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Algebraic ending laminations and quasiconvexity

MAHAN MJ

KASRA RAFI

We explicate a number of notions of algebraic laminations existing in the literature,
particularly in the context of an exact sequence

1!H !G!Q! 1

of hyperbolic groups. These laminations arise in different contexts: existence of
Cannon–Thurston maps; closed geodesics exiting ends of manifolds; dual to actions
on R–trees.

We use the relationship between these laminations to prove quasiconvexity results for
finitely generated infinite-index subgroups of H , the normal subgroup in the exact
sequence above.

20F65, 20F67; 30F60

1 Introduction

1.1 Statement of results

The main results in this paper establish that for certain naturally occurring distorted
(in the sense of Gromov [21]) hyperbolic subgroups H of hyperbolic groups G ,
many quasiconvex subgroups K of H are in fact quasiconvex in the larger hyperbolic
group G . The following, one of the main theorems of this paper, illustrates this.

Theorem 1.1 (see Theorems 4.7 and 5.14) Let

1!H !G!Q! 1

be an exact sequence of hyperbolic groups, where H is either a free group or a
(closed ) surface group and Q is convex cocompact in outer space or Teichmüller space,
respectively (for the free group, we assume further that Q is purely hyperbolic). Let K

be a finitely generated infinite-index subgroup of H . Then K is quasiconvex in G .
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1884 Mahan Mj and Kasra Rafi

The (original motivating) case where H is a closed surface group and Q D Z in
Theorem 1.1 was dealt with by Scott and Swarup [48]. The more general case of H

a closed surface group (and no further restrictions on Q) was recently obtained by
Dowdall, Kent and Leininger [15] using different methods. In [16], the preprint of
which appeared shortly after a first version of the present paper was made public,
Dowdall and Taylor use the methods of [17] on convex cocompact purely hyperbolic
subgroups of Out.Fn/ to give a substantially different proof of Theorem 1.1 when H

is free.

For the statement of our next theorem, some terminology needs to be introduced.
A Teichmüller geodesic ray r .�Teich.S// is said to be thick (see Minsky [32; 33; 34]
and Rafi [45]) if r lies in the thick part of Teichmüller space, ie there exists � > 0 such
that for all x 2 r , the length of the shortest closed geodesic (or equivalently, injectivity
radius for closed surfaces) on the hyperbolic surface Sx corresponding to x 2Teich.S/
is bounded below by � . It follows (from Masur and Minsky [31], Minsky [34] and
Rafi [45]) that the projection of r to the curve complex is a parametrized quasigeodesic,
and the universal curve Ur over r (associating Sx to x and equipping the resulting
bundle with an infinitesimal product metric) has a hyperbolic universal cover zUr

[33; 34]. To emphasize this hyperbolicity we shall call these geodesic rays thick
hyperbolic rays. We shall refer to zUr as the universal metric bundle (of hyperbolic
planes) over r .

Analogously, we define a geodesic ray r in Culler–Vogtmann outer space cvn [13] to
be thick hyperbolic if

(1) r projects to a parametrized quasigeodesic in the free factor complex Fn ,

(2) the bundle of trees X over r (thought of as a metric bundle; see Mj and
Sardar [42] and Section 2.2 below) is hyperbolic.

In this case too, we shall refer to X as the universal metric bundle (of trees) over r .

Theorem 1.2 (see Theorems 4.6 and 5.15) Let r be a thick hyperbolic quasi-
geodesic ray either

(1) in Teich.S/ for S a closed surface of genus greater than 1, or

(2) in the outer space cvn corresponding to Fn .

Let X be the universal metric bundle of hyperbolic planes or trees (respectively) over r .
Let H denote respectively �1.S/ or Fn , and let i W H!X denote an orbit map. Let K

be a finitely generated infinite-index subgroup of H . Then i.K/ is quasiconvex in X.
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The following theorem generalizes the closed surface cases of Theorems 1.1 and 1.2 to
surfaces with punctures.

Theorem 1.3 (see Theorems 6.4 and 6.1) Let H D �1.S
h/ for Sh a hyperbolic sur-

face of finite volume. Let r be a thick hyperbolic ray in Teichmüller space Teich.Sh/,
and let r1 2 @Teich.Sh/ be the limiting surface ending lamination. Let X denote the
universal metric bundle over r minus a small neighborhood of the cusps, and let H
denote the horosphere boundary components. Let K be a finitely generated infinite-
index subgroup of H . Then any orbit of K in X is relatively quasiconvex in .X;H/.

Let H D �1.S
h/ be the fundamental group of a surface with finitely many punc-

tures, and let H1; : : : ;Hn be its peripheral subgroups. Let Q be a convex cocompact
subgroup of the pure mapping class group of Sh. Let

1!H !G!Q! 1 and 1!Hi!NG.Hi/!Q! 1

be the induced short exact sequences of groups. Then G is strongly hyperbolic relative
to the collection fNG.Hi/g, i D 1; : : : ; n.

Let K be a finitely generated infinite-index subgroup of H . Then K is relatively
quasiconvex in G .

The first part of the second statement in Theorem 1.3 is from [42]. The relative
quasiconvexity part of the second statement (which requires relative hyperbolicity as
its framework) is what is new.

1.2 Techniques

The main technical tool used to establish the above theorems is the theory of laminations.
A guiding motif that underlies much of this paper is that the directions of maximal
distortion for a hyperbolic group H acting on a hyperbolic metric space X are encoded
in a lamination. Hence if the set of such laminations supported on a subgroup K of H

is empty, we should expect that the subgroup K is undistorted in X , or equivalently,
quasiconvex in X . Unfortunately, there are a number of competing notions of lamina-
tions existing in the literature, and they do not all serve the same purpose. To make
this philosophy work therefore, we need to investigate the relationships between these
different kinds of laminations.

The weakest notion is that of an algebraic lamination for a hyperbolic group H : an
H–invariant, flip-invariant, closed subset

L� @2H D .@H � @H / n�;
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where � denotes the diagonal in @H � @H ; see Bestvina, Feighn and Handel [4],
Coulbois, Hilion and Lustig [9], Kapovich and Lustig [26; 27] and Mitra [35].

Several classes of algebraic laminations have come up in the study of automorphisms
of hyperbolic groups, especially free and surface groups:

(1) The dual lamination ƒR arising from an action of H on an R–tree; see Bestvina,
Feighn and Handel [4], Coulbois, Hilion and Lustig [9; 10], Kapovich and
Lustig [26] and Thurston [50]. See Definition 3.18, which allows us to make
sense of this for the action of any hyperbolic group H on an R–tree.

(2) The ending lamination ƒEL or ƒGEL arising from closed geodesics exiting an end
of a 3–manifold [50] (see also [35] for an algebraization of this concept). In the
(group-theoretic) context of this paper, ƒEL or ƒGEL is defined using Gromov–
Hausdorff limits following [35] rather than projectivized measured lamination
space as in [50]. Thus, ƒEL or ƒGEL may be intuitively described as Hausdorff
limits of closed curves whose geodesic realizations exit an end. For normal
hyperbolic subgroups H of hyperbolic groups G , we have ƒEL DƒGEL [35].

(3) The Cannon–Thurston lamination ƒCT arising in the context of the existence of
a Cannon–Thurston map; see Cannon and Thurston [8] and Mitra [35].

Note that the above three notions make sense in the rather general context of a hyperbolic
group H . These different kinds of laminations play different roles:

(1) The dual lamination ƒR often has good mixing properties like arationality [50]
or minimality (see Coulbois, Hilion and Reynolds [12]) or the dual notion of
indecomposability for the dual R–tree (see Guirardel [22]).

(2) The Cannon–Thurston laminations ƒCT play a role in determining quasiconvexity
of subgroups; see Mitra [37] and Scott and Swarup [48]. See Lemma 3.4 below.

(3) The above two quite different contexts are mediated by ending laminations ƒEL

in the following sense. Theorem 3.10 [35] equates ƒEL with ƒCT in the general
context of hyperbolic normal subgroups of hyperbolic groups. The relationship
between ƒEL and ƒR has not been established in this generality. It is known
however for surface groups (see [34] and [35]) and free groups (see Dowdall,
Kapovich and Taylor [14]) in the context of convex cocompact subgroups of the
mapping class group or Out.Fn/. It is this state of the art with respect to the
relationship between ƒEL and ƒR that forces us to restrict ourselves to surface
groups and free groups in this paper.

Algebraic & Geometric Topology, Volume 18 (2018)
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We give a few forward references to indicate how ƒEL mediates between ƒCT and ƒR

and also sketch the strategy of proof of the main results. It is easy to see that in various
natural contexts the collection of ending laminations ƒEL or ƒGEL are contained in
the collection of Cannon–Thurston laminations ƒCT (Proposition 3.13) as well as in
the dual laminations ƒR (Proposition 5.8). Further, the (harder) reverse containment
of ƒCT in ƒEL has been established in a number of cases (Theorem 3.10 from [35]
for instance). What remains is to examine the reverse containment of ƒR in ƒEL in
order to complete the picture. This is the subject of [14] and [27] in the context of free
groups and [39] by Mj in the context of surface Kleinian groups.

What kicks in after this are the mixing properties of ƒR established by various authors.
Arationality of ending laminations for surface groups was established in [50], and ara-
tionality in a strong form for free groups was established by Bestvina and Reynolds [5],
Coulbois, Hilion and Reynolds [12], Guirardel [22] and Reynolds [46; 47]. It follows
from these results that ƒCT is arational in a strong sense — no leaf of ƒCT is contained
in a finitely generated infinite-index subgroup K of H for various specific instances
of H . Quasiconvexity of K in G (or more generally some hyperbolic metric bundle X )
then follows from Lemma 3.4. Accordingly, each of the Sections 4, 5 and 6 has two
subsections each: one establishing arationality and the second combining arationality
along with the general theory of Section 3 to prove quasiconvexity.

2 Cannon–Thurston maps and metric bundles

2.1 Cannon–Thurston maps

Suppose that H is a hyperbolic subgroup of a hyperbolic group G or that H is a
group acting properly on a hyperbolic metric space X . Let �H and �G denote Cayley
graphs of H and G with respect to finite generating sets. Assume that the finite
generating set for H is contained in that of G . Let y�H , y�G and yX denote the Gromov
compactifications. Further, let @H , @G and @X denote the boundaries [20]. (It is a fact
that the boundaries @�H and @�G of the corresponding Cayley graphs are independent
of the finite generating sets chosen; hence we use the symbols @H and @G ).

Definition 2.1 Let H be a hyperbolic subgroup of a hyperbolic group G (resp. acting
properly on a hyperbolic metric space X ). Let �H and �G denote Cayley graphs of
H and G as above.
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Let i W �H ! �G (resp. i W �H ! X ) denote the inclusion map (resp. an orbit map
of H extended by means of geodesics over edges).

A Cannon–Thurston map for the pair .H;G/ (resp. .H;X /) is said to exist if there
exists a continuous extension of i to O{W y�H !

y�G (resp. O{W y�H !
yX ). The restriction

@i W @H ! @G (resp. @i W @H ! @X ) of O{ is then called the Cannon–Thurston map for
the pair .H;G/ (resp. .H;X /).

Theorem 2.2 [36] Let G be a hyperbolic group and let H be a hyperbolic normal
subgroup of G . Then a Cannon–Thurston map exists for the pair .H;G/.

2.2 Metric bundles

To state a theorem analogous to Theorem 2.2 in the more general geometric (not
necessarily group-invariant) setting of a metric bundle, some material needs to be
summarized from [42].

Definition 2.3 Suppose .X; d/ and .B; dB/ are geodesic metric spaces; let c� 1 be a
constant, and let f W RC!RC be a function. We say that X is an .f; c/–metric bundle
over B if there is a surjective 1–Lipschitz map pW X ! B such that the following
conditions hold:

(1) For each point z 2 B , the preimage Fz WD p�1.z/ is a geodesic metric
space with respect to the path metric dz induced from X . The inclusion
maps i W .Fz; dz/!X are uniformly metrically proper as measured by f , ie
d.i.x/; i.y//�N implies that dz.x;y/� f .N / for all z 2 B and x;y 2 Fz .

(2) Suppose z1; z2 2 B with dB.z1; z2/� 1, and let  be a geodesic in B joining
them. Then for any point x 2 Fz for z 2  , there is a path in p�1. / of
length at most c joining x to both Fz1

and Fz2
. It follows that there exists

K D K.f; c/ � 1 such that the following holds: Suppose z1; z2 2 B with
dB.z1; z2/� 1 and let  be a geodesic in B joining them. Let �W Fz1

! Fz2

be any map such that for all x1 2 Fz1
, there is a path of length at most c in

p�1. / joining x1 to �.x1/. Then � is a K–quasi-isometry.

We now describe the two kinds of metric bundles that will concern us in this paper.
First, let r be a geodesic (or more generally a quasigeodesic) ray in Teich.S/ for S

a closed surface of genus greater than 1. Then the universal bundle over Teich.S/
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restricted to r , say Ur , has a natural metric. Through any point x 2 Sz , the fiber
over z 2 Teich.S/, there is a canonical isometric lift of r . By declaring these lifts to
be orthogonal to Sz at every such point x equips Ur with the natural metric. The
universal cover of Ur with the lifted metric is then the required metric bundle over r .
The fiber Fz over z is the universal cover of Sz .

The (unprojectivized) Culler–Vogtmann outer space corresponding to Fn will be
denoted by cvn [13] and its boundary by @cvn . We describe the metric bundle over
a ray r in cvn . For our purposes we shall require that r is a folding path [3]. It is
proved in [3, Proposition 2.5] that for any z 2 cvn , there is a point z0 at uniformly
bounded distance from z such that a geodesic ray starting at z may be constructed as a
concatenation of a geodesic segment from z to z0 followed by a folding path starting
at z0 . Thus, for our purposes, up to changing the initial point of r by a uniformly
bounded amount, we might as well assume that r is a folding path. The universal
(marked) graph bundle over cvn restricted to r , say Ur , is, as before, equipped with
a natural metric by lifting r isometrically to geodesic rays through points in fibers.
The universal cover of this bundle of graphs with the lifted metric is the metric bundle
over r in this situation. Note that since folding paths define maps between fibers over
two points in a natural way, the resulting metric bundle comes canonically equipped
with an action of a free group acting fiberwise.

The next theorem establishes the existence of a Cannon–Thurston map in this setting:

Theorem 2.4 [42, Theorem 5.3] Let r be one of the following:

(1) a thick hyperbolic quasigeodesic ray in Teich.S/ for S a closed surface of genus
greater than 1,

(2) a folding path in the outer space cvn corresponding to Fn .

Let X be the universal metric bundle of hyperbolic planes or trees (respectively) over r ,
and suppose that X is hyperbolic. Let H denote respectively �1.S/ or Fn . Then the
pair .H;X / has a Cannon–Thurston map.

The paper [42] deals with a somewhat more general notion (referred to in that work
as a metric graph bundle) than the one covered by Definition 2.3. However, for the
purposes of this paper, it suffices to consider the more restrictive notion of a metric
bundle given by 2.3. Theorem 2.4 in the form that we shall apply it will require only
the restricted notion of Definition 2.3.
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3 Laminations

An algebraic lamination [4; 9; 26; 27; 35] for a hyperbolic group H is an H–invariant,
flip-invariant, nonempty closed subset

L� @2H D .@H � @H / n�;

where � is the diagonal in @H �@H and the flip is given by .x;y/� .y;x/. Here @H
is equipped with the Gromov topology, and @2H with the subspace topology of the
product topology. (Note that in [20], the notation @2H is reserved for .@H�@H n�/=�.
We prefer to use the notation here as we shall generally be dealing with bi-infinite
geodesics rather than unordered pairs of points on @H .) Various classes of laminations
exist in the literature and in this section, we describe three such classes that arise
naturally.

3.1 Cannon–Thurston laminations

In this section we shall define laminations in the context of a hyperbolic group H

acting properly on a hyperbolic metric space X . For instance, X could be a Cayley
graph of a hyperbolic group G containing H . We choose, as before, a generating
set of H , and in the case when X is a Cayley graph of a hyperbolic supergroup G ,
we assume that the generating set of H is extended to one of G , ensuring a natural
inclusion map i W �H ! �G . Choosing a basepoint �, the orbit map from the vertex
set of H to X which sends h to h� will be denoted by i . Further, i is extended
to the edges of �H by sending them to geodesic segments in X . The laminations
we consider in this section go back to [35] and correspond intuitively to (limits) of
geodesic segments in H whose geodesic realizations in X live outside large balls
about a basepoint.

We recall some basic facts and notions; see [35; 37]. If � is a geodesic segment in �H ,
a geodesic realization �r, of �, is a geodesic in X joining the endpoints of i.�/.

Let f�ngn��H be a sequence of geodesic segments such that 12�n and �r
n\B.n/D∅,

where B.n/ is the ball of radius n around i.1/ 2X . Take all bi-infinite subsequential
limits of pairs of endpoints of all such sequences f�ig (in the product topology on
y�H �

y�H ) and denote this set by L0 . Let th denote left translation by h 2H .

Definition 3.1 The Cannon–Thurston prelamination ƒCT DƒCT.H;X / is given by

ƒCT D
˚
fp; qg 2 @2H W p; q are the endpoints of th.�/ for some � 2 L0

	
:
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For this definition of ƒCT , one does not need the existence of a Cannon–Thurston map.
However, this ƒCT is not yet a lamination as closedness is not guaranteed (as was
pointed out to us by the referee); hence the expression prelamination. In the presence
of a Cannon–Thurston map, ƒCT is indeed a lamination, and we have an alternate
description of ƒCT as follows.

Definition 3.2 Suppose that a Cannon–Thurston map exists for the pair .H;X /. Define

ƒ1
CT D

˚
fp; qg 2 @2H W O{.p/D O{.q/

	
:

Lemma 3.3 [37] If a Cannon–Thurston map exists, ƒCT Dƒ
1
CT is a lamination.

Note that closedness of ƒCT follows from continuity of the Cannon–Thurston map.
The following lemma characterizes quasiconvexity in terms of ƒCT .

Lemma 3.4 [37] H is quasiconvex in X if and only if ƒCT D∅.

We shall be requiring a generalization of Lemma 3.4 to relatively hyperbolic groups
[20; 18; 7]. Let H be a relatively hyperbolic group, hyperbolic relative to a finite
collection of parabolic subgroups P . The relatively hyperbolic (or Bowditch) boundary
@.H;P/D@r H of the relatively hyperbolic group .H;P/ was defined by Bowditch [7].
The collection of bi-infinite geodesics @2

r H is given by .@r H � @r H / n� as usual.
The existence of a Cannon–Thurston map in this setting of a relatively hyperbolic
group H acting on a relatively hyperbolic space .X;H/ was investigated in [6; 38; 41].
Such an H acts in a strictly type-preserving manner on a relatively hyperbolic space
.X;H/ if the stabilizer StabH .Y / for any Y 2H is equal to a conjugate of an element
of P and if each conjugate of an element of P stabilizes some Y 2 H . The notion
of the Cannon–Thurston lamination ƒCT D ƒCT.H;X / is defined as above to be
the set of pairs of distinct points fx;yg 2 @2

r H identified by the Cannon–Thurston
map. The proof of Lemma 3.4 from [37] directly translates to the following in the
relatively hyperbolic setup. We refer the reader to [25] for the definition of relative
quasiconvexity.

Lemma 3.5 Suppose that the relatively hyperbolic group .H;P/ acts in a strictly
type-preserving manner on a relatively hyperbolic space .X;H/ such that the pair
.H;X / has a Cannon–Thurston map. Let ƒCT DƒCT.H;X /. Then any orbit of H is
relatively quasiconvex in X if and only if ƒCT D∅.
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Remark 3.6 We include an observation as to what happens when we pass to quasicon-
vex or relatively quasiconvex subgroups. Let K (resp. .K;P1/) be a quasiconvex (resp.
relatively quasiconvex) subgroup of a hyperbolic (resp. relatively hyperbolic) group H

(resp. .H;P/). Then the boundary @K (resp. @r K ) embeds in @H (resp. @r H ). This
induces an embedding of @2K (resp. @2

r K ) in @2H (resp. @2
r H ).

It therefore follows that if H acts geometrically on a hyperbolic metric space X

(resp. .H;P/ acts in a strictly type-preserving manner on a relatively hyperbolic
space .X;H/) such that the pair .H;X / has a Cannon–Thurston map, then the pair
.K;X / has a Cannon–Thurston map given by a composition of the embedding of @K
into @H (resp. @r K into @r H ) followed by the Cannon–Thurston map from @H to @X
(resp. @r H into @r X ). Further,

ƒCT.K;X /DƒCT.H;X /\ @
2K (resp. ƒCT.K;X /DƒCT.H;X /\ @

2
r K);

where the intersection is taken in @2H (resp. @2
r H ).

Since all finitely generated infinite-index subgroups K of free groups and surface
groups are quasiconvex (resp. relatively quasiconvex), this applies, in particular, when
H is a free group or a surface group.

3.2 Algebraic ending laminations

In [35], the first author gave a different, more group theoretic description of ending
laminations motivated by Thurston’s description in [50]. Thurston’s description uses
a transverse measure which is eventually forgotten [29; 5], whereas the approach
in [35] uses Hausdorff limits and is purely topological in nature. We rename the ending
laminations of [35] algebraic ending laminations to emphasize the difference.

Thus some of the topological aspects of Thurston’s theory of ending laminations were
generalized to the context of normal hyperbolic subgroups of hyperbolic groups and
used to give an explicit description of the continuous boundary extension O{W y�H !

y�G

occurring in Theorem 2.2.

Let
1!H !G!Q! 1

be an exact sequence of finitely presented groups where H , G and hence Q (from [43])
are hyperbolic. In this setup one has algebraic ending laminations (defined below)
naturally parametrized by points in the boundary @Q of the quotient group Q.
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Corresponding to every element g 2G there exists an automorphism of H taking h

to g�1hg for h 2H . Such an automorphism induces a bijection �g of the vertices
of �H . This gives rise to a map from �H to itself, sending an edge [a; b ] linearly to a
shortest edge-path joining �g.a/ to �g.b/.

Fix z 2 @Q, and let Œ1; z/ be a geodesic ray in �Q starting at the identity 1 and
converging to z 2 @Q. Let � be a single-valued quasi-isometric (qi) section of Q

into G . The existence of such a qi-section � was proved by Mosher [43]. Let zn be
the vertex on Œ1; z/ such that dQ.1; zn/D n, and let gn D �.zn/.

Next, fix h 2 H . A geodesic segment Œa; b� � �H will be called a free homotopy
representative (or shortest representative in the same conjugacy class) of h, if

(1) a�1b is conjugate to h in H ,

(2) the length of Œa; b� is shortest amongst all such conjugates of h in H .

Let Lh
0

be the (H–invariant) collection of all free homotopy representatives of h in �H .
Intuitively, Lh

0
can be thought of as the collection of all geodesic segments in �H that

are lifts of shortest closed geodesics in �H =H in the same conjugacy class as h (in the
setting of a closed manifold of negative curvature, these would be geodesic segments
that are path-lifts of the unique closed geodesic in the free homotopy class of a closed
loop corresponding to h). Identifying equivalent geodesics (ie geodesics sharing the
same set of endpoints) in Lh

0
one obtains a subset Lh

0
of (ordered) pairs of points in y�H .

Next, let Lh
n be the (H–invariant) collection of all free homotopy representatives of

�g�1
n
.h/ (D gnhg�1

n ) in �H . Again, identifying equivalent geodesics in Lh
n one

obtains a subset Lh
n of (ordered) pairs of points in y�H .

See Figure 1, where the long vertical arrow on the right depicts the geodesic ray Œ1; z/
in �Q . We assume that h is chosen to be a free homotopy representative of itself.
The corresponding path is assumed to lie in the translate (or alternately, coset) gn�H .
Then gnhg�1

n is a path starting and ending in �H and we pass to its free homotopy
representative in �H to get an element of Lh

n . It is important to note that elements
of Lh

n are geodesics in �H , but not in �G . What we are intuitively doing here is
looking at a closed loop �h based at gn in �G=H corresponding to h and sitting over
zn 2 Œ1; z/. We then concatenate in order:

(1) Start with a path �n from 1 to gn . The word in G corresponding to �n is gn .

(2) This is followed by �h . The word in G corresponding to �h is h.

(3) This is followed by x�n (the “opposite” path to �n ). The word in G corresponding
to x�n is g�1

n .
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h

gn

gnhg�1
n

gn

z

zn

1

Figure 1

This gives a loop based at 1 2 �G=H , and after “homotoping” it back to �H =H and
“tightening”, we get a free homotopy representative.

Definition 3.7 The intersection with @2H of the union of all subsequential limits
(in the product topology on y�H �

y�H ) of fLh
ng is denoted by ƒh

0z
. It is clear that ƒh

0z

and ƒh�1

0z
are related by the flip.

The algebraic ending prelamination corresponding to z 2 @�Q is given by

ƒz
EL D

[
h2H

ƒh
0z :

The algebraic ending lamination corresponding to z 2 @�Q is given by the closure ƒz
EL .

We indicate the slight modification to the above definition necessary to make it work
for a hyperbolic metric bundle X over a ray Œ0;1/, with fibers universal covers of
(metric) surfaces or graphs as in Section 2.2. One prefers to think of the vertex spaces as
corresponding to integers and edge spaces corresponding to intervals Œn� 1; n�, where
n 2N . Let � W Œ0;1/!X be a qi-section [42, Proposition 2.10] through the identity
element in the fiber H0 over 0. The fiber Hn over n is acted upon cocompactly by a
(surface or free) group H . Further, thickness of the ray guarantees that the quotient of
each fiber by H is of uniformly bounded diameter. Each Hn contains a preferred set
of points (vertices) given by the H–orbit of �.n/. For n 2N and x 2H�.n/, there
exists a unique H–translate �x of �.Œ0;1// through x . Since Hn=H is of uniformly
bounded diameter (independent of n) it makes sense to consider the (H–invariant)
collection LD

n of all free homotopy representatives of �.Œ0; n�/Œxn;yn�hn�.Œ0; n�/,
where xnD �.n/, yn 2H�.n/, dX .xn;yn/�D and hn�.Œ0; n�/ denotes the translate
of �.Œ0; n�/ through yn with reverse orientation. As before, this gives a subset LD

n
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of (ordered) pairs of points in yH0 . The intersection with @2H0 of the union of all
subsequential limits of fLD

n g is denoted by ƒD. Note that ƒD is invariant under the
flip here.

Definition 3.8 The algebraic ending prelamination corresponding to z D r.1/ is
given by

ƒz
EL D

[
D2N

ƒD ;

and the algebraic ending lamination is given by the closure ƒz
EL . We let

ƒEL Dƒ
z
EL:

(Here the superscript z is initially used for the sake of consistency with the notation in
Definition 3.7 and then dropped to be consistent with Definition 3.9.)

In Definition 3.7 above we have followed [35]. As was pointed to us by the referee, the
fact that we are choosing free homotopy representatives and shortest representatives
implies that we are in fact applying �g�1

n
to the conjugacy class Œh� rather than h itself.

However, once we have applied �g�1
n

to Œh�, we need to choose shortest representatives
and their cyclic permutations in order to extract subsequential limits. We have made
the choice here so that we can quote Theorem 3.10 directly from [35]. Further, the
generalization to Definition 3.8 becomes natural with this choice.

Note also that ƒh
0z

and ƒD are indeed closed as we are taking all subsequential limits.
However, closedness may be destroyed when we take the union over all h (or D );
hence the term prelamination. By Theorem 3.10, ƒz

EL is actually a lamination in the
context we are interested in.

We explain the convention of using �g�1
n

in the motivating case of the cover of a
hyperbolic 3–manifold fibering over the circle [50] corresponding to the fiber S . The
group Q is Z here and the fiber over n is denoted by S � fng. Here h should be
thought of as (a lift of) a bounded length curve � on S � fng. Also �g�1

n
.h/ may be

thought of in this case as (a lift of) the closed geodesic on S � f0g freely homotopic
to � . The ending lamination in this situation is obtained by taking limits of such closed
geodesics in a suitable topology (which is not important for us here).

Definition 3.9 The algebraic ending lamination ƒEL for the triple .H;G;Q/ is
defined by

ƒEL DƒEL.H;G;Q/D
[

z2@�Q

ƒz
EL:
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It follows from [35] that ƒEL is in fact closed and hence an algebraic lamination in
our sense. The main theorem of that work equates ƒEL and ƒCT .

Theorem 3.10 [35] ƒEL.H;G;Q/DƒEL DƒCT DƒCT.H;G/.

We shall be needing a slightly modified version of Theorem 3.10 later, when we consider
hyperbolic metric bundles X over rays Œ0;1/, with fibers universal covers of (metric)
surfaces or graphs as in Section 2.2. We note here that the proof in [35] goes through
in this case, too, with small modifications. We outline the steps of that proof here and
indicate the technical modifications from [42].

Proposition 3.11 Let X be a hyperbolic metric bundle over a ray Œ0;1/, with fibers
universal covers of (metric) surfaces or graphs as in Section 2.2 and let H be the
associated surface or free group. Let ƒEL denote the algebraic ending lamination from
Definition 3.8. Then ƒEL DƒCT DƒCT.H;X /.

Sketch of proof The proof of Lemma 3.5 in [35] goes through directly establishing
that ƒEL �ƒCT .

The crucial technical tool after this is the construction of a ladder. The corresponding
construct in the metric bundle context is given in Section 2.2 of [42] and generalizes
the construction in [36; 35]. Quasiconvexity of ladders when the metric bundle is
hyperbolic is now established by Theorem 3.2 of [42].

The proof of aperiodicity of ending laminations established in Section 4.1 of [35] uses
only the group structure of the fiber (but not of the total space) and hence goes through
with �.Œ0; n�/ replacing the quasigeodesic Œ1;gn�.

The final ingredient in the proof is the fact that qi-sections coarsely separate ladders
(Lemma 4.8 in Section 4.2 of [35]). The proof is the same in the case of metric bundles.

With all these ingredients in place, the proof of Theorem 4.11 of [35] now goes through
in the more general context of metric bundles to establish that ƒEL DƒCT .

3.2.1 Surface ending laminations It is appropriate to explicate at this juncture the
relation between the ending laminations introduced by Thurston in [50, Chapter 9],
which we call surface ending laminations henceforth, and the algebraic ending lamina-
tions we have been discussing. This will be particularly relevant when we deal with
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surface Kleinian groups, where the surface has punctures. Work of several authors
including [33; 29; 6; 39] explore related themes.

The Thurston boundary @Teich.S/ consists of projectivized measured laminations
on S . Let r be a thick hyperbolic geodesic ray in Teichmüller space Teich.S/, where S

is a surface possibly with punctures. Then, by a result of Masur [30], it has a unique ideal
point r12@Teich.S/ corresponding to a uniquely ergodic lamination. Let ƒEL.r1/ be
the geodesic lamination underlying r1 . Let X0 be the universal curve over r . Let X1

denote X0 with a small neighborhood of the cusps removed. Minsky proves [33]
that X1 is (uniformly) bi-Lipschitz homeomorphic to the convex core minus (a small
neighborhood of) cusps of the unique simply degenerate hyperbolic 3–manifold M

with conformal structure on the geometrically finite end given by r.0/ 2 Teich.S/ and
ending lamination of the simply degenerate end given by ƒEL.r1/. The convex core
of M is denoted by Y0 and let Y1 denote Y0 with a small neighborhood of the cusps
removed. Thus X1 and Y1 are (uniformly) bi-Lipschitz homeomorphic. Let X denote
the universal cover of X1 and H its collection of boundary horospheres. Then X is
(strongly) hyperbolic relative to H . Let H D�1.S/ regarded as a relatively hyperbolic
group, hyperbolic rel. cusp subgroups. The relative hyperbolic (or Bowditch) boundary
@r H of the relatively hyperbolic group is still the circle (as when S is closed) and
@2

r H is defined as .@r H � @r H / n� as usual. The existence of a Cannon–Thurston
map in this setting of a relatively hyperbolic group H acting on a relatively hyperbolic
space .X;H/ has been proven in [6] (see also [38]).

The diagonal closure Diag.L/ of a surface lamination L is an algebraic lamination
given by the transitive closure of the relation defined by L on @2H . The closed
diagonal closure Ld of a surface lamination L is an algebraic lamination given by the
closure in @2H of the transitive closure of the relation defined by L on @2H . When S

is closed, each complementary ideal polygon of L has finitely many sides; so the
closed diagonal closure Ld agrees with the diagonal closure Diag.L/ and comprises
the original lamination L along with the union of these diagonals (which are allowed
to intersect). For a punctured surface Sh however, it is not enough just to take the
transitive closure of the relation defined by L. In this case, the fundamental group H

is free and equals that of a compact core SK of Sh (ie a compact submanifold of Sh

whose inclusion induces a homotopy equivalence). The lamination thought of as a
subset of zSK, now has a complementary domain with infinitely many (bi-infinite)
sides (the so-called crown domain) one of which corresponds to a lift z� of a boundary
component � of SK. The transitive closure of L does not include the boundary points
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of z� in particular. However, the closure (in @2H ) of the transitive closure of L captures
all these, and is also closed under the transitive closure operation. We shall return to
this later when dealing with punctured surfaces.

Theorem 3.12 [33; 6] Let r be a thick hyperbolic geodesic in Teich.S/, and let
ƒEL.r1/ denote its endpoint in @Teich.S/ regarded as a surface lamination. Let X

be the universal cover of X1 . Then ƒCT.H; �M /DƒCT.H; .X;H//DƒEL.r1/
d.

Note that Theorem 3.12 holds both for closed surfaces as well as surfaces with finitely
many punctures.

3.2.2 Generalized algebraic ending laminations The setup of a normal hyperbolic
subgroup of a hyperbolic subgroup is quite restrictive. Instead we could consider H

acting geometrically on a hyperbolic metric space X . Let Y DX=H denote the quotient.
Let f�ng denote a sequence of free homotopy classes of closed loops in Y (these
necessarily correspond to conjugacy classes in H ) such that the geodesic realizations
of f�ng in Y exit all compact sets. Then subsequential limits of all such sequences
define again an algebraic lamination, which we call a generalized algebraic ending
lamination and denote by ƒGEL (DƒGEL.H;X /).

Then Lemma 3.5 of [35] (or Proposition 3.1 of [39] or Section 4.1 of [40]) gives:

Proposition 3.13 If the pair .H;X / has a Cannon–Thurston map, then

ƒGEL.H;X /�ƒCT.H;X /:

3.3 Laminations dual to an R–tree

We recall some of the material from [1, Section 3.1] on convergence of a sequence
f.Xi ;�i ; �ig of based H–spaces for H a fixed group.

An H–space is a pair .X; �/, where X is a metric space and �W H ! Isom.X / is a
homomorphism. Equivalently, it is an action of H on X by isometries. Let dX denote
the metric on X . A triple .X;�; �/ (for �2X ) is a based H–space if .X; �/ is an H–
space and �, also called the basepoint, is not a global fixed point under the action of H .

The space of all nonzero pseudometrics (or distance functions) on H , equipped with the
compact-open topology is denoted by D (the condition that � is not a global fixed point
guarantees that D is nonempty). Note that an element of D is a nonnegative real valued
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function on H �H . Assume that H acts on H �H diagonally and on Œ0;1/ trivially.
Let ED � D denote the subspace of H–equivariant pseudometrics under this action.
Projectivizing ED (using the scaling action and passing to the quotient), we obtain
the projectivized equivariant distance functions denoted by PED . A pseudometric
on H is said to be ı–hyperbolic if the associated metric space is ı–hyperbolic (the
equivalence class of the identity element is taken to be the basepoint).

A based H–space .X;�; �/ induces an equivariant pseudometric d D d.X ;�;�/ on H

by defining d.g; h/ WD dX .�.g/.�/; �.h/.�//. If the stabilizer of � under the induced
action is trivial, then H can, as usual, be identified with the orbit of �. This gives an
induced metric d.X ;�;�/ on H .

Definition 3.14 [1] A sequence .Xi ;�i ; �i/, i D 1; 2; : : : of based H–spaces con-
verges to the based H–space .X;�; �/ if Œd.Xi ;�i ;�i /�! Œd.X ;�;�/� in PED . We denote
this by limi!1.Xi ;�i ; �i/D .X;�; �/.

Theorem 3.15 [1, Theorem 3.3] Let .Xi ;�i ; �i/ be a convergent sequence of based
H–spaces such that

(1) there exists ı � 0 such that each Xi is ı hyperbolic,

(2) there exists h 2H such that the sequence di D dXi
.�i ; �i.h/.�// is unbounded.

Then there is a based H–tree .T;�/ (without global fixed points) and an isometric
action �W H ! Isom.T / such that .Xi ;�i ; �i/! .T;�; �/.

Note that convergence of .Xi ;�i ; �i/ (in terms of projective length functions in PED )
forces uniqueness of the projectivized length function. In particular, if there is an h0

such that the growth rates d 0i D dXi
.�i ; �i.h

0/.�// are much greater than di (more than
linear), there would not be an action of H on the limit space as h0 would be forced to
translate � by an infinite distance after projectivizing. Thus implicitly, the hypothesis
of Theorem 3.15 selects out the maximal growth rate of the di ’s and scales by this.

Definition 3.16 For a convergent sequence .Xi ;�i ; �i/ as in Theorem 3.15, we define
a dual algebraic lamination as follows: Let hi be any sequence such that

d.Xi ;�i ;�i /.1; hi/

di
! 0:

The collection of all limits of .h�1i ; h1i / in @2H will be called the dual ending lamina-
tion corresponding to the sequence .Xi ;�i ; �i/ and will be denoted by ƒRf.Xi ;�i ; �i/g.
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Next, let 1! H ! G ! Q! 1 be an exact sequence of hyperbolic groups. As
in Section 3.2 let z 2 @Q and let Œ1; z/ be a geodesic ray in �Q ; let � be a single-
valued quasi-isometric section of Q into G . Let zi be the vertex on Œ1; z/ such
that dQ.1; zi/ D i and let gi D �.zi/. Now, let Xi D �H , �i D 1 2 �H and
�i.h/.�/ D �g�1

i
.h/.�/. With this notation the following proposition is immediate

from Definition 3.7:

Proposition 3.17 ƒz
EL �ƒRf.Xi ;�i ; �i/g.

An alternative description can be given directly in terms of the action on the limiting
R–tree in Theorem 3.15 as follows. The ray Œ1; z/�Q defines a graph Xz of spaces
where the underlying graph is a ray Œ0;1/ with vertices at the integer points and edges
of the form Œn� 1; n�. All vertex and edge spaces are abstractly isometric to �H . Let
en D gn�1

�1gn . The edge space to vertex space inclusions are given by the identity to
the left vertex space and by �en

to the right. We call Xz the universal metric bundle
over Œ1; z/ (though it depends on the qi-section � of Q used as well). Hyperbolicity
of Xz is equivalent to the flaring condition of Bestvina–Feighn [2] as shown for instance
in [42] in the general context of metric bundles.

Suppose now that the sequence f.Xi ;�i ; �i/g, with Xi D �H , �i D 1 2 �H and
�i.h/.�/D �g�1

i
.h/.�/, converges as a sequence of H–spaces to an H–action on an

R–tree T D T .fXi ;�i ; �ig/. Generalizing the construction of Coulbois, Hilion and
Lustig [10; 11] to the hyperbolic group H we have the following notion of an algebraic
lamination (contained in @2H ) dual to T . The translation length in T will be denoted
by lT .

Definition 3.18 Let

L�.T /D f.g�1;g1/ W lT .g/ < �g;

where A denotes the closure of A. Define

ƒRf.Xi ;�i ; �i/g DƒR.T /D
\
�>0

L�.T /:

4 Closed surfaces

4.1 Arationality

Establishing arationality of ƒCT for surface laminations arising out of a thick hyper-
bolic ray or an exact sequence of hyperbolic groups really involves identifying the
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algebraic Cannon–Thurston lamination ƒCT with (the original) geodesic laminations
introduced by Thurston [50]. To distinguish them from algebraic laminations, we
shall refer to geodesic laminations on surfaces as surface laminations. The results
of this subsection (though not the next subsection) hold equally for S compact or
finite-volume noncompact.

A surface lamination L� S is arational if it has no closed leaves. It is called filling if
it intersects every essential nonperipheral closed curve on the surface and minimal if it
equals the closure of any of its leaves. Note that for an arational minimal lamination, the
complement consists of ideal polygons. Adjoining some (nonintersecting) diagonals, we
can still obtain an arational lamination, which is however no longer minimal. However,
from an arational lamination we can obtain a unique arational minimal lamination
by throwing away such diagonal leaves. Being filling is equivalent to saying that all
complementary components of L are either topological disks or once punctured disks.
Note that every filling lamination is automatically arational. We say that a bi-infinite
geodesic l in zS is carried by a subgroup K �H (D �1.S/) if both endpoints of l

lie in the limit set ƒK � @ zS . A surface lamination L � S is strongly arational if
no leaf of L or a diagonal in a complementary ideal polygon is carried by a finitely
generated infinite-index subgroup K of H . The next lemma holds for both compact
and noncompact hyperbolic surfaces of finite volume.

Lemma 4.1 Any minimal arational geodesic lamination L0 on a finite-volume com-
plete hyperbolic surface S is strongly arational.

Proof We assume that S is equipped with a complete finite-volume hyperbolic metric
and suppose that L0 is a minimal arational geodesic lamination. Consider a finitely
generated infinite-index subgroup K of H . By the LERF (locally extended residually
finite) property of surface groups [49], there exists a finite-sheeted cover S1 of S

such that K is a geometric subgroup of �1.S1/, ie it is the fundamental group of an
embedded incompressible subsurface † of S1 with geodesic boundary ˛1 . Let L1 be
the lift of L0 to S1 .

We now show that L1 is minimal arational. Since L0 is arational, and leaves of L1

are lifts of leaves of L0 , arationality of L1 follows. Let l be any leaf of L1 and xl the
closure of l in L1 . Note that there are no diagonal leaves in L1 as such a leaf would
have to come from a diagonal leaf in L0 . If xl ¤ L1 , then L1 is not minimal and must
contain a closed leaf l 0 . Since we have already shown that L1 is arational, this is a
contradiction. Hence, all leaves of L1 are dense in L1 ; ie L1 is minimal as well.
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In fact, any diagonal in a complementary ideal polygon of L1 is forward asymptotic
to a leaf of L1 and is therefore also dense in L1 ; in particular it intersects ˛1 . Hence
no leaf of L1 , nor a diagonal in a complementary ideal polygon, is carried by †. The
result follows.

Theorem 4.2 [29] The boundary @CC.S/ of the curve complex CC.S/ consists of
minimal arational geodesic surface laminations.

The following theorem may be taken as a definition of convex cocompactness for
subgroups of the mapping class group of a surface with (at most) finitely many punctures.

Theorem 4.3 [19; 28; 23] A subgroup Q of MCG.S/ is convex cocompact if and
only if some (any) orbit of Q in the curve complex CC.S/ is qi-embedded.

Recall that the Thurston boundary @Teich.S/ of Teichmüller space is the space of
projectivized measured laminations. The following theorem gives us the required strong
arationality result.

Theorem 4.4 Let S be a complete hyperbolic surface of finite volume. Let r be a
thick hyperbolic ray in Teichmüller space Teich.S/ and let r1 2 @Teich.S/ be the
limiting surface lamination. Then r1 is strongly arational.

In particular if Q is a convex cocompact subgroup of MCG.S/ and r is a quasi-
geodesic ray in Q starting at 1 2Q, then its limit r1 in the boundary @CC.S/ of the
curve complex is strongly arational.

Proof Recall that for a thick hyperbolic ray r in Teich.S/, we have r1 2 @CC.S/.
For the second statement of the theorem, @Q embeds as a subset of @CC.S/ by
Theorem 4.3 and hence the boundary point r1 2 @CC.S/ as well.

By Theorem 4.2, r1 is an arational minimal lamination. Hence by Lemma 4.1, r1 is
strongly arational.

4.2 Quasiconvexity

We now turn to closed surfaces. Let

1!H !G!Q! 1

be an exact sequence of hyperbolic groups with H D �1.S/ for a closed hyperbolic
surface S . Then Q is convex cocompact [19] and its orbit in both Teich.S/ and CC.S/
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are quasiconvex. By Theorem 3.10 ƒEL.H;G;Q/ D ƒEL D ƒCT D ƒCT.H;G/.
Further, ƒEL D

S
z2@Qƒ

z
EL . Recall that ƒz

EL denotes the algebraic ending lamination
corresponding to z , and ƒEL.z/ denotes the surface ending lamination corresponding
to z . By Theorem 3.12, ƒz

EL DƒEL.z/
d. We combine all this as follows.

Theorem 4.5 [33; 35] If

1!H !G!Q! 1

is an exact sequence with Q convex cocompact and H D �1.S/ for a closed surface S

of genus greater than 1, and

z D r1 2 @Q� @CC.S/;

then any lift of Œ1; z/ to Teich.S/ is thick hyperbolic. Further,

ƒCT.H;G/D
[

z2@Q

ƒEL.z/
d :

We are now in a position to prove the main theorems of this section.

Theorem 4.6 Let H D �1.S/ for S a closed surface of genus greater than 1. Let r

be a thick hyperbolic ray in Teichmüller space Teich.S/ and let r1 2 @Teich.S/ be the
limiting surface ending lamination. Let X denote the universal metric bundle over r .
Let K be a finitely generated infinite-index subgroup of H . Then any orbit of K in X

is quasiconvex.

Proof By Theorem 4.4, the lamination r1 is strongly arational. Hence no leaf or
diagonal of r1 is carried by K . By Theorem 3.12, the Cannon–Thurston lamina-
tion ƒCT.H;X / D ƒEL.r1/

d. Hence no leaf of ƒCT.H;X / is carried by K . By
Lemma 3.4 and Remark 3.6, any orbit of K in X is quasiconvex in X .

The next theorem was proven by Dowdall, Kent and Leininger [15, Theorem 1.3] using
different methods.

Theorem 4.7 Let
1!H !G!Q! 1

be an exact sequence of hyperbolic groups with H D �1.S/ (S closed ) and Q convex
cocompact. Let K be a finitely generated infinite-index subgroup of H . Then K is
quasiconvex in G .
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Proof As in the proof of Theorem 4.6, the lamination ƒEL.z/ is strongly arational
for each z 2 @Q� @CC.S/ (where we identify the boundary of Q with the boundary
of its orbit in CC.S/). Hence for all z 2 @Q, no leaf of ƒEL.z/

d is carried by K . By
Theorem 4.5,

ƒCT.H;G/DƒEL.H;G/D
[

z2@Q

ƒEL.z/
d :

Hence no leaf of ƒCT.H;G/ is carried by K . By Lemma 3.4 and Remark 3.6, K is
quasiconvex in G .

5 Free groups

For the purposes of this section, H D Fn is free.

5.1 Arationality

Recall that the (unprojectivized) Culler–Vogtmann outer space corresponding to Fn

is denoted by cvn and its boundary by @cvn . The points of @cvn correspond to very
small actions of Fn on R–trees.

Definition 5.1 [22] An R–tree T 2 @cvn is said to be indecomposable if for any
nondegenerate segments I and J contained in T , there exist finitely many elements
g1; : : : ;gn 2 Fn such that

(1) I �
S

iD1;:::;n giJ ,

(2) giJ \giC1J is a nondegenerate segment for any i D 1; : : : ; n� 1.

Dual to T 2 @cvn is an algebraic lamination ƒR.T / defined as follows (which we
had generalized to Definition 3.18 for general hyperbolic groups):

Definition 5.2 [10; 11] Let L�.T /D f.g�1;g1/ j lT .g/ < �g. Define ƒR.T / WDT
�>0 L�.T /.

Definition 5.3 [5] A leaf .p; q/ of an algebraic lamination L is carried by a sub-
group K of Fn if both p and q lie in the limit set of K .

Definition 5.4 A lamination L is called arational (resp. strongly arational) if no leaf
of L is carried by a proper free factor of Fn (resp. by a proper finitely generated
infinite-index subgroup of Fn ).

A tree T 2 @cvn is called arational (resp. strongly arational) if ƒR.T / is arational
(resp. strongly arational).
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The free factor complex Fn for Fn is a simplicial complex whose vertices are conjugacy
classes A of free factors and simplices are chains A1 ¨ � � �¨ Ak of free factors.

Definition 5.5 [17; 24] A subgroup Q of Out.Fn/ is said to be convex cocompact
in Out.Fn/ if some (and hence any) orbit of Q in Fn is qi-embedded.

A subgroup Q of Out.Fn/ is said to be purely atoroidal if every element of Q is
hyperbolic.

A geodesic or quasigeodesic (with respect to the Lipschitz metric) ray Œ1; z/ in outer
space cvn defines a metric bundle Xz where the underlying graph is a ray Œ0;1/
with vertices at the integer points and edges of the form Œn� 1; n�. As mentioned in
Section 2.2, after moving the initial point of Œ1; z/ by a uniformly bounded amount,
we can assume without loss of generality that Œ1; z/ is a folding path. Further, the
R–tree Tz corresponding to z , equipped with an Fn action, is exactly the tree encoded
by z 2 @cvn (tautologically).

We refer the reader to [3, Section 2.4] for details on folding paths and geodesics in outer
space The material relevant to this paper is efficiently summarized in [17, Section 2.7].
We call Xz the universal metric bundle over Œ1; z/. We shall be interested in two cases:

Case 1 Œ1; z/ is contained in a convex cocompact subgroup Q of Out.Fn/, and for �
a qi-section [43], �.Œ1; z// is identified with the corresponding quasigeodesic ray
contained in an orbit of Q in cvn . The universal metric bundle will (in this case) be
considered over �.Œ1; z//.

Case 2 Œ1; z/ is a thick geodesic ray in cvn , ie a geodesic ray projecting to a para-
metrized quasigeodesic in the free factor complex Fn . As mentioned in the introduction,
Œ1; z/ is said to be thick hyperbolic if, in addition, Xz is hyperbolic.

Remark 5.6 Case 1 is directly relevant to Theorem 5.14, while Case 2 pertains to
Theorem 5.15. These two cases are logically independent, though the proofs are very
similar.

We now describe the setup to be used in Proposition 5.8, which is extracted from
the proof of Theorem 5.2 of [14]. Assume first that we are in Case 1. Since Q

is convex cocompact, we may identify Q with an orbit in Fn . This identification
gives a Q–equivariant embedding of @Q into @Fn . We identify @Q with its image
under this embedding. Let AT consist of the projective classes of arational trees
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in @cvn . The authors of [14] give a natural map (following Bestvina–Reynolds [5])
@� W @AT ! @Fn associating to each arational tree of @cvn the corresponding point
in the boundary of the free factor complex Fn . Hence, by the identification of @Q
with its image under the embedding into @Fn , each point z 2 @Q corresponds to an
equivalence class Tz of arational trees, where two such trees T1 and T2 are declared
equivalent if their associated dual laminations ƒR.T1/ and ƒR.T2/ are the same.

Theorem 5.7 [14, Theorem 5.2] For each z 2 @Q, there exists Tz 2 @cvn which is
free and arational such that z! @�.Tz/ under the embedding of @Q into @Fn with
the property that ƒz

EL DƒR.Tz/.

A remark on a possible ambiguity that might arise from Theorem 5.7 as stated above
is that ƒR.Tz/ depends on a choice of a tree lying in the fiber of @� W AT ! @Fn .
However, as shown in [5] (see Theorem 5.12 below), the fiber consists of precisely the
elements of the equivalence class mentioned above and hence ƒR.Tz/ is well defined
independent of the choice.

We now turn to Case 2 and indicate briefly how the arguments of [14] go through
in this case to prove the analogous statement, Proposition 5.8 below. Theorem 4.1
and Lemma 4.12 of [17] establish stability of Fn–progressing quasigeodesics. While
Lemma 5.5 of [14] is necessary to prove flaring for Case 1, flaring in Case 2 follows
from hyperbolicity. (In fact it is shown in [42, Section 5.3, Proposition 5.8] that flaring is
equivalent to hyperbolicity of Xz .) Also, thickness of the ray is by definition for Case 2.
The crucial ingredient for [14, Theorem 5.2] is [14, Proposition 5.8], which, once [14,
Propositions 5.5 and 5.6] are in place, makes no further use of the fact that �.Œ1; z//
comes from a ray in a convex cocompact Q (Case 1) but just that it is thick, stable and
that the universal bundle over it satisfies flaring. Proposition 5.8 as stated below, now
follows. Note that this part of the argument has nothing to do with identifying ƒEL

with ƒCT (the latter is the content of Theorem 3.10 and Proposition 3.11).

Proposition 5.8 Let Œ1; z/ be as in Case 2, and suppose that the universal metric
bundle Xz is hyperbolic. Then ƒEL DƒR.Tz/.

Remark 5.9 A continuously parametrized version of the metric bundle described in
Case 2 occurs in our context of folding paths in Culler–Vogtmann outer space cvn

converging to a point z 2 @cvn . The same proof furnishes ƒEL DƒR.Tz/ in the case
of a continuously parametrized version of the metric bundle.
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We collect together a number of theorems establishing mixing properties for Fn–trees.

Theorem 5.10 [46] If T is a free indecomposable very small Fn–tree, then no leaf
of the dual lamination ƒR.T / is carried by a finitely generated subgroup of infinite
index in Fn .

Theorem 5.11 [47] Let T 2 @cvn . Then T is arational if and only if either

(a) T is free and indecomposable, or

(b) T is dual to an arational measured foliation on a compact surface S with one
boundary component and with �1.S/D Fn .

Recall that AT � @cvn denotes the set of arational trees, equipped with the subspace
topology. Define a relation � on AT by S � T if and only if ƒR.S/DƒR.T /, and
give AT =� the quotient topology.

Theorem 5.12 [5] The space @Fn is homeomorphic to AT =�. In particular, all
boundary points of Fn are arational trees.

Combining the above theorems we obtain the crucial mixing property we need (we refer
the reader to the introduction for the definition of a thick hyperbolic ray).

Theorem 5.13 Let r be a thick hyperbolic ray in outer space, and let r1 2 @cvn be
the limiting R–tree. Then ƒR.r1/ is strongly arational.

In particular if Q is a convex cocompact purely hyperbolic subgroup of Out.Fn/ and
r is a quasigeodesic ray in Q starting at 1 2Q, then its limit r1 in the boundary @Fn

of the free factor complex is strongly arational.

Proof By Theorem 5.12 every point in @Fn comes from an arational R–tree. Hence
r1 is arational.

Since r is hyperbolic, the metric bundle over r is hyperbolic by definition. In particular,
the bundle satisfies the flaring condition [42, Proposition 5.8]. Hence every element
of Fn has nonzero translation length on the limiting R–tree r1 , thus ruling out alter-
native (b) of Theorem 5.11. It follows from Theorem 5.11 that r1 is indecomposable
free. It finally follows from Theorem 5.10 that r1 is strongly arational. Equivalently,
ƒR.r1/ is strongly arational.
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Next, suppose that Q is a convex cocompact purely atoroidal subgroup of Out.Fn/

and r a quasigeodesic ray in Q starting at 1 2Q. By Theorem 4.1 of [17], an orbit
of Q is quasiconvex (in the strong symmetric sense). Then the limit point r1 of r lies
in @Fn since the orbit map from Q to Fn is a qi-embedding and is therefore arational.
Since Q is purely atoroidal quasiconvex, it follows from Corollary 5.3 of [14] that
the lamination dual to the tree r1 cannot be carried by a surface with a puncture thus
ruling out Theorem 5.11(b). Hence it is indecomposable free by Theorem 5.11. Again,
from Theorem 5.10, r1 is strongly arational.

5.2 Quasiconvexity

Theorem 5.14 Let
1!H !G!Q! 1

be an exact sequence of hyperbolic groups with H D Fn and Q convex cocompact.
Let K be a finitely generated infinite-index subgroup of H . Then K is quasiconvex
in G .

Proof We first note that for each z 2 @Q � @Fn (where we identify the boundary
of Q with the boundary of its orbit in Fn ), the tree Tz is strongly arational by
Theorem 5.13. In particular, no leaf of ƒR.Tz/ is carried by K . Hence for all z 2 @Q,
no leaf of ƒR.Tz/ is carried by K . By Theorem 5.7, the algebraic ending lamination
ƒz

EL DƒR.Tz/. Further, by Theorem 3.10,

ƒCT.H;G/DƒEL.H;G/D
[

z

ƒz
EL:

Hence no leaf of ƒCT.H;G/ is carried by K . By Lemma 3.4 and Remark 3.6, K is
quasiconvex in G .

Theorem 5.15 Let H DFn , let r be a thick hyperbolic ray in outer space cvn and let
r1 2 @cvn be the limiting R–tree. Let X denote the universal metric bundle over r .
Let K be a finitely generated infinite-index subgroup of H . Then any orbit of K in X

is quasiconvex.

Proof As in the proof of Theorem 5.14, the tree T D r1 is strongly arational by
Theorem 5.13. Hence no leaf of ƒR.T / is carried by K . By Proposition 5.8 and
Remark 5.9, for the algebraic ending lamination, we have

ƒEL.H;X /DƒEL �ƒR.T /:
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Further, by Theorem 3.10 and Proposition 3.11, ƒCT.H;X /DƒEL.H;X /. Hence no
leaf of ƒCT.H;X / is carried by K . By Lemma 3.4 and Remark 3.6, any orbit of K

in X is quasiconvex in X .

6 Punctured surfaces

For the purposes of this section Sh is a noncompact finite-volume hyperbolic surface
and H D �1.S

h/.

6.1 Quasiconvexity for rays

Theorem 6.1 Let r � Teich.Sh/ be a thick geodesic ray and r1 2 @Teich.Sh/ the
limiting surface ending lamination. Let X denote the universal metric bundle over r

minus a small neighborhood of the cusps, and let H denote the horosphere boundary
components. Let K be a finitely generated infinite-index subgroup of H . Then any
orbit of K in X is relatively quasiconvex in .X;H/.

Proof The proof is slightly more involved than that of Theorem 4.6, the difficulty
arising from the difference between the closed diagonal closure and the diagonal closure
of a geodesic surface lamination L. Recall that Ld denotes the closure of the diagonal
closure of L.

First, observe that if K corresponds to a parabolic subgroup, it is automatically relatively
quasiconvex. Hence assume that K is not a parabolic subgroup. By Theorem 4.4 (which,
recall, holds for punctured surfaces), the lamination r1 is strongly arational. Hence
no leaf or diagonal of r1 is carried by K . By Theorem 3.12 (which, recall, holds for
punctured surfaces as well), the Cannon–Thurston lamination ƒCT.H;X /DƒEL.r1/

d.

However, for a punctured surface, ƒEL.r1/
d does not equal the diagonal closure of

ƒEL.r1/ unlike the closed surface case. We shall analyze the difference shortly. Note
also that r1 refers to the surface geodesic lamination living in Sh, whereas ƒEL.r1/

refers to collections of pairs of points in @2
r H (or equivalently collections of bi-infinite

geodesics in the universal cover of Sh ). Let Diag.ƒEL.r1// denote the diagonal
closure of ƒEL.r1/. For i D 1; : : : ; l , let Li D haii denote the peripheral cyclic
subgroup of H generated by ai . Let z1; : : : ; zl denote the corresponding punctures
on Sh. There exists a unique connected component Di � Sh nƒEL.r1/ containing zi .
Such a Di is called a crown domain. The boundary components of Di are finitely
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many leaves of r1 . In the universal cover each lift zDi of Di is an infinite-sided
polygon stabilized by a conjugate of ai . Any ideal point of such a zDi shall be referred
to as a crown-tip. With this terminology, Diag.r1/ consists of pairs of points .p; q/
such that either

(1) .p; q/ are endpoints of a leaf of r1 lifted to the universal cover of Sh , or

(2) there is a (necessarily finite) sequence p D p1; : : : ;pn D q of crown-tips such
that .pi ;piC1/ are endpoints of a leaf of r1 lifted to the universal cover.

Next, ƒEL.r1/
d nDiag.r1/ consists precisely of pairs of points .p; q/ in @r H (DS1 )

such that p is a fixed point of a conjugate a
g
i of some parabolic ai and q is a

crown-tip on the boundary of the lift zDi stabilized by a
g
i . It follows that any bi-

infinite geodesic in ƒEL.r1/
d nDiag.r1/ necessarily has one direction (the direction

converging to the crown-tip) asymptotic to a lift of a leaf of r1 . Since K is finitely
generated, it is necessarily relatively quasiconvex in H . Hence, if K carries a leaf of
ƒEL.r1/

d nDiag.r1/, we can translate such a leaf by larger and larger nonparabolic
elements of K and pass to a limit to obtain a leaf of Diag.r1/ carried by K . This
contradicts the fact (Theorem 4.4) that r1 (and hence Diag.r1/) is strongly arational.
It follows that no leaf of ƒCT.H;X / is carried by K . By Lemma 3.5 and Remark 3.6,
any orbit of K in X is relatively quasiconvex in .X;H/.

6.2 Quasiconvexity for exact sequences

Let
1!H !G!Q! 1

be an exact sequence of relatively hyperbolic groups with H D �1.S
h/ for a finite-

volume hyperbolic surface Sh with finitely many peripheral subgroups H1; : : : ;Hn .
Here Q is a convex cocompact subgroup of MCG.Sh/, where MCG is taken to be
the pure mapping class group, fixing peripheral subgroups (this is a technical point and
is used only for expository convenience). Note that the normalizer NG.Hi/ is then
isomorphic to Hi �Q .�G/. The following characterizes convex cocompactness:

Proposition 6.2 [42, Proposition 5.17] Let H D�1.S
h/ be the fundamental group of

a surface with finitely many punctures, and let H1; : : : ;Hn be its peripheral subgroups.
Let Q be a convex cocompact subgroup of the pure mapping class group of Sh. Let

1!H !G!Q! 1 and 1!Hi!NG.Hi/!Q! 1
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be the induced short exact sequences of groups. Then G is strongly hyperbolic relative
to the collection fNG.Hi/g, i D 1; : : : ; n.

Conversely, if G is (strongly) hyperbolic relative to fNG.Hi/g, i D 1; : : : ; n, then Q

is convex-cocompact.

Since Q is convex cocompact, its orbits in both Teich.Sh/ and CC.Sh/ are quasi-
convex and qi-embedded [19; 28; 23]. Identify �Q with a subset of Teich.Sh/ by
identifying the vertices of �Q with an orbit Q:o of Q and edges with geodesic
segments joining the corresponding vertices.

Let X0 be the universal curve over �Q . Let X1 denote X0 with a small neighborhood
of the cusps removed. Then X1 is a union

S
q2@�Q

Xq , where Xq is a bundle over the
quasigeodesic Œ1; q/ .��Q�Teich.Sh// with fibers hyperbolic surfaces diffeomorphic
to Sh with a small neighborhood of the cusps removed. Minsky proved that

(1) the quasigeodesic Œ1; q/ stays a bounded distance from a geodesic in Teichmüller
space ending at the point q 2 @Teich.Sh// [34];

(2) the bundle Xq is (uniformly) bi-Lipschitz homeomorphic to the convex core mi-
nus (a small neighborhood of) cusps of the unique simply degenerate hyperbolic
3–manifold M with conformal structure on the geometrically finite end given
by o D 1:o 2 Teich.Sh/ and ending lamination of the simply degenerate end
given by ƒEL.q/ [33].

The convex core of M is denoted by Yq0 . Let Yq1 denote Yq0 with a small neigh-
borhood of the cusps removed. Thus Xq and Yq1 are (uniformly) bi-Lipschitz homeo-
morphic. Let zXq denote the universal cover of Xq and Hq its collection of boundary
horospheres. Then zXq is (strongly) hyperbolic relative to Hq . Let H D �1.S

h/ be
thought of as a relatively hyperbolic group, hyperbolic relative to the cusp subgroups
fHig, i D 1; : : : ; n. The relative hyperbolic (or Bowditch) boundary @r H of the
relatively hyperbolic group is still the circle (as when S is closed) and @2

r H is defined as
.@r H�@r H /n� as usual. The existence of a Cannon–Thurston map in this setting from
the relative hyperbolic boundary of H to the relative hyperbolic boundary of . zXq;Hq/

has been proved in [6; 38]. Also, it is established in [6; 39] (see Theorem 3.12) that
the Cannon–Thurston lamination for the pairs .H; zXq/ is given by

ƒCT.H; zXq/DƒEL.q/
d ;

where ƒEL.q/
d denotes the closure of the diagonal closure of the ending lamination

ƒEL.q/.
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Next, by Proposition 6.2, G is strongly hyperbolic relative to the collection fNG.Hi/g,
i D 1; : : : ; n. Note that the inclusion of H into G is strictly type-preserving as an
inclusion of relatively hyperbolic groups. The existence of a Cannon–Thurston map
for the pair .H;G/ is established in [44].

We shall require a generalization of Theorem 4.5 to punctured surfaces to obtain
a description of ƒCT.H;G/. The description of the Cannon–Thurston lamination
ƒCT.H;G/ for the pair .H;G/ can now be culled from [35] and [44]. We shall give a
brief sketch of the modifications necessary to the arguments of [35] so as to make them
work in the present context. The crucial technical tool is the construction of a ladder,
which we sketch now. As usual, fix finite generating sets of H and G such that the
generating set of G contains that of H , thus giving a natural inclusion of Cayley graphs,
�H into �G . Let �Q denote the Cayley graph of Q with respect to the generating
set given by the nontrivial elements of the quotient of the generating set of G .

Pal [44] proves the existence of a qi-section � W �Q!�G . Given any a; b 2H , we now
look at geodesic segments �q D Œa�.q/; b�.q/� in the coset �H �.q/D �.q/�H (the
equality of left and right cosets follows from normality of H ) joining a�.q/; b�.q/.
Note that these are geodesics in the intrinsic path-metric on �.q/�H , which is isometric
to �H . The union

S
q2Q �q is called a ladder corresponding to Œa; b���H . Note here

that the ladder construction in [35] does not require hyperbolicity of G but only that
of H . Since H is free in the present case, the construction of the ladder goes through.

As in [35] (see also Definition 3.7 and Proposition 3.11), we assign to every boundary
point z 2 @Q an algebraic ending lamination ƒz

EL . Similarly (as in the hyperbolic
case), for every z , there is a Cannon–Thurston lamination ƒCT.z/. The proof of the
description of the ending lamination in [35] (using the ladder) now shows that the
Cannon–Thurston lamination ƒCT.H;G/ for the pair .H;G/ is the closure of the
transitive closure of the union

S
z2@QƒCT.z/; see [39, Section 4.4]. We elaborate

on this a bit. Recall that X1 is a union
S

q2@�Q
Xq and that the universal cover

of X1 is naturally quasi-isometric to G . Thus �G can be thought of as a union (not
disjoint) of the metric bundles over Œ1; q/; as q ranges over @Q. In fact if P W G!Q

denotes projection, then zXq is quasi-isometric to P�1.Œ1; q//. The construction of
the ladder and a coarse Lipschitz retract of �G onto it then shows that a leaf of
the Cannon–Thurston lamination ƒCT.H;G/ arises as a concatenation of at most
two infinite rays, each of which lies in a leaf of the Cannon–Thurston lamination
ƒCT.H;P

�1.Œ1; q/// for some q . Thus ƒCT.H;G/ is the closure of the transitive
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closure of the union
S

q2@QƒCT.H; zXq/; ie

ƒCT.H;G/D

� [
z2@Q

ƒCT.z/

�d

:

We need to show that ƒz
EL DƒCT.z/. Lemma 3.5 of [35] goes through verbatim to

show that ƒz
EL �ƒCT.z/. It remains to show that ƒCT.z/�ƒ

z
EL . But this is exactly

the content of the main theorem of [6] (see also [38]).

We combine all this in the following.

Theorem 6.3 [33; 6; 35; 42] Let H D�1.S
h/ be the fundamental group of a surface

with finitely many punctures, and let H1; : : : ;Hn be its peripheral subgroups. Let Q

be a convex cocompact subgroup of the pure mapping class group of Sh. Let

1!H !G!Q! 1 and 1!Hi!NG.Hi/!Q! 1

be the induced short exact sequences of groups. Then G is strongly hyperbolic relative
to the collection fNG.Hi/g, i D 1; : : : ; n. Further, ƒCT.H;G/D

�S
z2@QƒEL.z/

�d.

We can now prove our last quasiconvexity theorem:

Theorem 6.4 Let H and G be as in Theorem 6.3, and let K be a finitely generated
infinite-index subgroup of H . Then K is relatively quasiconvex in G .

Proof Without loss of generality, K is not contained in a parabolic subgroup of H

(since then there is nothing to prove). As in the proof of Theorem 6.1, the lamination
ƒEL.q/ is strongly arational for each q 2 @Q. Hence, as in the proof of Theorem 6.1, no
leaf of ƒEL.q/

d is carried by K as q ranges over @Q. By Theorem 6.3, ƒCT.H;G/

is the closure of the transitive closure of
S

z2@QƒEL.z/
d. It follows (again as in the

proof of Theorem 6.1) that no leaf of ƒCT.H;G/ is carried by K . By Lemma 3.5 and
Remark 3.6, K is relatively quasiconvex in G .
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