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A1–resolutions and the Golod property for monomial rings

ROBIN FRANKHUIZEN

Let RD S=I be a monomial ring whose minimal free resolution F is rooted. We
describe an A1–algebra structure on F . Using this structure, we show that R is
Golod if and only if the product on TorS .R; k/ vanishes. Furthermore, we give a
necessary and sufficient combinatorial condition for R to be Golod.

13D07, 13D40, 16E45, 55S30

1 Introduction

Let S D kŒx1; : : : ; xm� be the polynomial algebra over a field k in m variables and let
I D .m1; : : : ; mr/ be an ideal generated by monomials. In that case, S=I is called a
monomial ring. Given a monomial ring RDS=I, the Poincaré series of R is defined as

P.R/D

1X
jD0

dim TorRj .k; k/t
j :

A result due to Serre states that there is an inequality of power series

P.R/�
.1C t /m

1� t
�P1

jD0 dim TorSj .R; k/tj � 1
� :

The ring R is said to be Golod if equality is obtained. The problem of when a monomial
ring is Golod goes back to at least the 70s when Golod [11] showed that a monomial
ring R is Golod if and only if all Massey products on the Tor–algebra TorS .R; k/
vanish. In general, it is hard to directly verify the vanishing of Massey products and
so in practice the Golod property is still hard to determine.

In recent decades, the Golod property has received an increasing amount of attention
in topology. The Tor–algebra shows up naturally in topology as follows. Let � be a
simplicial complex on vertex set Œm�D f1; : : : ; mg and define the moment-angle com-
plex Z� as follows. Let D2 denote the 2–disc and S1 its bounding circle. For � 2�,
define

X� D

mY
iD1

Yi � .D
2/m where Yi D

�
D2 if i 2 �;
S1 if i … �:
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3404 Robin Frankhuizen

Lastly, we put
Z� D colim�2�X� � .D2/m:

Moment-angle complexes are one of the central objects of study in toric topology. For
us, the cohomology of Z� is of particular interest.

Theorem 1.1 [8, Theorem 4.5.4] Let � be a simplicial complex. There is an isomor-
phism of graded algebras

H�.Z�; k/Š TorS .kŒ��; k/:

Here, kŒ�� denotes the Stanley–Reisner ring

kŒ��D S=.xi1 � � � xik j fi1; : : : ; ikg …�/

of the simplicial complex �. Note that kŒ�� is a square-free monomial ring. In general,
the homotopy type of Z� is not well understood, but significant progress has been
made for those Z� where � is Golod; see for example Grbić and Theriault [12; 13],
Iriye and Kishimoto [15] and Beben and Grbić [4].

The preceding discussion makes clear that the Golod property is of interest in both
commutative algebra and algebraic topology. Consequently, a lot of work has been
done on the Golodness problem. For example, a combinatorial characterization of
Golodness in terms of the homology of the lower intervals in the lattice of saturated
subsets is given by Berglund in [5]. Using results from Jöllenbeck [16], it has been
claimed in Berglund and Jöllenbeck [6] that R is Golod if and only if the product
on TorS .R; k/ vanishes. However, recently a counterexample to this claim was found
by Katthän in [19], where the error is traced back to [16]. This leads naturally to the
central question this work investigates.

Question For which classes of monomial rings R is the Golod property equivalent to
the vanishing of the product on TorS .R; k/?

A partial answer to this question is given by Theorem 6.5. To answer this question, we
develop a new approach to the Golodness problem using A1–algebras. An A1–algebra
is similar to a differential graded algebra (dga), except that associativity only holds up
to coherent homotopy. By contrast with dgas, every resolution admits the structure
of an A1–algebra (as first shown by Burke [9]) hence in particular the minimal free
resolution does. The first main result of this paper characterizes vanishing of Massey
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products in terms of this A1–structure. A monomial ring R is said to satisfy condition
.Br/ if all k–Massey products are defined and contain only zero for all k � r . Denote
by KR the Koszul dga of the monomial ring R . We obtain the following result.

Theorem 4.6 Let RD S=I be a monomial ring with minimal free resolution F . Let
r 2 N and let �n be an A1–structure on F such that F ˝S k and KR are quasi-
isomorphic as A1–algebras. Then R satisfies .Br/ if and only if �k is minimal for
all k � r .

Next, we turn our attention to the class of rooted rings. A monomial ring is said to
be rooted if the minimal free resolution F of R is rooted in the sense of Novik [27].
Rooted resolutions include both the Taylor and Lyubeznik resolutions. Given a rooted
ring with rooting map � , we give an explicit A1–structure in terms of � .

This A1–structure allows us to give a combinatorial characterization of the Golod prop-
erty for rooted rings as follows. Following [16], we say that R satisfies the gcd condition
if for all generators mi and mj with gcd.mi ; mj /D 1 there exists an mk ¤mi ; mj
such that mk divides lcm.mi ; mj /. The second main result is then the following.

Theorem 6.5 Let R be a rooted ring. Then the following are equivalent:

(1) The ring R is Golod.

(2) The product on TorS .R; k/ vanishes.

(3) The ring R is gcd.

In particular, the main result from [6] does hold when restricted to rooted rings.

2 Simplicial resolutions

Let S D kŒx1; : : : ; xm� and let I be the ideal minimally generated by monomials
m1; : : : ; mr . The Taylor resolution T [32] of S=I is constructed as follows. Let E
denote the exterior algebra on generators u1; : : : ; ur . The resolution T has underlying
module S˝k E . If J D fj1 < � � �< jkg � f1; : : : ; rg, then we write uJ D uj1 � � �ujk .
Furthermore, we put mJ D lcm.mj1 ; : : : ; mjk /. We will also write J i to denote
fj1 < � � �< bji < � � �< jkg. The differential d of T is given by

d.uJ /D

jJ jX
iD1

.�1/iC1
mJ

mJ i
uJ i :

Algebraic & Geometric Topology, Volume 18 (2018)



3406 Robin Frankhuizen

The Taylor resolution admits a multiplication defined by

uI �uJ D

�
sgn.I; J /mImJ

mI[J
uI[J if I \J D∅;

0 otherwise;

where sgn.I; J / is the sign of the permutation making I [J an increasing sequence.
This multiplication induces a differential graded algebra (dga) structure on T . The
Tor–algebra TorS .S=I; k/ of S=I is

TorS .S=I; k/D
M
n

TorSn .S=I; k/D
M
n

Hn.T ˝S k/;

where the multiplication is induced by the multiplication on T .

The following method of constructing free resolutions of monomial rings is due to
Bayer, Peeva and Sturmfels [3]. Our exposition will follow that of Mermin [26].
Let fm1; : : : ; mrg be a set of monomials. Fix some total order � on fm1; : : : ; mrg.
After relabelling we may assume that m1 � m2 � � � � � mr . Let � be a simplicial
complex on the vertex set f1; : : : ; rg. By abuse of notation, we will say � is a simplicial
complex on vertex set fm1; : : : ; mrg.

Assign a multidegree mJ to each simplex J 2� by defining

mJ D lcmfmj j j 2 J g:

Define a chain complex F� associated to � as follows. Let Fn be the free S–module
on generators uJ with jJ j D n. For J D fj1 � � � � � jng, write J i to denote
fj1 � � � � � bji � � � � � jng. The differential d W Fn! Fn�1 is defined, for J 2�, by

d.uJ /D

jJ jX
iD1

.�1/iC1
mJ

mJ i
uJ i :

Example 2.1 Let �r be the full r–simplex. Then F�r is the Taylor resolution
of RD S=I. This also justifies the use of the same notation for both.

In general, F� need not be a resolution of S=I. But we do have the following theorem.

Theorem 2.2 [3, Lemma 2.2] Suppose � is a simplicial complex on vertex set
fm1; : : : ; mrg and define, for a multidegree �, a subcomplex

�� D fJ 2� jmJ divides �g:

Then F� is a resolution of R if and only if �� is either acyclic or empty for all
multidegrees �.
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A resolution F is called simplicial if F D F� for some simplicial complex �.

Remark 2.3 If �0 ��, then F�0 is a subcomplex of F� . In particular, since each
simplicial complex � is included in the full simplex on its vertex set, each simplicial
resolution of S=I is a subcomplex of the Taylor resolution of S=I.

In the remainder of the paper we will restrict our attention to the following spe-
cial type of simplicial resolution, which is due to Novik [27]. Given an mono-
mial ideal I D .m1; : : : ; mr/ we define the lcm–lattice L.I / to be the set of all
lcm.mi1 ; : : : ; mik /, where 1� i1�� � �� ik� r and kD1; : : : ; r . The set LDL.I / ad-
mits a partial order given by divisibility. Then L forms a lattice under a_bD lcm.a; b/
and a^bD gcd.a; b/. The lattice L has minimal element O0D 1 and maximal element
O1D lcm.m1; : : : ; mr/.

Definition 2.4 A rooting map on L is a map � W L n fO0g ! fm1; : : : ; mrg such that

(1) �.m/ divides m for every m 2 L,

(2) �.m/D �.n/ whenever �.m/ divides n and n divides m.

Let � be a rooting map and A� fm1; : : : ; mrg nonempty. Define �.A/D �.lcm.A//.
A set A is unbroken if �.A/2A and A is rooted if every nonempty B �A is unbroken.
Let RC.L; �/ denote the set of all rooted sets with respect to L and � . Then RC.L; �/
is easily seen to be a simplicial complex on vertex set fm1; : : : ; mrg and we have the
following result.

Theorem 2.5 [27, Theorem 1] Let I D .m1; : : : ; mr/ be a monomial ideal and let L
denote its lcm–lattice. Suppose that � is a rooting map on L. Then the chain complex
FRC.L;�/ associated to the simplicial complex RC.L; �/ is a free resolution of I.

An important special case of this construction is the Lyubeznik resolution:

Definition 2.6 Let I D .m1; : : : ; mr/ be a monomial ideal and pick some total order �
on the mi . After relabelling we may assume that m1 �m2 � � � � �mr . Define

�.A/Dmin�fmi jmi divides lcm.A/g:

Then � is easily seen to be a rooting map. The resolution associated RC.L; �/ is
called the Lyubeznik resolution.
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We only consider resolutions F that are as small as possible in the sense that each Fn
has the minimal number of generators. More precisely, we have the following definition.

Definition 2.7 Let S=I be a monomial ring. A free resolution F ! S=I is said to
be minimal if d.F /� .x1; : : : ; xm/F .

If the minimal free resolution of S=I is a resolution associated to RC.L; �/ for
some rooting map � , then I (respectively S=I ) is called a rooted ideal (respectively
a rooted ring). Similarly, if the Lyubeznik resolution of S=I is minimal then I

(respectively S=I ) is called a Lyubeznik ideal (respectively a Lyubeznik ring).

Example 2.8 Let S D kŒx; y; z� and let I be the ideal generated by m1 D xy ,
m2 D yz and m3 D xz . Order the generators as m1 � m2 � m3 . Let � be the
rooting map of the Lyubeznik resolution as in Definition 2.6. Then the rooted sets are
m1 , m2 , m3 , m1m2 and m1m3 . So the Lyubeznik resolution is

S2
d2
�!S3

d1
�!S;

where the differential is given by

d1 D
�
xy yz xz

�
and d2 D

24�z �zx 0

0 y

35 :
In particular, the resolution is minimal and so I is a Lyubeznik ideal.

We point out that the class of rooted rings is fairly general. It includes for example
monomial ideals whose lcm–lattice is a geometric lattice as well as matroid ideals
of modular matroids [27]. The inclusion of Lyubeznik rings in rooted rings is strict
since not every rooting map arises from a total order on the monomial generators as
Example 4.1 of [7] shows. Finally, not every monomial ring is rooted. Let I be the
ideal with monomial generators

x1x4x5x6; x2x4x5x6; x3x4x5x6; x2x4x5x7; x3x4x5x7

x1x3x5x7; x1x2x4x7; x1x4x6x7; x1x5x6x7; x3x4x6x7

x2x5x6x7; x2x3x6x7; x1x2x3x7;

and let F denote the minimal free resolution. As is shown in [28], the matrices of the
differential of F cannot be chosen in f0;˙1g and consequently F cannot be supported
on any simplicial complex and hence, in particular, not on a complex RC.L; �/ coming
from a rooting map � .
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3 A1–algebras

In this section we will discuss some basic aspects of the theory of A1–algebras. The
notion was first introduced by Stasheff [29; 30] in the context of algebraic topology.
Since their introduction A1–algebras have found applications in various branches of
mathematics such as geometry [10], algebra [31] and mathematical physics [21; 24].
Though the following section aims to be self-contained, a more extensive introduction
can be found in [20]. The exposition below follows that of [22].

In what follows all signs are determined by the Koszul sign convention

(1) .f ˝g/.x˝y/D .�1/jgj�jxjf x˝gy:

Definition 3.1 Let R be a commutative ring and A D
L
An a Z–graded free

R–module. An A1–algebra structure on A consists of maps �nW A˝n ! A for
each n� 1 of degree n� 2 satisfying the Stasheff identities

(2)
X

.�1/rCst�u.1
˝r
˝�s˝ 1

˝t /D 0;

where the sum runs over all decompositions nD r C sC t with r; t � 0, s � 1 and
uD r C t C 1.

Observe that when applying (2) to an element additional signs appear because of the
Koszul sign convention (1). In the special case when �3 D 0, it follows that �2
is strictly associative and so A is a differential graded algebra with differential �1
and multiplication �2 . An A1–algebra A is called strictly unital if there exists an
element 1 2 A that is a unit for �2 and such that for all n¤ 2

�n.a1˝ � � �˝ an/D 0

whenever ai D 1 for some i .

The notion of a morphism between A1–algebras will also be needed.

Definition 3.2 Let .A; �n/ and .B; x�n/ be A1–algebras. A morphism of A1–
algebras (or an A1–morphism) f W A! B is a family of linear maps

fnW A
˝n
! B

of degree n� 1 satisfying the Stasheff morphism identities

(3)
X

.�1/rCstfu.1
˝r
˝�s˝ 1

˝t /D
X

.�1/w x�q.fi1 ˝fi2 ˝ � � �˝fiq /
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for every n� 1. The first sum runs over all decompositions nD r C sC t with s � 1
and r; t � 0, where uD r C t C 1. The second sum runs over all 1 � q � n and all
decompositions nD i1C i2C � � �C iq with all is � 1. The sign on the right-hand side
of (3) is given by

w D

q�1X
pD1

.q�p/.ip � 1/:

If A and B are strictly unital, an A1–morphism is also required to satisfy f1.1/D1 and

fn.a1˝ � � �˝ an/D 0

if n� 2 and ai D 1 for some i .

A morphism f is called a quasi-isomorphism if f1 is a quasi-isomorphism in the usual
sense.

Let A be an A1–algebra. Then its homology HA is an associative algebra. A crucial
result relating the A1–algebra A and its homology algebra HA is the homotopy
transfer theorem.

Theorem 3.3 (homotopy transfer theorem [17]; see also [25]) Let .A; �n/ be an
A1–algebra over a field R and let HA be its homology algebra. There exists an
A1–algebra structure �0n on HA such that

(1) �01 D 0 and �02 DH.�2/ and the higher �0n are determined by �n ,

(2) there exists an A1–quasi-isomorphism HA! A lifting the identity morphism
of HA.

Moreover, this A1–structure is unique up to isomorphism of A1–algebras.

An explicit way of constructing A1–structures on the homology of a dga is due to
Merkulov [25] and will be discussed next.

Definition 3.4 Let A be a chain complex and B � A a subcomplex. A transfer
diagram is a diagram of the form

(4) B A

i

p

�

where pi D 1B and ip� 1D d�C�d .

Some authors use the term strong deformation retract for what we call a transfer diagram.
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Let .A; d/ be a dga and let B be a subcomplex of A such that there exists a transfer
diagram as in (4). Let � denote the product on A. Define linear maps �nW A˝n! A

as follows. First, put �2.a1; a2/D a1 � a2 and we set

(5) �n D
X
sCtDn
s;t�1

.�1/sC1�2.��s; ��t /:

Now, define a second series of maps �nW B˝n!B by setting �1D d and, for n� 2,

(6) �n D p ı�n ı i
˝n:

The following theorem will be crucial in the remainder of the paper.

Theorem 3.5 [25, Theorem 3.4] Let .A; d/ be a dga and B a subcomplex of A such
that there exists a transfer diagram of the form (4). Then the maps �n defined in (6)
give the structure of an A1–algebra on B .

4 A1–resolutions and the Golod property

Let R be a monomial ring. Recall R is Golod if there is an equality of power series

(7) P.R/D
.1C t /m

1� t
�P1

jD0 dim TorSj .R; k/tj � 1
� :

The Golod property admits an equivalent description in terms of Massey products,
which will be defined next.

Definition 4.1 Let .A; d/ be a differential graded algebra. If a 2 A, we write xa to
denote .�1/deg.a/C1a .

Let ˛1; ˛2 2HA. The length-2 Massey product h˛1; ˛2i is the product ˛1˛2 in the
homology algebra HA.

Let ˛1; : : : ; ˛n 2HA be homology classes with the property that each length-.j�iC1/
Massey product h˛i ; : : : ; j̨ i is defined and contains zero for i < j and j � i < n� 1.
A defining system faij g consists of

(1) representing cycles ai�1;i of the homology classes ˛i , for i D 1; : : : ; n,

(2) elements aij , for j > i C 1, such that

daij D
X
i<k<j

xaikakj :
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Note that the existence is guaranteed by the condition that h˛i ; : : : ; j̨ i is defined and
contains zero for i < j and j � i < n� 1. The length-n Massey product h˛1; : : : ; ˛ni
is defined as the set

h˛1; : : : ; ˛ni D

�� X
0<i<n

xa0iain

� ˇ̌̌
faij g is a defining system

�
�H sC2�n;

where s D
Pn
iD1 deg˛i .

A Massey product h˛1; : : : ; ˛ni is said to be trivial if it contains zero. The Koszul
homology of a monomial ring R is H.R/ D TorS .R; k/. The Golod property and
Massey products are related by the following theorem.

Theorem 4.2 ([11]; see also [14, Section 4.2]) Let R be a monomial ring. Then R is
Golod if and only if all Massey products on the Koszul homology TorS .R; k/ are trivial.

Following [18], we will say that a dga A satisfies condition .Br/ if all k–ary Massey
products are defined and contain only zero for all k � r . Recall the following lemma.

Lemma 4.3 [23, Proposition 2.3] Let A be a dga satisfying .Br�1/. Then the k–ary
Massey product ha1; : : : ; ari is defined and contains only one element for any choice
a1; : : : ; ar 2H.A/.

Let R be a monomial ring and let KS be the Koszul resolution of the base field k
over S. The Koszul dga KR of R is defined as KR DR˝S KS . The Koszul dga and
the Taylor resolution are related by a zigzag of dga quasi-isomorphisms

T ˝S k � T ˝S KS �!R˝S KS DKR:

Consequently, Massey products on TorS .R; k/ can be computed using either KR
or T ˝S k . Again following [18], we say that a monomial ring R satisfies .Br/ if the
dga KR of R satisfies .Br/.

Lemma 4.4 Let R be a monomial ring. Then R is Golod if and only if R satisfies
condition .Br/ for all r 2N.

Proof It is clear that if R satisfies condition .Br/ for every r then R is Golod.
Conversely, suppose that R is Golod. We proceed by induction on r . The case r D 2 is
trivial. So assume R satisfies .Br�1/. By Lemma 4.3, the Massey product ha1; : : : ; ari
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is defined and contains only one element for any choice a1; : : : ; ar 2 TorS .R; k/.
Since R is Golod, it follows by Theorem 4.2 that this element must be zero and so R
satisfies .Br/.

In general it is very hard to study Massey products directly. However, A1–algebras
provide a systematic way of studying Massey products in view of the following theorem.

Theorem 4.5 [22, Theorem 3.1] Let A be a differential graded algebra. Up to a sign,
the higher A1–multiplications �0n on HA from Theorem 3.3 give Massey products.
That is to say, if ˛1; : : : ; ˛n 2HA are homology classes such that the Massey product
h˛1; : : : ; ˛ni is defined then

˙�0n.˛1˝ � � �˝˛n/ 2 h˛1; : : : ; ˛ni:

A map of S–modules f W M!N is said to be minimal if f ˝1W M˝S k!N˝S k is
zero. It is readily verified that f is minimal if and only if f maps into .x1; : : : ; xm/N.
Using Theorem 4.5, we can describe under what conditions the Massey products
on TorS .R; k/ vanish.

Theorem 4.6 Let RD S=I be a monomial ring with minimal free resolution F . Let
r 2 N and let �n be an A1–structure on F such that F ˝S k and KR are quasi-
isomorphic as A1–algebras. Then R satisfies .Br/ if and only if �k is minimal for
all k � r .

Proof Since �n is an A1–structure on F , it follows that �n˝1 is an A1–structure
on F ˝S k . Now, assume �n is minimal for all k � r . Since TorS .R; k/ is the
homology of the A1–algebra F ˝S k the homotopy transfer theorem (Theorem 3.3)
implies that TorS .R; k/ inherits an A1–structure �0n . Since F is minimal, TorS .R; k/
is isomorphic to F ˝S k and we can take �0n D �n ˝ 1. Let k � r and let
˛1; : : : ; ˛k 2 TorS .R; k/ be such that the Massey product h˛1; : : : ; ˛ki is defined.
By Theorem 4.5 we have

˙.�k˝ 1/.˛1; : : : ; ˛k/ 2 h˛1; : : : ; ˛ki:

Since �k is minimal, we have .�k˝ 1/.˛1; : : : ; ˛k/D 0. Therefore, h˛1; : : : ; ˛ki is
trivial and so R satisfies .Br/.

Conversely, assume that R satisfies .Br/. We need to show that �k is minimal for all
k � r . For k D 2, we have .�2˝ 1/.a1; a2/D a1a2 but the product on TorS .R; k/
is zero because R satisfies .Br/. Now, let 3 � k � r . Since R satisfies .Bk/,
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for all a1; : : : ; ak the Massey product ha1; : : : ; aki is defined and contains only zero.
Since .�k ˝ 1/.a1; : : : ; ak/ 2 ha1; : : : ; aki we have .�k ˝ 1/.a1; : : : ; ak/ D 0 for
all a1; : : : ; ak . Consequently, �k is minimal as required.

Corollary 4.7 Let RD S=I be a monomial ring with minimal free resolution F . Let
�n be an A1–structure on F such that F ˝S k and KR are quasi-isomorphic as
A1–algebras. Then R is Golod if and only if �n is minimal for all n� 1.

Corollary 4.7 was first proved in [9] using different methods.

The following immediate corollary to Corollary 4.7 is well known; see for example
Proposition 5.2.4(4) of [2], where it is proved using different methods.

Corollary 4.8 [2, Proposition 5.2.4(4)] Let R D S=I be a monomial ring with
minimal free resolution F . If F admits the structure of a dga, then R is Golod if and
only if the product on TorS .R; k/ vanishes.

5 Homotopy transfer on the Taylor resolution

Corollary 4.7 implies that monomial rings with minimal dga resolution are Golod if
and only if the product on TorS .S=I; k/ vanishes. However, there exists monomial
rings whose minimal resolution does not admit the structure of a dga [1]. On the other
hand, every free resolution of a monomial ring S=I admits an A1–structure [9].

In general, it is not clear how to obtain an explicit description of such an A1–structure.
Instead of considering general A1–structures on resolutions, we will consider only
those that arise as a deformation of the dga structure on the Taylor resolution. To make
this idea precise we will use rooting maps to construct transfer diagrams on the Taylor
resolution. In that case Theorem 3.5 tells us how to construct an A1–structure to
which we may apply Corollary 4.7.

Let � be a rooting map and let F be the free resolution of S=I associated to RC.L; �/.
Recall that Fn is the free S–module on uJ , where J 2 RC.L; �/ with jJ j D n. The
remainder of this section is devoted to computing an explicit A1–algebra structure
on F. Let T will denote the Taylor resolution of S=I. We will write d for the
differential of F whereas @ will be reserved for the “simplicial” differential, ie

@uJ D

jJ jX
iD1

.�1/iC1uJ i

on a basis set uJ of F. If uJ is a basis set of F we define ŒuJ � D .1=mJ /uJ .
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Let uJ1 ; : : : ; uJn be rooted sets and ˛1; : : : ; ˛n 2 S. Then for uD
P
˛kuJk , we set

Œu�D
P
.˛k=mJk /uJk . The following lemma will be used extensively.

Lemma 5.1 For any basis set uJ of F we have dŒuJ �D Œ@uJ �.

Proof We have

dŒuJ �D
1

mJ
duJ D

1

mJ

jJ jX
iD1

.�1/iC1
mJ

mJ i
uJ i

D

jJ jX
iD1

.�1/iC1
1

mJ i
uJ i D

jJ jX
iD1

.�1/iC1ŒuJ i �

D Œ@uJ �:

Let � be a rooting map. For uJ 2T , define �.uJ /Dui if �.mJ /Dmi . Define a map
p0W T ! F as follows. Let u 2 T and write uD ui1 � � �uik . For q D 1; : : : ; k define
Iq D fi1; : : : ; iqg. For a permutation � 2 Sk , put �Iq D fi�.1/; : : : ; i�.q/g. We define

(8) p0.u/D
X
�2Sk

sgn.�/�.u�I1/�.u�I2/ � � ��.u�Ik /:

Geometrically, the map p0 can be thought of as similar to the barycentric subdivision
of a simplex. For example, if ui1;i2 2 T and we think of �.ui1;i2/ as its barycenter
then p0 replaces ui1;i2 by its barycentric subdivision

p0.ui1;i2/D ui2�.ui1;i2/�ui1�.ui1;i2/:

In the same way, given ui1;i2;i3 2 T the right-hand terms in

p.ui1;i2;i3/D
X
�2S3

sgn.�/�.ui�.1//�.ui�.1/;i�.2//�.ui�.1/;i�.2/;i�.3//

are precisely the six constituent triangles in the barycentric subdivision of a 2–simplex.
Before proceeding, we need to verify that im.p0/�F . For � 2Sk , we need to show that

�.u�I1/�.u�I2/ � � ��.u�Ik /

is rooted. Since u�I1 � u�I2 � � � � � u�Ik , it follows that for all j1; : : : ; jk we have

�.�.uIj1 /; �.uIj2 /; : : : ; �.uIjk
//D �.uIjk

/:

Therefore, �.u�I1/�.u�I2/ � � ��.u�Ik / is rooted and so im.p0/� F .

Lemma 5.2 The map p0 is a chain map with respect to the differential @.
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Proof It is sufficient to prove the result for basis elements uI 2 T . Write I D
fi1; : : : ; ikg. We first show that

@p0.uI /D
X
�2Sk

.�1/kC1 sgn.�/�.u�I1/ � � ��.u�Ik�1/:

We have

@p0.uI /D
X
�2Sk

sgn.�/@.�.u�I1/ � � ��.u�Ik //

D

X
�2Sk

kX
jD1

.�1/jC1 sgn.�/�.u�I1/ � � � 2�.u�Ij / � � ��.u�Ik /:

Now, fix some j < k and let �j be the transposition .�.j /; �.j C 1//. Then the
summands indexed by � and �j� cancel. Indeed, if q < j then �j acts as the identity
on �Iq and so u�Iq D u�j�Iq . On the other hand, if q � j C 1 then the underlying
sets of �Iq and �j�Iq are the same. Since �.uJ / depends only on the set J and not
on the ordering we have

�.u�Iq /D �.u�j�Iq /;

and so the summands indexed by � and �j� cancel. Note that since the map �! �j�

is an involution these permutations cancel in pairs. Therefore, we obtain

@p0.uI /D
X
�2Sk

.�1/kC1 sgn.�/�.u�I1/ � � ��.u�Ik�1/:

For � 2 Sk , write

G� D �.u�I1/ � � ��.u�Ik�1/;

and so

(9) @p0.uI /D
X
�2Sk

.�1/kC1 sgn.�/G� :

We now compute p0@.uI /. For j 2 f1; : : : ; kg and � 2Sk�1 , set Iq.j /D Iq nfj g and

F�;j D �.u�I1.j // � � ��.u�Ij�1.j //�.u�IjC1.j // � � ��.u�Ik.j //:

Then

(10) p0@uD

kX
jD1

.�1/jC1p0.uIk.j //D

kX
jD1

X
�2Sk�1

.�1/jC1 sgn.�/F�;j :
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Given j 2 f1; : : : ; kg, we can embed Sk�1 into Sk by fixing j . Therefore, we have

p0@uD

kX
jD1

X
�2Sk�1

.�1/jC1 sgn.�/F�;j D
kX

jD1

X
�2Sk
�.j /Dj

.�1/jC1 sgn.�/F�;j :

Now, fix j 2 f1; : : : ; kg and fix � 2 Sk such that �.j /D j . Define � to be the cycle
.j � � � k/ and let � D �� . Then we have G� D F�;j and

.�1/kC1 sgn.�/G� D .�1/2kCjC1G�� D .�1/jC1 sgn.�/F�;j :

Since the sums in both (9) and (10) have kŠ terms, it follows that they are equal.

Let i W F ! T denote the inclusion.

Lemma 5.3 For all u 2 T , we have

�.u/ip0@uD ip0u:

Proof It is sufficient to prove the result for basis elements uI 2 T . Write I D
fi1; : : : ; ikg. As in the proof of Lemma 5.2, we have

@p0.uI /D
X
�2Sk

.�1/kC1 sgn.�/�.u�I1/ � � ��.u�Ik�1/:

Since p0 is a chain map by Lemma 5.2, we have

�.uI /ip
0@uI D �.uI /@ip

0.uI /

D �.uI /
X
�2Sk

.�1/kC1 sgn.�/�.u�I1/ � � ��.u�Ik�1/

D

X
�2Sk

.�1/kC1Ck�1 sgn.�/�.u�I1/ � � ��.u�Ik�1/�.uI /

D

X
�2Sk

sgn.�/�.u�I1/ � � ��.u�Ik�1/�.u�Ik/

D ip0.uI /;

where we have used that �.uI /D �.uIk /D �.u�Ik /.

Lemma 5.4 The composition ip0 and the identity 1T are chain homotopic as chain
maps .T; @/! .T; @/.

Proof Define �0W T ! T by induction as follows. Set �00 D �
0
1 D 0 and

�02.ui1ui2/D �.ui1;i2/ui1ui2 :
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For k > 2, write uD ui1 � � �uik and define

�0k.u/D �.u/.u��
0
k�1.@u//:

We need to show that 1T � ip0 D @�0C�0@. We proceed by induction on k . If k D 1,
there is nothing to prove. If k D 2, we have

@�2.ui1ui2/D @.�.ui1;i2/ui1ui2/

D ui1ui2 ��.ui1;i2/ui2 C�.ui1;i2/ui1

D .1F � ip
0/.ui1ui2/:

Now, let k > 2. Using Lemma 5.3, we finish the proof:

@�0k.u/D u��
0
k�1@u��.u/.@u� @�

0
k�1@u/

D u��0k�1@u��.u/.@u� @uC ip
0@uC�k�2@

2u/

D u��k�1@u��.u/ip
0@u

D u� ip0u��k�1@u:

Define a map pW T ! F as follows. For uJ 2 T , let

(11) p.uJ /DmJ Œp
0.uJ /�;

where p0 is the map from (8). Then we have the following theorem.

Theorem 5.5 Let � be a rooting map for a monomial ideal I and let F be the
resolution of S=I associated to � . Then there exists a transfer diagram

F T

i

p

�

where i W F ! T is the inclusion and pW T ! F is the map from (11).

Proof Let uJ 2 T and define � by �.uJ /DmJ Œ�0.uJ /�. Then, using Lemma 5.4,

d�.uJ /DmJdŒ�
0.uJ /�DmJ Œ@�

0.uJ /�DmJ ŒuJ � ip
0uJ ��

0@uJ �

D uJ � ipuJ ��duJ ;

and so 1T and ip are homotopic. On the other hand, we clearly have pi D 1F , which
finishes the proof.
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6 The Golod property for rooted rings

Let RD S=I be a rooted ring with rooting map � and minimal free resolution F . The
purpose of this section is to provide necessary and sufficient conditions for R being
Golod. Following [16], we have the following definition.

Definition 6.1 Let RDS=I be a monomial ring and write I D .m1; : : : ; mr/. We say
that R satisfies the gcd condition if for all generators mi and mj with gcd.mi ; mj /D 1
there exists an mk ¤mi ; mj such that mk divides lcm.mi ; mj /.

We have the following lemma, where we write �.mi ; mj / for �.fmi ; mj g/.

Lemma 6.2 Let R D S=I be a rooted ring with rooting map � and write I D
.m1; : : : ; mr/. Then R satisfies the gcd condition if and only if �.mi ; mj /¤mi ; mj
whenever gcd.mi ; mj /D 1.

Proof First, assume that �.mi ; mj / ¤ mi ; mj whenever gcd.mi ; mj / D 1. Since
�.mi ; mj / divides lcm.mi ; mj /, we can take mk D �.mi ; mj / and so R satisfies the
gcd condition.

Conversely, suppose that R satisfies the gcd condition and take mi and mj with
gcd.mi ; mj / D 1. For contradiction, assume that �.mi ; mj / D mi . By the gcd
condition, there exists some mk ¤ mi ; mj such that mk divides lcm.mi ; mj /. We
claim that the set fmi ; mj ; �.mj ; mk/g is rooted. To prove this, we need to verify that
every subset is unbroken. Since �.mi ; mj /Dmi , it follows immediately that fmi ; mj g
is unbroken. For fmj ; �.mj ; mk/g, note that

�.mj ; mk/ j lcm.mj ; �.mj ; mk// j lcm.mj ; mk/;

and so �.mj ; �.mj ; mk//D�.mj ; mk/ as � is a rooting map. Thus, fmj ; �.mj ; mk/g
is unbroken. Next, consider fmi ; �.mj ; mk/g. Since �.mi ; mj /Dmi , we have

�.mi ; mj / j lcm.mi ; �.mj ; mk// j lcm.mi ; mj /;

and so �.mi ; �.mj ; mk// D �.mi ; mj / D mi . Consequently, fmi ; �.mj ; mk/g is
unbroken. Similarly, we have that fmi ; mj ; �.mj ; mk/g is unbroken as

�.mi ; mj / j lcm.mi ; mj ; �.mj ; mk// j lcm.mi ; mj /

and thus �.mi ; mj ; �.mj ; mk//D �.mi ; mj /Dmi . Therefore, fmi ; mj ; �.mj ; mk/g
is rooted as claimed.
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Let uD uiuj�.uj ; uk/. Since �.mj ; mk/ divides lcm.mi ; mj /, we have

duD
lcm.mi ; mj /

lcm.mj ; �.mj ; mk//
uj�.uj ; uk/�

lcm.mi ; mj /
lcm.mi ; �.mj ; mk//

ui�.uj ; uk/Cuiuj :

Hence, du … .x1; : : : ; xm/F , which is a contradiction as R is rooted. Therefore,
�.mi ; mj /¤mi . Swapping the roles of i and j , we see that �.mi ; mj /¤mj , which
finishes the proof.

The following lemma is straightforward but included for completeness.

Lemma 6.3 If uI and uJ are basis elements of T such that gcd.mI ; mJ /¤ 1, then

p�2.uI ; uJ / 2 .x1; : : : ; xm/F:

Proof Indeed, we have

p�2.uI ˝uJ /D p

�
mImJ

mI[J
uI[J

�
D
mImJ

mI[J
p.uI[J /:

By assumption .mImJ /=.mI[J /¤ 1 and so the result follows.

Lemma 6.4 Let R be a rooted ring. If R is gcd then R is Golod.

Proof Let F be the minimal free resolution of R . Then by Theorem 5.5 there is a
transfer diagram

F T

i

p

�

where i W F !T is the inclusion and pW T !F is the map from (11). By Theorem 3.5,
we obtain an A1–structure �n on F . From Corollary 4.7 it follows that it is sufficient
to show that each �n is minimal. Recall that �n D p�n , where

�n D
X
sCtDn
s;t�1

.�1/sC1�2.��s˝��t /:

Thus, it is sufficient to prove that p�2 maps into the maximal ideal. Let uI and uJ
be basis elements of T . We may assume that gcd.mI ; mJ / D 1 since otherwise
p�2.uI ˝ uJ / 2 .x1; : : : ; xm/F by Lemma 6.3. Write I D fi1; : : : ; ikg and J D
fikC1; : : : ; ing, where nD kC l . By definition of p we have

p.ui1 � � �uin/Dm
X
�2Sn

sgn.�/�.u�I1/ � � ��.u�In/;
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where mD lcm.mI ; mJ /DmImJ and u�Ip D ui�.1/ � � �ui�.p/ . Write

˛� D
m

lcm.�.m�I1/; : : : ; �.m�In//
I

then

p.ui1 � � �uin/D
X
�2Sn

sgn.�/˛��.u�I1/ � � ��.u�In/:

We need to show that ˛� 2 .x1; : : : ; xm/ for all � 2 Sn . Suppose that ˛� D 1 for
some � 2 Sn . Without loss of generality, we may assume i�.1/ 2 I. Set

q Dminfq0 j i�.q0/ 2 J g:

By assumption, lcm.�.m�I1/; : : : ; �.m�In// is divisible by mi�.q/ . Therefore, since
gcd.mi�.q/ ; mI / D 1, we have gcd.mi�.q/ ; �.m�Ik // D 1 for all k < q . Therefore,
lcm.�.m�Iq /; : : : ; �.m�In// is still divisible by mi�.q/ .

We claim that

mi�.q/ … f�.m�Iq /; : : : ; �.m�In/g:

Indeed, assume that mi�.q/ D �.m�Is / for some s � q . We have that �.m�Is / D
�.mi�.1/ ; : : : ; mi�.s//. Then

mi�.q/ j lcm.mi�.1/ ; mi�.q// j lcm.mi�.1/ ; : : : ; mi�.s//;

and so mi�.q/ D �.mi�.1/ ; mi�.q// since � is a rooting map. But by definition of q we
have gcd.mi�.1/ ; mi�.q//D 1 so this contradicts I being gcd by Lemma 6.2. Therefore

mi�.q/ … f�.m�Iq /; : : : ; �.m�In/g:

Define

uD ui�.q/�.u�Iq / � � ��.u�In/I

we claim that u is in F . To see that u is rooted, let v�fui�.q/ ; �.u�Iq /; : : : ; �.u�In/g.
If ui�.q/ … v then there is nothing to prove as f�.u�Iq /; : : : ; �.u�In/g is rooted. So,
assume ui�.q/ 2 v . We can write

v D ui�.q/�.u�Iq1 / � � ��.u�Iqk /

for some qi � q . We have

�.u�Iqk / jmv jm�Iqk ;
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and so �.v/D�.u�Iqk /2 v . Hence, u is rooted as claimed. But du… .x1; : : : ; xm/F
since mi�.q/ divides lcm.�.m�Iq /; : : : ; �.m�In//, which contradicts minimality of F .

We now come to the main theorem of this section.

Theorem 6.5 Let R be a rooted ring. Then the following are equivalent:

(1) The ring R is Golod.

(2) The product on TorS .R; k/ vanishes.

(3) The ring R is gcd.

Proof The implication .1/) .2/ is immediate from the definition and .3/) .1/

follows by Lemma 6.4. We prove .2/) .3/. Since the product on TorS .R; k/ is
just �2˝ 1, the product vanishes if and only if �2 is minimal. Let mi and mj be
generators such that gcd.mi ; mj /D 1. Then

�2.ui ; uj /D
lcm.mi ; mj /

lcm.�.mi ; mj /mi /
�.ui ; uj /ui �

lcm.mi ; mj /
lcm.�.mi ; mj /mj /

�.ui ; uj /uj :

If �.mi ; mj /Dmj then
lcm.mi ; mj /

lcm.�.mi ; mj /mj /
D 1;

which contradicts minimality of �2 and so �.mi ; mj /¤mj . By the same argument,
�.mi ; mj /¤mi and thus R is gcd by Lemma 6.2.

Remark 6.6 The equivalence between the second and third statements of Theorem 6.5
is known. See for example Lemma 2.4 of [19]

Example 6.7 Let S D kŒx1; : : : ; x9� and let I be the ideal

.x2x5x8; x2x3x8x9; x5x6x7x8; x1x2x4x5; x1x2x3; x4x5x6; x7x8x9/:

Label the generators by u1; : : : ; u9 and order them by u1 � u2 � � � � � u9 . Let L be
the Lyubeznik resolution with respect to the ordering �. Then L is easily seen to be
minimal. Plainly, I satisfies the gcd condition and so S=I is Golod.
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