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Examples of nontrivial contact mapping classes for
overtwisted contact manifolds in all dimensions

FABIO GIRONELLA

We construct (infinitely many) examples in all dimensions of contactomorphisms
of closed overtwisted contact manifolds that are smoothly isotopic but not contact-
isotopic to the identity.

53D10, 57R17

1 Introduction

One of the problems in the field of contact topology is to understand the topol-
ogy of the space of contactomorphisms D.V; �/ of a given contact manifold .V; �/
in comparison with that of the space of diffeomorphisms D.V / of the underlying
smooth manifold V or, more specifically, the problem of understanding the map
j�W �k.D.V; �//! �k.D.V // induced by the natural inclusion j W D.V; �/! D.V /.

If „.V / denotes the space of all the contact structures on V , in the case of closed
manifolds the natural map D.V /! „.V / given by � 7! ��� helps to understand
the properties of the j� , and shows that the relation between the topology of D.V; �/
and that of D.V / is mediated by the topology of „.V /. Indeed, (the proof of) Gray’s
theorem implies, modulo a general fibration criterion, that this map is a locally trivial
fibration with fiber D.V; �/; see for instance Giroux and Massot [21] for an explanation
of this result or Massot [26] for a more detailed proof (the reader can also consult
Geiges and Gonzalo Perez [14] for a proof of the fact that the map is a Serre fibration).
Then the exact long sequence of homotopy groups

� � � ! �kC1.„.V //! �k.D.V; �//
j�
�! �k.D.V //! �k.„.V //! � � �

associated to the fibration gives a relationship between the topologies of the three
spaces D.V /, D.V; �/ and „.V /.

As far as the 3–dimensional case is concerned, the availability of classification results
for the isotopy classes of tight contact structures on particular 3–manifolds V gives
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some explicit results about the lower homotopy groups in the long exact sequence above
for these specific manifolds. The reader can consult Geiges and Gonzalo Perez [14],
Bourgeois [5], Ding and Geiges [9], Geiges and Klukas [15] and Giroux and Massot [21]
for results on �1.„.V /; �/ as well as Giroux [19], Giroux and Massot [21] for results
on �0.D.V; �//.

The situation in higher dimensions is more complicated, due to the lack of classification
results. The only results known so far are contained in Bourgeois [5], Massot and
Niederkrüger [27] and Lanzat and Zapolsky [23]. In the first paper, Bourgeois gives
results on some homotopy groups �k.„.V /; �/, for particular contact manifolds .V; �/,
using tools from contact homology. In [27], the authors give examples of contact man-
ifolds .V; �/ for which ker

�
�0.D.V; �//! �0.D.V //

�
is nontrivial; these examples

rely on constructions in Massot, Niederkrüger and Wendl [28], which we will also use
in the following. The last paper, dealing with the noncompact case, contains examples
of embeddings of braid groups in the contactomorphism group of contactizations of
certain noncompact symplectic manifolds.

All the examples recalled so far are given on tight contact manifolds. For the 3–
dimensional case, the dichotomy tight–overtwisted has been well known since Eliash-
berg [10] and plays an important role in the classification results on which the cited
examples are based. In the higher-dimensional case, a clear definition of overtwistedness
is given in Borman, Eliashberg and Murphy [3] and according to it the three examples
above are also tight.

As far as the class of overtwisted manifolds is concerned, the only result known
at the moment is the classification result of the path components of the space of
contactomorphisms for all overtwisted contact structures on the 3–sphere. This result,
without proof until recently, is attributed to Chekanov according to Eliashberg and
Fraser [11, Remark 4.16]. Vogel published a complete proof of this classification in [31],
where it is also proven, using 3–dimensional techniques, that the space of embeddings
of overtwisted disks in one of the overtwisted contact structures on S3 is not path-
connected. This gives in particular the first known examples of contactomorphisms of
overtwisted 3–manifolds that are smoothly isotopic but not contact-isotopic to the iden-
tity (we recall that, according to Cerf [8], each orientation-preserving diffeomorphism
of the 3–sphere is smoothly isotopic to the identity).

In this article we give other explicit examples of overtwisted .V; �/ such that the kernel
of �0.D.V; �//! �0.D.V // is nontrivial. Though, we bypass here the problem of
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understanding the �0 of the space of embeddings of overtwisted disks, about which
nothing is known so far in high dimensions; the advantage of our approach is then that
it gives (infinitely many) examples in each odd dimension.

More precisely, we start by proving the following result:

Theorem 1.1 Consider a closed manifold W of dimension 2n � 2 and let � be a
coorientable contact structure on the manifold V WD S1 �W . Suppose that the first
Chern class c1.�/2H 2.V IZ/ is toroidal and that, for each natural k � 2, the pullback
��
k
� of � via the k–fold cover �k W S1 �W ! S1 �W given by �k.s; p/D .ks; p/

satisfies c1.��k �/D k � c1.�/ modulo the submodule H 2
ator.V IZ/ of atoroidal classes.

Then the contact transformation f W .S1 � W;��
k
�/ ! .S1 � W;��

k
�/ defined by

f .s; p/D
�
sC 2�

k
; p
�

is smoothly isotopic but not contact-isotopic to the identity.

Recall that a class c 2H 2.V IZ/ is called toroidal if there is f W T2! V such that
f �c ¤ 0 2H 2.T2IZ/, and atoroidal otherwise.

Remark Theorem 1.1 also holds (with similar proof) if one exchanges

(�) c1.�/ is toroidal and c1.�
�
k
�/ D k � c1.�/ modH 2

ator.V IZ/ for each natural
k � 2,

with the condition

(�0) c1.�/ is not torsion and c1.��k �/D k � c1.�/ for each natural k � 2.

Notice that a 2H 2.V IZ/ is toroidal if and only if Œa� 2H 2.V IZ/=H 2
ator.V IZ/ is not

torsion, because H 2.T2IZ/' Z. In particular, (�) is equivalent to

c1.�/ is not torsion modulo H 2
ator.V IZ/ and c1.��k �/D k � c1.�/ modH 2

ator.V IZ/,

hence it is just a variation modulo H 2
ator.V IZ/ of (�0) (and it is neither stronger nor

weaker than (�0)). Slightly anticipating what follows, we also point out that the contact
structures given in Theorem 1.2, Proposition 1.4 and Theorem 1.3(i) below actually
satisfy both (�) and (�0); on the other hand, working modulo H 2

ator.V IZ/, ie with (�),
is necessary for Theorem 1.3(ii) We hence decided to formulate everything in terms
of (�), even though (�0) would give (everywhere but in Theorem 1.3(ii)) slightly more
direct proofs.

We then give, for each natural n� 1, an infinite number of explicit overtwisted contact
manifolds .S1 �W 2n; �/ satisfying the hypothesis of Theorem 1.1:
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Figure 1: Dividing set on the torus T2
.s;t/
� f�0g

Theorem 1.2 Let .M 2n�1; ˛C; ˛�/ be one of the infinitely many Liouville pairs
constructed in Massot, Niederkrüger and Wendl [28]. Consider the (coorientable)
contact structure �D ker

�
1
2
.1Ccos s/˛CC 1

2
.1�cos s/˛�Csin s dt

�
on the manifold

V WD T2
.s;t/
�M (here, the notation T2

.s;t/
denotes the choice of coordinates .s; t/

on T2 ) and denote by � the overtwisted contact structure obtained from � via a half
Lutz–Mori twist along f.0; 0/g�M, as defined in Massot, Niederkrüger and Wendl [28].

Then c1.�/ 2H 2.V IZ/ is toroidal and, for each natural k � 2, we have c1.��k �/D
k �c1.�/ modH 2

ator.V IZ/, where �k W T2
.s;t/
�M!T2

.s;t/
�M is given by �k.s; t; q/D

.ks; t; q/.

Example If nD 3, .M; ˛˙/D .S1;˙d�/. Moreover, if k D 2, the contact structure
��2 � on V WDT2�M is the unique (up to isotopy) contact structure which is invariant
by the left action by multiplication of M D S1 on V , invariant by the f .s; t; �/ D
.sC�; t; �/ defined in the statement and such that each torus T2

.s;t/
� f�0g is convex

with dividing set as in Figure 1. Theorems 1.2 and 1.1 then say that f is not contact-
isotopic to the identity; to our knowledge, even in this simple and very explicit setting,
there is no trace of this result in the literature.

If one is just interested in giving examples, in each odd dimension, of nontrivial elements
in the kernel of the map �0.D.V; �//! �0.D.V //, without wanting the underlying
overtwisted contact manifolds .V; �/ to be as explicit as those from Theorem 1.2,
the following result can also be proven using the existence of adapted open-book
decompositions proven by Giroux [19]:
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Theorem 1.3 Consider W a closed 2n–dimensional manifold and � a coorientable
overtwisted contact structure on V WD S1 �W . Suppose that c1.�/ is toroidal and
that, for each k � 2, the pullback of � via the k–fold covering �k W V ! V , given by
�k.s; p/D .ks; p/, satisfies c1.��k�/D k � c1.�/ modH 2

ator.V IZ/. Then:

(i) Each contact structure � on V �T2 obtained via the Bourgeois construction [4]
from .V; �/ (is coorientable and) has first Chern class also satisfying the above
conditions, with respect to the covering �k WD .�k; Id/W V �T2! V �T2 .

(ii) Let �W V � †g ! V � T2 be induced by a covering †g ! T2 branched
over two points (here, †g denotes the closed surface of genus g � 2). Then
every contact branched covering �g of � on V �†g (is coorientable and) has
first Chern class satisfying the above conditions, with respect to the covering
�
g

k
WD .�k; Id/W V �†g ! V �†g . Moreover, if � is overtwisted and g is

large enough, �g is also overtwisted.

By an induction on the dimension, Theorem 1.3 gives, for any integer n� 2, examples
of .S1 � W 2n; �/ whose first Chern class satisfies the desired conditions. As far
as point (ii) is concerned, the reader can consult Geiges [12] for a construction and
Gironella [17] for a definition of contact branched coverings. We also point out that
the optimal integer g to guarantee overtwistedness of �g is actually 2, according to an
observation due to Niederkrüger (see Gironella [17, Claim 7.11]).

Using the h–principle of Borman, Eliashberg and Murphy [3], an even bigger class of
(nonexplicit) examples can be obtained:

Proposition 1.4 Consider a closed connected manifold W 2n which is almost complex,
spin and satisfies H 1.W IZ/¤ f0g. Then there is a coorientable overtwisted contact
structure � on V WD S1 �W such that c1.�/ is toroidal and c1.�

�
k
�/ D k � c1.�/

modH 2
ator.V IZ/, where �k W S1s �W ! S1s �W is given by �k.s; p/D .ks; p/.

Outline

Section 2 contains a proof by contradiction of Theorem 1.1. Assuming that the contacto-
morphism f is contact-isotopic to the identity, we construct a contactomorphism
between two contact structures �1 and �2 ; on the other hand, the hypothesis on the
first Chern class of � implies that �1 and �2 are not even isomorphic as almost contact
structures.
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Section 3 shows how to obtain examples of contact manifolds .S1�W 2n; �/ satisfying
the hypothesis of Theorem 1.1 starting from Massot, Niederkrüger and Wendl [28].

More precisely, Sections 3.1 and 3.2 recall, respectively, the definition of half Lutz–Mori
twist and the explicit constructions of Liouville pairs, both from Massot, Niederkrüger
and Wendl [28]. Then Section 3.3 describes the effects of a half Lutz–Mori twist on
Chern classes in this context and Section 3.4 contains a proof of Theorem 1.2.

Finally, in Section 4 we show how to get examples of contactomorphisms smoothly
isotopic but not contact-isotopic to the identity using the existence of adapted open-book
decompositions proven by Giroux [20] and the h–principle of Borman, Eliashberg and
Murphy [3]. More precisely, Theorem 1.3 and Proposition 1.4 are proven in Sections 4.2
and 4.1, respectively.
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2 Proof of Theorem 1.1

As each contactomorphism gives in particular an isomorphism of the underlying almost
contact structures, Theorem 1.1 directly follows from the two following lemmas:
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Lemma 2.1 Let .S1 � W 2n; �/ be a contact manifold, with � coorientable. For
each natural k � 2, denote by �k W S1 �W ! S1 �W the k–fold cover �k.s; p/D
.ks; p/ and by f W .S1�W;��

k
�/! .S1�W;��

k
�/ the contactomorphism f .s; p/D�

sC 2�
k
; p
�
.

If f is contact-isotopic to the identity, then there is a contactomorphism

�W .S1 �W;��kN �/
��! .S1 �W;��kNC1�/:

Lemma 2.2 Let .V WD S1�W; �/, �k and f be as in Lemma 2.1. If moreover c1.�/
is toroidal and c1.�

�
m�/D m � c1.�/ modH 2

ator.V IZ/ for every natural m � 2, then
��m� and ��mC1� are not isomorphic as almost contact structures.

Proof of Lemma 2.1 In order to find the desired contactomorphism � , we use an
idea that already appeared in Geiges and Gonzalo Perez [14] and in Marinković and
Pabiniak [25], and which consists in cutting off contact hamiltonians on a particular
cover of the manifold we are working with.

By hypothesis, the contactomorphism f W .S1�W;��
k
�/! .S1�W;��

k
�/ defined by

f .s; p/D
�
sC 2�

k
; p
�

is contact-isotopic to the identity. Call .Fr/r2Œ0;1� the isotopy,
so that F0 D Id, F1 D f and Fr is a contactomorphism for all r 2 Œ0; 1�.

Take now the universal cover Rs of the factor S1s of the manifold S1s �W . Then pull
back ��

k
� to a contact structure �k on the covering Rs �W of S1s �W and lift the

contact isotopy Fr to a contact isotopy ˆr of .Rs �W; �k/ starting at the identity.
Fix a certain contact form ˇk for �k and denote by Hr W Rs �W ! R the path of
contact hamiltonians ˇk.Yr/ associated to the contact vector field Yr generating the
isotopy ˆr (see for instance Geiges [13, Section 2.3] for more details on contact
hamiltonians).

Now, by compactness of W and Œ0; 1�, there is an N > 0 such that, for each r 2 Œ0; 1�,
ˆr.f0gs �W / is contained in .�2.N � 1/�;C1/s �W .

Consider then an � > 0 very small and a smooth function �W R!R such that �.x/D 0
for x < �2N� C � and �.x/D 1 for x > �2.N � 1/� � � . We can then construct a
new contact hamiltonian, Kr.s; p/ WD �.s/ �Hr.s; p/ for all .s; p/ 2Rs �W .

We claim that the contact vector field Zr associated to this new hamiltonian Kr

(ie the unique contact vector field Zr such that ˇk.Zr/ D Kr ; see for instance
[13, Section 2.3]) can be integrated to a contact isotopy .‰r/r2Œ0;1� of .Rs �W; �k/
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starting at the identity. Indeed, Zr is zero for s < �2N� C � and equal to the contact
field Yr for s > �2.N � 1/� � � , which means in particular that it is integrable
outside of a compact set of Rs �W (note that Yr is trivially integrable, because it
comes from a contact isotopy); this implies integrability on all R �W . Moreover,
‰r jf0g�W Dˆr jf0g�W and ‰r jf�2N�g�W D Idjf�2N�g�W for all r 2 Œ0; 1�.

In particular, ‰1 maps Œ�2N�; 0� �W contactomorphically to
�
�2N�; 2�

k

�
�W ,

where we consider on the domain and on the codomain the contact structure �k .

Now, by the periodicity of �k , we can identify the two boundary components of
Œ�2N�; 0��W , so that the restriction of �k induces a well-defined contact structure on
the quotient. More precisely, the quotient contact manifold obtained is .S1s �W;�

�
kN
�/.

The analogous procedure for the codomain
�
�2N�; 2�

k

�
�W of ‰1 gives as quotient

the contact manifold .S1s �W;�
�
kNC1

�/.

Lastly, because ‰1W Œ�2N�; 0��W !
�
�2N�; 2�

k

�
�W is the identity on a neigh-

borhood of f�2N�g�W and a lift of the translation f on a neighborhood of f0g�W ,
it induces on the quotient contact manifolds a well-defined contactomorphism

�W .S1s �W;�
�
kN �/

��! .S1s �W;�
�
kNC1�/:

Proof of Lemma 2.2 Suppose by contradiction that there is an isomorphism of almost
contact structures  W .V; ��m�/

��! .V; ��mC1�/; in particular,

(1)  �c1.�
�
m�/D c1.�

�
mC1�/:

Because the submodule H 2
ator.V IZ/ of atoroidal classes is natural (ie it is preserved

by pullbacks induced by continuous maps V ! V ), the map  � induces a well-
defined endomorphism, which is moreover an isomorphism, of the Z–module N WD
H 2.V IZ/=H 2

ator.V IZ/. We then have  �.��n �/ D n �c1.�/ modH 2
ator.V IZ/ for

each natural n� 2, so that (1) becomes

(2) m �c1.�/D .mC 1/c1.�/ mod H 2
ator.V IZ/:

Notice also that N is a finitely generated Z–module without torsion. In particular,
there is a well-defined divisibility map

d W N n f0g !N n f0g; a 7!maxfk 2N j aD kb for some b 2N g;

which also satisfies d.ha/ D hd.a/ and d. �a/ D d.a/ for each a 2 N n f0g and
h 2 N n f0g. Because c1.�/ is toroidal, we can then apply d to both the left- and
right-hand sides of (2), thus obtaining the desired contradiction.
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3 Examples from Liouville pairs and half Lutz–Mori twists

The idea of the proof of Theorem 1.2 is the following. The contact structure � on the
manifold V DS1�W in the statement has trivial Chern classes (better, it is trivializable
as a complex bundle). We then apply a semilocal modification to � and obtain another
contact structure � ; the explicit nature of this modification (as well as the explicit
nature of the original contact manifold .V; �/) allows us to compute the first Chern
class of � , and to show that it satisfies the desired conditions.

This section is structured in the following way. We recall in Sections 3.1 and 3.2,
respectively, the notion of half Lutz–Mori twist and the construction of Liouville pairs,
both from Massot, Niederkrüger and Wendl [28]. We then describe in Section 3.3 how
half Lutz–Mori twists (along contact submanifolds belonging to one of the Liouville
pairs constructed in [28]) affect the Chern classes of the underlying almost contact
structure. Finally, Section 3.4 contains the proof of Theorem 1.2.

3.1 The half Lutz–Mori twist

Developing some ideas introduced by Mori in [29] in the 5–dimensional case, Massot,
Niederkrüger and Wendl introduce in [28] the notion of Lutz–Mori twist along a sub-
manifold belonging to a Liouville pair as a generalization of the known 3–dimensional
Lutz twists. In this section, we briefly recall how to perform the half version of the
Lutz–Mori twist, which we will use in the following.

We start by recalling the notion of Liouville pair:

Definition 3.1 [28] Let M 2n�1 be an oriented manifold. A Liouville pair on M is
a pair of contact forms .˛C; ˛�/ such that ˙˛˙ ^ .d˛˙/n�1 > 0 and such that the
form er˛CC e

�r˛� is a Liouville form (ie its differential is symplectic) on Rr �M.

We point out that the existence of Liouville pairs on closed manifolds is not trivial; at
the moment, the only known examples in high dimensions are given by the construction
in [28, Section 8], which is nonetheless a source of infinitely many nonhomeomorphic
manifolds with Liouville pairs in each (odd) dimension. In Section 3.2 we will recall
the properties of this construction which are needed in order to prove Theorem 1.1.

Let now .V; �/ be a contact manifold having as a codimension-2 contact submanifold
.M; �C/ such that ˛C defining �C belongs to a Liouville pair .˛C; ˛�/. We want to
describe how to perform a half Lutz–Mori twist on .V; �/ along .M; �C/.
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Consider then the 1–form

˛ D 1
2
.1C cos s/˛CC 1

2
.1� cos s/˛�C sin s dt

on Œ�; 2��s�S1t �M ; notice that this is a contact form because .˛C; ˛�/ is a Liouville
pair on M. Let then .U; �U / be the blow-down of .Œ�; 2��s �S1t �M; ker˛/ along
f�g �S1t �M, as defined in [28, Section 5.1].

More explicitly, .U; �U / is obtained as follows. The hypersurface — or, better, round
hypersurface, as defined in [28, Section 5.1] — f�g �S1t �M admits a neighborhood
of the form .Œ0; �/x � S1t �M; ker.˛� C x dt// inside .Œ�; 2��s � S1t �M; ker˛/
in such a way that f�gs � S1t �M corresponds to f0gx � S1t �M ; this follows
from the fact that the restriction of the two contact structures to the two hyper-
surfaces coincide (see [28, Lemma 5.1]). We can then remove the hypersurface
f�gs�S1t �M inside .Œ�; 2��s�S1t �M; ker˛/ and glue .D2p

�
�M; ker.˛�Cr2d'//

(here .r; '/ are polar coordinates on the 2–disc D2p
�

centered at the origin and of
radius

p
� ) thanks to the contactomorphism from ..D2p

�
n f0g/�M; ker.˛�C r2d'//

to ..0; �/x �S1t �M; ker.˛�Cx dt// (seen as a subset of ..�; 2��s �S1t �M; ker˛/)
given by .r; '; p/ 7! .r2; '; p/. The resulting contact manifold (with one boundary
component) is the desired .U; �U /.

At this point, performing a half Lutz–Mori twist along .M; �C/ means replacing a
neighborhood of .M; �C/ in .V; �/ with .U; �U /.

More precisely, one can see that the boundary component f2�g �S1t �M of .U; �U /
also admits a neighborhood ..��; 0�x �S1t �M; ker.˛CC x dt// inside .U; �U /, in
such a way that f2�gs �S1t �M corresponds to f0gx �S1t �M. Now, .M; �C/ is a
codimension-2 contact submanifold with trivial normal bundle in .V; �/; hence, by the
contact neighborhood theorem (see Geiges [13, Theorem 2.5.15]), there is ı > 0 such
that .M; �C/ admits a neighborhood .D2

ı
�M;�0 WD ker.˛CC r2d'// inside .V; �/

(here, .r; '/ are polar coordinates on D2
ı

) in such a way that .M; �C/ corresponds to
.f0g�M;�0jf0g�M /. Because ..D2

ı
nf0g/�M; ker.˛CC r2d'// is contactomorphic

to ..0; ı2/x �S1t �M; ker.˛CC x dt// via .r; '; p/ 7! .r2; '; p/, we can then glue
.U; �U / to .V nM;�/ and obtain a well-defined contact manifold .V; �/ (notice that
the underlying smooth manifold is still V ).

The above construction does not depend, up to isotopy, on any choice made.

Definition 3.2 [28, Remark 9.6] .V; �/ is said to be obtained from .V; �/ by a half
Lutz–Mori twist along the contact submanifold .M; �C D ker.˛C// belonging to the
Liouville pair .˛C; ˛�/.
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We point out that performing a half Lutz–Mori twist makes the contact manifold
overtwisted. Indeed, it is explained in Massot, Niederkrüger and Wendl [28, Remark 9.6]
that this twist always gives a PS-overtwisted manifold, which then is also overtwisted
according to Casals, Murphy and Presas [7] and Huang [22].

3.2 Construction of Liouville pairs

We recall here the construction in Massot, Niederkrüger and Wendl [28, Section 8],
leaving the details that are not important for our purposes.

Consider the product manifold Rm �RmC1 with the pair of contact structures �C
and �� induced by the pair of contact forms

˛˙ WD ˙e
t1C���Ctm d�0C e

�t1 d�1C � � �C e
�tm d�m;

where we use coordinates .t1; : : : ; tm/ on Rm and .�0; : : : ; �m/ on RmC1 . A direct
computation shows that .˛C; ˛�/ is a Liouville pair on Rm �RmC1 .

We now remark that there are two Lie groups acting explicitly on Rm�RmC1 by strict
contact transformations for both ˛C and ˛� .

Indeed, the left action of the group RmC1 on Rm �RmC1 given by the translations

.'0; : : : ; 'm/ � .t1; : : : ; tm; �0; : : : ; �m/ WD .t1; : : : ; tm; �0C'0; : : : ; �mC'm/

and the left action of Rm given by the law

.�1; : : : ; �m/ � .t1; : : : ; tm; �0; : : : ; �m/

WD .t1C �1; : : : ; tmC �m; e
��1C�����m�0; e

�1�1; : : : ; e
�m�m/

are Lie group left actions on Rm �RmC1 and they both preserve the contact forms
˛C and ˛� .

Moreover, these two actions allow us to produce a compact contact manifold from
Rm�RmC1 . Indeed, there are lattices ƒ and ƒ0 of Rm and RmC1 , respectively, such
that the ƒ–action on Rm �RmC1 induced by the action of Rm preserves Rm �ƒ0.
This implies that, by first taking the quotient of Rm�RmC1 by ƒ0 and then quotienting
it by the (well defined by the above property) induced action of ƒ, we obtain a compact
manifold M.

Finally, this manifold M naturally inherits a Liouville pair, still denoted by .˛C; ˛�/,
from the Liouville pair on the covering Rm �RmC1 , because Rm and RmC1 act on
Rm �RmC1 by strict contactomorphisms for both ˛C and ˛� .
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We point out that this construction actually gives an infinite number of nonhomeo-
morphic manifolds M, hence an infinite number of nonisomorphic Liouville pairs, in
each odd dimension greater than or equal to 3.

Indeed, the existence of the lattices ƒ and ƒ0 follows from number theory arguments
and the manifold M obtained depends on the choice of a totally real field of real
numbers k with finite dimension over Q. Now, for each dimension � 2 over Q, there
are infinitely such fields k and the corresponding manifolds are nonhomeomorphic.
See [28, Lemma 8.3] for the details.

As far as Theorem 1.2 is concerned, this means that we have, in each odd dimension
2nC 1� 5, a contact structure satisfying the hypothesis of Theorem 1.1 on infinitely
many different smooth manifolds T2�M 2n�1 ; in dimension 3, we obtain one contact
structure on T2 �M 1 D T3 . In both cases, Theorem 1.1 then gives examples of
contactomorphisms smoothly isotopic but not contact-isotopic to the identity for the
countably many contact structures .��

k
�/k�2 on each T2 �M.

3.3 Effects of half Lutz–Mori twists on Chern classes

Chern classes are global invariants of complex vector bundles E over a manifold V .
In our setting, we then have to find a way to study how local modifications (ie over
an open set U of V ) of the complex vector bundle E affect its Chern classes. The
solution is either to use a relative version of Chern classes or to shift to another point
of view more local in nature.

Aguilar, Cisneros-Molina and Frías-Armenta [1] adopt in particular this second strategy
and this allows them to prove a generalization of the classical fact that the top Chern
class of E is the Poincaré dual of the zero locus of a section of E which is transverse
to the zero section. In order to achieve such generalization, they deal with the following
technical issue: when 1 < k � r D rkC.E/, the locus Sk of points where k–sections
s1; : : : ; sk are C–linearly dependent may not be a smooth submanifold of V , even for
a “generic” choice of s1; : : : ; sk , hence it has a priori no well-defined homology class.
In [1] it is hence proved that Sk can be desingularized to a smooth submanifold Zk of
V �CPk�1 in such a way that the .r�kC1/st Chern class of E can be interpreted as
the Poincaré dual of the pushforward in V of the class of Zk � V �CPk�1 via the
map induced in homology by the projection V �CPk�1! V .

In our context of half Lutz–Mori twists along particular contact submanifolds, the
results proven by Aguilar, Cisneros-Molina and Frías-Armenta [1] give the following:
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Proposition 3.3 Let .V 2mC3; �/ be a contact manifold containing the .M 2mC1; �C/

of Section 3.2 as a codimension-2 contact submanifold with trivial normal bundle. Then,
if we denote by � 0 the contact structure on V obtained by performing a half Lutz–Mori
twist along the submanifold .M; �C/ (where we consider M with the orientation given
by �C ), we have the following:

(1) For all i D 2; : : : ; mC 1, ci .� 0/� ci .�/D 0 in H 2i .V IZ/.

(2) c1.�
0/�c1.�/D�2PD.j�ŒM �/ in H 2.V IZ/, where j W M!V is the inclusion,

j�W H2mC1.M IZ/! H2mC1.V IZ/ is the induced map and PD.˛/ denotes
the Poincaré dual of the homology class ˛ 2H�.V IZ/.

Remark This result is not in contradiction with Massot, Niederkrüger and Wendl
[28, Theorem 9.5], where the authors prove that the contact structures before and after
a full Lutz–Mori twist (as defined in [28, Section 9.1]) are homotopic through almost
contact structures, hence have the same Chern classes. Indeed, the result � 00 of a full
Lutz–Mori twist can be interpreted as a pair of successive half twists. More precisely,
we first perform a half twist along a submanifold .M; �C/ to obtain � 0 ; this changes the
core of the tube where we perform the twist from .M; �C/ to .M; ��/. We then perform
another half twist, this time along the new core .M; ��/, to obtain � 00. Hence, applying
Proposition 3.3 twice and using the fact that �� induces an orientation that is opposite
to that induced by �C , we get that ci .� 00/D ci .� 0/D ci .�/ for all i D 2; : : : ; mC 1
and that

c1.�
00/D c1.�

0/� 2PD.j�Œ�M�/D c1.�/� 2PD.j�ŒM �/� 2PD.j�Œ�M�/D c1.�/;

as we expected from [28, Theorem 9.5].

The proof of Proposition 3.3 relies on the explicit results in [1]; we hence made
the choice to omit it in this paper, in order to avoid lengthy technical digressions
and keep the focus on the motivating contact geometric problem, ie the research of
examples of contactomorphisms smoothly isotopic but not contact-isotopic to the
identity on overtwisted contact manifolds of high dimensions. A detailed proof of
Proposition 3.3 (together with the necessary background from [1]) can be found in
Gironella [18, Section 4.2.3 and Appendix A].

3.4 Proof of Theorem 1.2

We use in this section the notation introduced in the statement of Theorem 1.2.
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The contact structure � on the manifold T2
.s;t/
�M can be explicitly written as the kernel

of ˛ WD
Pm
iD1 e

�ti d�i C cos.s/e
Pm

iD1 ti d�0C sin s dt , where we use locally on M
the coordinates .t1; : : : ; tm; �0; : : : ; �m/ induced by the covering Rm �RmC1!M,
as described in Section 3.2. Then � admits a trivialization as a complex vector bundle
given by the following sections and choice of d˛j�–compatible complex structure J :

(1) Si WD @ti for i D 1; : : : ; m, and SmC1 WD @s

(2) J.Si / WD e
�
Pm

jD1 tj cos.s/@�0
� eti@�i

C sin.s/@t for i D 1; : : : ; m, and
J.SmC1/ WD �e

�
Pm

jD1 tj sin.s/@�0
C cos.s/@t .

(An explicit computation shows that these sections are indeed well defined on T2
.s;t/
�M

and not only on T2
.s;t/
�Rm �RmC1 .)

In particular, all the Chern classes of � are zero. Hence, applying Proposition 3.3 to
the pair .�; �/ we get the following: if we denote by j W M !T2

.s;t/
�M the inclusion

j.p/D .0; 0; p/ and by j�W H2mC1.M IZ/!H2mC1.T2�M IZ/ the induced map
in homology, then c1.�/D�2PD.j�ŒM �/ in H 2.T2 �M IZ/.

We now prove that c1.�/ is toroidal. Fix a p 2M and consider f W T2! T2 �M

given by f .�; '/D .�; '; p/ for every .�; '/2T2 . Because f is transverse to j.M/,
we have f � PDT2�M .j�ŒM �/DPDT2.Œf �1.j.M//�/; here, the notation PDX means
that we are considering the Poincaré duality on the compact manifold X. Now,
PDT2

�
Œf �1.j.M//�

�
D PDT2

�
Œf.0; 0/g�

�
generates H 2.T2IZ/' Z; in other words,

PD.j�ŒM �/ is toroidal. As H 2.V IZ/=H 2
ator.V IZ/ is torsion-free, c1.�/ is also toroidal.

The only thing left to show is that c1.��k �/D kc1.�/ modH 2
ator.V IZ/ for each k � 2.

Because � is a trivial complex vector bundle over T2 �M, the same is true for
each ��

k
�; in particular, each ��

k
� has trivial Chern classes. Notice that ��

k
� can also

be seen as obtained from ��
k
� by performing a half Lutz–Mori twist along each of the

k submanifolds
˚�
2l�
k
; 0
�	
�M with l D 0; : : : ; k� 1. Then Proposition 3.3 tells that

c1.�
�
k
�/ D �2k PD.j�ŒM �/ D kc1.�/, so that c1.��k �/ D kc1.�/ modH 2

ator.V IZ/

too.

4 Examples from adapted open books and the h–principle

In this section, we show how to obtain examples of .S1 �W; �/ as in the hypothesis
of Theorem 1.1 using the existence of adapted open-book decompositions due to
Giroux [20] and the h–principle of Borman, Eliashberg and Murphy [3].
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In the following, we are going to adopt two (homotopically equivalent) points of view
on (coorientable) almost contact structures on V 2nC1 . More precisely, in Sections 4.1
and 4.2 we look at them as, respectively, pairs .�; !�/ and .�; J�/, where � is a
coorientable hyperplane field on V , !� is a symplectic structure on � and J� is a
complex structure on it.

4.1 Proof of Theorem 1.3

In order to prove Theorem 1.3, we need the following lemma, which describes the
effects of the Bourgeois construction [4] and of its branched coverings at the level of
almost contact structures as well as a sufficient condition for overtwistedness in the
case of branched covers:

Lemma 4.1 Let .V 2n�1; �/ be a contact manifold, where � is coorientable, .B; '/
an open-book decomposition supporting � and ˛ a contact form defining � and adapted
to the open book. Then we have the following:

(1) The Bourgeois construction [4] on .V; �/ and .B; '; ˛/ gives a contact struc-
ture � on V � T2 which is homotopic, as an almost contact structure, to
.�˚TT2; d˛˚!T /, where !T is a volume form on T2 .

(2) Any contact branched covering �g of � via a branched covering �W V �†g !
V �T2 , induced by a covering †g!T2 branched over two points, is homotopic,
as an almost contact structure, to .�˚T†g ; d˛˚!g/, where !g is a volume
form on †g .

(3) Suppose � is overtwisted. Then, if g is large enough, �g is overtwisted too.

Notice that point (1) above has already been pointed out by Lisi, Marinković and
Niederkrüger [24, Remark 2.1].

We now prove, in this order, Theorem 1.3 and Lemma 4.1:

Proof of Theorem 1.3 We use the notation of Theorem 1.3. Denote also the natural
projections by

pW V �T2
! V; pg W V �†g ! V and p0g W V �†g !†g :

Lemma 4.1(1)–(2) imply that c1.�/Dp�c1.�/ and c1.�g/Dp�gc1.�/C.p
0
g/
�c1.T†g/.

Recall now that every continuous map from T2 to †g has degree 0 (here, we use
g � 2); in particular, for each f W T2! V �†g , we have

f �.p0g/
�c1.T†g/D .p

0
g ıf /

�c1.T†g/D 0 2H
2.T2

IZ/;
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ie .p0g/
�c1.T†g/ is atoroidal. We hence have that

(3)
c1.�/D p

�c1.�/ mod H 2
ator.V �T2

IZ/;

c1.�g/D p
�
gc1.�/ mod H 2

ator.V �†g IZ/:

We now claim that both p and pg pull back toroidal classes on V to toroidal classes on,
respectively, V �T2 and V �†g . By equation (3) and the fact that c1.�/ is toroidal
by hypothesis, this would then directly imply that c1.�/ and c1.�g/ are toroidal too.

Let a 2H 2.V IZ/ be toroidal, ie there is t W T2! V with t�a¤ 0; we then want to
prove that p�a 2H 2.V �T2IZ/ is toroidal too. Consider any hW T2! V �T2 such
that p ı hD t ; for instance, let q0 2 T2 and take h. � / WD .t. � /; q0/. Then

h�.p�a/D .p ı h/�aD t�a¤ 0 2H 2.T2
IZ/;

ie p�a is toroidal, as desired. An analogous argument shows that p�ga is toroidal too.

The fact that � and �g satisfy

c1.�
�
k�/D kc1.�/ mod H 2

ator.V �T2
IZ/;

c1..�
g

k
/��g/D kc1.�g/ mod H 2

ator.V �†g IZ/

follows, by a direct computation, from equation (3), from the equalities �k ıpDpı�k
and �k ıpg D pg ı�

g

k
and from the fact that c1.��k�/D kc1.�/ modH 2

ator.V IZ/.

Lastly, if � is overtwisted, Lemma 4.1(3) gives the overtwistedness of �g for g large
enough, thus concluding the proof.

Proof of Lemma 4.1 We start by proving (1). The Bourgeois construction [4] on .V; �/
and .B; '; ˛/ gives a function ˆ D .f; g/W V ! R2 defining the open book .B; '/
and such that � on V �T2

.x;y/
is defined by ˇ WD ˛C f dx�g dy . Then an explicit

homotopy of almost contact structures from .�; dˇj�/ to .�˚TT2; d˛j�C dx ^ dy/

is given by the Œ0; 1�t –family of hyperplane fields �t given by the kernel of

˛C .1� t /.f dx�g dy/;

together with the symplectic structures given by the restriction of

d˛C .1� t /Œdf ^ dx� dg^ dy�C t dx ^ dy

to �t .

As far as point (2) is concerned, as explained in Geiges [12], an explicit contact branched
covering �g on V �†g is given by the kernel of a differential 1–form ��ˇC�h.r/r2d� ;
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here, .r; �/ are radial coordinates on the D2–factor of a neighborhood D2�fp; qg of
the upstairs branching locus fp; qg of the branched covering †g ! T2 , the constant
� > 0 is very small and hD h.r/ is a smooth function with support in D2 � fp; qg,
equal to 1 on the branching locus and strictly decreasing in r . As contact branched
coverings are unique up to isotopy (see Gironella [17, Section 2.2]), it’s enough to
prove that this specific �g is homotopic to the desired almost contact structure.

Now, an explicit computation (analogous to the one in [17, Section 6.5]) shows that
the desired homotopy of almost contact structures is given by the Œ0; 1�t –family of
hyperplane fields � tg defined as the kernel of ��˛C.1�t /Œ��.f dx�g dy/C�hr2d��,
together with the symplectic structures given by the restriction of

��d˛C .1� t /Œ��.df ^ dx� dg^ dy/C � d.hr2/^ d��C t!g

to � tg .

Point (3) has already been discussed in [17, Section 7.2]; more precisely, it essentially
follows from the following three facts. Firstly, the contact branched covering �g can
be chosen (up to isotopy) in such a way that it induces on each fiber of V �†g !†g

the original overtwisted contact structure �. Secondly, Niederkrüger and Presas
[30, page 724] describe how the “size” of a contact neighborhood of each connected
component .V; �/ of the branching set of V �†g!V �T2 is diverging to C1 as the
index g of the branched covering is going to C1; see also [17, Lemma 7.10]. Then,
according to Casals, Murphy and Presas [7, Theorem 3.1], topologically trivial contact
neighborhoods of overtwisted manifolds in codimension 2 are themselves overtwisted
provided they are sufficiently “large”. This concludes the proof of Lemma 4.1.

4.2 Proof of Proposition 1.4

The proof is structured as follows. We start from a natural almost contact structure �0
on V WDS1�W and we modify it to an almost contact structure � with first Chern class
c1.�/ satisfying the desired conditions. Then the h–principle from Borman, Eliashberg
and Murphy [3] says that � can be deformed to an overtwisted contact structure �
on V ; the first Chern class of such a � will then satisfy the desired properties too.

Before entering into the details of the proof of Proposition 1.4, we state a lemma from
algebraic topology, whose proof is postponed:

Lemma 4.2 Let �0 be a (coorientable) almost contact structure on V 2nC1 . For each
u2H 2.V IZ/, there is an almost contact structure �u on V with c1.�u/D c1.�0/C2u.
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Proof of Proposition 1.4 The hyperplane field �0D f0g˚T W on V D S1�W is a
(coorientable) almost contact structure thanks to the almost complex structure JW on W .
Moreover, its first Chern class c1.�0/ is equal to ��W c1.W /, where �W W S1�W !W

is the projection on the second factor.

The hypothesis that W is spin means that the 2nd Stiefel Whitney class w2.W / 2
H 2.W IZ2/ of W is trivial. Because w2.W / is the reduction modulo 2 of c1.W /,
there is � 2H 2.W IZ/ such that c1.W /D 2�. Hence, c1.�0/D ��W c1.W /D 2�

�
W �.

Consider then a nontrivial c 2H 1.W IZ/¤f0g, and let v be a generator of H 1.S1IZ/.
Using Künneth’s decomposition theorem, we can see H 1.S1IZ/˝H 1.W IZ/ as a
submodule of H 2.S1 �W IZ/. An application of Lemma 4.2 with uD v˝ c ���W �
then gives an almost contact structure � with c1.�/D 2v˝ c .

Notice that the map ��
k

, induced on H 2.S1 �W IZ/ by �k , acts as multiplication
by k on the submodule H 1.S1IZ/˝H 1.W IZ/ of H 2.S1 �W IZ/. In particular,
the fact that c1.�/D 2v˝ c implies that c1.��k�/D kc1.�/ modH 2

ator.V IZ/.

We also claim that c1.�/ is toroidal. Indeed, according to the universal coefficient
theorem and the Hurewicz theorem,

H 1.W IZ/' HomZ.H1.W IZ/IZ/' HomZ.�1.W /IZ/I

in particular, as c ¤ 0 2 H 1.W IZ/, there is 
 W S1 ! W such that 
�c ¤ 0 in
H 1.S1IZ/. If we define f WD .Id; 
/W T2 D S1 � S1 ! S1 � W , we then have
f �c1.�/ D 2v ˝ 
�c ¤ 0 in H 1.S1IZ/˝H 1.S1IZ/ � H 2.T2IZ/, ie c1.�/ is
toroidal, as desired.

The h–principle from Borman, Eliashberg and Murphy [3] then gives the desired contact
structure � as a deformation of �.

We now give a proof of the lemma used above:

Proof of Lemma 4.2 Bowden, Crowley and Stipsicz [6, Lemma 2.17(1)] states that
if V is a closed connected manifold of dimension 2nC 1 and � is a stable almost
complex structure on it, then there is an almost contact structure � on V whose
stabilization gives � . Recall that a stable almost complex structure on V is the stable
isomorphism class of a complex structure on T V ˚ "kV , where "V is the trivial real
vector bundle of dimension 1 over V , and the stabilization of � is the stable isomorphism
class of the complex structure induced by � on T V ˚ "V . In particular, in order to

Algebraic & Geometric Topology, Volume 19 (2019)



Examples of nontrivial contact mapping classes for overtwisted contact manifolds 1225

prove Lemma 4.2, it’s enough to find a stable almost complex structure �u such that
c1.�u/D c1.�0/C 2u.

The existence of such a �u follows, for instance, from Geiges [13, Remark 8.1.4], of
which we recall here the idea.

There is a bijective correspondence, given by the first Chern class, between isomorphism
classes of complex line bundles over V and cohomology classes in H 2.V IZ/. Let
then Lu be the complex line bundle over V satisfying c1.Lu/D u. Consider then a
complex vector bundle Eu over V such that there are m 2N>0 and an isomorphism
�W L�u ˚C Eu ' ."C

V /
m of complex vector bundles over V , where "C

V denotes the
complexification of "V ; for a proof of the existence of such a complement Eu , see for
instance Atiyah [2, Corollary 1.4.14]. We then claim that the complex vector bundle
Fu WD �0˚Lu˚Eu can be used to define the desired stable complex structure.

The fact that L�u˚C Eu is a trivial complex vector bundle implies in particular that
c1.Eu/D�c1.L

�
u/D u; hence, c1.Fu/D c1.�/CuCuD c1.�/C 2u.

Now, because L�u and Lu are isomorphic as real vector bundles, � induces an iso-
morphism of real vector bundles �0W Lu ˚R Eu ' "

2m
V . Moreover, the choice of a

vector field X on V transverse to �0 gives an isomorphism of real vector bundles
‰W �0˚ "V ' T V . We then have an isomorphism � of real vector bundles over V
given by the composition

Fu D �0˚Lu˚Eu '

Id˚�0
��! �0˚ "

2m
V DR .�0˚ "V /˚ "

2m�1
V '

‰˚Id
���! T V ˚ "2m�1V :

In particular, the pushforward ��J of the complex structure J on Fu via � gives the
desired stable almost complex structure �u on V .
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