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Self-dual binary codes from
small covers and simple polytopes

BO CHEN

ZHI LÜ

LI YU

The work of Volker Puppe and Matthias Kreck exhibited some intriguing connections
between the algebraic topology of involutions on closed manifolds and the combi-
natorics of self-dual binary codes. On the other hand, the work of Michael Davis
and Tadeusz Januszkiewicz brought forth a topological analogue of smooth, real toric
varieties, known as “small covers”, which are closed smooth manifolds equipped with
some actions of elementary abelian 2–groups whose orbit spaces are simple convex
polytopes. Building on these works, we find various new connections between all
these topological and combinatorial objects and obtain some new applications to the
study of self-dual binary codes, as well as colorability of polytopes. We first show
that a small cover M n over a simple n–polytope P n produces a self-dual code in
the sense of Kreck and Puppe if and only if P n is n–colorable and n is odd. Then
we show how to describe such a self-dual binary code in terms of the combinatorics
of P n . Moreover, we can construct a family of binary codes Bk.P

n/ , for 0� k � n ,
from an arbitrary simple n–polytope P n . Then we give some necessary and sufficient
conditions for Bk.P

n/ to be self-dual. A spinoff of our study of such binary codes
gives some new ways to judge whether a simple n–polytope P n is n–colorable
in terms of the associated binary codes Bk.P

n/ . In addition, we prove that the
minimum distance of the self-dual binary code obtained from a 3–colorable simple
3–polytope is always 4 .

57M60, 57R91, 57S25, 94B05

1 Introduction

As described by Rains and Sloane in [23], self-dual codes are an important class of
linear codes for both theoretical and practical reasons. It is a fundamental problem to
classify self-dual codes of modest lengths and determine the largest minimum weight
among self-dual codes of that length. Much work has been done towards classifying
self-dual codes over Fq for q D 2 and 3, where Fq denotes the finite field of order q .

Codes over F2 are called binary and all codes in this paper are binary. The dual code C?
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of a binary code C of length l is defined as C? WD fu2 F l2 j hu; ci D 0 for all c 2 C g,
where h ; i is the standard inner product. A binary code C is called self-dual if C DC? .

Puppe [22] found an interesting connection between closed manifolds and self-dual
binary codes. It was shown in [22] that an involution � on an odd-dimensional closed
manifold M with “maximal number of isolated fixed points”

�
ie with only isolated

fixed points and the number of fixed points satisfying jM � jD dimF2

�L
i H

i .M IF2/
��

determines a self-dual binary code of length jM � j. Such an involution � is called
an m–involution. Conversely, Kreck and Puppe [17] proved a somewhat surprising
theorem that any self-dual binary code can be obtained from an m–involution on
some closed 3–manifold. Hence it is an interesting problem for us to search for
m–involutions on closed manifolds. But in practice it is very difficult to construct all
possible m–involutions on a given manifold.

On the other hand, Davis and Januszkiewicz [8] introduced a class of closed smooth
manifolds M n with locally standard actions of the elementary 2–group Zn2 , called small
covers, whose orbit space is an n–dimensional simple convex polytope P n in Rn . They
showed that many geometric and topological properties of a small cover M n can be ex-
plicitly described in terms of the combinatorics of P n and some characteristic function
on P n determined by the Zn2–action. For example, the kth mod 2 Betti number of M n

is equal to hk.P n/, where .h0.P n/; h1.P n/; : : : ; hn.P n// is the h–vector of P n .

Note that any nonzero element g 2 Zn2 determines a nontrivial involution on the small
cover M n , denoted by �g . We call �g a regular involution on M n . So whenever �g
is an m–involution on M n , where n is odd, we obtain a self-dual binary code from
.M n; �g/.

Motivated by the work of Kreck and Puppe and the work of Davis and Januszkiewicz,
our purpose in this paper is to explore the connection between the theory of binary
codes and the combinatorics of simple polytopes via the topology of small covers. First,
we can tell when a small cover M n over an n–dimensional simple polytope P n has a
regular m–involution by the following theorem.

Theorem 3.2 Let � be the characteristic function determined by a small cover M n

over a simple n–polytope P n . Then the following statements are equivalent:

(a) There exists a regular m–involution on M n .

(b) There exists a regular involution on M n with only isolated fixed points.

(c) The image Im�� Zn2 of � consists of exactly n elements (which implies that
P n is n–colorable) and so they form a basis of Zn2 .
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A polytope is called n–colorable if we can color all the facets of the polytope by n
different colors so that any neighboring facets are assigned different colors. Note
if � and �0 are both characteristic functions over a simple polytope P n that satisfy
condition .c/ in Theorem 3.2, the small covers M n and N n determined by .P n; �/
and .P n; �0/ are equivalent in the sense that there is a homeomorphism f W M n!N n

and a � 2GL.n;Z2/ such that f .g �x/D�.g/�f .x/ for any g2Zn2 and x 2M n . This
implies that up to equivalence of binary codes, the self-dual binary code CMn obtained
from a regular m–involution on an n–dimensional small cover M n over P n (which has
to be n–colorable, with n odd) is essentially determined by the polytope P n . Moreover,
we can spell out the code CMn directly from the combinatorics of P n as follows.

Let the vertex set of P n be fv1; : : : ; v2rg. Here the number of vertices of P n must
be even because P n is n–colorable (see Joswig [15]). Any face f of P n determines
an element �f 2 F2r2 , where the i th entry of �f is 1 if and only if vi is a vertex of f .
In particular,

�Pn D 1D .1; : : : ; 1/ 2 F2r2 ;

and f�v1 ; : : : ; �v2r g is a linear basis of F2r2 . We define a sequence of binary codes by

Bk.P
n/ WD SpanF2f�f j f is a codimension-k face of P ng � F2r2 for 0� k � n:

By a close examination of the localization of the equivariant cohomology of a small
cover M n to its fixed-point set (in the proof of Theorem 4.3), we obtain in Corollary 4.5
that the self-dual binary code CMn is equivalent to B.n�1/=2.P

n/. This builds a direct
connection between the combinatorics of simple polytopes and self-dual binary codes.
An interesting consequence of this connection is that we can detect various properties
of such self-dual binary codes from the combinatorics of the corresponding polytopes.
This might help us construct self-dual binary codes with certain prescribed properties.

The key idea of the proof of Theorem 4.3 is understanding the image of the localization
of the equivariant cohomology H�G� .M

nIF2/!H�G� ..M
n/G� IF2/ to the fixed points,

where G� is the Z2–subgroup generated by the regular m–involution on M n , in terms
of the localization map H�Zn2

.M nIF2/!H�Zn2
..M n/Z

n
2 IF2/ of the whole Zn2–action

on M n . Indeed, we have a commutative diagram (see (12))

H�Zn2
.M nIF2/

��
//

i�4
��

H�G� .M
nIF2/

i�3
��

H�Zn2
..M n/Z

n
2 IF2/

 �
// H�G� ..M

n/G� IF2/
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where we can show that �� is a group epimorphism. So the image of the localization
map i�3 is the image of the composite map  � ı i�4 . Then we use some results on
small covers from Davis and Januszkiewicz [8] to give an explicit description of i�4
and derive Theorem 4.3. The reader is referred to Allday and Puppe [2] for the basic
theory of equivariant cohomology, localization and classifying spaces.

Note that the definition of Bk.P
n/ depends only on the combinatorial structure of P n

and makes perfect sense for general simple polytopes (not necessarily n–colorable). For
a general simple polytope P n , we can show (see Proposition 5.3) that dimF2 Bk.P

n/�

h0.P
n/C � � �C hk.P

n/ for any 0� k � n. Moreover, we can detect some properties
of P n from the family of codes fBk.P

n/g0�k�n . For example, it is shown in the
following proposition that we can tell whether P n is n–colorable by simply computing
the dimension of B1.P

n/.

Proposition 5.5 Let P n be an n–dimensional simple polytope with m facets. Then
dimF2 B1.P

n/Dm�nC 1 if and only if P n is n–colorable.

There is a special class of binary codes called doubly even codes, which are intensively
studied by both mathematicians and engineers. A binary code C is called doubly even
if the Hamming weight of any codeword in C is divisible by 4. Doubly even self-dual
binary codes are of particular importance both theoretically and practically. We can
determine which kind of n–colorable simple n–polytopes can produce a doubly even
self-dual binary code in our approach. This gives us a purely combinatorial way to
construct doubly even self-dual binary codes. But unfortunately, we find that some
famous binary codes of this type such as the extended Golay code and the extended
quadratic residue code cannot be obtained from any n–colorable simple n–polytope.

The paper is organized as follows. In Section 2, we introduce the basic notions and facts
about binary codes and simple polytopes that we use. Additionally, we briefly explain
the procedure of obtaining self-dual binary codes, as described by Puppe in [22], from
m–involutions on closed manifolds. In Section 3, we first recall some basic facts of
small covers and then investigate when a small cover can admit a regular m–involution
(see Theorem 3.2). In Section 4, we spell out the self-dual binary code from a small
cover with a regular m–involution (see Corollary 4.5). It turns out that the self-dual
binary code depends only on the combinatorial structure of the underlying simple
polytope. In Section 5, we study the properties of the family of binary codes Bk.P

n/,
0� k � n, associated to any simple n–polytope P n . A spinoff of our study produces
several new criteria to judge whether P n is n–colorable in terms of the associated
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binary codes Bk.P
n/ (see Proposition 5.5 and Proposition 5.6). In Section 6, we

will give some necessary and sufficient conditions for Bk.P
n/ to be self-dual codes

for general simple polytopes P n (see Theorem 6.2). In Section 7, we prove that the
minimum distance of the self-dual binary code obtained from any 3–colorable simple
3–polytope is always 4 (see Proposition 7.1). In Section 8, we investigate some special
properties of n–colorable simple n–polytopes. In Section 9, we study what kind of
doubly even binary codes can be obtained from n–colorable simple n–polytopes. In
particular, we show that the extended Golay code and the extended quadratic residue
code cannot be obtained from any n–colorable simple n–polytopes.

2 Preliminaries

Here we collect some necessary information about binary codes and simple polytopes
and briefly explain the construction of self-dual binary codes from m–involutions on
manifolds.

2.1 Self-dual binary codes

A (linear) binary code C of length l is a linear subspace of the l–dimensional
linear space F l2 over F2 (the binary field). The Hamming weight of an element
u D .u1; : : : ; ul/ 2 F l2 , denoted by wt.u/, is the number of nonzero coordinates ui
in u. Any element of C is called a codeword. The Hamming distance d.u; v/ between
any two codewords u; v 2 C is defined by

d.u; v/D wt.u� v/:

The minimum of the Hamming distances d.u; v/ for all u; v 2 C , where u ¤ v , is
called the minimum distance of C (which also equals the minimum Hamming weight of
nonzero elements in C ). A binary code C � F l2 is called type Œl; k; d � if dimF2 C D k

and the minimum distance of C is d . We call two binary codes in F l2 equivalent if
they differ only by a permutation of coordinates.

A generator matrix for a binary code C is a binary matrix whose rows form a basis
for C . Then the codewords of C are all of the linear combinations of the rows of this
matrix, that is, C is the row space of its generator matrix.

The standard bilinear form h ; i on F l2 is defined by

hu; vi WD

lX
iD1

uivi for uD .u1; : : : ; ul/; v D .v1; : : : ; vl/ 2 F l2:
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Note that hu; vi D 1
2
.wt.u/Cwt.v/�wt.uC v// mod 2 for any u; v 2 F l2 , and

hu; ui D

lX
iD1

ui for uD .u1; : : : ; ul/ 2 F l2:

Any linear binary code C in F l2 has the dual code C? defined by

C? WD fu 2 F l2 j hu; ci D 0 for all c 2 C g:

It is clear that dimF2 C C dimF2 C
? D l . We call C self-dual if C D C? . For a

self-dual binary code C , we can easily show the following:

� The length l D 2 dimF2 C must be even.

� For any u 2 C , the Hamming weight wt.u/ is an even integer since hu; ui D 0.

� The minimum distance of C is an even integer.

Self-dual binary codes play an important role in coding theory and have been studied
extensively (see [23] for a detailed survey).

2.2 Simple polytopes

A (convex) polytope P is the convex hull of a finite set of points in some Euclidean
space. The dimension of P is the dimension of the affine hull of these points. We refer
to n–dimensional convex polytopes simply as n–polytopes. Two polytopes P and Q
are combinatorially equivalent (P ' Q) if there is a bijection between their faces
preserving the inclusion relation. An n–polytope P n is called simple if each vertex
of P n is the intersection of exactly n distinct facets (codimension-one faces) of P n .
Any 0–face of P n is called a vertex and any 1–face of P n is called an edge. Let
V.P n/ denote the set of vertices of P .

Let fi .P n/ be the number of i–faces of P n. The vector .f0.P n/;f1.P n/;:::;fn.P n//
is called the f –vector of P n . Let hk.P n/ be the coefficient of tn�k in the polynomialPn
iD0 fi .P

n/.t � 1/i . Then the vector .h0.P n/; h1.P n/; : : : ; hn.P n// is called the
h–vector of P n . It is easy to see that h0.P n/D 1, h1.P n/D fn�1.P n/�n and

nX
iD0

hi .P
n/D f0.P

n/D jV.P n/j;

where jV.P n/j is the number of vertices of P n . For a general simple n–polytope P n ,
there are many relations among the hk.P n/. Indeed, the famous g–theorem (see [5,
Section 1.3]) characterizes all possible integer vectors that are the h–vector of some
simple polytope.
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Definition For positive integers a and i , define ahiiD
�
aiC1
iC1

�
C
�
ai�1C1

i

�
C� � �C

�ajC1
jC1

�
and 0hiiD 0; where aD

�
ai
i

�
C
�
ai�1
i�1

�
C� � �C

�aj
j

�
is the unique binomial i–expansion

of a with ai > ai�1 > � � �> aj � j � 1.

Theorem (g–theorem) An integer vector .h0; h1; : : : ; hn/ is the h–vector of a simple
n–polytope if and only if the following conditions are satisfied:

(i) Dehn–Sommerville relations hi D hn�i for 0� i � n.

(ii) h0 � h1 � � � � � hŒn=2� for 0� i � n=2.

(iii) h0 D 1 and hiC1� hi � .hi � hi�1/hii for 1� i � Œn=2�� 1.

Our study of binary codes in Section 5 leads to some new criteria to judge whether
a simple n–polytope is n–colorable. The following are some known descriptions of
n–colorable simple n–polytopes due to Joswig [15].

Theorem 2.1 [15, Theorem 16 and Corollary 21] Let P n be an n–dimensional
simple polytope, where n� 3. The following statements are equivalent:

(a) P n is n–colorable.

(b) Each 2–face of P n has an even number of vertices.

(c) Each face of P n with dimension greater than 0 (including P n itself) has an
even number of vertices.

(d) Any proper k–face of P n is k–colorable.

2.3 Binary codes from m–involutions on manifolds

Let � be an involution on a closed connected n–dimensional manifold M which has
only isolated fixed points. Let G� Š Z2 denote the binary group generated by � . By
Conner [7, page 82], the number jMG� j of the fixed-point set MG� of G� must be
even. So we assume that jMG� j D 2r , where r � 1, in the following discussion. By
[2, Proposition (1.3.14)], the following statements are equivalent:

(a) jMG� j D
Pn
iD0 bi .M IF2/ (ie � is an m–involution).

(b) H�G� .M IF2/ is a free H�.BG� IF2/–module, so

H�G� .M IF2/DH
�.M IF2/˝H

�.BG� IF2/:

(c) The inclusion of the fixed-point set, �W MG� ,!M , induces a monomorphism

��W H�G� .M IF2/!H�G� .M
G� IF2/Š F2r2 ˝F2Œt �:
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Next we assume that � is an m–involution on M . So the image of H�G� .M IF2/ in
F2r2 ˝ F2Œt � under the localization map �� is isomorphic to H�G� .M IF2/ as graded
algebras. It is shown in [6; 22] that the image ��.H�G� .M IF2// can be described in the
following way. For any vectors xD .x1; : : : ; x2r/ and yD .y1; : : : ; y2r/ in F2r2 , define

x ıy D .x1y1; : : : ; x2ry2r/:

It is clear that F2r2 forms a commutative ring with respect to the two operations C and ı.
Actually, .F2r2 ;C; ı/ is a boolean ring. Notice that x ı x D x for any x 2 F2r2 . Let

(1) V2r D
�
x D .x1; : : : ; x2r/ 2 F2r2

ˇ̌̌
hx; xi D

2rX
iD1

xi D 0 2 F2

�
:

Then V2r is a .2r�1/–dimensional linear subspace of F2r2 . Note that for any u 2 V2r ,
the Hamming weight wt.u/ of u is an even integer. The following lemma is immediate
from our definitions.

Lemma 2.2 Let C be a binary code in F2r2 with dimF2 C D r . Then the following
statements are equivalent:

(C1) C is self-dual.

(C2) hx; yi D 0 for any x; y 2 C .

(C3) x ıy 2 V2r for any x; y 2 C .

Moreover, let

(2)
VMk D fy 2 F2r2 j y˝ t

k
2 Im.��/g � F2r2 for k D 0; : : : ; nI

VM�1 D f0g:

By the localization theorem for equivariant cohomology (see [2]), we have isomorphisms

(3) Hk.M IF2/Š V
M
k =VMk�1 for 0� k � n:

Theorem 2.3 [6, Theorem 3.1; 22, page 213] For any 0� k � n, we have

dimF2 V
M
k D

kX
jD0

bj .M IF2/:

In addition, H�G� .M IF2/ is isomorphic to the graded ring

RM D VM0 CV
M
1 t C � � �CVMn�2t

n�2
CVMn�1t

n�1
CF2r2 .t

n
C tnC1C � � � /;

where the ring structure of RM is given by the following:
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(a) F2 Š VM0 � V
M
1 � � � � � V

M
n�2 � V

M
n�1 D V2r � VMn D F2r2 , where VM0 is

generated by 1D .1; : : : ; 1/ 2 F2r2 .

(b) For d D
Pn�1
iD0 idi < n with each di � 0, the composition v!d0 ı � � � ı v!dn�1

is in VM
d

, where

v!di
D v

.i/
1 ı � � � ı v

.i/

di
for some v.i/j 2 V

M
i :

The operation ı on F2r2 corresponds to the cup product in H�G� .M IF2/.

Each VM
k

above can be thought of as a binary code in F2r2 . Theorem 2.3 and the
Poincaré duality of M imply that

(4) dimF2 V
M
k C dimF2 V

M
n�1�k D

nX
jD0

bj .M IF2/D 2r:

In addition, VM
n�1�k

is perpendicular to VM
k

with respect to h ; i. This is because

Hk
G.M IF2/Š V

M
k tk and Hn�k�1

G .M IF2/Š V
M
n�k�1t

n�k�1:

So for any x2VM
k

and y2VM
n�k�1

, we have that xtk[ytn�k�1D .xıy/tn�1 belongs
to Hn�1

G .M IF2/Š V2r tn�1 by Theorem 2.3(b). Then, by Lemma 2.2, x ı y 2 V2r
implies hx; yi D 0. So we have VM

n�1�k
� .VM

k
/? . Moreover, dimF2 V

M
n�1�k

D

dimF2.V
M
k
/? by (4). This implies that

(5) .VMk /? D VMn�1�k :

Corollary 2.4 VM
k
�F2r2 is self-dual if and only if dimF2V

M
k
D
Pk
jD0 bj .M IF2/Dr .

Proof The necessity is trivial. If dimF2 V
M
k
D r , then dimF2 V

M
n�1�k

D r by (4).
But by Theorem 2.3(a), we have either VM

k
� VM

n�1�k
or VM

n�1�k
� VM

k
. Then

VM
k

and VM
n�1�k

must be equal since they have the same dimension. So by (5),
.VM
k
/? D VM

n�1�k
D VM

k
. Hence VM

k
is self-dual.

3 Small covers with m–involutions

3.1 Small covers

Following [8], an n–dimensional small cover is a closed n–manifold M n with a locally
standard Zn2–action whose orbit space is homeomorphic to an n–dimensional simple
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convex polytope P n , where “locally standard” means that this Zn2–action on M n is
locally isomorphic to the standard faithful representation of Zn2 on Rn (ie the n–fold
Cartesian product of the natural representation of Z2 on R). Let � W M n! P n be
the orbit map. Let F.P n/ denote the set of all facets of P n . For any facet F of P n ,
the isotropy subgroup of ��1.F / in M n with respect to the Zn2–action is a rank-1
subgroup of Zn2 generated by an element of Zn2 , denoted by �.F /. Then we obtain
a map �W F.P n/! Zn2 , called the characteristic function associated to M n , which
maps the n facets meeting at each vertex of P n to n linearly independent elements
in Zn2 . It is shown in [8] that up to equivariant homeomorphisms, M n can be recovered
from .P n; �/ in a canonical way (see (8)). Moreover, many algebraic topological
invariants of a small cover � W M n! P n can be easily computed from .P n; �/. Here
is a list of facts on the cohomology rings of small covers proved in [8]:

(R1) Let bi .M nIF2/ be the i th mod 2 Betti number of M n . Then

bi .M
n
IF2/D hi .P

n/ for 0� i � n;

where .h0.P n/; h1.P n/; : : : ; hn.P n// is the h–vector of P n .

(R2) Let .M n/Z
n
2 denote the fixed-point set of the Zn2–action on M n . Then

j.M n/Z
n
2 j D

nX
iD0

bi .M
n
IF2/D

nX
iD0

hi .P
n/D jV.P n/j:

(R3) The equivariant cohomology H�Zn2
.M nIF2/ is isomorphic as graded rings to the

Stanley–Reisner ring of P n

(6) H�Zn2
.M n
IF2/Š F2.P

n/D F2ŒaF1 ; : : : ; aFm �=IPn ;

where F1; : : : ; Fm are all the facets of P n and aF1 ; : : : ; aFm are of degree 1,
and IPn is the ideal generated by all square-free monomials of aFi1 � � � aFis
with Fi1 \ � � � \Fis D¿ in P n .

(R4) The mod 2 cohomology ring satisfies

H�.M n
IF2/Š F2ŒaF1 ; : : : ; aFm �=IP CJ�;

where J� is an ideal determined by �. In particular, H�.M nIF2/ is generated
by degree-1 elements.
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3.2 Spaces constructed from simple polytopes with Zr
2
–colorings

Let P n be an n–dimensional simple polytope in Rn . For any r � 0, a Zr2–coloring
on P n is a map �W F.P n/! Zr2 . For any facet F of P n , we call �.F / the color
of F . Since P n is simple, any codimension-k face of P n is the intersection of a
unique collection of k facets of P n . Let f D F1\ � � � \Fk be a codimension-k face
of P n , where F1; : : : ; Fk 2 F.P n/. Define

(7) G
�

f
D the subgroup of Zr2 generated by �.F1/; : : : ; �.Fk/:

Additionally, let G� be the subgroup of Zr2 generated by f�.F / j F 2 F.P n/g. The
rank of G� is called the rank of �, denoted by rank.�/. It is clear that rank.�/� r .

For any point p 2 P n , let f .p/ denote the unique face of P n that contains p in its
relative interior. Then we define a space associated to .P n; �/ by

(8) M.P n; �/D P n �Zr2=�;

where .p; g/� .p0; g0/ if and only if pD p0 and g0�g 2G�
f.p/

. Note the following:

� M.P n; �/ is a closed manifold if � is nondegenerate (ie �.F1/; : : : ; �.Fk/
are linearly independent whenever F1\ � � � \Fk ¤¿).

� M.P n; �/ has 2r�rank.�/ connected components. So M.P n; �/ is connected
if and only if rank.�/D r .

� There is a canonical Zr2–action on M.P n; �/ defined by

h � Œ.x; g/�D Œ.x; gC h/� for x 2 P n and g; h 2 Zr2:

Let ��W M.P n; �/ ! P n be the map sending any Œ.x; g/� 2 M.P n; �/ to
x 2 P n .

For any face f of P n with dim.f /� 1, let r.f /D r � rank.G�
f
/ and

�f W Z
r
2! Zr2=G

�

f
Š Zr.f /2

be the quotient homomorphism. Then � induces a Zr.f /2 –coloring �f on f by

(9) �f .F \f / WD �f .�.F //; where F 2F.P n/ and dim.F \f /D dim.f /�1:

It is easy to see that ��1� .f / is homeomorphic to M.f;�f /.
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Example 3.1 Suppose � W M n! P n is a small cover with characteristic function �.
Then M n is homeomorphic to M.P n; �/. For any face f of P n , we have that
��1.f /ŠM.f; �f / is a closed connected submanifold of M n (called a facial sub-
manifold of M n ) which is a small cover over f .

3.3 Small covers with regular m–involutions

Let � W M n! P n be a small cover over an n–dimensional simple polytope P n and
�W F.P n/! Zn2 be its characteristic function. Let us discuss under what conditions
there exists a regular m–involution on M n .

Theorem 3.2 The following statements are equivalent:

(a) There exists a regular m–involution on M n .

(b) There exists a regular involution on M n with only isolated fixed points.

(c) The image Im�� Zn2 of � consists of exactly n elements (which implies that
P n is n–colorable) and so they form a basis of Zn2 .

Proof (a))(b) By definition, an m–involution only has isolated fixed point.

(b))(c) Suppose there exists g 2 Zn2 such that the fixed points of �g on M n are
all isolated. Let v be an arbitrary vertex on P n and F1; : : : ; Fn be the n facets
meeting at v . By the construction of small covers, ��1.v/ D p is a fixed point of
the whole group Zn2 . Let U �M be a small neighborhood of p . Since the action
of Zn2 on M n is locally standard, we observe that for hD �.Fi1/C� � �C�.Fis / 2Zn2 ,
where 1� i1 < � � �< is � n, the dimension of the fixed-point set of �h in U is equal
to n � s . Then, since the fixed points of �g are all isolated, we must have that
gD�.F1/C� � �C�.Fn/. Next, take an edge of P n with two endpoints v1 and v2 . Since
P n is simple, there are nC1 facets F1; : : : ; Fn; F 0n such that v1DF1\� � �\Fn�1\Fn
and v2 D F1 \ � � � \ Fn�1 \ F

0
n . Then �.F1/ C � � � C �.Fn�1/ C �.Fn/ D g D

�.F1/C� � �C�.Fn�1/C�.F
0
n/, which implies �.Fn/D �.F 0n/. Since the 1–skeleton

of P n is connected, we can deduce the image Im� of � consists of n elements of Zn2
which form a basis of Zn2 .

(c))(a) Suppose Im�D fg1; : : : ; gng is a basis of Zn2 . Then, by the construction
of small covers, the fixed-point set of the regular involution �g1C���Cgn on M n is

.M n/Z
n
2 D f��1.v/ j v 2 V.P n/g:
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So the number of fixed points of �g1C���Cgn is equal to the number of vertices of P n ,
which is known to be h0.P n/C h1.P n/C � � � C hn.P n/. Then, by result (R1) in
Section 3.1, �g1C���Cgn is an m–involution on M n .

Remark It should be pointed out that for an n–colorable simple n–polytope P n ,
the image of a characteristic function �W F.P n/! Zn2 might consist of more than
n elements of Zn2 . In that case, the small cover defined by P n and � admits no regular
m–involutions. So Theorem 3.2 only tells us that if an n–dimensional small cover M n

over P n admits a regular m–involution, then P n is n–colorable. But the converse is
not true.

4 Self-dual binary codes from small covers

Let � W M n ! P n be an n–dimensional small cover which admits a regular m–
involution. By the proof of Theorem 3.2, P n is an n–dimensional n–colorable simple
polytope with an even number of vertices. Let fv1; : : : ; v2rg be all the vertices of P n .
The characteristic function � of M n satisfies the following: Im.�/ D fe1; : : : ; eng
is a basis of Zn2 . By Theorem 3.2, �e1C���Cen is an m–involution on M n . So by the
discussion in Section 2.3, we obtain a filtration

F2 Š V
Mn

0 � VM
n

1 � � � � � VM
n

n�2 � V
Mn

n�1 D V2r � VM
n

n D F2r2 :

According to Theorem 2.3 and property (R1) of small covers,

dimF2 V
Mn

k D

kX
jD0

bj .M
n
IF2/D

kX
jD0

hj .P
n/ for 0� k � n:

So, since hj .P n/>0 for all 0�j �n, we have VM
n

0 ¨VMn

1 ¨� � �¨VMn

n�1¨VM
n

n DF2r2 .
Note that VM

n

k
is self-dual in F2r2 if and only if VM

n

k
D .VM

n

k
/? D VM

n

n�1�k
, by (5).

Then VM
n

k
is self-dual if and only if k D n� 1� k (ie n is odd and k D .n� 1/=2).

So we have proved the following proposition:

Proposition 4.1 Let � W M n! P n be an n–dimensional small cover which admits
a regular m–involution. Then VM

n

k
is a self-dual code if and only if n is odd and

k D .n� 1/=2.

In the remaining part of this section, we will describe each VM
n

k
, for 0 � k � n,

explicitly in terms of the combinatorics of P n . First, any face f of P n determines an
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element �f 2 F2r2 , where the i th entry of �f is 1 if and only if vi is a vertex of f .
Note that for any faces f1; : : : ; fs of P n , we have

(10) �f1\���\fs D �f1 ı � � � ı �fs ;

and define a sequence of binary codes Bk.P
n/� F2r2 as follows:

(11) Bk.P
n/ WD SpanF2f�f j f is a codimension-k face of P ng for 0� k � n:

Remark Changing the ordering of the vertices of P n only causes the coordinate
changes in Fn2 . So up to equivalences of binary codes, each Bk.P

n/ is uniquely
determined by P n .

Lemma 4.2 For any n–colorable simple n–polytope P n with 2r vertices, we have

B0.P
n/�B1.P

n/� � � � �Bn�1.P
n/D V2r �Bn.P

n/Š F2r2 :

Proof By definition, P n can be colored by n colors fe1; : : : ; eng. Choosing an
arbitrary color, say ej , we observe that each vertex of P n is contained in exactly one
facet of P n colored by ej . This implies that

�Pn D �F1 C � � �C �Fs ;

where F1; : : : ; Fs are all the facets of P n colored by ej . So B0.P
n/ � B1.P

n/.
Moreover, by Theorem 2.1(d), the facets F1; : : : ; Fs are .n�1/–dimensional simple
polytopes which are .n�1/–colorable. So by repeating the above argument, we can
show that B1.P

n/�B2.P
n/ and so on. Now it remains to show Bn�1.P

n/D V2r .

By definition, Bn�1.P
n/ is spanned by f�f j f is an edge (or 1–face) of P ng. So it

is obvious that Bn�1.P
n/ � V2r . Let fv1; : : : ; v2rg be all the vertices of P n . It is

easy to see that V2r is spanned by f�vi C �vj j 1 � i ¤ j � 2rg. Then, since there
exists an edge path on P n between any two vertices vi and vj of P n , we have that
�vi C �vj belongs to Bn�1.P

n/. So V2r �Bn�1.P
n/. This finishes the proof.

Later we will prove that the condition in Lemma 4.2 is also sufficient for an n–
dimensional simple polytope to be n–colorable (see Proposition 5.6).

Theorem 4.3 Let � W M n ! P n be an n–dimensional small cover which admits a
regular m–involution. For any 0� k � n, the space VM

n

k
coincides with Bk.P

n/.
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Corollary 4.4 Let P n be an n–colorable simple n–polytope with 2r vertices. Then

dimF2 Bk.P
n/D

kX
iD0

hi .P
n/ for 0� k � n:

If n is odd, then Bk.P
n/ is a self-dual code in F2r2 if and only if k D .n� 1/=2. If n

is even, Bk.P
n/ cannot be a self-dual code in F2r2 for any 0� k � n.

Proof LetM n be a small cover over P n whose characteristic function �W F.P n/!Zn2
satisfies the condition that the image Im.�/ is a basis fe1; : : : ; eng in Zn2 . Then, by
Theorem 4.3, Bk.P

n/ coincides with VM
k

. So this corollary follows from Theorem 2.3,
property (R1) in Section 3.1 and Proposition 4.1.

Corollary 4.5 Let � W M n ! P n be an n–dimensional small cover which admits
a regular m–involution, where n is odd. Then the self-dual binary code CMn D

VM
n

.n�1/=2
DB.n�1/=2.P

n/ is spanned by

f�f j f is any face of P n with dim.f /D .nC 1/=2g:

So the minimum distance of CMn is less than or equal to

minf#.vertices of f / j f is an ..nC 1/=2/–dimensional face of P ng:

Problem For any n–dimensional small cover M n that admits a regular m–involution,
where n is odd, determine the minimum distance of the self-dual binary code CMn .

We will see in Proposition 7.1 that when nD3, the minimum distance of CMn is always
equal to 4. For higher dimensions, it seems to us that the minimum distance of CMn

should be equal to minf#.vertices of f / jf is an ..nC1/=2/–dimensional face ofP ng.
But the proof is not clear to us. Some examples supporting this statement can be found
in Example 9.2.

In the following, we are going to prove Theorem 4.3. For brevity, let

� D �e1C���Cen and G� D he1C � � �C eni Š Z2:

By the construction of M n , all the fixed points of � on M n are Qv1; : : : ; Qv2r , where

Qvi D �
�1.vi / 2M

n for i D 1; : : : ; 2r:
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Proof of Theorem 4.3 According to result (R4) of Section 3.1, the cohomology
ring H�.M nIF2/ of M n is generated as an algebra by H 1.M nIF2/. So as an
algebra over H�.BG� IF2/DF2Œt �, the equivariant cohomology ring H�G� .M

nIF2/D

H�.M nIF2/˝H�.BG� IF2/ is generated by elements of degree 1. In addition, the
operation ı on F2r2 corresponds to the cup product in H�G� .M

nIF2/. So we obtain
from Theorem 2.3 that, for any 1� k � n,

VM
n

k D VM
n

1 ı � � � ıVM
n

1„ ƒ‚ …
k

:

On the other hand, there is a similar structure on Bk.P
n/ as well.

Claim 1 Bk.P
n/DB1.P

n/ ı � � � ıB1.P
n/„ ƒ‚ …

k

for 1� k � n.

Indeed, for any k different facets Fi1 ; : : : ; Fik of P n , their intersection Fi1\� � �\Fik
is either empty or a face of codimension k . So by (10), we have �Fi1 ı � � � ı �Fik D
�Fi1\���\Fik

2 Bk.P
n/. If there are repetitions of facets in Fi1 ; : : : ; Fik , we have

�Fi1 ı � � � ı �Fik
2Bl.P

n/ for some l < k (because x ı x D x for any x 2 F2r2 ). But
since P n is n–colorable in our case, we have Bl.P

n/ � Bk.P
n/ by Lemma 4.2.

Conversely, any codimension-k face f of P n can be written as f D Fi1 \ � � � \Fik ,
where Fi1 ; : : : ; Fik are k different facets of P n . So �f D �Fi1\���\Fik D �Fi1 ı� � �ı�Fik .
Claim 1 is proved.

So, to prove Theorem 4.3, it is sufficient to prove that VM
n

1 DB1.P
n/, ie VM

n

1 is
spanned by the set f�F j F is any facet of P ng. Next, we examine the localization of
H 1

Zn2
.M nIF2/ to H 1

Zn2
..M n/Z

n
2 IF2/ more carefully. Let F.P n/D fF1; : : : ; Fmg be

the set of all facets of P n . By our previous notation, the regular involution � D

�e1C���Cen on M n only has isolated fixed points:

.M n/G� D .M n/Z
n
2 D fQv1; : : : ; Qv2rg:

Clearly the inclusion G� ,! Zn2 induces diagonal maps �E W EG� ! EZn2 and
�B W BG� ! BZn2 such that the following diagram commutes:

EG�
�E
����! EZn2??y ??y

BG�
�B
����! BZn2
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Since .M n/G� D .M n/Z
n
2 consists of isolated points, we have a commutative diagram

EG� � .M
n/G�

�E�id
//

i1

((

��

EZn2 � .M
n/Z

n
2

i2

vv

��

EG� �M
n �E�id

//

��

EZn2 �M
n

��

EG� �G� M
n �

// EZn2 �Zn2
M n

EG� �G� .M
n/G�

i3

66

�B�idD 
// EZn2 �Zn2

.M n/Z
n
2

i4
hh

where � is the map induced by �E � id, and i1 , i2 , i3 and i4 are all inclusions.
Furthermore, we have the following commutative diagram, where i�3 ı�

� D  � ı i�4 :

(12)

H�Zn2
.M nIF2/

��
//

i�4
��

H�G� .M
nIF2/

i�3
��

H�Zn2
..M n/Z

n
2 IF2/

 �
// H�G� ..M

n/G� IF2/

Note that i�3 and i�4 are injective, and

H�Zn2
..M n/Z

n
2 IF2/Š

M
v2V.Pn/

H�Zn2
. QvIF2/;

H�G� ..M
n/G� IF2/Š

M
v2V.Pn/

H�G� . QvIF2/;

where Qv D ��1.v/ is the fixed point corresponding to a vertex v 2 V.P n/. Then, by
the facts that H�Zn2

. QvIF2/ŠH�.BZn2IF2/ and H�G� . QvIF2/ŠH
�.BG� IF2/, we can

regard  � as a direct sum:

(13)  � D
M

v2V.Pn/

��B :

We know H�.BZn2IF2/D F2Œt1; : : : ; tn� with deg ti D 1, and H�.BG� IF2/D F2Œt �

with deg t D 1 (see [2, Section 1]). For each 1� i � n, let Gi D hei i Š Z2 . Clearly,

H�.BGi IF2/D F2Œti � for 1� i � n and Zn2 DG1 � � � � �Gn:
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For any 1� i�n, let �i W Gi!G� be the group isomorphism sending ei!e1C� � �Cen ,
and let �i W Zn2 ! Gi be the projection sending ej to 0 for any 1 � j ¤ i � n. Let
� W G� ,! Zn2 be the inclusion map. It is clear that

�i ı � ı �i D idGi for 1� i � n:

Let B�i W BGi ! BG� and B�i W BZn2 ! BGi be the maps between the classifying
spaces induced, respectively, by �i and �i . Then, since there is a functorial construction
of classifying spaces of groups (see [20]), we can assume B�i ı�B ıB�i D idBGi
(recall that �B W BG� ! BZn2 is induced by � ). So for any 1� i � n, we have

id�BGiDB
�
�i
ı��BıB

�
�i
WH1.BGi IF2/!H

1.BZn2IF2/!H
1.BG� IF2/!H

1.BGi IF2/:

Obviously, we have B��i .ti /D ti for any 1� i �n. In addition, we can assert B�
�i
.t/D ti

since B�
�i

is an isomorphism, and t and ti are the unique generators of H 1.BG� IF2/

and H 1.BGi IF2/, respectively. Then ti DB��i ı�
�
B ıB

�
�i
.ti /DB

�
�i
ı��B.ti / implies

(14) ��B.ti /D t for 1� i � n:

Our strategy here is to understand the image of the localization map i�3 in terms of  �

and i�4 . So we need to show that �� is surjective.

Claim 2 The homomorphism �� is surjective.

Indeed, according to [8, Theorem 4.12], the E2–term of the Serre spectral sequence of
the fibration EZn2 �Zn2

M n! BZn2 collapses and we have

H�Zn2
.M n
IF2/ŠH

�.M n
IF2/˝H

�.BZn2IF2/:

This means that the small cover M n is equivariantly formal (see [10] for the definition).
Meanwhile, we already know that H�G� .M

nIF2/ D H�.M nIF2/˝H�.BG� IF2/.
So the surjectivity of �� follows from the surjectivity of ��B W H

�.BZn2IF2/ !

H�.BG� IF2/, which is implied by (14). Claim 2 is proved.

Remark The surjectivity of restriction map to the equivariant cohomology with respect
to a subgroup is known for many equivariant formal situations. For example, an explicit
statement of the surjectivity result in case of real torus actions is contained in [1,
Theorem 5.7].

By Claim 2, the image of the localization i�3 W H
�
G�
.M nIF2/!H�G� ..M

n/G� IF2/ is

(15) Im.i�3 /D Im.i�3 ı�
�/D Im. � ı i�4 /:
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For any fixed point Qv2 .M n/Z
n
2 , the inclusion iQvW f Qvg ,!M n induces a homomorphism

i�
Qv W H

�
Zn2
.M n
IF2/Š F2ŒaF1 ; : : : ; aFm �=I

!H�Zn2
.f QvgIF2/ŠH

�.BZn2IF2/D F2Œt1; : : : ; tn�:

Then we can write

(16) i�4 D
M

v2V.Pn/

i�
Qv :

Since we already know how to compute  � from (13) and (14), it remains to understand
each i�

Qv
for us to compute Im.i�3 /. This is given in the following lemma.

Lemma 4.6 Let � be the characteristic function of the small cover M n such that
Im.�/Dfe1; : : : ; eng is a basis of Zn2 . Suppose F is a facet of P n with �.F /D ej for
some 1� j � n. Then, for any vertex v of P n , the fixed point QvD ��1.v/ 2 .M n/Z

n
2

satisfies

i�
Qv .aF /D

�
tj if v 2 F;
0 if v … F:

Proof Let MF D�
�1.F /. Let MZn2

DEZn2�Zn2
M n and .MF /Zn2 DEZn2�Zn2

MF

be the Borel constructions of M n and MF , respectively. According to the discussion
in [8, Section 6.1], aF is the first Stiefel–Whitney class w1.LF / of a line bundle LF
over MZn2

. Moreover, the restriction of LF to MZn2
n .MF /Zn2 is a trivial line bundle.

For any fixed point Qv of M n , let LQv denote the restriction of the line bundle LF to
the Borel construction f QvgZn2 DEZn2 �Zn2

f Qvg.

If a vertex v is not in F , so that Qv …MF , then LQv is a trivial line bundle over f QvgZn2 .
So we have

0D w1.LQv/D i
�
Qv .w1.LF //D i

�
Qv .aF /:

For any vertex v 2 F , let pQvW M n!fQvg be the constant map. Clearly pQv ı iQv D idfQvg .
The induced maps p�

Qv
and i�

Qv
on the equivariant cohomology give

(17)

idW H 1
Zn2
.f Qvg/

p�
Qv

// H 1
Zn2
.M n/

i�
Qv

// H 1
Zn2
.f Qvg/

idW spanft1; : : : ; tng
p�
Qv
// spanfaF1 ; : : : ; aFmg

i�
Qv
// spanft1; : : : ; tng
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Let � be the characteristic function of the small cover � W M n!P n . We can regard �
as a linear map �W Zm2 D spanfF1; : : : ; Fmg ! Zn2 D spanfe1; : : : ; eng, which is
represented by an n�m matrix A D .�.F1/; : : : ; �.Fm//. Since Qv is a fixed point
of the Zn2–action on M n , we can identify the map p�

Qv
in (17) with p�W H 1.BZn2/!

H 1
Zn2
.M n/, where pW EZn2 �Zn2

M n! BZn2 is the projection. Then, by the analysis
of p� in [8, pages 438–439], we have

(18) p�
Qv.tj /D �

�.tj /D
X

�.Fl /Dej
1�l�m

aFl ;

where ��W spanft1; : : : ; tng ! spanfaF1 ; : : : ; aFmg is the dual of �, which is repre-
sented by the transpose At of A. So we obtain

(19) tj D i�Qv .p
�
Qv.tj //D i

�
Qv

 X
�.Fl /Dej
1�l�m

aFl

!
D

X
�.Fl /Dej
1�l�m

i�
Qv .aFl /D

X
Fl3v;�.Fl /Dej

1�l�m

i�
Qv .aFl /:

Observe that among all the n facets of P n containing v , there is only one facet (ie F )
colored by ej . So we obtain from (19) thatX

Fl3v;�.Fl /Dej
1�l�m

i�
Qv .aFl /D i

�
Qv .aF /D tj :

The lemma is proved.

Now for an arbitrary facet F of P n , suppose �.F /D ej . We get from Lemma 4.6
that

(20) i�4 .aF /D
M

v2V.Pn/

i�
Qv .aF /D

X
v2F

tj � �v D tj � �F :

Recall that �v denotes the vector in F2r2 D F jV.P
n/j

2 with 1 at the coordinate corre-
sponding to the vertex v and zero everywhere else. Combining (20) with (13) and (14),
we obtain

(21)  �i�4 .aF /D t � �F :

So  �i�4 .H
1
Zn2
.M nIF2//D t �B1.P

n/ since  � and i�4 are graded ring homomor-
phisms. Then, by (15), we have Im.i�3 / D Im. � ı i�4 / D t �B1.P

n/. This implies
that VM

n

1 DB1.P
n/. So we complete the proof of Theorem 4.3.
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5 Binary codes from general simple polytopes

The definition of Bk.P
n/ in (11) clearly makes sense for an arbitrary n–dimensional

simple polytope P n . We call Bk.P
n/�F jV.P

n/j
2 the codimension-k face code of P n .

It is obvious that B0.P
n/D f0; 1g Š F2 , and Bn.P

n/Š F jV.P
n/j

2 , where

0D .0; : : : ; 0/ and 1D .1; : : : ; 1/:

If we choose an ordering of all the vertices of P n , we can write down a generator
matrix for Bk.P

n/.

Example 5.1 Under the labeling of the vertices of the 6–gon prism P 3 in Figure 1,
the following 6� 12 binary matrix is a generator matrix of B1.P

3/, where the first
row of the matrix is the codeword corresponding to the top facet of P 3 :0BBBBBB@

1 1 1 1 1 1 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0

0 1 1 0 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 0 1 1

1CCCCCCA
Next, we study some properties of Bk.P

n/. The arguments in the rest of this section
are completely combinatorial and are independent from the discussion of equivariant
cohomology and small covers in the previous sections. First, note that the last part of
the proof of Lemma 4.2 indicates the following result for general simple polytopes.

Proposition 5.2 For any n–dimensional simple polytope P n , we have

Bn�1.P
n/D fu 2 F jV.P

n/j
2 j wt.u/ is eveng:

So dimF2 Bn�1.P
n/D jV.P n/j � 1.

1

234

5
6

7

8

9
10

11

12

Figure 1: A 6–gon prism
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Proof For any 1–face f of P n , its Hamming weight satisfies wt.�f / D 2. So
Bn�1.P

n/ is a linear subspace of fu2 F jV.P
n/j

2 jwt.u/ is eveng. Conversely, we have
that fu 2 F jV.P

n/j
2 j wt.u/ is eveng is linearly spanned by f�vC �v0 j v; v0 2 V.P n/g,

where �v is defined similarly as in Section 4. Then, since there always exists an edge
path on P n between any two vertices v and v0 of P n , we have that �vC �v0 belongs
to Bn�1.P

n/. This proves the proposition.

In the following proposition, we obtain a lower bound on the dimension of Bk.P
n/.

Proposition 5.3 For any n–dimensional simple polytope P n , we have

dimF2 Bk.P
n/� h0.P

n/C � � �Chk.P
n/ for 0� k � n:

Proof Using the Morse-theoretical argument in [4], we can define a generic height
function � on P n that makes the 1–skeleton of P n into a directed graph by orienting
each edge so that � increases along it. Then, for any face f of P n with dimension
greater than 0, the restriction �jf assumes its maximum (or minimum) at a vertex.
Since � is generic, each face f of P n has a unique “top” and a unique “bottom” vertex.
For each vertex v of P n , we define the index ind.v/ of v to be the number of incident
edges of P n that point towards v . A simple argument (see [4, page 115 or 5, page 13])
shows that for any 0�j �n, the number of vertices of P n with index j equals hj .P n/.

Now fix an integer 0� k � n. For any vertex v of P n with 0� ind.v/� k , there are
exactly n�ind.v/ incident edges of P n that point away from v . So there are

�n�ind.v/
n�k

�
codimension-k faces of P n that are incident to v and take v as their (unique) “bottom”
vertex. Choose an arbitrary one such face at v , denoted by f n�kv .

Claim f�f n�kv
j 0 � ind.v/ � k and v 2 V.P n/g is a linearly independent subset

of Bk.P
n/.

Otherwise there would exist vertices v1; : : : ; vs of P n with 0 � ind.vi / � k for
1� i � s , so that �f n�kv1

C� � �C �f n�kvs
D 0. Without loss of generality, we can assume

�.v1/ < � � � < �.vs/. Then, among f n�kv1
; : : : ; f n�kvs

, only f n�kv1
is incident to the

vertex v1 . From this fact, we obtain �v1ı
�
�f n�kv1

C� � �C�f n�kvs

�
D �v1ı�f n�kv1

D �v1D0,
which is absurd.

This claim implies that dimF2 Bk.P
n/ is greater than or equal to the number of

vertices of P n whose indices are less than or equal to k . Hence dimF2 Bk.P
n/ �

h0.P
n/C � � �Chk.P

n/.
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Remark Suppose P n is an n–colorable simple n–polytope. Then the dimension
of Bk.P

n/ is exactly h0.P n/C � � � C hk.P n/ by Corollary 4.4. So by the claim in
the proof of Proposition 5.3, f�f n�kv

j 0� ind.v/� k; v 2 V.P n/g is actually a linear
basis for Bk.P

n/. This gives us an interesting way to write a linear basis of Bk.P
n/

from a generic height function on P n . In particular when n is odd, we can obtain a
linear basis of the self-dual binary code B.n�1/=2.P

n/ in this way.

Corollary 5.4 Let P n be an n–dimensional simple polytope with m facets. Then

dimF2 B1.P
n/�m�nC 1:

Moreover, for any vertex v of P n , let Fv be an arbitrary facet of P n containing v and
F1; : : : ; Fm�n be all the facets of P n not containing v . Then �Fv ; �F1 ; : : : ; �Fm�n 2
B1.P

n/ are linearly independent.

Proof Since h0.P n/D 1 and h1.P n/Dm�n, Proposition 5.3 tells us that

dimF2 B1.P
n/� h0.P

n/C h1.P
n/Dm�nC 1:

For any vertex v of P n , we can define a height function � as in the proof of
Proposition 5.3 so that v is the unique “bottom” vertex of P n relative to � . Then v
is the only vertex of index 0. For each 1 � i � m� n, let vi be the bottom vertex
of Fi relative to � . Then v1; : : : ; vm�n are exactly all the vertices of index 1 relative
to � . This is because the index of vi relative to � is clearly 1 for any 1� i �m�n
while the index 1 vertices of P n is equal to h1.P n/ D m� n. So by the claim in
the proof of Proposition 5.3 for k D 1, we have that �Fv ; �F1 ; : : : ; �Fm�n are linearly
independent in B1.P

n/.

Next let us look at what happens when dimF2 B1.P
n/Dm�nC 1.

Proposition 5.5 Let P n be an n–dimensional simple polytope with m facets. Then
dimF2 B1.P

n/Dm�nC 1 if and only if P n is n–colorable.

Proof Let fF1; : : : ; Fmg be all the facets of P n . Suppose P n is n–colorable. Then
we can use n different colors, say c1; : : : ; cn , to color all the facets of P n so that any
neighboring facets have different colors. Define

Fi D fF 2 F.P n/ j F is colored by cig for i D 1; : : : ; n:

By the definition of n–colorable, each vertex of P n is incident to exactly one facet
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in Fi . So we have

(22)
[
F 2Fi

V.F /D V.P n/ and
X
F 2Fi

�F D
X

v2V.Pn/

�v D 1:

Without loss of generality, assume that the facets F1; : : : ; Fn meet at a vertex of P n

and that Fi is colored by ci for 1� i � n. So by our definition, Fi 2Fi for 1� i � n.
For each 1 � i � n� 1, we claim that �Fi can be written as a linear combination of
elements in f�Fn ; �FnC1 ; : : : ; �Fmg. Indeed, it follows from (22) that

(23)
X
F 2Fi

�F C
X
F 2Fn

�F D 1C 1D 0:

Observe that for any 1� i � n� 1, we have

f�F j F 2 Fig � f�Fi ; �Fn ; �FnC1 ; : : : �Fmg;

f�F j F 2 Fng � f�Fi ; �Fn ; �FnC1 ; : : : �Fmg:

So (23) implies that f�Fi ; �Fn ; �FnC1 ; : : : �Fmg is linearly dependent. In addition, we
know from Corollary 5.4 that f�Fn ; �FnC1 ; : : : �Fmg is linearly independent. So �Fi is
a linear combination of �Fn ; �FnC1 ; : : : ; �Fm . This implies that f�Fn ; �FnC1 ; : : : ; �Fmg
is a basis of B1.P

n/. So dimF2 B1.P
n/Dm�nC 1.

Conversely, suppose dimF2 B1.P
n/ D m � n C 1. If P n is not n–colorable, by

Theorem 2.1 there exists a 2–face f 2 of P n which has an odd number of vertices,
say v1; : : : ; v2kC1 . Without loss of generality, assume that f 2 D F1 \ � � � \ Fn�2
and v1 D F1 \ F2 \ � � � \ Fn . By Corollary 5.4, f�Fn ; �FnC1 ; : : : ; �Fmg is a basis
of B1.P

n/. Without loss of generality, we may assume the following (see Figure 2):

v1 D f
2
\Fn�1\Fn;

v2 D f
2
\Fn\FnC1;

:::

vi D f
2
\FnCi�2\FnCi�1;

:::

v2k D f
2
\FnC2k�2\FnC2k�1;

v2kC1 D f
2
\FnC2k�1\Fn�1:

Assume that there exists �i 2 F2 for i D 1; n; : : : ; m such that

(24) �1�F1 C �n�Fn C �nC1�FnC1 C � � �C �m�Fm D 0:
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v1

v2

v3v4
v5

v2k�1

v2k
v2kC1FnC2k�2

FnC2k�1 Fn�1

Fn

FnC1

FnC2
FnC3

���

f 2

Figure 2: A 2–face f 2 with an odd number of vertices

By taking the inner product with �vi on both sides of (24) for each 1 � i � 2kC 1,
we get

(25)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�1C �n D 0;

�1C �nC �nC1 D 0;

�1C �nC1C �nC2 D 0;
:::

�1C �nCi�2C �nCi�1 D 0;
:::

�1C �nC2k�2C �nC2k�1 D 0;

�1C �nC2k�1 D 0:

The coefficient matrix of the above linear system is a .2k C 1/ � .2k C 1/ matrix
over F2 : 0BBBBBBBBBBB@

1 1 0 0 0 � � � 0 0 0

1 1 1 0 0 � � � 0 0 0

1 0 1 1 0 � � � 0 0 0

1 0 0 1 1 � � � 0 0 0
:::

1 0 0 0 0 � � � 1 1 0

1 0 0 0 0 � � � 0 1 1

1 0 0 0 0 � � � 0 0 1

1CCCCCCCCCCCA
.2kC1/�.2kC1/

It is easy to show that the determinant of this matrix is 1. So the linear system (25) only
has the trivial solution, which implies that �F1 ; �Fn ; : : : ; �Fm are linearly independent.
Then we have dimF2 B1.P

n/�m�nC 2. But this contradicts our assumption that
dimF2 B1.P

n/Dm�nC 1. So the proposition is proved.
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From the above discussion, we can derive several new criteria to judge whether
a simple n–polytope P n is n–colorable in terms of the associated binary codes
fBk.P

n/g0�k�n .

Proposition 5.6 Let P n be an n–dimensional simple polytope with m facets. Then
the following statements are equivalent:

(1) P n is n–colorable.

(2) There exists a partition F1; : : : ;Fn of the set F.P n/ of all facets such that for
each 1� i � n, all the facets in Fi are pairwise disjoint and

P
F 2Fi �F D 1 (ie

each vertex of P n is incident to exactly one facet from every Fi ).

(3) B0.P
n/�B1.P

n/� � � � �Bn�1.P
n/�Bn.P

n/Š F jV.P
n/j

2 .

(4) Bn�2.P
n/�Bn�1.P

n/.

(5) dimF2 B1.P
n/Dm�nC 1.

Proof It is easy to verify the above equivalences when n� 2. So we assume n� 3
below. In the proof of Proposition 5.5, we have proved .1/) .2/ and .1/, .5/.

Now we show that .2/) .3/. By (2), we clearly have

B0.P
n/�B1.P

n/ and Bn�1.P
n/�Bn.P

n/:

It remains to show that Bk.P
n/�BkC1.P

n/ for each 1� k � n� 2. Let f n�k be
a codimension-k face of P n . Without the loss of generality, we assume that

f n�k D F1\F2\ � � � \Fk; where Fi 2 Fi for i D 1; : : : ; k:

For each j D kC 1; : : : ; n, we have thatX
F 2Fj

�F\f n�k D
X
F 2Fj

�F ı �f n�k D �f n�k ı

� X
F 2Fj

�F

�
D �f n�k ı 1D �f n�k :

In the above equality, if F \f n�k D∅, then �F\f n�k D �∅ D 0. If F \f n�k ¤∅,
then F \f n�k is a face of codimension kC 1. So �F\f n�k 2BkC1.P

n/. Thus we
get �f n�k D

P
F 2Fj �F\f n�k 2BkC1.P

n/. This completes the proof of .2/) .3/.

It is trivial that .3/) .4/. Next we show .4/) .1/. Assume Bn�2.P
n/�Bn�1.P

n/.
Notice that the number of nonzero coordinates in any vector in Bn�1.P

n/ must be even.
So for any 2–face f 2 of P n , we have �f 2 2Bn�2.P

n/�Bn�1.P
n/, which implies

that f 2 has an even number of vertices. Hence P n is n–colorable by Theorem 2.1.
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6 Self-dual binary codes from general simple polytopes

In this section we discuss under what conditions Bk.P
n/, where 0� k � n, can be a

self-dual code in F jV.P
n/j

2 . It is clear that when the number of vertices jV.P n/j of P n

is odd, Bk.P
n/ cannot be a self-dual code for any k .

Lemma 6.1 Let P n be an n–dimensional simple polytope with n� 3. Assume that
Bk.P

n/ is a self-dual code. Then 1 2Bk.P
n/ and 0 < 2k < n.

Proof From [6, Corollary 3.1] it is easy to see that 1 2Bk.P
n/. Obviously, k D 0

is impossible since dimB0.P
n/ D h0.P

n/ D 1 and n � 3. If 2k � n, then at any
vertex v of P n there exist two codimension-k faces f1 and f2 of P n such that
f1\f2 D v . But then h�f1 ; �f2i D 1, which contradicts the assumption that Bk.P

n/

is self-dual. We can also prove 2k < n using Proposition 5.3. Indeed, since Bk.P
n/

is self-dual, we can deduce from Proposition 5.3 that

(26) dimF2Bk.P
n/D
jV.P n/j

2
D
h0.P

n/C���Chn.P
n/

2
�h0.P

n/C���Chk.P
n/:

Then, since hi .P n/ > 0 and hi .P n/D hn�i .P n/ (Dehn–Sommerville relations) for
all 0� i � n, we must have 2k < n.

Theorem 6.2 For an n–dimensional simple polytope P n with n� 3, the binary code
Bk.P

n/ is self-dual if and only if the following two conditions are satisfied:

(a) jV.P n/j is even and dimF2 Bk.P
n/D jV.P n/j=2.

(b) All faces of codimensions k; : : : ; 2k in P n have an even number of vertices.

Proof If Bk.P
n/ is a self-dual code, then (a) obviously holds. Let jV.P n/j D 2r .

For any face f of codimension l , where k� l � 2k , we can always write f Df1\f2 ,
where f1 and f2 are faces of codimension k . In particular if f is of codimension k ,
we just let f1 D f2 D f . Then �f D �f1 ı �f2 2 V2r since Bk.P

n/ is self-dual (see
Lemma 2.2). This implies that the number of vertices of f is even.

Conversely, suppose Bk.P
n/ satisfies (a) and (b). For any codimension-k faces

f and f 0 of P n , either f \ f 0 D ¿ or the codimension of f \ f 0 is between
k and 2k . Then, by (b), the number of vertices of f \ f 0 is even, which implies
that h�f ; �f 0i D 0. Then, by Lemma 2.2, Bk.P

n/ is self-dual in F jV.P
n/j

2 . Note that
by (26), condition (a) implies 0 < 2k < n when n� 3.
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Remark When k � .n� 2/=2 (where n� 3), condition (b) in Theorem 6.2 implies
that the polytope P n is n–colorable. But if k < .n � 2/=2, condition (b) cannot
guarantee that P n is n–colorable. For example let P n D�2� Œ0; 1�n�2 , where n� 3
and �2 is the 2–simplex. Then P n satisfies condition (b) for all k < .n�2/=2 because
any face of P n with dimension greater than 2 has an even number of vertices. But by
Theorem 2.1(b), P n is not n–colorable since �2 is a 2–face of P n .

Problem For an arbitrary simple polytope P n , determine the dimension of Bk.P
n/

for all 0� k � n.

We have seen in Corollary 4.4 that when a simple n–polytope P n is n–colorable, the
dimension of Bk.P

n/ can be expressed by the h–vector of P n . But generally, we
only know a lower bound of the dimension of Bk.P

n/ from Proposition 5.3.

Proposition 6.3 Let P n be a simple n–polytope with 2r vertices, m facets and n� 3.

(a) Bk.P
3/ is a self-dual code if and only if k D 1 and P 3 is 3–colorable.

(b) Bk.P
4/ is never self-dual for any 0� k � 4.

(c) Bk.P
5/ is a self-dual code if and only if k D 2 and P 5 is 5–colorable.

(d) When n > 5, if Bk.P
n/ is a self-dual code and m > .nC 1/.n� 2/=.n� 3/,

then k � 2.

Proof For (a), by Corollary 4.4 it suffices to show that if Bk.P
3/ is a self-dual code,

then k D 1 and P 3 is 3–colorable. Assume that Bk.P
3/ is a self-dual code. Then,

by Theorem 6.2, k must be 1 and any 2–face of P 3 has an even number of vertices.
So P 3 is 3–colorable by Theorem 2.1. This proves (a).

For (b), assume that Bk.P
4/ is a self-dual code. By Theorem 6.2, k must be 1 and

any 2–face has an even number of vertices. So P 4 is 4–colorable by Theorem 2.1.
Then (b) follows from Corollary 4.4.

Now let n� 5 and assume that Bk.P
n/ is a self-dual code. Let fk�1.P n/ denote the

number of codimension-k faces in P n . Then, by [5, Theorems 1.33 and 1.37], we have

fk�1.P
n/�

�m
k

�
if 2k<n and fn�1.P

n/D2r� .n�1/m�.nC1/.n�2/:

By the fact that dimF2 Bk.P
n/� fk�1.P

n/, we obtain

(27) .n� 1/m� .nC 1/.n� 2/� 2r

D 2 dimF2 Bk.P
n/D h0.P

n/C � � �Chn.P
n/

� 2
�m
k

�
:
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If k D 1, we have m� .nC 1/.n� 2/=.n� 3/. Thus, if m> .nC 1/.n� 2/=.n� 3/,
then k � 2. This proves (d).

Next we consider the case nD 5 with k D 1. In this case, we have 6�m� 9 and by
Lemma 6.1, all 3–faces and 4–faces of P n have an even number of vertices. Moreover,
dimF2 Bk.P

n/� fk�1.P
n/ implies that

r D h0.P
5/C h1.P

5/C h2.P
5/D 1Cm� 5C h2.P

5/Dm� 4C h2.P
5/�m:

So we have h2.P 5/ � 4. In addition, by the g–theorem, we have the following
restrictions:

h2.P
5/� h1.P

5/Dm� 5� h0.P
5/D 1I

.h1.P
5/� h0.P

5//h1i � h2.P
5/� h1.P

5/;

so

.m� 6/h1i D
�m�5

2

�
� h2.P

5/� .m� 5/;

which implies

h2.P
5/�

.m� 4/.m� 5/

2
:

Combining all these restrictions, we can list all such simple 5–polytopes in terms of
their h–vectors as follows:

h.P 51 /D .1; 4; 4; 4; 4; 1/ with mD 9I

h.P 52 /D .1; 3; 4; 4; 3; 1/ with mD 8I

h.P 53 /D .1; 3; 3; 3; 3; 1/ with mD 8I

h.P 54 /D .1; 2; 3; 3; 2; 1/ with mD 7I

h.P 55 /D .1; 2; 2; 2; 2; 1/ with mD 7I

h.P 56 /D .1; 1; 1; 1; 1; 1/ with mD 6:

Clearly, P 56 is just a 5–simplex. So P 56 should be excluded since each facet of P 56 is a
4–simplex which has an odd number of vertices. By [5, Theorem 1.37], a direct check
shows that the dual polytopes of P 51 , P 53 and P 55 are all stacked 5–polytopes. Then
they can also be excluded since they all have at least one 4–simplex as a facet. Recall
that a simplicial n–polytope S is called stacked if there is a sequence S0; S1; : : : ; SlDS
of simplicial n–polytopes such that S0 is an n–simplex and SiC1 is obtained from Si

by adding a pyramid (ie gluing another n–simplex to one of its facets). Note that adding
a pyramid is dual to “cutting a vertex” of a simple polytope (see [5, Definition 1.36]).
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So a simple polytope dual to a stacked n–polytope can be obtained from an n–simplex
by a sequence of vertex cuttings, which implies that the polytope has at least one
n–simplex as a facet.

By [5, Theorem 1.33], we can directly check that P 54 is the dual polytope of a cyclic
polytope C 5.7/. Let fF1; : : : ; F7g be the set of all facets of P 54 . By the main theorem
in [24], we can write all the 12 vertices v1; : : : ; v12 of P 54 explicitly in terms of the
intersections of its facets F1; : : : ; F7 as follows:

v1 D F1\F2\F3\F4\F5; v2 D F1\F2\F3\F4\F7;

v3 D F1\F2\F3\F6\F7; v4 D F1\F2\F5\F6\F7;

v5 D F1\F4\F5\F6\F7; v6 D F3\F4\F5\F6\F7;

v7 D F1\F3\F4\F5\F6; v8 D F2\F3\F4\F5\F7;

v9 D F1\F2\F4\F5\F7; v10 D F1\F3\F4\F6\F7;

v11 D F1\F2\F3\F5\F6; v12 D F2\F3\F5\F6\F7:

We can easily see that each of F1 , F3 , F5 and F7 has 9 vertices, and each of
F2 , F4 and F6 has 8 vertices. Thus, P 54 should be excluded as well.

Now the only case left to check is P 52 . Note that the dual polytope of P 52 is a simplicial
5–polytope with 8 vertices and 16 facets. By the classification in [11, Section 6.3,
pages 108–112], there are exactly 8 simplicial 5–polytopes with 8 vertices up to combi-
natorial equivalence. They are listed in [11, Section 6.3, page 112] in terms of standard
contracted Gale diagrams. By examining those Gale diagrams, we find that only two
of them (shown in Figure 3) give simplicial 5–polytopes with 8 vertices and 16 facets.
Let Q1 be the simplicial 5–polytope corresponding to the left diagram, and Q2 to the
right, in Figure 3. A simple calculation shows that dimF2 B1.Q

�
1/D 6¤ 8 and Q�2

has a facet with 11 vertices, where Q�1 and Q�2 are the dual polytopes of Q1 and Q2 ,
respectively. Hence P 52 cannot be Q�1 or Q�2 . So P 52 should be excluded as well.

2

4

2

2

3

Figure 3: Two standard contracted Gale diagrams
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Combining the above arguments, we can conclude that B1.P
5/ is never self-dual.

Therefore, if Bk.P
5/ is self-dual, k must be 2 and so P 5 is 5–colorable by Lemma 6.1.

Then (c) follows from Corollary 4.4.

Corollary 6.4 For an n–dimensional simple polytope P n with 2r vertices and
m facets, if Bk.P

n/ is a self-dual code in F2r2 and r �
�
m
l

�
for some l < .m� 1/=2,

then k � l .

Proof By (27), we have
�
m
k

�
� r �

�
m
l

�
. Then, since 2k < n�m�1 (by Lemma 6.1),

we obtain k � l .

In general, judging the existence of self-dual codes Bk.P
n/ for a simple n–polytope P n

that is not n–colorable seems to be a quite hard problem when n > 5. On the other
hand, Corollary 4.4 tells us that 2k–colorable simple 2k–polytopes cannot produce any
self-dual codes. Then considering the statements in Proposition 6.3, it is reasonable to
pose the following conjecture.

Conjecture Let P n be a simple n–polytope with 2r vertices and m facets, where
n � 3. Then Bk.P

n/ is a self-dual code if and only if P n is n–colorable, n is odd
and k D .n� 1/=2.

7 Minimum distance of self-dual codes from 3–dimensional
simple polytopes

Proposition 7.1 For any 3–dimensional 3–colorable simple polytope P 3 , the mini-
mum distance of the self-dual code B1.P

3/ is always equal to 4.

Proof It is well known that any 3–dimensional simple polytope must have a 2–face
with fewer than 6 vertices. Then, since P 3 is even, there must exist a 4–gon 2–face
in P 3 . So by Corollary 4.5, the minimum distance of B1.P

3/ is less than or equal
to 4. In addition, we know that the Hamming weight of any element in B1.P

3/ is an
even integer. So we only need to prove that for any collection of 2–faces fF1; : : : ; Fkg
of P 3 , the Hamming weight of ˛ D �F1 C � � �C �Fk 2B1.P

3/ cannot be 2. We will
use the following notation:

� Let V.˛/ denote the union of all the vertices of F1; : : : ; Fk .

� Let �.˛/ denote the union of all the vertices and edges of F1; : : : ; Fk . So �.˛/ is
a graph with vertex set V.˛/.
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A vertex v in V.˛/ is called type j if v is incident to exactly j facets in F1; : : : ; Fk .
Then, since P 3 is simple, any vertex in V.˛/ is of type 1, type 2 or type 3 (see
Figure 4). Suppose there are lj vertices of type j in V.˛/ for j D 1; 2; 3. It is easy to
see that the Hamming weight of ˛ is equal to l1Cl3 . Assume that wt.˛/D l1Cl3D 2.
Then we have three cases for l1 and l3 :

.a/ l1 D 2 and l3 D 0I .b/ l1 D 1 and l3 D 1I .c/ l1 D 0 and l3 D 2:

Note that any vertex of type 2 or type 3 in V.˛/ meets exactly three edges in �.˛/. In
other words, �.˛/ is a graph whose vertices are all 3–valent except the type-1 vertices.
Let �.P 3/ denote the graph of P 3 (the union of all the vertices and edges of P 3 ) and
let �.˛/D �.P 3/n�.˛/. Observe that �.˛/ meets �.˛/ only at the type-1 vertices
in V.˛/.

We now argue that none of the three cases for l1 and l3 is possible:

� In case (a), there are two type-1 vertices in V.˛/, denoted by v and v0 . Then,
since �.˛/ meets �.˛/ only at fv; v0g, removing v and v0 from the graph
�.P 3/ will disconnect �.P 3/ (see Figure 4 for an example). But according to
Balinski’s theorem (see [3]), the graph of any 3–dimensional simple polytope
is a 3–connected graph (ie removing any two vertices from the graph does not
disconnect it). So (a) is impossible.

� In case (b), there is only one type-1 vertex in V.˛/, denoted by v . By an
argument similar to that for case (a), removing v from the graph �.P 3/ will
disconnect �.P 3/. This contradicts the 3–connectivity of �.P 3/. So (b) is
impossible also.

� In case (c), there are no type-1 vertices in V.˛/. So �.˛/ is a 3–valent graph.
This implies that �.˛/ is the whole 1–skeleton of P 3 , and so V.˛/D V.P 3/.
Then the Hamming weight satisfies wt.˛/ D wt.�F1 C � � � C �Fk / D wt.1/ D
jV.P 3/j � 4. But this contradicts our assumption that wt.˛/ D 2. So (c) is
impossible.

Therefore, the Hamming weight of any element of B1.P
3/ cannot be 2. This finishes

the proof of the theorem.

Remark It is shown in [14] that any 3–dimensional 3–colorable simple polytope can
be obtained from the 3–dimensional cube via two kinds of operations. So it might be
possible to classify all the self-dual binary codes obtained from 3–dimensional simple
polytopes. But the classification seems to be very complicated.
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Figure 4: The graph of a simple 3–polytope

8 Properties of n–dimensional n–colorable simple polytopes

For brevity, we use the words “even polytope” to refer to an n–dimensional n–colorable
simple polytope. Indeed, this term has already been used by Joswig [15].

Definition [21; 16, Remark 2] Let F be a facet of a simple polytope P and V.F /
be the set of vertices of F . Define a map „F W V.F /! V.P / nV.F / as follows. For
each v 2 V.F /, there is exactly one edge e of P such that e ª F and v 2 e (since P
is simple and F is codimension one). Let „F .v/ be the other endpoint of e .

Example 8.1 Let P be the 6–gon prism in Figure 1 and F be the facet of P with ver-
tex set f3; 4; 9; 10g. Then, by definition, „F W f3; 4; 9; 10g ! f1; 2; 5; 6; 7; 8; 11; 12g,
where

„.3/D 2; „.4/D 5; „.9/D 8; „.10/D 11:

Proposition 8.2 For an even polytope P , the map „F is injective for any facet F
of P .

Proof Assume „F is not injective. There must exist two vertices p1; p2 2 F and a
vertex v …F such that v is connected to both p1 and p2 by edges in P (see Figure 5).
For i D 1; 2, let fi be the edge with endpoints pi and v . Suppose the dimension of P
is n. Then there exist n facets F1; F2; : : : ; Fn , distinct from F , such that

v D

n\
iD1

Fi ; f1 D

n�1\
iD1

Fi and f2 D

n\
iD2

Fi :
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p1

F

F2

F1

F3

p2

f1

f2

v

Figure 5: A facet F with „F noninjective

Then we have

p1 D F \

� n�1\
iD1

Fi

�
and p2 D F \

� n\
iD2

Fi

�
:

Since P is n–colorable, we can color all the facets of P by n–colors e1; : : : ; en such
that no adjacent facets are assigned the same color. Suppose Fi is colored by ei

for i D 1; : : : ; n. Then, at p1 , the facet F has to be colored by en , while at p2 , the
facet F has to be colored by e1 , a contradiction.

Proposition 8.3 Let P be an even polytope. For any facet F of P , we have

jV.P /j � 2jV.F /j:

Moreover, jV.P /j D 2jV.F /j if and only if P ' F � Œ0; 1�, where Œ0; 1� denotes a
1–simplex.

Proof By Proposition 8.2, the map „F W V.F /! V.P / nV.F / is injective. Thus

jV.F /j � jV.P / nV.F /j D jV.P /j � jV.F /j:

So jV.P /j � 2jV.F /j. If jV.P /j D 2jV.F /j, the injectivity of „F implies that
P ' F � Œ0; 1�.

Corollary 8.4 Let f be a codimension-k face of an even polytope P . Then jV.P /j�
2kjV.f /j. Moreover, jV.P /j D 2kjV.f /j if and only if P ' f � Œ0; 1�k .

Corollary 8.5 For any n–dimensional even polytope P , we must have jV.P /j � 2n .
In particular, jV.P /j D 2n if and only if P ' Œ0; 1�n (the n–dimensional cube).

Corollary 8.6 Suppose P is an n–dimensional even polytope, where n � 4. If
there exists a facet F of P with jV.P /j D 2jV.F /j, then there exists a 3–face of P
combinatorially equivalent to a 3–dimensional cube.
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Proof It is well known that any 3–dimensional simple polytope must have a 2–face f
with fewer than 6 vertices. Now, since P is even, any 2–face of P must have an even
number of vertices. So there exists a 4–gon face f in F , ie f ' Œ0; 1�2 . Then, since
jV.P /j D 2jV.F /j, we have P ' F � Œ0; 1� by Corollary 8.4. So P has a 3–face
combinatorially equivalent to f � Œ0; 1�' Œ0; 1�3 .

Given any two even polytopes P1 and P2 , we have the following constructions:

� The product P1 �P2 is also an even polytope.

� If P1 has the same dimension as P2 , we can choose a vertex v1 of P1 and
a vertex v2 of P2 to form a new simple polytope P1 #v1;v2 P2 , called the
connected sum of P1 and P2 . Roughly speaking, P1 #v1;v2 P2 is obtained by
cutting off v1 from P1 and v2 from P2 and gluing the rest of P1 to the rest
of P2 along the new simplex face (see [5, Construction 1.13]). By Theorem 2.1,
P1 #v1;v2 P2 is also an even polytope.

9 Doubly even binary codes

A binary code C is called doubly even if the Hamming weight of any codeword in C
is divisible by 4. Doubly even self-dual codes are of special importance among binary
codes and have been extensively studied. According to Gleason [9], the length of any
doubly even self-dual code is divisible by 8. In addition, Mallows and Sloane [19]
showed that if C is a doubly even self-dual code of length l , it is necessary that the
minimum distance d of C satisfies d � 4Œl=24�C 4. And C is called extremal if
equality holds.

A somewhat surprising result of Zhang [26] tells us that an extremal doubly even self-
dual binary code must have length less than or equal to 3928. However, the existence
of extremal doubly even self-dual binary codes is only known for the following lengths
(see [12] and [23, page 273]):

l D 8; 16; 24; 32; 40; 48; 56; 64; 80; 88; 104; 112; 136:

For example, the extended Golay code G24 is the only doubly even self-dual Œ24; 12; 8�
code, and the extended quadratic residue code QR48 is the only doubly even self-dual
Œ48; 24; 12� code (see [13]). In addition, the existence of an extremal doubly even self-
dual code of length 72 is a long-standing open question (see [25] and [23, Section 12]).
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The following proposition is an immediate consequence of Corollary 4.5 which gives
us a way to construct doubly even self-dual codes from simple polytopes.

Proposition 9.1 For an .2kC1/–dimensional even polytope P , the self-dual binary
code Bk.P / is doubly even if and only if the number of vertices of any .kC1/–
dimensional face of P is divisible by 4.

Definition We say that a self-dual binary code C can be realized by an even polytope
if there exists a .2kC1/–dimensional even polytope P such that C DBk.P /.

Example 9.2 Extremal doubly even self-dual binary codes of lengths 8 and 16 can be
realized by the 3–cube and the 8–gon prism (8–gon� Œ0; 1�), respectively. In addition,
the .2kC1/–dimensional cube realizes a doubly even code of type Œ22kC1; 22k; 2kC1�
which is the Reed–Muller code R.k; 2kC 1/ (see [18, Section 4.5]). Moreover, we
can use the product of an even polytope with the polytopes in the above examples to
realize more doubly even self-dual binary codes with larger minimum distances.

Proposition 9.3 The Œ24; 12; 8� extended Golay code G24 cannot be realized by any
even polytope.

Proof Assume G24 can be realized by an n–dimensional even polytope P n , where n
is odd. Then P n has 24 vertices. By Corollary 8.5, we have 24� 2n , which implies
nD 1 or nD 3. But nD 1 is clearly impossible. And by Proposition 7.1, nD 3 is
also impossible since the minimal distance of G24 is 8.

Proposition 9.4 The Œ48; 24; 12� extended quadratic residue code QR48 cannot be
realized by any even polytope.

Proof Suppose QR48 can be realized by an n–dimensional even polytope P n . Then,
by Corollary 8.5, we must have nD 1; 3 or 5. But by Proposition 7.1, n cannot be
1 or 3. If nD 5, since jV.P 5/j D 48, any 3–face of P 5 has to be an even polytope
with 12 vertices by Corollary 8.4 and the fact that the minimum distance of QR48 is 12.
Then P 5 is combinatorially equivalent to the product of a simple 3–polytope with Œ0; 1�2

by Corollary 8.4 again. This implies that P 5 has a 3–face combinatorially equivalent
to a 3–cube. But this contradicts the fact that any 3–face of P 5 has 12 vertices.

Proposition 9.5 An extremal doubly even self-dual code of length 72 (if one exists)
cannot be realized by any even polytope.
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Proof Assume that C is an extremal doubly even self-dual binary code of length 72
and C can be realized by an even polytope P . Then, by the definition of extremity,
the minimum distance of C is 16 and P has 72 vertices. Moreover, we have that

(i) the dimension of P has to be 5 by Corollary 8.5 and Proposition 7.1;

(ii) any 3–face of P must be an even polytope with 16 vertices by Corollary 8.4
and Proposition 9.1.

Then any 4–face of P must have 32 or 36 vertices by Corollary 8.4. But neither is
possible:

� If P has a 4–face F with 32 vertices, then F 'f �Œ0; 1�, where f is a 3–face with
16 vertices, by (ii) and Corollary 8.4. This implies that P has a 3–face combinatorially
equivalent to a 3–cube by Corollary 8.6. But this contradicts (ii).

� If P has a 4–face F with 36 vertices, then P ' F � Œ0; 1� by Corollary 8.4.
So P has a 3–face combinatorially equivalent to a 3–cube by Corollary 8.6. This
contradicts (ii) again.

So by the above argument, such an even polytope P does not exist.
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