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Rips filtrations for quasimetric spaces and
asymmetric functions with stability results

KATHARINE TURNER

The Rips filtration over a finite metric space and its corresponding persistent homology
are prominent methods in topological data analysis to summarise the “shape” of data.
Crucial to their use is the stability result that says if X and Y are finite metric spaces
then the (bottleneck) distance between the persistence diagrams constructed via the Rips
filtration is bounded by 2dGH.X; Y / (where dGH is the Gromov–Hausdorff distance).
A generalisation of the Rips filtration to any symmetric function f W X � X ! R
was defined by Chazal, de Silva and Oudot (Geom. Dedicata 173 (2014) 193–214),
where they showed it was stable with respect to the correspondence distortion distance.
Allowing asymmetry, we consider four different persistence modules, definable for
pairs .X; f / where f W X �X ! R is any real valued function. These generalise
the persistent homology of the symmetric Rips filtration in different ways. The first
method is through symmetrisation. For each a 2 Œ0; 1� we can construct a symmetric
function syma.f /.x; y/D aminfd.x; y/; d.y; x/gC .1� a/maxfd.x; y/; d.y; x/g .
We can then apply the standard theory for symmetric functions and get stability as a
corollary. The second method is to construct a filtration fRdir.X/tg of ordered tuple
complexes where .x0; x2; : : : ; xp/ 2Rdir.X/t if d.xi ; xj /� t for all i � j . Both our
first two methods have the same persistent homology as the standard Rips filtration
when applied to a metric space, or more generally to a symmetric function. We then
consider two constructions using an associated filtration of directed graphs or preorders.
For each t we can define a directed graph fD.X/tg where directed edges x! y are
included in D.X/t whenever maxff .x; y/; f .x; x/; f .y; y/g � t (note this is when
d.x; y/� t for f D d a quasimetric). From this we construct a preorder where x � y
if there is a path from x to y in D.X/t . We build persistence modules using the
strongly connected components of the graphs D.X/t , which are also the equivalence
classes of the associated preorders. We also consider persistence modules using a
generalisation of poset topology to preorders.

The Gromov–Hausdorff distance, when expressed via correspondence distortions,
can be naturally extended as a correspondence distortion distance to set–function
pairs .X; f / . We prove that all these new constructions enjoy the same stability as
persistence modules built via the original persistent homology for symmetric functions.
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1 Introduction

The Rips filtration over a finite metric space .X; d/ is a filtration of simplicial complexes
fR.X; d/tgt2Œ0;1/ , where R.X; d/t is the clique complex over the graph whose vertex
set is X and edge set fŒx; y�W d.x; y/� tg. It adds topological structure to an otherwise
disconnected set of points. The persistent homology of the Rips filtration is widely used
in topological data analysis because it encodes useful information about the geometry
and topology of the underlying metric space; see Chazal, Cohen-Steiner. Guibas,
Mémoli and Oudot [4], Ghrist [10], Lee, Chung, Kang, Kim and Lee [14] and Xia
and Wei [20]. There are many potential applications for studying data whose structure
is a quasimetric space. Examples include the web hyperlink quasimetric space, road
networks, and quasimetrics induced from weighted directed graphs found throughout
science (for example biological interaction graphs — see Klamt and von Kamp [12] —
or the connections in neural systems; see Kaiser [11] and Reimann, Nolte, Scolamiero,
Turner, Perin, Chindemi, Dłotko, Levi, Hess and Markram [18]). More generally
we wish to define and show stability of Rips filtrations for sublevel sets of any (not
necessarily symmetric) function f W X �X !R.

Historically the Rips filtration was defined as a special increasing family of simplicial
complexes built from a finite metric space. A metric space is a set X equipped with a
distance function d W X �X !R that satisfies the following properties:

(i) Nonnegativity d.x; y/� 0 for all x 2X.

(ii) Symmetry d.x; y/D d.y; x/ for all x; y 2X.

(iii) Triangle inequality d.x; z/� d.x; y/C d.y; z/.

(iv) Identity of indiscernibles d.x; y/D 0D d.y; x/ if and only if x D y .

For any r � 0 we define the Rips complex of X at length scale r , denoted by
R.X; d/r , as the abstract simplicial complex where Œx0; x1; : : : ; xk�2R.X; d/r when-
ever d.xi ; xj /� r for all i and j . We can think of R.X; d/r as adding a topological
structure of length scale r . It is easy to check that if r � s then R.X; d/r �R.X; d/s .
We thus can define the Rips filtration of X as the increasing family of simplicial
complexes fR.X; d/rgr2Œ0;1/ .

Two classic types of examples of Rips filtrations are examples that come from finite
point clouds sitting inside some larger space (such as Euclidean space) and examples
built from graphs. If X � Rd is a set of points then it inherits a finite metric space
structure from that of Rd ; the distance function is just the restriction of the Euclidean
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distance function to the set X. Given a graph G (with or without lengths on the edges)
we can let the vertices of the graph be the finite set X and then construct a distance
function on X by defining d.x; y/ as the shortest path length of all the paths from x

to y in G.

From the Rips filtration we can produce a persistence module which describes its
persistent homology. A persistence module is a family of vector spaces fVt W t 2Rg

equipped with linear maps �ts W Vs! Vt for each pair s� t such that �tt D id and �ts D
�rs ı�

t
r whenever s � r � t . The persistence module we construct from the persistent

homology of a Rips filtration over .X; d/ has vector spaces fH�.R.X; d/t /gt2Œ0;1/
along with maps on homology induced by inclusions, �ts D ��W H�.R.X; d/s/ !
H�.R.X; d/t / when s � t .

Arguably the most important theoretical results in topological data analysis are the
stability theorems. These stability results come in a variety of forms but generally say
that if two sets of input data are close then various persistence modules computed from
them are also close. To be specific we need to quantify what is meant by “close” for
these different kinds of objects.

We can measure how close persistence modules are via whether there exist suitable
families of interleaving maps. This distance is closely related to the bottleneck distance
between the corresponding persistence diagrams or barcodes. Two persistence modules,
.fVtg; f�

t
sg/ and .fUtg; f tsg/, are called �–interleaved when there exist families of

linear maps f˛t W Vt ! UtC�g and fˇt W Ut ! VtC�g satisfying natural commuting
conditions. There is a pseudometric on the space of persistence modules called the
interleaving distance, dint , which is the infimum of the set of � > 0 such that there
exists an �–interleaving. More details about the interleaving distance are provided
in Section 3. In this paper we will be considering a variety of different persistence
modules, but we will always use the interleaving distance to quantify “closeness”.

Gromov–Hausdorff distance is a classical distance between metric spaces. There are
many equivalent formulations of Gromov–Hausdorff distance but for the purposes
of this paper we will focus on that using correspondences. The set M � X � Y

is a correspondence between X and Y if for all x 2 X there exists some y 2 Y
with .x; y/ 2M and for all y 2 Y there is some x 2 X with .x; y/ 2M. Using
correspondences we can define the Gromov–Hausdorff distance between X and Y as

(1-1) dGH.X; Y /D
1
2

inf
fcorrespondences Mg

sup
.x1;y1/;.x2;y2/2M

jdX .x1; x2/� dY .y1; y2/j:
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Here sup.x1;y1/;.x2;y2/2M jdX .x1; x2/�dY .y1; y2/j is the distortion of the correspon-
dence M. We can define the correspondence distortion distance between set–function
pairs .X; f W X �X !R/ and .Y; gW Y �Y !R/ by

dCD..X; f /; .Y; g//

D
1
2

inf
M correspondence betweenX and Y

sup
.x1;y1/;.x2;y2/2M

jf .x1; x2/�g.y1; y2/j:

This agrees with the standard definition for the Gromov–Hausdorff distance when
.X; dX / and .Y; dY / are metric spaces. More background and details about the corre-
spondence distortion distance are presented in Section 2.

Useful as the Rips filtration for finite metric spaces is, there are scenarios where the
input is not a finite metric space. For example, it is common in data analysis to considers
data sets X equipped with a dissimilarity measure. A dissimilarity measure is a map
dX W X�X!R that satisfies dX .x; x/D 0 and dX .x; y/D dX .y; x/ for all x; y 2X,
but is not required to satisfy any of the other metric space axioms. In [5], Chazal, de Silva
and Oudot generalised the notion of a Rips filtration to cover dissimilarity measures
and more generally for any symmetric function f W X �X !R. Just as in the finite
metric space case, the Rips complex of X with parameter r , denoted by R.X; f /r , is
defined as the abstract simplicial complex where Œx0; x1; : : : ; xk�2R.X; f /r whenever
f .xi ; xj /� r for all i and j (including i D j ).

Persistent homology can be applied to any increasing family of topological spaces, so
it is then natural to define persistence modules from the persistent homology of Rips
filtrations built from any symmetric function. This was shown to be stable in [5].

Theorem Let f W X�X!R and gW Y�Y!R be symmetric functions and R.X; f /
and R.Y; g/ their corresponding Rips filtrations. If dCD..X; f /; .Y; g// is finite then
for all � > dCD..X; f /; .Y; g//, the kth homology persistence modules of R.X; f /
and R.Y; g/ are �–interleaved. In particular, when .X; dX / and .Y; dY / are compact
metric spaces, R.X; dX / and R.Y; dY / are �–interleaved for all � > 2dGH.X; Y /.

The proofs of the interleaving results in [5] didn’t have any requirement on the function
f W X �X ! R except that it had to be symmetric. The purpose of this paper is to
complete this generalisation procedure to lose that symmetry requirement. However,
there are multiple ways to use asymmetry information, and so we have explored a
variety of different constructions.

One method is to study related symmetric functions. We can take our original function f
and construct a parametric family of related symmetric functions syma.f / where
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a 2 Œ0; 1� and

syma.f /.x; y/D aminff .x; y/; f .y; x/gC .1� a/maxff .x; y/; f .y; x/g:

We can then construct the Rips filtration as in [5] for the set–function pair .X; syma.f //.
Notably, if f is a symmetric function to begin with then syma.f /Df for all a2 Œ0; 1�
and hence this symmetrisation process does give a generalisation of Rips filtrations to
any set–function pair. We can show that the correspondence distortion distance between
.X; syma.f // and .Y; syma.g// is bounded by that between .X; f / and .Y; g/. We
gain stability for these persistence modules constructed through this symmetrisation
process as a corollary.

A limitation with using a filtration of simplicial complexes is that a simplex is an
inherently symmetric object. An alternative is to use ordered tuple complexes (shortened
to OT complexes). An OT complex K is a sets of ordered tuples .v0; v1; : : : ; vp/ such
that if .v0; v1; : : : ; vp/ 2 K then .v0; v1; : : : ; yvi ; : : : ; vp/ 2 K for all i . Note that
repetitions of the vj are allowed. Chain complexes, boundary maps, homology and
persistent homology can analogously be defined for OT complexes. We will define
the directed Rips filtration of OT complexes for f W X � X ! R, as the filtration
fRdir.X; f /tg of ordered tuple complexes where .x0; x2; : : : ; xp/ 2 Rdir.X; f /t if
f .xi ; xj / � t for all i � j . We call the persistence module produced using the OT
homology of the directed Rips filtration the directed Rips persistence module.

For each simplicial complex there is a canonical OT complex with isomorphic homology
group. Furthermore, since these homology isomorphisms commute with the maps
induced by inclusion, the persistence modules of these corresponding complexes are
also isomorphic. This implies that these directed Rips filtrations are truly generalisa-
tions of the Rips filtration built from a symmetric function. We will prove that the
persistence modules constructed from these Rips filtrations are stable with respect to
the correspondence distortion distance.

The third generalisation considers connected components. The standard dimension 0
homology can be viewed as the vector space whose elements are linear combinations of
connected components in the 1–skeleton (ie the graph containing the 0– and 1–cells).
When working with directed graphs there are two notions of connected components:
weakly and strongly connected. Completely analogous to the traditional connected
components story, we can consider vector space whose elements are formal linear
combinations the equivalence classes of strongly connected components in the directed
graph which is the 1–skeleton of the directed Rips filtration.
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Given a function f W X �X ! R, for each real number t we can create a directed
graph Dt related to the sublevel set f �1.�1; t �. The graph Dt should have vertex set
fx2X jf .x;x/� tg and directed edge set fx!y jmaxff .x;x/;f .x;y/;f .y;y/g� tg.
We can not include a directed edge x ! y just when f .x; y/ � t because of the
closure conditions a directed graph has to satisfy. For each t 2 R we have a vector
space Vt of the formal linear combinations the equivalence classes of strongly connected
components (SCCs) of Dt . Whenever s � t we have an inclusion map Ds �Dt which
induces a linear map from Vs to Vt . This process directly constructs a persistence
module, which we call the strongly connected components persistence module. We
prove that these persistence modules are stable with respect to the correspondence
distortion distance. We also provide some pseudocode on how to compute the barcode
decomposition of the strongly connected components persistence module using a
modification of the union-find algorithm.

We also note that the persistence modules generated from formal linear combinations
of the weakly connected components have already been covered as the dimension 0
persistent homology of the filtration by sublevel sets of sym1.f /.

Our fourth method uses the directed graphs described above to create a filtration of
preorders. Given a directed graph D over vertices X we say x � y if there is a path
from x to y . From a filtration of directed graphs we obtain a filtration of preorders. We
then can construct persistence modules using poset topology (which can be generalised
for all preorders, not just posets, discussed in the appendix). We will call these preorder
persistence modules. We prove that these preorder persistence modules are stable with
respect to the correspondence distortion distance. If f W X �X !R is a symmetric
function, then the dimension 0 preorder persistence module is the same as that of the
persistent homology of the standard Rips filtration R.X; f / and its higher-dimensional
preorder persistence modules are always trivial. This implies that preorder persistence
modules are describing asymmetry information.

1.1 Related other works

Other related work involves approaches in topological data analysis for incorporating
asymmetry information. Ordered set homology is used in [18] in order to study the
topology of brain networks. There has been a series of papers by Chowdhury and
Mémoli [6; 8; 7] about other constructions of persistence modules which incorporate
asymmetry information.
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2 Directed graphs, quasi- and pseudometric spaces and the
correspondence distortion distance

The original stability result in topological data analysis for Rips filtrations was for
filtrations of simplicial complexes built from metric spaces and the bound between
persistence modules in terms of the Gromov–Hausdorff distance. This was generalised
in [5] to consider symmetric functions and the bound between the functions was the
correspondence distance. However, there are many applications where asymmetry
naturally arises, of which important examples are quasimetric spaces, such as those
constructed as the path metric of some directed graph (with or without weights on the
directed edges).

Definition 1 A directed graph is an ordered pair D D .V; A/ where V is a set whose
elements are called vertices and A is a set of ordered pairs of vertices called directed
edges or arrows. A weighted directed graph is a directed graph where each arrow is
given a nonnegative weight.

Note that a graph can be thought of as a directed graph such that whenever a directed
edge v! w is in A its opposite direction w! v must also be in A.

Definition 2 Let X be a nonempty set and d W X �X !R. Consider the following
potential properties of d :

(1) d.x; x0/� 0 for all x; x0 2X.

(2) d.x; x0/D d.x0; x/ for all x; x0 2X.

(3) For all x; x0 2X, x D x0 if and only if d.x; x0/D 0 and d.x0; x/D 0.

(4) d.x; x00/� d.x; x0/C d.x0; x00/ for all x; x0; x00 2X.

If .X; d/ satisfies (1), (2), (3) and (4), it is called a metric space. If .X; d/ satisfies
(1), (3) and (4), it is called a quasimetric space and we can call d a quasimetric. If
.X; d/ satisfies (1), (2) and (4), it is called a pseudometric space and we can call d a
pseudometric. If .X; d/ satisfies (1) and (4), it is called a pseudoquasimetric space
and we can call d a pseudoquasimetric.

We can build examples of these different types of spaces using weighted directed
graphs. Given a weighted directed graph D D .V; A/ and two vertices x; y 2 V , we
call x D v0; v1; v2; : : : ; vmD y a path from x to y if all of the arrows vi ! viC1 are
in A. The length of that path .x D v0; v1; v2; : : : ; vm D y/ is the sum of the weights
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Pm�1
iD0 w.vi ! viC1/. Construct d W V �V !R by setting d.x; y/ to be the length

of the shortest path from x to y (and 1 if no path exists). Since each arrow has
nonnegative weight, the function d automatically satisfies (1) in Definition 2. By
considering the concatenation of paths, we can easily see that d also automatically
satisfies (4) in Definition 2. Thus, .V; d/ must always be a quasipseudometric space.

More generally, we can consider any function f W X�X!R not necessarily satisfying
any of the properties (1)–(4). It is in this most general setting that we will prove stability
theorems.

The Gromov–Hausdorff distance between metric spaces .X; dX / and .Y; dY / is often
defined by

dGH.X; Y /D inf
Z;f WX!Z;gWY!Z

dH;Z.f .X/; g.Y //;

where the infimum is taken over all metric spaces Z and isometric embeddings f
and g to Z from X and Y , respectively, and dH;Z is the Hausdorff distance between
subsets of Z . It is a standard result that the Gromov–Hausdorff distance is a metric on
the space of compact metric spaces.

A useful alternative, but equivalent, formula for the Gromov–Hausdorff distance can
be given through correspondences. The set M�X �Y is a correspondence between
X and Y if for all x 2X there exists some y 2 Y with .x; y/ 2M and for all y 2 Y
there is some x 2X with .x; y/ 2M. Using correspondences we can write

dGH.X; Y /

D
1
2

inf
M correspondence betweenX and Y

sup
.x1;y1/;.x2;y2/2M

jdX .x1; x2/� dY .y1; y2/j:

More generally, given functions f W X � X ! R and gW Y � Y ! R we can call
dis.X;f /;.Y;g/.M/D sup.x1;y1/;.x2;y2/2M jf .x1; x2/�g.y1; y2/j the distortion of the
correspondence M. We can then define the correspondence distortion distance by
minimising this correspondence distortion.

Definition 3 For set–function pairs .X; f W X �X!R/ and .Y; gW Y �Y !R/ the
correspondence distance between them can be defined as

dCD..X; f /; .Y; g//

D
1
2

inf
M correspondence betweenX and Y

dis.X;f /;.Y;g/.M/

D
1
2

inf
M correspondence betweenX and Y

sup
.x1;y1/;.x2;y2/2M

jf .x1; x2/�g.y1; y2/j:
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This agrees with the standard definition for the Gromov–Hausdorff distance when
.X; dX / and .Y; dY / are metric spaces. It is straightforward to verify that dCD is a
pseudometric on the space of all set–function pairs and a metric on the space of finite
quasimetric spaces. The proofs are analogous to that for metric spaces discussed in [1].

3 Background: persistence modules

In this section we will cover some background theory on persistence modules and
the interleaving distance between persistence modules. This is important because
the interleaving distance between persistence modules bounds the bottleneck distance
between their corresponding persistence diagrams. To introduce and motivate the
concepts we will provide a brief summary of the theory of persistent homology. We
will omit most of the details as we will be phrasing all results in later sections in terms
of persistence modules. For more details about the history and applications of persistent
homology we refer the reader to [19; 10; 9; 2].

Persistent homology describes how the homology groups evolve over an increasing
family of topological spaces. Throughout this section let K D fKtg denote a fam-
ily of reasonable topological spaces such that Ks � Kt whenever s � t . Given
s � t the kth –dimensional persistent homology group for K from s to t consists
of the kth –dimensional homology classes in Ks that “persist” until Kt , that is,
Zk.Ks/=.Zk.Kt /[Bk.Ks//. This is isomorphic to the image of the induced map on
homology ��W Hk.Ks/!Hk.Kt / from the inclusion Ks �Kt .

Barcodes and persistence diagrams were introduced as discrete summaries of persistent
homology information. Each barcode consists of a multiset of real intervals called
bars. The barcode corresponding to the kth –dimensional persistent homology of K
is fI1; I2; : : : ; Ing if, for all s � t , the dimension of im.��W Hk.Ks/ ! Hk.Kt //

equals the number of bars in fI1; I2; : : : ; Ing that contain Œs; t/. The corresponding
persistence diagram is the multiset f.ai ; bi /g of points in R2 , where ai and bi are
the endpoints of the bar Ii , alongside infinitely many copies of every point along the
diagonal (these diagonal points are acting the role of empty intervals).

Barcodes and persistence diagrams have played a prominent role in applied topology as
topological summaries of data. In particular, they can provide insight into the “shape”
of point cloud data through the persistent homology of the Rips filtration over that point
cloud. Much of the power behind the use of barcodes and persistence diagrams comes
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from stability theorems, such as the stability theorem for the persistent homology of
the Rips filtration over a finite metric space.

Persistence, such as persistent homology of a filtration of simplicial complexes, can be
defined directly at an algebraic level. In [21], Zomorodian and Carlsson introduced the
concept of a persistence module and proved that barcodes (and equivalently persistence
diagrams) can be defined for persistence modules satisfying reasonable finiteness
conditions. It was shown in [3] that we can define a distance between persistence
modules (called the interleaving distance) and that the interleaving distance between
persistence modules is a bound on the bottleneck distance of their corresponding
persistence diagrams. Throughout this paper we will work directly with persistence
modules.

Definition 4 Let R be a commutative ring with unity. A persistence module over
A�R is a family fPtgt2A of R–modules indexed by real numbers, together with a
family of homomorphism f�st W Pt ! Psg such that �rt D �

r
s ı �

s
t for all t � s � r and

�tt D idPt .

If R is a field then the Pt are all vector fields and the �st are linear maps. As is standard
in topological data analysis, we will assume throughout that R is the fixed field F
(usually taken to be F2 for computational reasons). In the theory of persistence modules
there are technical requirements about tameness. We say P is tame if rank �st is always
finite for any s < t . A sufficient condition for tameness is that X is finite, which is
almost always true in any application. It is less straightforward in the constructions
involving asymmetry to provide other nice sufficient conditions which would ensure the
resulting persistence modules are tame (see the future directions). When the persistence
modules are tame, the interleaving results will immediately imply a stability theorem
for the persistence diagrams/barcodes.

The space of persistence modules is a pseudometric space under the interleaving distance
function. Here we will define the interleaving distance between two persistence modules
as the infimum of � > 0 such that they are �–interleaved. In this we slightly differ
from [3], where they define both strongly and weakly �–interleaved, both of which
are weaker than our notion of interleaving. More details about the pseudometric space
structure of persistence modules and how the interleaving distance between persistence
modules relates to the distances between corresponding persistence diagrams can be
found in [3; 10; 21].
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Definition 5 Two persistence modules PX and PY are �–interleaved if there exist
families of homomorphisms f˛t W PXt ! P YtC�gt2R and fˇt W P Yt ! PXtC�gt2R such
that the following diagrams commute:

PXt
˛t

!!

� // PXt 0
˛0t

""
P YtC� �

// P Yt 0C�

PXtC�
� // PXt 0C�

P Yt �
//

ˇt
==

P Yt 0C�

ˇ 0t
<<

(3-1)

PXt
˛t

!!

� // PXtC2�

P YtC�

ˇtC�
<<

PXtC�
˛tC�

""
P Yt �

//

ˇt
==

P YtC2�

(3-2)

Definition 6 Two persistence modules PX and PY are isomorphic if they are 0–
interleaved.

The diagrams in (3-1) and (3-2) are slightly different from those given in [3] but the
diagrams here commuting will imply that theirs also commute.

If PX and PY are �1–interleaved and PY and PZ are �2–interleaved then composing
homomorphisms shows that PX and PZ are .�1C�2/–interleaved. We can define a
pseudodistance on the space of persistence modules, called the interleaving distance,
where the interleaving distance between PX and PY is the infimum of the set of � > 0
such that PX and PY are �–interleaved. It is worth noting that two persistence
modules might have interleaving distance 0 and yet not be 0–interleaved (and thus not
isomorphic).

4 Existing stability results and Rips filtrations constructed
from related symmetric functions

In this section we will recall the definition for the Rips filtration of a metric space
and more generally for sublevel sets of a symmetric function f W X �X ! R. We
will also recall the existing stability results for their persistent homology. Given
a function f W X � X ! R we construct a family of related symmetric functions
syma.f / (for a 2 Œ0; 1�). We show that the persistent homology constructed from the
syma.f / is stable as a corollary of the stability results for symmetric functions under
the correspondence distortion distance.
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Definition 7 Given a set X and a symmetric function f W X �X!R, the Rips filtra-
tion of .X; f / is a family of finite simplicial complexes R.X; f /D fR.X; f /tgt�0
with R.X; f /t the clique complex on the graph with vertices XtDfx2X Wf .x; x/� tg
and edges fŒx1; x2� 2Xt �Xt W f .x1; x2/� tg.1

Theorem 8 Let f W X �X ! R and gW Y � Y ! R be symmetric functions and
R.X; f / and R.Y; g/ their corresponding Rips filtrations. If dCD..X; f /; .Y; g//

is finite then for all � > dCD..X; f /; .Y; g//, the kth homology persistence mod-
ules of R.X; f / and R.Y; g/ are �–interleaved. In particular, when .X; dX / and
.Y; dY / are compact metric spaces, R.X; dX / and R.Y; dY / are �–interleaved for all
� > 2dGH.X; Y /.

Since the only condition required is symmetry of the filtration function, one approach
for analysing general functions f W X � X ! R is to construct related symmetric
functions. We will consider a one-parameter family of possible symmetric filtrations.
We then prove stability for the Rips filtrations of these symmetric constructions in
terms of the correspondence distortion distance between the original set–function pairs.

Definition 9 Let .X; f / be a finite set X D fx1; : : : ; xN g equipped with function
f W X �X !R. For any a 2 Œ0; 1� we can define a symmetric function

syma.f /W X �X !R;

.x; y/ 7! aminff .x; y/; f .y; x/gC .1� a/maxff .x; y/; f .y; x/g:

Since syma.f / is symmetric we can construct its Rips filtration fR.X; syma.f //tg,
where R.X; syma.f //t is the simplicial complex containing Œx0; x1; : : : ; xp� whenever
syma.f /.xi ; xj / � t for all i and j . We call this the Rips filtration under syma . If
f is a symmetric function then syma.f /D f for all a , which implies that the Rips
filtration under syma generalises the symmetric Rips filtration.

As a corollary of the stability for symmetric functions we have stability for the sym-
metrised functions.

Corollary 10 Fix a 2 Œ0; 1� and a homology dimension k . Let .X; f / and .Y; g/
be set–function pairs such that dCD..X; f /; .Y; g// is finite. Let PX and P Y be

1Readers need to be warned that sometimes the Rips filtration is defined by adding the edge Œx1; x2�
when dX .x1; x2/ �

1
2 t instead of dX .x1; x2/ � t , so sometimes results may differ from here by a

corresponding factor of 2 .
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the corresponding kth –dimensional homology persistence modules constructed from
the corresponding Rips filtrations under syma (R.X; syma.f // and R.Y; syma.g//,
respectively). Then dint.P

X ; P Y /� 2dCD
�
.X; syma.f //; .Y; syma.g//

�
.

Unfortunately this method of constructing Rips filtrations is somewhat crude. We can
show that in the process of symmetrising we dampen dissimilarities. This is not surpris-
ing as the space of symmetric functions is much smaller than that of functions generally.
In particular, we will show in Theorem 12 that dCD

�
.X; syma.f //; .Y; syma.g//

�
�

2dCD..X; f /; .Y; g// for all a 2 Œ0; 1�. There are many examples where this inequality
is strict. For asymmetric functions, dCD

�
.X; syma.f //; .Y; syma.g//

�
is often signif-

icantly smaller than 2dCD..X; f /; .Y; g//. Suppose X D Y , f W X �X ! R is an
antisymmetric function and gD�f . Then, by construction, syma.f /D syma.g/ for
all a but for nonzero f , we generally have dCD..X; f /; .X;�f // > 0.

The dampening process through symmetrisation is encapsulated in the following lemma:

Lemma 11 Let w; yw; z; yz 2R. Then

(i) jmaxfw; ywg�maxfz; yzgj �maxfjw� zj; j yw�yzjg,

(ii) jminfw; ywg�minfz; yzgj �maxfjw� zj; j yw�yzjg.

Proof We can prove (i) through a series of cases. If w � yw and z � yz then
jmaxfw; ywg�maxfz; yzgjDj yw�yzj. If w� yw and z�yz then jmaxfw; ywg�maxfz; yzgjD
jw� zj.

If w � yw and z � yz , then

jmaxfw; ywg�maxfz; yzgj D j yw� zj �
�
j yw�yzj if yz � w;
jw� zj if yz � w

�maxfjw� zj; j yw�yzjg:

Reversing the roles of the letters, we also see that

jmaxfw; ywg�maxfz; yzgj �maxfjw� zj; j yw�yzjg

whenever w � yw and z � yz

We can infer (ii) from (i) by replacing each of w , yw , z and yz by their negatives.

Theorem 12 Fix a 2 Œ0; 1� and a homology dimension k . Let .X; f / and .Y; g/ be
set–function pairs. Then dCD

�
.X; syma.f //; .Y; syma.g//

�
� 2dCD..X; f /; .Y; g//.

Proof It is sufficient to show that dis.X;syma.f //;.Y;syma.g//.M/� dis.X;f /;.Y;g/.M/

for every correspondence M.
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Fix some correspondence M�X�Y and let .x1; y1/; .x2; y2/2M. From Lemma 11
(using w D f .x1; x2/, yw D f .x2; x1/, z D g.y1; y2/ and yz D g.y2; y1/) we know
that both

jminff .x1; x2/; f .x2; x1/g�minfg.y1; y2/; g.y2; y1/gj

�maxfjf .x1; x2/�g.y1; y2/j; jf .x2; x1/�g.y2; y1/jg

and

jmaxff .x1; x2/; f .x2; x1/g�maxfg.y1; y2/; g.y2; y1/gj

�maxfjf .x1; x2/�g.y1; y2/j; jf .x2; x1/�g.y2; y1/jg:

Taking a convex combination of these equations tells us that

(4-1) jsyma.f /.x; yx/� syma.g/.y; yy/j

�maxfjf .x; yx/�g.y; yy/j; jf .yx; x/�g.yy; y/jg:

By taking the supremum on both sides over all pairs f.x; y/; .yx; yy/g 2M we see that

dis.X;syma.f //;.Y;syma.g//.M/� dis.X;f /;.Y;g/.M/:

5 Persistent homology of OT complexes

Ordered tuple complexes are an alternative to simplicial complexes. We will find them
useful as they have more flexibility with regard to order; we can have asymmetric roles
within the same tuple.

Definition 13 An ordered tuple is a sequence of .v0; v1; v2; : : : ; vn/, potentially
including repeats. A ordered tuple complex (shortened to OT complex) is a collection K
of ordered tuples such that if .v0; v1; v2; : : : ; vn/ 2K then .v0; : : : ; yvi ; : : : ; vn/ 2K
for all i (where .v0; : : : ; yvi ; : : : ; vn/ is the ordered tuple with vi removed).

It is worth emphasising that each ordered tuple is determined by the ordered sequence
and not just the underlying vertices; .v1; v2; v3/ and .v3; v1; v2/ are distinct and not
even linearly related.

The ideas of homology and persistent homology naturally extend to OT complexes.
Throughout F will be a fixed field.

Definition 14 Given an OT complex K we can build a chain complex C�.K/ where
Cp.K/ is the set of all the F –linear combinations of the ordered tuples in K with
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length pC 1. This is an F –vector space whose basis vectors are the ordered tuples
in K of length pC 1. We define a boundary map @pW Cp.K/! Cp�1.K/ by

@p..v0; v1; v2; : : : ; vp//D

kX
iD0

.�1/i .v0; : : : ; yvi ; : : : ; vp/

and extending linearly. We define the kth homology group of the OT complex K as
Hk.K/D ker.@k�1/=im.@k/.

When K1 �K2 are both OT complexes, the inclusion of chains induces a map on their
homology groups, ��W H�.K1/!H�.K2/.

Definition 15 We say KD fKtg is filtration of OT complexes if Kt �Kr whenever
t � r . We define the kth –dimensional ordered tuple persistence module corresponding
to K as follows:

� For each t set the vector space Vt DHk.K/ computed over F .

� For each pair s � t we have a linear map induced from inclusion,

�t!sW H�.Ks/!H�.Kt /:

It is easy to check that this does satisfy the requirements of a persistence module.

We can define the directed Rips filtration as a filtration of OT complexes where the
condition for when an ordered tuple is included is dependent on the order in which
the points in the tuple appear. From this filtration of OT complexes we can construct
directed Rips persistence modules.

Definition 16 Let .X; f / be a set–function pair. Set fRdir.X; f /tg to be the filtration
of OT complexes where .v0; v1; : : : ; vp/ 2 Rdir.X; f /t when f .vi ; vj / � t for all
i � j . We call fRdir.X; f /tg the directed Rips filtration of .X; f /. For each dimen-
sion k , we will define the kth –dimensional directed Rips persistence module as the
kth –dimensional ordered tuple persistence module of fRdir.X; f /tg.

We claim that these directed Rips persistence modules are a generalisation of the
Rips persistence modules constructed from symmetric functions. To do this we need
to recall some classical relationships between the homology of OT complexes and
simplicial complexes. Indeed, a common first example of an OT complex is via a
simplicial complex. For a simplicial complex K there is an OT complex KOT where
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.v0; v1; : : : ; vp/ 2 K
OT whenever Œv0; v1 : : : ; vp�, after removing any repeats, is a

simplex in K . In [17], Munkres calls the chain complex C�.KOT/ the ordered chain
complex of K , and shows that the simplicial homology of K and the OT complex
homology of KOT are isomorphic. This isomorphism result holds also for persistence
modules of filtrations of simplicial complexes as the isomorphisms on homology
groups commute with the induced maps on homology by inclusions. This implies that
if f W X �X ! R is a symmetric function then the kth –dimensional ordered tuple
persistence module of fRdir.X; f /tg is isomorphic to the kth –dimensional persistence
module of fR.X; f /tg.

5.1 Stability of the directed Rips persistence modules

We will want to prove that the directed Rips persistence modules enjoy stability with
respect to the correspondence distortion distance. To do this we will compare set–
function pairs over different sets via their induced set–function pairs over a common
set constructed via a fixed correspondence.

Given functions f W X �X ! R and gW Y � Y ! R along with a correspondence
M�X �Y , we can pull back the functions f and g to corresponding functions on
M�M via the projection maps

fM
WM�M!R; .x1; y1/� .x2; y2/ 7! f .x1; x2/;

gMWM�M!R; .x1; y1/� .x2; y2/ 7! g.y1; y2/:

The proof of the following lemma follows directly from the definitions of fM and gM .

Lemma 17 Let .X; f / and .Y; g/ be set–function pairs and M�X �Y a correspon-
dence. Then

kfM
�gMk1 D 2 dis.X;f /;.Y;g/.M/:

We will also need to prove that the directed Rips persistence modules over .X; f / and
.M; fM/ are isomorphic. To do this we will introduce the notion of the expansion of
an OT complex.

Definition 18 Let K be an OT complex. We say that K is closed under adjacent
repeats if whenever .v0; v1; : : : ; vp/2Cp.K/ then .v0; : : : ; vi ; vi ; : : : ; vp/2CpC1.K/
for all i D 0; 1; : : : ; p .

It is worth observing that, by construction, fRdir.X; f /tg is closed under adjacent
repeats for any set–function pair .X; f /.
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Definition 19 Let K and zK be OT complexes, both closed under adjacent repeats,
over vertex sets V and zV , respectively. We say that zK is an expansion of K if there
exists a surjective map � W zV !V and an injective map �W V ! zV such that � ı�D idV
and .v0; v1; : : : ; vp/ 2 zK if and only if .�.v0/; �.v1/; : : : ; �.vp// 2K .

Let KD fKtg and zKD f zKtg be filtrations of OT complexes over vertex sets V and zV ,
respectively. We say that zK is an expansion of K if there exists a surjective map
� W zV ! V and an injective map �W V ! zV such that � ı � D idV and, for all t ,
.v0; v1; : : : ; vp/ 2 zKt if and only if .�.v0/; �.v1/; : : : ; �.vp// 2Kt .

Proposition 20 If KD fKtg and zKD f zKtg are filtrations of OT complexes such that
zK is an expansion of K then the OT persistence modules of K and zK are isomorphic.

Proof Without loss of generality we can relabel the points in V to consider it as a
subset of zV (relabelling v 2 V as �.v/ 2 zV ). In this case � is the inclusion map and �
is a projection map.

Both � W zKt !Kt and �W Kt ! zKt induce chain maps, �#W C�. zKt /! C�.Kt / and
�#W C�.Kt /! C�. zKt /. Observe that �# ı �# D idW C�.Kt /! C�.Kt /, so �� ı �� D
idW H�.Kt /!H�.Kt / for all t .

Suppose .v0; v1; : : : ; vi ; : : : ; vp/ 2 Cp. zKt /. To construct a prism operator later we
want to show that

.v0; v1; : : : ; vi ; �.vi /; : : : ; �.vp// 2 CpC1. zKt /:

To do this we use that zKt is closed under adjacent repeats, the definition of expansions
(twice) and the property that � is a projection (so �.�.vj //D �.vj //:

.v0; v1; : : : ; vi ; : : : ; vp/ 2 Cp. zKt /

D) .v0; v1; : : : ; vi ; vi ; : : : ; vp/ 2 CpC1. zK/

D) .�.v0/; �.v1/; : : : ; �.vi /; �.vi /; : : : ; �.vp// 2 CpC1.Kt /

D)
�
�.v0/; �.v1/; : : : ; �.vi /; �.�.vi //; : : : ; �.�.vp//

�
2 CpC1.Kt /

D) .v0; v1; : : : ; vi ; �.vi /; : : : ; �.vp// 2 CpC1. zKt /:

Consider the prism operator

P..v0; v1; : : : ; vp//D

pX
iD0

.�1/i ..v0; v1; : : : ; vi ; �.vi /; �.viC1/; : : : ; �.vp//:
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Routine algebra shows that @P CP@D i# ı�#� id and thus i# ı�# is chain homotopic
to the identity. This implies i� ı��W H�. zKt /!H�. zKt / is the identity function.

The chain maps �# and i# commute with the inclusion maps for the filtrations of OT
complexes and hence the following diagrams commute:

H�. zKs/

��

��

�� // H�. zKt /

��

��
H�.Ks/

�� // H�.Kt /

H�.Ks/

i�
��

�� // H�.Kt /

i�
��

H�. zKs/
�� // H�. zKt /

Since i� ı �� D idW H�. zKt /! H�. zKt / and �� ı i� D idW H�.Kt /! H�.Kt / for
all t we see that K and zK are isomorphic.

Theorem 21 Let .X;f / and .Y; g/ be set–function pairs such that dCD..X;f /; .Y; g//

is finite. Let PX and P Y be the corresponding kth –dimensional homology persistence
modules constructed from the corresponding directed Rips filtrations fRdir.X; f /tg

and fRdir.Y; g/tg. Then dint.P
X ; P Y /� 2dCD..X; f /; .Y; g//.

Proof Since dCD..X; f /; .Y; g// is finite, there exists some correspondence M �
X � Y with dis.X;f /;.Y;g/.M/ finite. Fix a correspondence M � X � Y with
dis.X;f /;.Y;g/.M/ finite. From this correspondence construct directed Rips filtrations
fRdir.M; fM/tg and fRdir.M; gM/tg with corresponding kth –dimensional persis-
tence modules P .X;M/ and P .Y;M/ .

By construction fRdir.M; fM/tg is an expansion of fRdir.X; f /tg and thus by
Proposition 20 we know that the persistence modules PX and P .X;M/ are isomorphic.
Similarly, we can also show that P Y and P .Y;M/ are isomorphic.

By Lemma 17 we know kfM�gMk1 � 2 dis.X;f /;.Y;g/.M/. There is an inclusion

Rdir.M; fM/t �Rdir.M; gM/tC2 dis.X;f /;.Y;g/.M/

for all t as

.v0; v1; : : : ; vn/ 2Rdir.M; fM/t

D) fM.vi ; vj /� t for all i � j

D) gM.vi ; vj /� t C dis.X;f /;.Y;g/.M/ for all i � j

D) .v0; v1; : : : ; vn/ 2Rdir.M; gM/tC2 dis.X;f /;.Y;g/.M/:
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Symmetrically, there are also inclusions

Rdir.M; gM/t �Rdir.M; fM/tC2 dis.X;f /;.Y;g/.M/

for all t . These inclusion maps induce a 2 dis.X;f /;.Y;g/.M/ interleaving between
P .X;M/ and P .Y;M/ . This implies that PX and P Y are 2 dis.X;f /;.Y;g/.M/–inter-
leaved.

By considering the infimum of the interleavings constructed by correspondences we
see that dint.P

X ; P Y / is at most 2dCD..X; f /; .Y; g//.

5.2 Comparison to ordered-set persistent homology

It is possible to construct homology groups and persistence modules using ordered sets
instead of ordered tuples. As a preemptive attempt to reduce confusion, this section
will compare this ordered-tuple persistent homology to ordered-set persistent homology.
In ordered-set homology we effectively restrict our chains to only contain ordered
tuples where there are no repeats. We can still define homology, persistent homology
and persistence modules. Furthermore, in some applications this may better reflect
the connectivity structure (such as in the analysis of the blue brain project in [18]) but
there are two important reasons why we are not considering ordered-set persistence
modules as a generalisation of the Rips persistence modules. The first reason is that
when we restrict to symmetric functions we do not get persistence modules isomorphic
to the standard Rips persistence modules. The second reason is that these persistence
modules are not stable with respect to the correspondence distortion distance.

For example, consider the set X D fx; yg with the f the zero function. For t < 0,
then, the corresponding ordered sets complexes are empty with trivial homology. The
ordered tuple complexes and Rips simplicial complexes are also empty and have trivial
homology. For t � 0, the corresponding ordered set complex consists of the ordered
sets .x/, .y/, .x; y/ and .y; x/. It has nontrivial 1–dimensional homology. To see
this first observe that .x; y/C .y; x/ is a cycle but the space of 2–chains is trivial,
so there are no nontrivial 1–chain boundaries. In comparison, the Rips simplicial
complex is Œx; y�, which has no nontrivial 1–cycles. The ordered-tuple complex is
more complicated but everything ends up cancelling each other. For example, this cycle
of concern in the ordered-set homology, .x; y/C .y; x/, is a boundary in the setting of
OT homology: .x; y/C .y; x/D @..x; y; x/C .x; x; x//.

To see that the ordered-set persistence modules are not stable with respect to the
correspondence distortion distance, compare .X; f / in the example in the paragraph
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above to the single-point space ZD fzg with function g.z/D 0. The first-dimensional
ordered set homology for Z is also trivial and so its first-dimensional persistence
module is also trivial. The correspondence f.x; z/; .y; z/g �X �Z has zero distortion
but the ordered-set persistence modules are not �–interleaved for any � .

6 Persistence modules via strongly connected components
and preorder homology

In this section we will consider constructions using an associated filtration of directed
graphs or preorders. For each t we can define a directed graph fD.X/tg where x! y

is included in D.X/t when maxff .x; y/; f .x; x/; f .y; y/g � t . From a directed
graph we can induce a natural preorder via the existence of paths. That is a preorder
where x � y if there is a path from x to y in D.X/t . We will construct persistence
modules using the strongly connected components of the graphs D.X/t , which are
also the equivalence classes of the associated preorders. We also consider persistence
modules using ordered-tuple complexes constructed over preorders.

Let us first introduce the construction of directed graphs and preorders from set–function
pairs.

Definition 22 Let X be a set with a binary relationship �. Consider the following
potential properties of .X;�/:

(i) Reflexive x � x for all x 2X.

(ii) Antisymmetric For all x; y 2X, if x � y and y � x then x D y .

(iii) Transitive For all x; y; z 2X, if x � y and y � z then x � z .

We say that .X;�/ is a poset is it satisfies (i), (ii) and (iii). We say .X;�/ is a preorder
if it satisfies (i) and (iii).

There is a natural equivalence relation on X where x � y when x � y and y � x . If
we quotient a preorder by this equivalence relation we are left with a poset.

One way to construct preorders is via directed graphs. Given a directed graph G D
.V;E/ and vertices x; y 2 V , we say there is a path from x to y when there is a finite
sequence of vertices x D x0; x1; : : : ; xn D y such that .xi ; xiC1/ is a directed edge.
To create a preorder on V we declare that x � y whenever there is a path from x to y .
The strongly connected components of a directed graph are the equivalence classes of
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points where v � w when there exists both a path from v to w and a path from w

to v . Thus, we see that the equivalence classes of this poset are precisely the strongly
connected components of the directed graph it was built from. Suppose we start with a
directed graph and we consider the preorder defined by the existence of paths. If we
quotient by the equivalence relation to get a poset, then on the directed graph level we
are collecting the vertices into the strongly connected components and then we have
directed edges between these strongly connected components if there is a path between
them. This will create an acyclic directed graph.

We will first need to construct directed graphs from the sublevel sets of a set–function
pair. From this we can consider filtrations of directed graphs and of preorders.

Definition 23 Given a set–function pair .X; f / there is a natural filtration of directed
graphs fD.X/t W t 2 Œ0;1/g associated to X by setting D.X; f /t to the directed
graph with vertices fx 2 X W f .x; x/ � tg and including the directed edge x ! y

whenever maxff .x; x/; f .y; y/; f .x; y/g� t . We will call this the associated filtration
of directed graphs of .X; f /.

It is necessary for the inclusion rule for the directed edges to occur at the maximum
of ff .x; x/; f .y; y/; f .x; y/g (rather than at f .x; y/, which may occur earlier) to
ensure that D.X; f /t will satisfy the closure conditions for a directed graph. In the
case where f D d is a quasimetric, d.x; x/D 0D d.y; y/ and d.x; y/ � 0 and so
the edge from x to y is included at t D d.x; y/.

We define a filtration of preorders to be a parametrised family of preorders

f.Xt ;�t / W t 2Rg

such that for all s � t we have Xs � Xt and if x; y 2 Xs with x �s y then x �t y .
From a filtration of associated graphs for a set–function pair we can construct a natural
filtration of preordered spaces as follows:

Definition 24 Let .X; f / be a set–function pair and let fD.X; f /tg be its associated
filtration of directed graphs. For each t � 0 construct a preordered space .Xt ;�t / with
Xt the set of points in D.X; f /t and x �t y when there exists a path in D.X; f /t
from x to y . We call this the associated filtration of preorders.

The following is a useful lemma for proving the interleaving results for the persistence
modules constructed with strongly connected components or with preorder homology:
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Lemma 25 Let X and Y be sets and .X; f / and .Y; g/ be set–function pairs with
dCD..X; f /; .Y; g// finite. Let D.X; f /D fD.X; f /tg and D.Y; g/D fD.Y; g/tg be
the associated filtrations of directed graphs. Let M�X �Y be a correspondence with
dis.X;f /;.Y;g/.M/ finite.

(i) If .x; y/ 2M and x 2D.X; f /t then y 2D.Y; g/tCdis.M/ .

(ii) If .x1; x2/; .y1; y2/ 2M and there exists a directed path from x1 to x2 in
D.X; f /t then there exists a directed path from y1 to y2 in D.Y; g/tCdis.M/ .

Proof (i) If x 2D.X; f /t then f .x; x/� t . Since .x; y/2M, we know g.y; y/�

t C dis.M/ and hence y 2D.Y; g/tCdis.M/ .

(ii) Suppose that there is a path from x1 to x2 in D.X; f /t . This means that there
exists a sequence of points .x1D a1; a2; : : : ; ak D x2/ in X such that f .ai ; aiC1/� t .
There exists a sequence of points in Y , y1D b1; b2; : : : ; bk D y2 , where .ai ; bi / 2M.
By (i) we know each of the bi lie in D.Y; g/tCdis.X;f /;.Y;g/.M/ . Since each .ai ; bi /2M,
we have

jf .ai ; aiC1/�g.bi ; biC1/j � dis.X;f /;.Y;g/.M/

for each i and hence .y1Db1; b2; : : : ; bkDy2/ is a path in D.Y; g/tCdis.X;f /;.Y;g/.M/ .

The lemma can be rewritten in terms of preorders; for .x1; y1/; .x2; y2/ 2 M, if
x1 �

f
t x2 then y1 �

g

tCdis.X;f /;.Y;g/.M/
y2 .

6.1 Strongly connected components persistence

Dimension 0 persistent homology is all about tracking the evolution of connected
components. For directed graphs, unlike graphs, there is choice in how to interpret what
a connected component is, with each interpretation providing their own corresponding
persistence module. Here we will consider the persistence of weakly and strongly
connected components.

Weakly connected components are the components of the graph when the directions are
forgotten. Given a filtration of a directed graph by edge weights, the weakly connected
persistence would be the same as the dimension 0 persistent homology of the Rips
filtration under sym1 in Section 4, and to the dimension 0 directed Rips persistence
module in Section 5.
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Studying strongly connected components will provide new information. Recall the
strongly connected components of a directed graph are the equivalence classes of points
where v�w when there exists both a path from v to w and a path from w to v . Given
a filtration of directed graphs we can construct a persistence module based on linear
combinations of strongly connected components (analogous to dimension 0 homology
being interpreted as the space of formal linear combinations of connected components).

Definition 26 We call DDfDt W t 2Rg a filtration of directed graphs if Dt is directed
graph for all t such that if s� t then Ds is a directed subgraph of Dt . Given a filtration
of directed graphs DD fDtg, let Œv�t denote the strongly connected component of Dt
containing v . We define the strongly connected persistence module corresponding to D
as follows:

� For each t 2 R set the vector space Vt to be the vector space of finite linear
combinations of strongly connected components

�
that is, elements are of the

form
Pk
iD1 �i Œvi �t with �i 2 F

�
.

� For each pair t � s we have a linear map induced from inclusion,

�t!s

� kX
iD1

�i Œvi �t

�
D

kX
iD1

�i Œvi �s:

We will now check that the strongly connected component persistence module does
satisfy the requirements of a persistence module. Whenever we have an inclusion
of directed graphs Dt � Ds , whenever there is a path from v to w in Dt , there is
also a path from v to w in Ds . This implies that the maps �t!s are well defined.
Furthermore, for u � t � s we have �t!s

�
�u!t

�Pk
iD1 �i Œvi �u

��
D
Pk
iD1 �i Œvi �s D

�u!s
�Pk

iD1 �i Œvi �u
�
. Whenever the directed graphs Dt are all finite (which is true in

almost any application) we automatically know that the Vt are all finite-dimensional
and hence the strongly connected persistence module is tame.

We can create strongly connected persistence modules from set–function pairs via its
associated filtration of directed graphs.

Theorem 27 Let X and Y be sets and .X; f / and .Y; g/ be set–function pairs with
dCD..X; f /; .Y; g// finite. Let D.X; f /D fD.X; f /tg and D.Y; g/D fD.Y; g/tg be
the associated filtrations of directed graphs. Let PX and PY be the strongly connected
component persistence modules for D.X; f / and D.Y; g/. Then dint.PX ;PY / �
dCD..X; f /; .Y; g//.
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Proof Fix a correspondence M�X �Y with dis.X;f /;.Y;g/.M/ finite.

Construct a map ˛W X ! Y where for each x we arbitrarily fix a representative from
fy 2 Y W .x; y/ 2Mg, and construct a map ˇW Y !X where for each y we arbitrarily
fix a representative from fx 2X W .x; y/ 2Mg.

If Œx1�t D Œx2�t then there exist paths in D.X; f /t from x1 to x2 and from x2 to x1 .
By Lemma 25 there exist paths in D.Y; g/tCdis.X;f /;.Y;g/.M/ from ˛.x1/ to ˛.x2/ and
from ˛.x2/ to ˛.x1/. This means that ˛ induces a well-defined linear map

˛�W P
X
t ! P YtCdis.X;f /;.Y;g/.M/; Œx�t 7! Œ˛.x/�tC2 dis.X;f /;.Y;g/.M/:

Similarly, ˇ induces a linear map ˇ�W P
Y
t ! PX

tC2 dis.X;f /;.Y;g/.M/
where Œy�t 7!

Œˇ.y/�tC2 dis.X;f /;.Y;g/.M/ .

It only remains to show that ˛� and ˇ� satisfy an 2 dis.X;f /;.Y;g/.M/ interleaving.
That (3-1) commutes follows directly from the construction of ˛ and ˇ .

Let f .x; x/D t , whence x 2D.X; f /t . From our construction of ˛ and ˇ we know
that .x; ˛.x// and .ˇ.˛.x//; ˛.x// are both in M. By Lemma 25 this implies that
there are directed paths in both directions between ˇ.˛.x// and x in the directed
graph D.X; f /tC2 dis.X;f /;.Y;g/.M/ , and hence they lie in the same strongly connected
component.

Similarly, for every y 2 Y with g.y; y/D t , we know that ˛.ˇ.y// and y lie in the
same strongly connected component in D.Y; g/tC2 dis.X;f /;.Y;g/.M/ . This ensures that
we satisfy (3-2).

By taking the infimum over all correspondences we see that the interleaving distance
between PX and P Y is bounded above by 2dCD..X; f /; .Y; g//.

We provide some pseudocode (the algorithm in the appendix) for an algorithm that
computes the interval decomposition of the strongly connected component persistence
module from a filtration of directed graphs. It is a modification of the union-find
algorithm used to compute the standard dimension 0 persistent homology. In the
union-find algorithm each connected component is represented by a root vertex with an
additional data of its birth time. The main difference for strongly connected components
is that we have to also keep track of when directed paths exist between the various
strongly connected components. These are stored as a list of the root vertices of “in”
and “out” connected components. Here “in” means a connected component that has
a path pointing into the current component and “out” means there is a path pointing
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out of the current component. Note that for any root vertex these in and out sets are
disjoint, as being in both would imply they are the same strongly connected component.
The main challenge in this modification is to ensure that at each stage the list of in and
out strongly connected components listed by the root vertices are referred to by their
root vertex.

6.2 OT complexes constructed using the preorder structure

In the theory of partially ordered sets (“posets”), the order complex of a poset is the
set of all finite chains. Its homology contains important information about the poset.
Preorders are a generalisation of posets where we drop the antisymmetry condition.
Poset homology naturally extends to preorders, where we will call it preorder homology.
It is easier and more flexible to construct filtrations of preorders than of posets.

From the associated filtration of directed graphs of a set–function pair we can create a
filtration of preorders which we will call the preorder Rips filtration. From the filtration
of preorders we can construct persistence modules using preorder homology to generate
preorder Rips persistence modules. These persistence modules enjoys stability with
respect to the correspondence distortion distance. The homology dimension 0 preorder
Rips persistence module is isomorphic to that of its weakly connected components,
its directed Rips persistence module and the standard Rips persistence module under
sym1 . If the input is a symmetric function then its higher-dimensional preorder Rips
persistence modules are all trivial, showing that preorder Rips persistence module
describes asymmetry information.

In this paper we will generalise to preorders some constructions normally defined for
posets. The homology of a poset has been defined and studied via its corresponding
Alexandrov topology. Preorders are in bijective correspondence with Alexandrov
topologies, with the antisymmetry condition (which is the axiom that makes a preorder
a poset) translating to those topologies that are T0 . For each preorder there is a canonical
poset over its equivalence classes, and this poset corresponds to the Kolmogorov quotient
of the Alexandrov topology of that original preorder. Because these quotient spaces
are weakly homotopy equivalent, standard references for Alexandrov topology often
state they will restrict their analysis to T0 spaces/posets (eg [16; 15]). It is for this
reason that definitions are usually only stated for posets and not more generally for
preorders. In the appendix we will go into more detail into this background material
and justify why the definitions given in this section are the natural generalisation of
those traditionally given for posets.
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Let us now construct an OT complex from a preorder.

Definition 28 Given a preorder .X;�/, let O.X;�/ be the OT complex containing
.x0; x1; : : : ; xp/ when x0 � x1 � � � � � xp . We call O.X;�/ the preorder OT complex
of .X;�/.

Definition 29 Given a preorder .X;�/, its associated order complex �.X;�/ is an
abstract simplicial complex whose vertices are the elements of X and whose faces are
the chains (subsets where each pair is comparable) of .X;�/.

From a filtration of preorders we can construct a filtration of OT complexes. From this,
persistence modules can be constructed as standard with OT homology classes as the
vector spaces and induced maps from inclusions as the transition maps.

Definition 30 Let O.X; f / D fO.X; f /tg be the filtration of OT complexes corre-
sponding to the filtration of posets f.Xt ;�t /g. We call O.X; f / the preorder filtration
of .X; f /.

In the appendix we see that the simplicial homology of the order complex �.X;�/ is
naturally isomorphic to the homology of the preorder OT complex O.X;�/. More-
over, isomorphisms between the simplicial homology of the order complexes and the
homology of the preorder OT complexes will extend to persistent homology as they
commute with the maps on homology induced by inclusions.

Definition 31 We define the kth –dimensional preorder persistence module correspond-
ing to the filtration of preorders X D f.Xt ;�t /g as the dimension k OT homology
persistence module for the filtration of OT complexes fO.X;�t /gt2R .

Just as in the previous constructions in this paper we can prove that the corresponding
persistence modules built from functions f W X�X!R and gW Y �Y !R are stable
with respect to the correspondence distortion distance.

Theorem 32 Let .X;f / and .Y; g/ be set–function pairs with preorder Rips filtrations
O.X; f / and O.Y; g/. Let PX and PY be the kth –dimensional persistence modules
for O.X; f / and O.Y; g/, respectively. Then dint.PX ;PY /� 2dCD..X; f /; .Y; g//.
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Proof Since dCD..X; f /; .Y; g// is finite, there exists some correspondence M �
X � Y with dis.X;f /;.Y;g/.M/ finite. Fix a correspondence M � X � Y with
dis.X;f /;.Y;g/.M/ finite. From this correspondence construct preorder Rips filtrations
fO.M; fM/tg and fO.M; gM/tg with corresponding kth –dimensional persistence
modules P .X;M/ and P .Y;M/ .

By construction, fO.M; fM/tg is an expansion of fO.X; f /tg and thus by Proposition
20 we know that the persistence modules PX and P .X;M/ are isomorphic. Similarly
we can also show that P Y and P .Y;M/ are isomorphic.

If ..x0; y0/; .x1; y1/; : : : ; .xn; yn//2O.M; fM/t then x0; : : : ; xn2D.X/t and there
exist directed paths from xi to xj in D.X; f /t for all i � j . By Lemma 25 there
must exist a directed path from yi to yj in D.Y; g/tCdis.X;f /;.Y;g/.M/ for all i � j .
This implies that O.M; fM/t � O.M; gM/tCdis.X;f /;.Y;g/.M/ for all t . Similarly,
O.M; gM/t �O.M; fM/tCdis.X;f /;.Y;g/.M/ .

These inclusion maps induce a dis.X;f /;.Y;g/.M/ interleaving between P .X;M/ and
P .Y;M/ . This implies that PX and P Y are dis.X;f /;.Y;g/.M/–interleaved.

By considering the infimum of the interleavings constructed by correspondences
we see that the interleaving distance between PX and P Y is bounded above by
2dCD..X; f /; .Y; g//.

As shown in Theorem 36 (in the appendix), the simplicial homology of the order
complex is naturally isomorphic to the OT homology of O.X;�/. Furthermore, this
isomorphism result holds also for persistence modules of filtrations of simplicial
complexes as the isomorphisms on homology groups commute with the induced maps
on homology by inclusions. This implies that interval decomposition of the kth preorder
persistence modules can be computed via the simplicial persistent homology over the
filtration of simplicial complexes f�.Xt ;�

f
t /g.

7 Future directions

There are many future directions related to the research in this paper. Examples include:

� Applying the constructions in this paper to quasimetric spaces to see what they
reveal about their quasimetric structure, or to use as a method of getting a lower bound
on the correspondence distortion distance between different quasimetric spaces.
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� Adapting these methods to construct persistence modules for sublevel set filtrations
of special functions on quasimetric spaces and proving related stability results. For
example, we conjecture that all four constructions built from a suitably defined sublevel
set of the extremity function of a quasimetric space (analogous to constructions in [4])
could have correspondence distortion distance stability with respect to the original
quasimetric distance functions. This would provide another way of capturing the “shape”
of a quasimetric space.

� Finding nice sufficient conditions on functions f W X �X !R, with jX j infinite,
as to when these various Rips constructions create tame persistence modules. Even
when restricting to the case of quasimetric spaces it is not even clear how we should
define an �–sampling or compactness. In the symmetric case, definitions have been
used to describe sufficient conditions for metric spaces that result in tame persistence
modules (such as in [5]).

� Algorithmic techniques for computing OT persistent homology efficiently. In
particular, is there a related filtration of simplicial complexes that have isomorphic OT
persistent homology, at least in low homology dimensions?

Appendix

A.1 Algorithm to compute interval decomposition of the strongly
connected persistence module

INPUT: List L of vertices V D fv1; v2; : : : ; vng and directed edges

f.vi1 ! vj1/; : : : ; .vim ! vjm/g;

each with a real-valued height such that h.vi ! vj /�maxfh.vi /; h.vj /g. These
vertices and directed edges are ordered in a combined list L by increasing height
values. All the vertices at a height value occur before the edges at that same height.

OUTPUT: Interval decomposition of the strongly connected component persistence
module from filtration of sublevel sets of the height function

1: function FIND(x )
2: while root.x/ ŠD x do
3: x D root.x/
4: end while
5: return x
6: end function
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7: procedure UNION(vtail , vhead , height)
8: W D vtail:in\ vhead:out
9: yw WD earliest w 2W to appear in list L
10: for w 2W , w ¤ yw do
11: root.w/D yw
12: if h.w/ < height then
13: append Œh.w/; height/ to BARCODE
14: end if
15: yw:inD fFIND(x ) for x 2 vtail:ing F An SCC has a path to yw if and only

if it has a path to vtail .
16: yw:outDfFIND(x ) for x 2 vhead:outg F An SCC has a path from yw if and

only if it has a path from vhead .
17: for x 2 yw:in do
18: x:outD fFIND(y) for y 2 x:out[ yw:outg
19: end for
20: for x 2 yw:out do
21: x:inD fFIND(y) for y 2 x:in[ yw:ing
22: end for
23: end for
24: end procedure
25:

26: procedure UPDATEINOUT(vtail , vhead , height)
27: for x 2 vtail:in do
28: x:outD fFIND(y) for y 2 vhead:out[ x:outg
29: end for
30: for y 2 vhead:out do
31: y:inD fFIND(x) for x 2 vtail:in[y:ing
32: end for
33: end procedure
34:

35: for i D 1 to length.L/ do
36: if L.i/ is a vertex vk then
37: Add a vertex to A. Label it with (heightD h.L.i//, rootD vk , inD fvkg,

outD fvkg).
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38: if L.i/ is a directed edge vj ! vk then
39: vtail WD FIND.vj /, vhead WD FIND.vk/

40: if vhead … vtail:out then
41: if vhead…vtail:in then FWe need to update the paths between SCCs.

42: UPDATEINOUT(vtail , vhead )

43: end if
44: if vhead 2 vtail:in then F This is when various SCCs merge.

45: UNION(vtail , vhead , h.L.i//)

46: end if
47: end if
48: end if
49: end if
50: end for
51: RemainingComponents WD fFIND.x/ for x 2 V g F Final set of strongly con-

nected components.

52: for x 2 RemainingComponents do
53: Append Œh.x/;1/ to BARCODE

54: end for

A.2 Homology of a poset

There are multiple ways to compute the homology of a poset, including via Alexan-
drov topological spaces and order simplicial complexes. For each preorder there is a
canonical poset we call its equivalence class poset. In this subsection we show that the
definitions of homology of a poset can naturally be extended to preorders. Furthermore,
the resulting homology of a preorder is naturally isomorphic to the homology of its
equivalence class poset. This justifies the constructions in Section 6.2.

An Alexandrov topology is a topology in which the intersection of any family of open
sets is open. It is an axiom of topology that the intersection of any finite family of
open sets is open; in Alexandrov topologies the finiteness restriction is dropped. Given
an Alexandrov topology we can construct a special preorder, called its specialisation
preorder.

Definition 33 Let X D .X; �/ be an Alexandrov space. The specialisation preorder
on X is the preorder where x � y if and only if x is in the closure of fyg.
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In the other direction, given a preorder .X;�/ there is a unique Alexandrov topology
whose specialisation preorder is .X;�/. To construct this, let the open sets � on X be
the upper sets,

� D fU �X W 8x; y 2X if x � y and x 2 U then y 2 U g:

The corresponding closed sets for � are the lower sets,

fS �X W 8x; y 2X if x 2 S and y � x then y 2 Sg:

The topology � is generated by the sets Ux D fy W x � yg.

A topological space X is a T0 space if for any pair of points in X there exists an open
set containing one and only one of them. It is an exercise to see how the antisymmetry
condition of posets directly corresponds to the Alexandrov topologies that are T0 .

We can construct T0 spaces by taking Kolmogorov quotients. The Kolmogorov quotient
of a topological space is defined as its quotient by the equivalence relation of topological
indistinguishability, equipped with the quotient topology.

There is a natural way of constructing a poset from a preorder by using quotients. For
.X;�/ a preorder, define an equivalence relation x � y when x � y and y � x . Let
zX DX=� be the quotient space on these equivalence classes. It is easy to check that

the binary relation � is now well defined on zX and that . zX;�/ is a poset. We will
call . zX;�/ the equivalence class poset of .X;�/. The following lemma states the
relationship between a preorder and its equivalence class poset is analogous to taking
the Kolmogorov quotient of its Alexandrov topology. The proof for finite spaces is
Lemmas 8 and 9 in [16], and the extension to infinite spaces can be proved similarly
(see [13]).

Lemma 34 Let .X;�/ be a finite preorder with equivalence class poset . zX;�/.
The Alexandrov topology of . zX;�/ is the Kolmogorov quotient of the Alexandrov
topology of .X;�/. Furthermore, the Alexandrov topologies of .X;�/ and . zX;�/

are homotopy equivalent.

Since homology is defined up to weak homotopy equivalence, often in analysis re-
searchers restrict their analysis from general topological spaces to T0 spaces as they do
not lose any homological information by taking the Kolmogorov quotient. Thus, many
definitions are stated as for posets even though they could be defined for all preorders.
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One definition of the homology of a poset is the singular homology of the Alexandrov
topology which has that poset as its specialisation order. Since the specialisation orders
of Alexandrov topologies provide a one-to-one correspondence between Alexandrov
topologies and preorders, we can generalise this to define the homology of a preorder
as the singular homology of the Alexandrov topology which has that preorder as its
specialisation order.

A chain in a poset is defined as a subset of elements which are all pairwise comparable.
Note that there is no order of the elements given as part of the information of the chain
but that the transitivity of a preorder will ensure that there exists a total ordering of
any chain. In a poset the antisymmetry condition ensures that this order is unique. In a
general preorder multiple possible orders might be possible.

In a poset, the unique ordering of elements in a chain means we can define chain
complexes and homology groups for a poset directly via chains. We thus say that an
m–chain of a poset P is a totally ordered subset cD .x0<x1< � � �<xm/ of P written
in order. We can construct a chain complex by setting Cj .P;R/ to be the R–module
freely generated by j –chains, and defining boundary maps @j W Cj .P /! Cj�1.P /

by @j .x0 < x1 < � � � < xm/D
Pm
iD0.�1/

i .x0 < x1 < � � � yxi � � � < xm/ and extending
linearly.

We can observe that this chain complex is exactly that for ordered sets (see Section 5.2).
If we specify the order of each chain, we can extend this definition to preorders as the
OS homology. Generally the OS homology and the OT homology are not isomorphic
(see Section 5.2). However, in the special case of posets they do define isomorphic
homology groups, as proved below in Theorem 35.

An alternative definition for the homology of a poset is via the construction of its
associated order simplex. The associated order complex �.X;�/ for the poset .X;�/
is the abstract simplicial complex whose vertices are the elements of X and whose
faces are the chains (subsets where each pair is comparable) of .X;�/. The definition
of the associated order complex of a preorder given in Section 6.2 restricts to the
standard definition for posets.

The following theorem presents some relationships between these different homology
constructions:

Theorem 35 Let . zX;�/ be a poset. The following homology groups are isomorphic:

(i) OS homology of the finite chains of . zX;�/.
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(ii) OT homology of the preorder OT complex O. zX;�/.

(iii) Simplicial homology of the order complex �. zX;�/.

(iv) Singular homology of the Alexandrov topology with specialisation order . zX;�/.

Proof The proof that (ii) and (iv) are isomorphic is in [16, Theorem 2]. The isomor-
phism between (i) and (iii) is via the unique total orderings of each simplex in the order
complex. It is the induced map on homology of .x0<x1< � � �<xk/ 7! Œx0; x1; : : : ; xk�.

We will now prove that (i) is isomorphic to (ii). The set of ordered tuples forms
a basis B for OT. zX;�/. Define ˆW B ! fsubcomplexes of OT. zX;�/g by setting
ˆ.�/ to be the subcomplex of OT. zX;�/ containing only ordered tuples with elements
within � . Since � is an ordered tuple, it has a smallest element x and for any ˛ 2ˆ.�/
the ordered tuple concatenating x in front of ˛ (which we will denote by .x˛/) is also
an element in ˆ.�/. Given a boundary ˛ , we can see that @.x˛/D ˛� .x@.˛//D ˛ .
This implies that ˆ is an acyclic carrier.

Set f W OT. zX;�/! OT. zX;�/ by f .�/ the identity when � does not contain repeats
(ie lives in OS. zX;�/ and f .�/D0 if � contains a repeat). Then f commutes with the
boundary map because all repeats of a particular element in a tuple must be consecutive
when working with posets. It is this claim that does not hold more generally between
OT complexes and OS complexes. Since both f and the identity map are both carried
by ˆ, the acyclic carrier theorem (see [17]) ensures that f and the identity map are
chain homotopic and hence the OS homology of the finite chains of . zX;�/ and the
OT homology of preorder OT complex O. zX;�/ are isomorphic.

Each of these four different constructions of homology groups for posets can be
generalised to preorders. Three of these generalise in a way that the homology groups
are invariant under taking equivalence class posets (or equivalently under taking Kol-
mogorov quotients). The OS homology of chains is the odd one out in this respect. A
counterexample is the preorder X D fx; yg with x � y and y � x . It has nontrivial
OS homology in dimension one but its equivalence class poset zX D fŒx�g has trivial
OS homology in dimension one.

Theorem 36 Let .X;�/ be a preorder with equivalence class poset . zX;�/. Then:

(a) The preorder OT complex O.X;�/ is an expansion of O. zX;�/ and hence has
the same OT homology.
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(b) There is a natural projection map from �.X;�/ to �. zX;�/. This projection
map induces an isomorphism on their simplicial homology groups.

(c) The singular homology of the Alexandrov topology with specialisation order
.X;�/ is isomorphic to the singular homology of the Alexandrov topology with
specialisation order . zX;�/.

Proof (a) The OT complexes O.X;�/ and O. zX;�/ are closed under adjacent
repeats by construction. The quotient map sending X to its equivalence class poset zX
shows that O.X;�/ is an expansion of O. zX;�/. We conclude that they are isomorphic
by applying Proposition 20.

(b) Construct a map f W zX!X by fixing a representative x 2X for each equivalence
class Œx� 2 zX. We can embed �. zX;�/ into �.X;�/ via the induced map of f . A
straight line homotopy provides a deformation from �.X;�/ to f .�. zX;�//. The
result then follows because deformation retractions induce isomorphisms on homology
classes.

(c) The proof follows from Lemma 34 as homotopic topological spaces have isomor-
phic singular homology groups.

Combining these theorems we conclude that the OT homology of preorder OT com-
plexes, simplicial homology of the associated order complex of a preorder and the
singular homology of the Alexandrov topology of a preorder are all isomorphic. These
isomorphisms extend to persistent homology as they commute with the maps on
homology induced by inclusions.
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