. We first prove a proposition about general finitely generated groups that shows,
outside a trivial case, that if a group G is commensurable to a group G0 that splits over
a subgroup L, then G contains a copy of a finite-index subgroup of L that cannot be
killed by any pair of opposite characters ˙� in the BNS invariant of G.

Proposition 3.1 Let L be a group and let G be a finitely generated group that is not
virtually of the form K Ì Z for any finite-index subgroup K of L. Suppose G is
commensurable to a group G0 that splits nontrivially over L. Then there exists K �G,
with K isomorphic to a finite-index subgroup of L, such that for any � 2 Hom.G;R/,
if �.K/D 0 then at least one of Œ˙�� lies in †1.G/c .

Proof Let H be a finite-index subgroup of G that embeds with finite index into G0.
We will abuse notation and write H also for the finite-index image of H in G0. Since
G0 splits nontrivially over L, we know H decomposes as the fundamental group of a
finite reduced graph of groups G whose edge groups are H intersected with conjugates
of L in G0. Since H has finite index in G0, these edge groups are all isomorphic to
finite-index subgroups of L. Let K �H be one of these edge groups; for example,
just take K WD H \L. First suppose G is a strictly ascending HNN extension, say
H DK�t . Then, for any  2Hom.H;R/ such that  .K/D 0, if moreover  .t/D 0

then  D 0 and Œ˙ � 2†1.H /c by our convention. If  .K/D 0 and  .t/¤ 0 then
either Œ � or Œ� � lies in †1.G/c (see for instance [3, Theorem 2.1]). Next suppose
G is an ascending HNN extension that is not strict, ie H ŠK ÌZ. Then G is virtually
of the form K Ì Z, which we ruled out. Finally suppose G is not an ascending HNN
extension. Then [7, Proposition 2.5] says that for any  2 Hom.H;R/, if  .K/D 0

then Œ � 2†1.H /c . In any case, for any � 2Hom.G;R/ with �.K/D 0, at least one
of Œ˙�jH � 2†1.H /c , so by Citation 1.2 also at least one of Œ˙�� 2†1.G/c .
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Now we specialize to RAAGs.

Lemma 3.2 Let � be a finite simplicial graph and let K be an abelian subgroup
of A� . Let �K � � be the induced subgraph supported on those vertices v such that
v 2

p
KŒA� ;A� �. Then �K is a clique.

Proof Suppose v and w are distinct vertices in �K , say with vqc; wr d 2 K for
q; r 2Zn f0g and c; d 2 ŒA� ;A� �. Since K is abelian, vqc and wr d commute. Now
suppose v and w are not adjacent, so there is a retract � W A� ! F2 D hv;wi. We
have that �.vqc/D vq�.c/ and �.wr d/D wr�.d/ commute in F2 . Since neither is
trivial, this means that .vq�.c//a D .wr�.d//b for some a; b 2Zn f0g. Abelianizing
F2 to Z2 D hxv; Swi, this produces qaxv D rbSw , with qa; rb ¤ 0, which is absurd.

Corollary 3.3 Let � be a finite simplicial graph and let K �A� with KŠZn . Then
there exists � 2 Hom.A� ;R/ such that �.K/D 0 and the �–dead subgraph �|

� is a
k –clique for some 0� k � n.

Proof Choose � as in Proposition 1.4 with G DA� , S D V .�/ and J DK . Then
�.K/D 0 and v 2 V .�/ satisfies v 2 �|

� if and only if v 2
p

KŒA� ;A� �. Since the
abelianization of A� is ZjV .�/j , Proposition 1.4 also says that at most n vertices satisfy
this, and Lemma 3.2 says they must span a clique.

Proposition 3.1 applied to the L D Zn case said that a RAAG commensurable to
a group splitting over Zn contains a copy of Zn that cannot be killed by a pair of
opposite characters ˙� in the BNS invariant. This next proposition says that for a
RAAG that does not obviously split over Zn , any copy of Zn can be killed by a pair
of opposite characters ˙� in the BNS invariant.

Proposition 3.4 Let � be a finite simplicial graph with no separating k –cliques for
any k � n. Then, for any proper subgroup K Š Zn of A� , there exists a character
� 2 Hom.A� ;R/ such that �.K/D 0 but Œ˙�� 2†1.A�/.

Proof Choose � as in Corollary 3.3, so �.K/D 0 and �|
� is a k –clique for some

0 � k � n. If � is a clique, then since K is a proper subgroup of A� we know �
|
�

is not all of � , so in this case ��� is connected and dominating. Now assume � is
not a clique. Since � has no separating k –cliques, ��� is connected. Also, it must be
dominating since if st�.v/ lies in �|

� then st�.v/ is an `–clique for some `� k , and
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since � is not a clique this means lk�.v/ is a separating .`�1/–clique, which we have
ruled out. In either case Citation 2.2 says Œ�� 2 †1.A�/. Since ��� D �

�
�� , we also

have Œ��� 2†1.A�/.

Now we can prove our main results.

Theorem 3.5 Let � be a finite simplicial nonclique graph with no separating k –
cliques for any k�n. Then A� is not commensurable to any group splitting nontrivially
over Zn .

Proof Suppose A� is commensurable to a group splitting nontrivially over Zn . By
Proposition 3.1 using LDZn (which applies since A� contains F2 and hence cannot
be virtually of the form Zn Ì Z) there exists a subgroup K Š Zn of A� such that
for any � 2 Hom.A� ;R/ if �.K/ D 0 then at least one of Œ˙�� lies in †1.A�/

c

(in fact both do since †1.A�/ happens to be closed under inverting characters). But
by Proposition 3.4 we know that there exists a character � 2 Hom.A� ;R/ such that
�.K/D 0 but Œ˙�� 2†1.A�/, a contradiction.

We immediately get the following commensurability invariant for RAAGs:

Corollary 3.6 If A� and A� are commensurable and � has no separating k –cliques
for any k � n, then neither does �.

Proof If � is itself a clique then we must have � D�. If � is not a clique then the
result is immediate from Proposition 2.3 and Theorem 3.5.

We also get the following corollary in the special case where � has no separating
cliques at all. Recall from the introduction that any NF subgroup (that is, one containing
no nonabelian free subgroups) of a RAAG is abelian.

Corollary 3.7 Let � be a finite simplicial nonclique graph with no separating cliques.
Then A� is not commensurable to any group splitting nontrivially over an NF subgroup.

Proof Suppose A� is commensurable to a group that splits nontrivially over an NF
subgroup. By Proposition 3.1, which applies since A� is not (virtually) NF, there exists
an NF subgroup K � A� such that for any � 2 Hom.A� ;R/ if �.K/ D 0 then at
least one of Œ˙�� lies in †1.A�/

c . Since NF subgroups of RAAGs are abelian, in fact
K is abelian, so by Proposition 1.4 and Lemma 3.2 we can choose � 2 Hom.A� ;R/
such that �.K/D 0 and �|

� is a clique. Since � has no separating cliques, this implies
Œ˙�� 2†1.A�/, as explained in the proof of Proposition 3.4, a contradiction.
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As a remark, if A� is commensurable to a group splitting nontrivially over an NF
subgroup generated by n elements, then in general we cannot control the number
of generators of the subgroup K described in the proof, and hence cannot control
the size of the clique �|

� . Of course, if the NF subgroup is Zn then K is also Zn ,
since finite-index subgroups of Zn are isomorphic to Zn (which is why Theorem 3.5
worked), but in general we do not get a statement like Corollary 3.7 if we merely
rule out separating cliques up to some size; we really need to rule out all separating
cliques.

4 Quasi-isometry results for RAAGs

This brief section amounts to a collection of examples of results about quasi-isometry,
which follow immediately from our results about commensurability together with
results by Huang [14; 15; 13] tying commensurability to quasi-isometry.

First we need one technical lemma, the proof of which is essentially due to Jingyin
Huang.

Lemma 4.1 Let � be a finite simplicial graph. Suppose Out.A�/ is finite. Then �
has no separating cliques.

Proof (Jingyin Huang) Since Out.A�/ is finite we know � has no separating closed
stars, and no instances of lk v � stw for vertices v ¤ w . Now suppose � has a
separating clique K , say the connected components of its complement are C1; : : : ;Ck ,
so k � 2. If K D∅ (ie it is a 0–clique) then � is disconnected and has infinite outer
automorphism group, so we know K¤∅. Pick a vertex v 2K , so K� st v . Since st v
is not separating, at most one of the Ci n st v can be nonempty. Since k � 2 this means
at least one of the Ci n st v must be empty, say without loss of generality C1 n st vD∅,
ie C1 � st v . But now for any vertex w in C1 , we have lkw � C1 [K � st v , a
contradiction.

Corollary 4.2 Suppose A� and A� are quasi-isometric, and that Out.A�/ is finite,
so by Lemma 4.1 we know � has no separating cliques. Then � also has no separating
cliques.

Proof This follows from [14, Theorem 1.2] and Corollary 3.6.
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Corollary 4.3 Suppose A� and A� are quasi-isometric and � is of weak type I or
type II as defined in [13]. Then, if � has no separating k –cliques for any k � n,
neither does �.

Proof This follows from [13, Theorems 1.3 and 1.6] and Corollary 3.6.

Corollary 4.4 Let G be a finitely generated group quasi-isometric to A� . Suppose
that every automorphism of � fixing a closed star of a vertex pointwise fixes all of � ,
that � contains no induced 4–cycles and that Out.A�/ is finite. Then G does not split
nontrivially over Zn for any n.

Proof Since Out.A�/ is finite, � has no separating cliques by Lemma 4.1. The result
now follows from [15, Theorem 1.2] and Theorem 3.5.

In general, we would get similar sorts of results anytime there is a graph � for which
quasi-isometry to A� implies commensurability to A� .

5 Commensurability results for (loop) braid groups

In this section we apply our approach to braid groups and loop braid groups.

5.1 Commensurability results for braid groups

The n–strand braid group is the group presented by

Bn D

�
s1; : : : ; sn�1

ˇ̌̌
sisiC1si D siC1sisiC1 for all 1� i � n� 2

and sisj D sj si for all ji � j j> 1

�
.

There is a projection Bn! Sn given by adding the relations s2
i D 1 for all i , and the

kernel of this map is the n–strand pure braid group PBn .

We will work with a specific generating set of PBn , namely S DfSi;j j 1� i < j � ng,
where Si;j WD sisiC1 � � � sj�2s2

j�1
s�1
j�2
� � � s�1

iC1
s�1
i . Visually, in Si;j the i th strand

crosses in front of all the strands between it and the j th strand, spins around the j th

strand, and returns to where it came from, again crossing in front of the intermediate
strands. An important fact we will use is that PB3ŠF2�Z, with S1;2 and S1;3 serving
as generators of the F2 factor. We will also make use of the standard projections
PBn! PBm for m< n, obtained by deleting some collection of n�m strands.
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The BNS invariant †1.PBn/ was computed by Koban, McCammond and Meier [19].
We recall the computation here. If n� 5, then Œ��2†1.PBn/

c if and only if �D�0ı�
for � one of the standard projections PBn! PB4 or PBn! PB3 given by deleting
strands, and Œ�0� 2†1.PB3/

c or †1.PB4/
c . In particular, to understand †1.PBn/

c we
need only understand †1.PB3/

c and †1.PB4/
c . For PB3 , we have Œ�� 2†1.PB3/

c if
and only if �.S1;2/C�.S1;3/C�.S2;3/D 0. For PB4 we have Œ��2†1.PB4/

c if and
only if either �D �0 ı� for Œ�� 2†1.PB3/

c and � W PB4! PB3 one of the standard
projections, or else � satisfies the equations �.S1;2/D �.S3;4/, �.S1;3/D �.S2;4/,
�.S1;4/D �.S2;3/ and �.S1;2/C�.S1;3/C�.S1;4/D 0. Note that these characteri-
zations imply that, for any �, Œ�� 2†1.PBn/ if and only if Œ��� 2†1.PBn/.

We now use the ideas from the previous sections to prove the following:

Theorem 5.1 For n� 4 the braid group Bn is not commensurable to any group that
splits nontrivially over an NF subgroup.

Note that PB3 Š F2 �Z D Z2 �Z Z2 and Z is NF, so the n � 4 restriction in the
theorem is necessary. Also, the NF condition is obviously necessary, since for instance
Bn Š ŒBn;Bn�Ì Z is a nontrivial HNN extension.

Proof of Theorem 5.1 We will work with the pure braid group PBn , which is com-
mensurable to Bn (being a finite-index subgroup). Suppose PBn is commensurable to a
group that splits nontrivially over an NF subgroup. Since PBn is not NF, Proposition 3.1
implies that PBn admits an NF subgroup K such that for any � 2 Hom.PBn;R/, if
�.K/D 0 then at least one of Œ˙�� lies in †1.PBn/

c , which means Œ�� 2†1.PBn/
c .

By Proposition 1.4, there exists � 2 Hom.PBn;R/ with ker.�/ D
p

KŒPBn;PBn�.
Since �.K/D 0 we know Œ�� 2†1.PBn/

c , which implies that either nD 4 or else �
is induced from some standard projection onto PB3 or PB4 .

In particular, if n � 5 then there exists j such that �.Si;j / D �.Sj ;k/ D 0 for any
i < j or j < k (just choose j to be the label of a strand getting deleted), which implies
that Si;j ;Sj ;k 2

p
KŒPBn;PBn� for any such i or k . Up to automorphisms (note that

the BNS invariant is invariant under automorphisms) we can assume j D 1, so in
particular S1;2;S1;3 2

p
KŒPBn;PBn�. Choose q; r 2 Z n f0g and c; d 2 ŒPBn;PBn�

such that S
q
1;2

c;Sr
1;3

d 2K , which, since K is NF, implies that S
q
1;2

c and Sr
1;3

d do
not generate a copy of F2 . Now consider the standard projection � W PBn ! PB3

given by deleting all but the first three strands. Then S
q
1;2
�.c/ and Sr

1;3
�.d/ do not

generate a copy of F2 in PB3 , and so neither do their images in PB3=Z.PB3/Š F2 .
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Hence, these images commute,1 and so modulo Z.PB3/, S
q
1;2
�.c/ and Sr

1;3
�.d/ have

a common power, say .Sq
1;2
�.c//a D .Sr

1;3
�.d//bz for a; b 2 Z and z 2 Z.PB3/.

But modding out Z.PB3/ and abelianizing F2 to Z2 D hS1;2;S1;3i, this implies that
qaS1;2 D rbS1;3 , which is absurd.

Now suppose n D 4. If � is induced from a standard projection PB4 ! PB3

then we can use the above argument to get our contradiction, so suppose it is not.
Hence, we have �.S1;2/ D �.S3;4/, �.S1;3/ D �.S2;4/, �.S1;4/ D �.S2;3/ and
�.S1;2/C�.S1;3/C�.S1;4/D 0. In particular,

S1;2S�1
3;4;S1;3S�1

2;4 2 ker.�/D
p

KŒPB4;PB4�;

so we can choose q; r 2 Z n f0g and c; d 2 ŒPB4;PB4� such that .S1;2S�1
3;4
/qc and

.S1;3S�1
2;4
/r d lie in K , and hence do not generate a copy of F2 . Their images under

the standard projection � W PB4! PB3 given by deleting all but the first three strands
also do not generate a copy of F2 , so S

q
1;2
�.c/ and Sr

1;3
�.d/ do not generate a copy

of F2 in PB3 . We are now in the same situation as in the proof of the n� 5 case, and
as in that proof we reach a contradiction.

As a remark, it would not have worked to try and apply this technique to Bn itself,
so working with PBn really was necessary. Indeed, every Œ�� 2 †1.Bn/ satisfies
ker.�/D ŒBn;Bn�, so it is impossible to find such a � with an arbitrary NF subgroup
lying in its kernel.

5.2 Commensurability results for loop braid groups

Much of this subsection proceeds very similarly to Section 5.1.

The loop braid group LBn on n loops is the group of symmetric automorphisms of
the free group Fn . Fixing a free generating set fx1; : : : ;xng for Fn , an automorphism
˛ 2 Aut.Fn/ is called symmetric if it takes each xi to a conjugate of some xj or x�1

j .
Sometimes the word symmetric is reserved for those ˛ taking each xi to a conjugate
of some xj , not allowing x�1

j ; this produces a finite-index subgroup of what we are
calling LBn . This terminological ambiguity will not matter here, since we will actually
work with the pure loop braid group PLBn , the group of automorphisms ˛ 2 Aut.Fn/

taking each xi to a conjugate of xi , which is again a finite-index subgroup of LBn .

1Actually S
q
1;2

c and Sr
1;3

d already commute in PBn by [21], but we have to pass to F2 anyway, so

it is not necessary to appeal to the result from [21].
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The name loop braid group comes from viewing such automorphisms as pictures of n

loops in 3–space moving around and through each other. See [10] for a great deal of
background and more details.

The BNS invariant †1.PLBn/ was computed by Orlandi-Korner [23]. We recall here
some of her setup. First, PLBn is generated by f˛i;j j i ¤ j g, where ˛i;j is the
automorphism of Fn taking xi to x�1

j xixj and xk to itself for k ¤ i . For m< n a
standard projection PLBn! PLBm is a map induced from some projection Fn!Fm

given by sending some choice of n�m generators to the identity and sending the
remaining m generators to the generators of Fm . Now †1.PLBn/ is described as
follows: For n�4, Œ��2†1.PLBn/

c if and only if �D�0ı� for � a standard projection
PLBn! PLB2 or PLBn! PLB3 and Œ�0� in †1.PLB2/

c or †1.PLB3/
c . For nD 3

we have that Œ�� 2†1.PLB3/
c if and only if it is induced from a standard projection to

PLB2 or else �.˛2;1/C�.˛3;1/D0, �.˛1;2/C�.˛3;2/D0 and �.˛1;3/C�.˛2;3/D0.
For nD 2 we have †1.PLB2/D∅ (in fact PLB2 Š F2 ). Note that a consequence of
all this is that Œ�� 2†1.PLBn/ if and only if Œ��� 2†1.PLBn/.

We now use the ideas from the previous sections to prove the following. The proof is
very similar to the proof of Theorem 5.1.

Theorem 5.2 For n� 3 the loop braid group LBn is not commensurable to any group
that splits nontrivially over an NF subgroup.

The n� 3 restriction is necessary since PLB2 Š F2 splits nontrivially over f1g, and
the NF condition is necessary for reasons similar to the braid group case.

Proof of Theorem 5.2 We will work with the pure loop braid group PLBn , which
is commensurable to LBn (being a finite-index subgroup). Suppose PLBn is com-
mensurable to a group that splits nontrivially over an NF subgroup. Since PLBn is
not NF, Proposition 3.1 implies that PLBn admits an NF subgroup K such that for
any � 2 Hom.PLBn;R/, if �.K/ D 0 then at least one of Œ˙�� lies in †1.PLBn/

c ,
which means Œ�� 2†1.PLBn/

c . By Proposition 1.4, there exists � 2 Hom.PLBn;R/

with ker.�/D
p

KŒPLBn;PLBn�. Since �.K/D 0 we know Œ��2†1.PLBn/
c , which

implies that either n D 3 or else � is induced from some standard projection onto
PLB2 or PLB3 .

In particular, if n� 4 then there exists i such that �.˛i;j /D �. j̨ ;i/D 0 for all i ¤ j

(just choose i such that xi is sent to 1 in the projection of Fn inducing the standard
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projection of PLBn ), which implies that ˛i;j ; j̨ ;i 2
p

KŒPLBn;PLBn� for all i ¤ j .
Up to automorphisms (note that the BNS invariant is invariant under automorphisms) we
can assume iD1, so in particular ˛1;2; ˛2;12

p
KŒPLBn;PLBn�. Choose q; r 2Znf0g

and c; d 2 ŒPLBn;PLBn� such that ˛q
1;2

c; ˛r
2;1

d 2K , which, since K is NF, implies
that ˛q

1;2
c and ˛r

2;1
d do not generate a copy of F2 . Now consider the standard

projection � W PLBn! PLB2 given by sending all but the first two generators of Fn

to 1 and the first two to the generators of F2 (in order). Then ˛q
1;2
�.c/ and ˛r

2;1
�.d/

do not generate a copy of F2 in PLB2 . Since PLB2 Š F2 , this means ˛q
1;2
�.c/ and

˛r
2;1
�.d/ have a common power, say .˛q

1;2
�.c//a D .˛r

2;1
�.d//b for a; b 2 Z. But

abelianizing F2 to Z2 D hx̨1;2; x̨2;1i, this implies that qax̨1;2 D rb x̨2;1 , which is
absurd.

Now suppose nD 3. If � is induced from a standard projection PLB3! PLB2 then
we can use the above argument to get our contradiction, so suppose it is not. Hence,
we have �.˛2;1/C �.˛3;1/D 0, �.˛1;2/C �.˛3;2/D 0 and �.˛1;3/C �.˛2;3/D 0.
In particular, ˛1;2˛3;2; ˛2;1˛3;1 2 ker.�/ D

p
KŒPLB3;PLB3�, so we can choose

q; r 2 Z n f0g and c; d 2 ŒPLB3;PLB3� such that .˛1;2˛3;2/
qc and .˛2;1˛3;1/

r d lie
in K , and hence do not generate a copy of F2 . Their images under the standard
projection � W PLB3! PLB2 induced by the projection F3! F2 sending x1 to x1 ,
x2 to x2 and x3 to 1 also do not generate a copy of F2 , so ˛q

1;2
�.c/ and ˛r

2;1
�.d/

do not generate a copy of F2 in PLB2 . We are now in the same situation as in the
proof of the n� 4 case, and as in that proof we reach a contradiction.

Much like in the braid group case, it would not have worked to try and apply this
technique to LBn itself, so working with PLBn really was necessary. In fact LBn has
finite abelianization, so it is impossible to find nontrivial characters killing arbitrary
NF subgroups simply because there no nontrivial characters at all.
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