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On the homotopy types of Sp.n/ gauge groups

DAISUKE KISHIMOTO

AKIRA KONO

Let Gk;n be the gauge group of the principal Sp.n/–bundle over S4 corresponding
to k 2 Z Š �3.Sp.n// . We refine the result of Sutherland on the homotopy types
of Gk;n and relate it to the order of a certain Samelson product in Sp.n/ . Then we
classify the p–local homotopy types of Gk;n for .p� 1/2C 1� 2n .

54C35, 55P15

1 Introduction

Let G be a topological group and P!X be a principal G –bundle over a base space X.
The gauge group of P, denoted by G.P /, is the topological group of automorphisms
of P, where an automorphism of P is a G–equivariant self-map of P covering the
identity map of X. For fixed G and X, one has a collection of gauge groups G.P /
as P ranges over all principal G –bundles over X, and we will be concerned with the
classification of homotopy types in it.

Let G be a compact connected simple Lie group. Then there is a one-to-one correspon-
dence between (isomorphism classes of) principal G –bundles over S4 and �3.G/ŠZ.
We denote by Gk.G/ the gauge group of the bundle corresponding to k 2 ZŠ �3.G/.
Consider the classification of the homotopy type in the collection of gauge groups
fGk.G/gk2Z . The first classification was done by the second author [18] for GDSU.2/,
and since then, considerable effort has been made for the classification when G is
of low rank; see Cutler [4], Hamanaka and Kono [8], Hamanaka, Kaji and Kono [7],
Hasui, Kishimoto, Kono and Sato [9], Kamiyama, Kishimoto, Kono and Tsukuda [11],
Kishimoto, Theriault and Tsutaya [16], Kono [18] and Theriault [23; 25; 26]. Properties
of gauge groups related to the classification of the homotopy types have also been
intensively studied; see Crabb and Sutherland [3] and Kishimoto and Kono [12],
Kishimoto, Kono and Theriault [13], Kishimoto and Tsutaya [17], Kishimoto, Kono
and Tsutaya [14; 15] and Theriault [24].
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In this paper, we study the classification of the homotopy types of Gk.Sp.n//. Let
Gk;nDGk.Sp.n//. We will first consider Sutherland’s homotopy invariant for Gk;n [21]:
if Gk;n and Gl;n are homotopy equivalent, then .k; n.2nC 1// D .l; n.2nC 1// for
n even and .k; 4n.2nC 1//D .l; 4n.2nC 1// for n odd. It seems that this invariant
has indeterrminacy by a factor of 4 according to the parity of n, and we will refine
Sutherland’s result by removing this indeterminacy.

Theorem 1.1 If Gk;n and Gl;n are homotopy equivalent, then .k; 4n.2nC 1// D

.l; 4n.2nC 1//.

As for an explicit classification of Gk;n , there are only two results for nD 1; 2: Gk;1

and Gl;1 are homotopy equivalent if and only if .k; 12/D .l; 12/ [18], and Gk;2 and Gl;2

are p–locally homotopy equivalent for any prime p if and only if .k; 40/D .l; 40/ [23].
The key fact that was used to prove these classifications is that Gk.G/ is homotopy
equivalent to the homotopy fiber of the map G ! �3

0
G which is the adjoint of the

Samelson product S3^G!G of k 2ZŠ�3.G/ and the identity map of G. Actually,
the integers 12 and 40 in the above classification are the orders of this Samelson product
for G D Sp.1/;Sp.2/, respectively. We will next show that the integer 4n.2nC 1/ in
Theorem 1.1 is equal to the order of a certain Samelson product in Sp.n/.

We set notation to state the result. Let �W S3! Sp.n/ be the bottom cell inclusion,
so that it generates �3.Sp.n// Š Z. Let Qn be the quasiprojective space of rank n

defined by James [10]. Then one has the inclusion �nW Qn ! Sp.n/ such that the
induced map in homology

(1) ƒ. zH�.Qn//!H�.Sp.n//

is an isomorphism. We denote by h˛; ˇi the Samelson product of maps ˛ and ˇ .

Theorem 1.2 The order of the Samelson product h�; �ni in Sp.n/ is 4n.2nC 1/.

It is obvious that the order of the Samelson products h�; 1Sp.n/i is no less than the
order of h�; �ni. Although we do not know these orders are equal, it is proved in [15]
that if we localize at a large prime p , these orders are equal. Let jgj denote the order
of an element g of a group. For an integer aD pr q with .p; q/D 1, let �p.a/D pr .

Corollary 1.3 If .p� 1/2C 1� 2n, then �p.jh�; 1Sp.n/ij/D �p.4n.2nC 1//.
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Remark The assumption in [15, Theorem 1.4], which is needed to prove Corollary 1.3,
is .p � 1/.p � 2/C 1 � 2n. But this assumption is actually too much and one can
reduce it to .p� 1/2C 1� 2n as in Corollary 1.3. This refinement will be explained
in Section 2.

In [15] the classification of the p–local homotopy types of Gk;n for a large prime p is
done in terms of the order of h�; �ni, by which one gets:

Corollary 1.4 For .p�1/2C1� 2n, Gk;n and Gl;n are p–locally homotopy equiva-
lent if and only if �p

�
.k; 4n.2nC 1//

�
D �p

�
.l; 4n.2nC 1//

�
.

Remark Theriault [24] classified the p–local homotopy types of Gk.SU.n// for
.p � 1/2 C 1 � n by using Toda’s map †2CPn�1 ! CPn for Bott periodicity. It
may be possible to prove Corollaries 1.3 and 1.4 by modifying his method although
Theorems 1.1 and 1.2 cannot. On the other hand, one can reprove Theriault’s result by
our method.

As in Friedlander [5], there is a p–local homotopy equivalence BSpin.2nC 1/'.p/

BSp.n/ for any odd prime p , and we will see that this induces a p–local homo-
topy equivalence Gk.Spin.2nC 1// '.p/ Gk;n for any odd prime p . On the other
hand, it is shown in [12] that a p–local homotopy equivalence Spin.2nC 2/ '.p/

Spin.2nC 1/�S2nC1 for any odd prime p in Borel and Serre [2] induces a p–local
homotopy equivalence between Gk.Spin.2nC2// and the product of Gk.Spin.2nC1//

and a certain space for any odd prime p . Combining these results with Corollary 1.4,
we get:

Corollary 1.5 For .p � 1/2 C 1 � 2n � 6 and � D 1; 2, Gk.Spin.2n C �// and
Gl.Spin.2nC �// are p–locally homotopy equivalent if and only if

�p
�
.k; 4n.2nC 1//

�
D �p

�
.l; 4n.2nC 1//

�
:

Acknowledgement The authors were partly supported by JSPS KAKENHI (No.
17K05248 and No. 15K04883).

2 Odd primary homotopy types of gauge groups

Let map.X;Y If / be the path component of the mapping space map.X;Y / containing
a map f W X ! Y . Let G be a compact connected simple Lie group. In [6; 1] it is
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shown that there is a homotopy equivalence

(2) BGk.G/'map.S4;BGI kx�/;

where x� corresponds to 1 2 ZŠ �4.BG/. So, evaluating at the basepoint of S4 , one
gets a homotopy fibration sequence

(3) Gk.G/!G
@k
�!�3

0G! BGk.G/! BG:

In particular, Gk.G/ is homotopy equivalent to the homotopy fiber of @k . Lang [19]
identified @k with a certain Samelson product in G. Let �W S3!G be the adjoint of x� .

Lemma 2.1 The adjoint S3 ^G!G of @k is homotopic to the Samelson product
hk�; 1Gi.

By linearity of Samelson products, we have hk�; 1Gi D kh�; 1Gi. We denote the k th

power map of �3
0
G by the same symbol k . Then we get:

Corollary 2.2 @k ' k ı @1:

Thus one sees that the order of the Samelson product h�; 1Gi is connected to the
classification of the homotopy types of Gk.G/. It is shown in [15] that, localized at a
large prime, the calculation of the Samelson product h�; 1Gi reduces drastically and
the homotopy types of Gk.G/ are classified in terms of the order of h�; 1Gi. We recall
these results. Given a prime p , a space A is called a homology generating space of an
H–space X if the following conditions hold:

(1) H�.X IZ=p/Dƒ.x1; : : : ;xm/.

(2) There is a map �W A!X.p/ which induces the inclusion of a generating set in
mod p homology.

An H–space X is called retractible if it has a homology generating space A and the
map †�W †A!†X.p/ has a left homotopy inverse. It is proved in [22] that if .G;p/
is in Table 1, then G.p/ is retractible, where we omit the cases G D Spin.2n/ and
.G;p/D .G2; 3/.

If G has a homology generating space A at a prime p , then the p–primary component
of the order of h�; �i is obviously no less than that of h�; 1Gi. In [15], if G is retractile
in addition, then these two coincide. The assumption in [15] for this result is stronger
than retractibility but one can easily follow its proof to see that only retractibility is
used. So we record this result here with a weaker assumption.

Proposition 2.3 If .G;p/ is in Table 1, then �p.jh�; 1Gij/D �p.jh�; �ij/.
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SU.n/ .p� 1/2C 1� n

Sp.n/;Spin.2nC 1/ .p� 1/2C 1� 2n

G2;F4;E6 p � 5

E7;E8 p � 7

Table 1: Retractible Lie groups

Using this proposition, the following is proved in [15], where the assumption on the
prime p can be weakened as well.

Theorem 2.4 Suppose that .G;p/ is in Table 1. Then Gk.G/ and Gl.G/ are p–
locally homotopy equivalent if and only if �p..k; jh�; �ij//D �p..l; jh�; �ij//.

Proof of Corollary 1.3 Since (1) is an isomorphism, Qn is a homology generating
space of Sp.n/ at any prime, and as in [22], Sp.n/ is retractible with respect to Qn at
the prime p . Then Corollary 1.3 follows from Theorem 1.2 and Proposition 2.3.

Proof of Corollary 1.4 This follows from Corollary 1.3 and Theorem 2.4.

Proof of Corollary 1.5 We first consider the p–local homotopy type of the gauge
group Gk.Spin.2nC 1// for any odd prime p . By [5], BSp.n/'.p/ BSpin.2nC 1/.
Then it follows from (2) that Gk.Spin.2nC 1// '.p/ Gk;n . Thus the result follows
from Corollary 1.4.

We next consider the p–local homotopy type of Gk.Spin.2nC 2//. Note that we are
now assuming p � 5. Then it follows from [12] that there is a p–local homotopy
equivalence

Gk.Spin.2nC 2//'.p/ Gk.Spin.2nC 1//�S2nC1
��4S2nC1:

So the above case of Gk.Spin.2nC 1// implies that

Gk.Spin.2nC 2//'.p/ Gl.Spin.2nC 2//

whenever �p
�
.k; 4n.2n C 1//

�
D �p.k; 4n.2n C 1//. By [21], �4nC1.Gk;n/.p/ Š

Z=�p
�
.k; 4n.2nC 1//

�
. The order of �4nC1.S

2nC1��4S2nC1/.p/ is finite, say M,
implying that the order of

�4nC1

�
Gk.Spin.2nC 2//

�
.p/
Š �4nC1.Gk;n �S2nC1

��4S2nC1/.p/

is M�p
�
.k; 4n.2nC1//

�
. Thus we get that �p

�
.k; 4n.2nC1//

�
D �p

�
.l; 4n.2nC1//

�
whenever Gk.Spin.2nC 2//'.p/ Gl.Spin.2nC 2//, completing the proof.
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3 Unstable KSp–theory

If a space Z is low-dimensional, then the homotopy set ŒZ;U.n/� is isomorphic
to zK�1.Z/. So we call ŒZ;U.n/� unstable K–theory. In [8], for dim Z � 2n, a
method for computing ŒZ;U.n/� is given by comparing it with zK�1.Z/. We call the
homotopy set ŒZ;Sp.n/� unstable KSp–theory as well, and Nagao [20] considered the
analogous method for computing unstable KSp–theory. We will use Nagao’s method
to calculate Samelson products in Sp.n/, so we recall it here.

The cohomology of BSp.n/ and Sp.n/ are given by

H�.BSp.n//D ZŒq1; : : : ; qn�; H�.Sp.n//Dƒ.x3; : : : ; ;x4n�1/;

where qi is the i th symplectic Pontrjagin class and x4i�1 D �.qi/ for the cohomol-
ogy suspension � . Let Xn D Sp.1/=Sp.n/. By an easy inspection, one sees that
H�.Xn/ D ƒ.xx4nC3; xx4nC7; : : : / for ��.xx4i�1/ D x4i�1 , where � W Sp.1/! Xn

is the projection. Then we get that �Xn is .4nC1/–connected and H 4nC2.�Xn/D

Zfa4nC2g, where �.xx4nC3/D a4nC2 and Rfz1; z2; : : : g means the free R–module
with a basis fz1; z2; : : : g. In particular, the map a4nC2W �Xn ! K.Z; 4n C 2/

is a loop map and is a .4nC3/–equivalence. So if dim Z � 4n C 2, the map
.a4nC2/�W ŒZ; �Xn� ! H 4nC2.Z/ is an isomorphism of groups. Moreover, it is
shown in [20] that the composite

eKSp�2.Z/D ŒZ; �Sp.1/� .��/����! ŒZ; �Xn�
.a4nC2/�
����!H 4nC2.Z/

is given by .�1/nC1.2nC 1/! ch4nC2.u
�1c0.�// for � 2 eKSp�2.Z/, where chk de-

notes the 2k –dimensional part of the Chern character, u is a generator of zK.S2/Š Z

and c0W KSp! K is the complexification. Now we apply ŒZ;�� to the homotopy
fibration sequence �Sp.1/!�Xn! Sp.n/! Sp.1/ and get an exact sequence
of groups

eKSp�2.Z/! ŒZ; �Xn�! ŒZ;Sp.n/�! eKSp�1.Z/:

Then, by the above identification of ŒZ; �Xn�, Nagao [20] obtained:

Theorem 3.1 If Z is a CW–complex of dimension � 4nC 2, then there is an exact
sequence of groups

eKSp�2.Z/ ˆ
�!H 4nC2.Z/! ŒZ;Sp.n/�! eKSp�1.Z/

such that, for � 2 eKSp�2.Z/,

ˆ.�/D .�1/nC1.2nC 1/! ch4nC2.u
�1c0.�//:
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This is also useful for computing the Samelson products in Sp.n/, as follows. Let
 W Sp.n/^Sp.n/!Sp.n/ be the reduced commutator map. Since Sp.1/ is homotopy
commutative, the composite Sp.n/^ Sp.n/ 

�! Sp.n/! Sp.1/ is null-homotopic.
Then, since there is a homotopy fibration �Xn! Sp.n/! Sp.1/,  lifts to a map
z W Sp.n/^Sp.n/!�Xn . In [20], a specific lift is constructed as:

Proposition 3.2 There is a lift z W Sp.n/^Sp.n/!�Xn of  satisfying

z �.a4nC2/D
X

iCjDnC1

x4i�1˝x4j�1:

Thus, by Theorem 3.1, one gets:

Corollary 3.3 Let A and B be CW–complexes such that dim AC dim B � 4nC 2.
The order of the Samelson product of maps ˛W A! Sp.n/ and ˇW B! Sp.n/ is equal
to the order of X

iCjDnC1

˛�.x4i�1/˝ˇ
�.x4j�1/

in the cokernel of the map ˆW eKSp�2.A^B/!H 4nC2.A^B/ of Theorem 3.1

The following data of zK�.Qn/ and eKSp�.Qn/ will be used to apply the above results
to our case. Let �nW Qn! Sp.n/ be the inclusion and �1W †Q2! BSp.1/ be the
composite of the adjoint †Q2!BSp.2/ of �2 and the inclusion BSp.2/!BSp.1/.
Let �2 be the composite of the pinch map onto the top cell †Q2!S8 and a generator
of �8.BSp.1//Š Z. Put y4j�1 D �

�
n.x4j�1/. Then H�.Qn/D Zfy3; : : : ;y4n�1g

and

(4) ch.c0.�1//D†y3�
1
6
†y7; ch.c0.�2//D 2†y7:

Let �1 D q.u2c0.�1// 2 eKSp.†5Q2/, where qW K!KSp is the quaternionization.
Let �2 2

eKSp.†5Q2/ be the composite of the pinch map to the top cell †5Q2!S12

and a generator of �12.BSp.1//Š Z. Then we have

ch.c0.�1//D 2†5y3C
1
3
†5y7; ch.c0.�2//D†

5y7:

Lemma 3.4 eKSp.†iQ2/D

8<:
Zf�1; �2g if i D 1;

Zf�1; �2g if i D 5;

0 if i � 0 mod 4:
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Proof A homotopy cofibration S4! †Q2! S8 induces a commutative diagram
with exact rows

0 // eKSp.S8/ //

c0D2
��

eKSp.†Q2/ //

c0

��

eKSp.S4/ //

c0D1
��

0

0 // zK.S8/ // zK.†Q2/ // zK.S4/ // 0

Then we get the first equality by (4) and eKSp.S4m/Š Z. The remaining equalities
are seen by the same argument.

The complexification c0W BSp.1/!BU.1/ restricts to a map †Qn!†2CP2n�1 ,
which we denote by the same symbol c0. Let � 2 zK.CP2n�1/ be the Hopf bundle
minus the trivial line bundle, and put �i D .c0/�.u�i/ 2 zK.†Qn/. Then we have

ch.c0.�i//�†x4i�1 mod .†x4j�1 j j > i/:

Thus, by the skeletal argument analogous to the proof of Lemma 3.4, one gets:

Lemma 3.5 zK.†Qn/D Zf�1; : : : ; �ng:

Proposition 3.6 eKSp.†5Qn/D Zf�1; : : : ; �ng, where �1 D q.u2�1/ and

ch.c0.�i//� �i†
5y4i�1 mod .†5y4j�1 j j > i/

for i > 1 with �i D 1 for i even and �i D 2 for i odd.

Proof The case nD 2 is proved in Lemma 3.4. Consider the commutative diagram
with exact rows induced from the homotopy cofibration sequence †5Qn�1!†5Qn!

S4nC4 ,

0 // eKSp.S4nC4/ //

c0D�n

��

eKSp.†5Qn/ //

c0

��

eKSp.†5Qn�1/ //

c0

��

0

0 // zK.S4nC4/ // zK.†5Qn/ // zK.†5Qn�1/ // 0

Induct on n. Then we get that eKSp.†5Qn/ is a free abelian group and the upper
exact sequence splits. Thus we obtain the desired �1; : : : ; �n , completing the proof.

Algebraic & Geometric Topology, Volume 19 (2019)



On the homotopy types of Sp.n/ gauge groups 499

4 Proofs of the main theorems

To prove Theorem 1.1, we need several lemmas. Let z@k W Sp.n/!�4Xn be the adjoint
of the map z ı .� ^ 1Sp.n//W S

3 ^ Sp.n/! �Xn , where z is as in Proposition 3.2.
Then z@k is a lift of @k , so by (3) and Theorem 3.1, we get the following commutative
diagram with exact columns and rows, where ık D .a4nC2 ı

z@k/� :

(5)

eKSp�2.†4n�5Q2/

ˆ
��eKSp�1.†4n�8Q2/

ık //H 4nC2.†4n�5Q2/

��eKSp�1.†4n�8Q2/
.@k /� // Œ†4n�5Q2;Sp.n/� //

��

Œ†4n�8Q2;BGk;n� //eKSp.†4n�8Q2/

eKSp�1.†4n�5Q2/

Lemma 4.1 Œ†4n�8Q2;BGk;n�Š Coker.@k/�:

Proof By Lemma 3.4, one has eKSp.†4n�8Q2/D 0, so the lemma follows from (5).

Lemma 4.2 Œ†4n�5Q2;Sp.n/�Š Z=
�

1
3
.2nC 1/!

�
for n even.

Proof Since eKSp�1.†4n�5Q2/ D 0 by Lemma 3.4, we get Œ†4n�5Q2;Sp.n/� Š
Cokerˆ by (5). Since n is even, eKSp�2.†4n�5Q2/Š eKSp.†5Q2/. Then it follows
from Theorem 3.1 and Lemma 3.4 that ImˆD Z

˚
1
3
.2nC 1/!†2n�5y7

	
. Thus, for

H 4nC2.†4n�5Q2/D Zf†4n�5y7g, the proof is done.

Lemma 4.3 Im.@k/� Š Z=
�
.2nC 1/!=

�
3.k; 4n.2nC 1//

��
for n even.

Proof Since eKSp�1.†4n�5Q2/D0 by Lemma 3.4, we have Im.@k/�D Im ık=Imˆ

by (5). We calculate Im ık , where Imˆ has already been calculated in the proof of
Lemma 4.2. Let y̨W †4n�8Q2 ! Sp.1/ be the adjoint of ˛ 2 eKSp.†4n�7Q2/.
By definition, we have ık.˛/ D k†3 y̨�.x4n�1/, so we calculate y̨�.x4n�1/. Let
ch.c0.˛//D a†4n�7y3C b†4n�7y7 for a; b 2Q. By the Newton formula, ch4n D

�.1=.2n� 1/!/c2nC decomposables, implying that .�1/n˛�.qn/D .c
0 ı˛/�.c2n/D

�b.2n� 1/!†4n�7y7 . Then, by taking the adjoint, we get

y̨
�.x4n�1/D .�1/nC1b.2n� 1/!†4n�8y7:
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Since n is even, we have eKSp.†4n�7Q2/Š eKSp.†Q2/. Thus, by Lemma 3.4, we
obtain Im ık D Z

˚
1
6
k.2n� 1/!†4n�5y7

	
. Therefore, the proof is completed.

Lemma 4.4 If n is even and n> 2, then Œ†4n�8Q2;BGk;n�Š Z=.k; 4n.2nC 1//.

Proof Combine Lemmas 4.1, 4.2 and 4.3.

Proof of Theorem 1.1 By the result of Sutherland [21] mentioned above, it is suf-
ficient to prove the theorem for n even. When n D 2, the result of Theriault [23]
mentioned above implies the theorem. Assume that n> 2 and Gk;n' Gl;n . Then, since
Œ†4n�8Q2;BGm;n� Š Œ†4n�9Q2;Gm;n� for any m, we have Œ†4n�8Q2;BGk;n� Š

Œ†4n�8Q2;BGl;n�, so the theorem follows from Lemma 4.4.

Proof of Theorem 1.2 As dim†3QnD 4nC2, we apply Corollary 3.3 to the Samel-
son product h�; �ni in Sp.n/. Then, for

P
iCjDnC1 �

�.x4i�1/˝�
�
n.x4j�1/D†

3y4n�1 ,

it is sufficient to show that the image of ˆW eKSp�2.†3Qn/ ! H 4nC2.†3Qn/ is
generated by 4n.2nC1/†3y4n�1 . For �1 2 eKSp.†5Qn/ of Proposition 3.6, we have

ch4nC2.u
�1c0.�1//D ch4nC2..1C t/.u�1//D

2

.2n�1/!
†3y4n�1;

so 4n.2nC1/†3y4n�1 2 Imˆ, where t W K!K is the complex conjugation. On the
other hand, by Lemmas 3.5 and 3.6, c0. eKSp.†5Qn// is included in

Zfc0.�1/;u
2�2; : : : ;u

2�ng � zK.†
5Qn/:

By definition, we have

ch4nC2.u^ �k/D
X

r1C���CrkD2n�1
r1�1;:::;rk�1

.2n� 1/!

r1! � � � rk !
�

1

.2r1� 1/! � � � .2rk � 1/!
†3y4n�1:

For k � 2, the coefficients of .2nC1/! ch4nC2.u�k/ are divisible by 4n.2nC1/. Then
Imˆ is included in the submodule generated by 4n.2nC1/†3y4n�1 . Thus we obtain
that Imˆ is generated by 4n.2nC 1/†3y4n�1 , as desired. Therefore, the proof is
completed.
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