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The nonorientable 4–genus for knots with 8 or 9 crossings

STANISLAV JABUKA

TYNAN KELLY

The nonorientable 4–genus of a knot in the 3–sphere is defined as the smallest first
Betti number of any nonorientable surface smoothly and properly embedded in the
4–ball with boundary the given knot. We compute the nonorientable 4–genus for
all knots with crossing number 8 or 9 . As applications we prove a conjecture of
Murakami and Yasuhara and compute the clasp and slicing number of a knot.

57M25, 57M27

1 Introduction

1.1 Background

Knots and the surfaces they bound have been intimately related from the origins of
knot theory. The classification of surfaces has made it easy to impart a measure of
complexity on the knots that bound them. For instance, the Seifert genus g3.K/ of
a knot K , defined as the minimal genus of any surface S in S3 with @S DK , was
defined by Seifert [28] already in 1935. There are several other natural choices of
surfaces to consider, leading to several flavors of knot genera.

Work of Fox [8; 9] and Fox and Milnor [10] led to the definition of the (smooth,
oriented) 4–genus (or slice genus) g4.K/ of a knot K as the minimal genus of
any smoothly and properly embedded surface S in the 4–ball D4 with @S D K .
The topological (oriented) 4–genus g

top
4
.K/ is defined analogously by requiring that

the embedding S ,! D4 be locally topologically flat instead of smooth. Note that
g

top
4
.K/� g4.K/� g3.K/.

In another direction, Clark [3] defined the nonorientable 3–genus or 3–dimensional
crosscap number 3.K/ as the smallest first Betti number of any nonorientable surface
†�S3 with @†DK . The nonorientable (smooth) 4–genus or 4–dimensional crosscap
number 4.K/ was defined by Murakami and Yasuhara [20] as the minimal first Betti
number of any nonorientable surface † smoothly and properly embedded in D4 and
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with @†DK . Some authors additionally define 4.K/D 0 for any slice knot K , but
in the interest of a more unifying treatment we adopt the definition from the previous
sentence. Just as in the case of oriented surfaces, so too for nonorientable surfaces
there is a topological version of this invariant denoted by  top

4
.K/. The inequalities


top
4
.K/� 4.K/� 3.K/ again hold in the nonorientable setting. The oriented and

nonorientable genera are easily seen to satisfy

(1-1) i.K/� 2gi.K/C 1 for i D 3; 4

with an analogous inequality holding for the topological 4–genera. Indeed if K bounds
a properly embedded, smooth, genus-g surface S �D4 , then the surface † obtained
from S by removing a disk neighborhood of an interior point and replacing it by a
Möbius band has @†DK and b1.†/D 2gC1, demonstrating 4.K/� 2g4.K/C1.

The subject of study in this present work is the smooth nonorientable 4–genus 4 .
Having been introduced relatively recently, the literature available on 4 is relatively
sparse. First results go back to the work of Viro [30] who uses Witt classes of intersection
forms of 4–manifolds to obstruct a knot K from bounding a smoothly and properly
embedded Möbius band in D4 . He uses his findings to demonstrate that 4.41/ > 1.

Let �.K/ and Arf.K/ denote the signature and Arf invariant of K . Yasuhara [31]
proves that if a knot K bounds a Möbius band in D4 , then there exists an integer x

such that
j8xC 4 �Arf.K/� �.K/j � 2:

This proves that 4.K/ > 1 for any knot K with �.K/C 4 �Arf.K/� 4 .mod 8/, the
knot K D 41 being one example.

Gilmer and Livingston [12] use linking forms on the 2–fold branched cover of K ,
Heegaard Floer homology and Casson–Gordon invariants to show, for instance, that
4.41 # 51/D 3, the largest known value for 4 at that time and still the largest known
value for 4 among alternating knots (see however Theorem 1.1 below). They also
prove the congruence relation

(1-2) �.K/C 4 �Arf.K/� �.W .†//�ˇ.D4; †/ .mod 8/

valid for any knot K that bounds a nonorientable surface † smoothly and prop-
erly embedded in D4 . Here �.K/ and Arf.K/ are as above, while W .†/ denotes
the 2–fold cover of D4 branched along †, and �.W .†// denotes its signature.
Lastly, ˇ.D4; †/ is the Brown invariant (see [12] and Kirby and Melvin [17]) of
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the pair .D4; †/. It is easy to show that rk H2.W .†/IZ/ D rk H1.†IZ/ implying
the bound j�.W .†//j � rk H1.†IZ/, while work in [17] shows the same bound
to hold for the Brown invariant (see also Corollary 2.2). The congruence (1-2),
along with the discussion of this paragraph, implies again that if K is a knot with
�.K/C 4 �Arf.K/� 4 .mod 8/, then K cannot bound an embedded Möbius band
in D4 . Relation (1-2) makes frequent appearances throughout this work, and we shall
refer to it as the Gilmer–Livingston (congruence) relation.

Using tools from Heegaard Floer homology, Batson [1] is able to show that 4 is an
unbounded function. He does so by proving the bound

(1-3) 1
2
�.K/� d.S3

�1.K//� 4.K/;

whose notation we now explain. For a rational number r we let S3
r .K/ be the manifold

resulting from r–framed Dehn surgery on K , and for an integral homology 3–sphere Y

we use d.Y / to denote its Heegaard Floer correction term; see Ozsváth and Szabó [26].
Batson shows that the left-hand side of (1-3) equals k � 1 for the torus knot K D

T.2k;2k�1/ , k 2N , demonstrating the unboundedness of 4 .

Ozsváth, Stipsicz and Szabó [25] in 2015 define a concordance invariant v.K/, derived
from their family of concordance invariants ‡K .t/ [24]. They prove the lower bound

(1-4)
ˇ̌

1
2
�.K/� v.K/

ˇ̌
� 4.K/

and use it to provide another proof of the unboundedness of 4 by demonstrating that
4

�
#n

T.3;4/

�
� n, where #n

T.3;4/ is the n–fold connected sum of the .3; 4/ torus
knot T.3;4/ with itself. The converse inequality 4

�
#n

T.3;4/

�
� n is easy to verify by

finding an explicit Möbius band bounded by T.3;4/ , leading to 4

�
#n

T.3;4/

�
D n.

1.2 Results and applications

As of this writing, the KnotInfo knot tables of Cha and Livingston [2] only contain
values for 4 for knots with 7 or fewer crossings. Our goal and the main result of this
work is to extend this tabulation to include all 70 knots with 8 and 9 crossings.

Theorem 1.1 The values of 4 for the 21 knots with crossing number 8 are

4.K/D 1 for K D 83; 84; 85; 86; 87; 88; 89; 810; 811; 814; 816; 819; 820; 821I

4.K/D 2 for K D 81; 82; 812; 813; 815; 817I

4.K/D 3 for K D 818:
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Theorem 1.2 The values of 4 for the 49 knots with crossing number 9 are

4.K/D 1 for K D 91; 93; 94; 95; 96; 97; 98; 99; 913; 915; 917; 919; 921; 922;

923; 925; 926; 927; 928; 929; 931; 932; 935; 936;

941; 942; 943; 944; 945; 946; 947; 948I

4.K/D 2 for KD 92; 910; 911; 912; 914; 916; 918; 920; 924; 930; 933; 934; 937;

938; 939; 940; 949:

As already mentioned in Section 1.1, the nonorientable slice genus 4.K/ was in-
troduced by Murakami and Yasuhara in their work [20] with the difference that they
defined 4 of a slice knot K to be zero. Murakami and Yasuhara observed the inequality
4.K/� 2g4.K/C 1, the i D 4 version of (1-1). In the following conjecture they ask
whether this inequality is the best possible bound relating 4.K/ and g4.K/.

Conjecture [20, Conjecture 2.10] There exists a nonslice knot K such that 4.K/D

2g4.K/C 1.

Theorem 1.1 verifies the Murakami–Yasuhara conjecture.

Corollary 1.3 There exist nonslice knots K , for instance KD818 , such that 4.K/D

2g4.K/C1. Accordingly, the inequality 4.K/� 2g4.K/C1 is sharp for some knots
and cannot be improved upon.

Recall that the unknotting number u.K/ of a knot K is the minimum number of
crossing changes in any diagram of K that renders K unknotted. Similarly, the slicing
number us.K/ of a knot K is defined as the minimum number of crossing changes in
any diagram of K that transforms K into a slice knot. These two quantities fit into the
double inequality

(1-5) g4.K/� us.K/� u.K/:

Of these, a proof of the left inequality can be found in Scharlemann [27], while the
right inequality is obvious since the unknot is slice. The inequality us.K/� u.K/ is a
strict inequality for many knots K , for instance for any nontrivial slice knot K . To
show that the inequality g4.K/ � us.K/ may also be strict is rather more difficult.
The first example of a knot K where this occurs, namely K D 74 , was discovered by
Livingston [18]. Owens [21] and Owens and Strle [23], by relying on gauge-theoretic
techniques, are able to calculate us.K/ for all knots K with 10 or fewer crossings
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and find many more examples with g4.K/ < us.K/. In general however, both u.K/

and us.K/ remain difficult knot invariants to compute.

The 4–dimensional clasp number c4.K/ of a knot K is the smallest number of double
points of any immersed disk in the 4–ball D4 , with boundary K . The clasp number
also fits into a double inequality, namely

(1-6) g4.K/� c4.K/� us.K/;

of which the left one is proved in Shibuya [29], while the right one is obvious. The
inequality g4.K/� c4.K/ may be strict — an example is given in [20] — but we are
not aware of a knot K with c4.K/<us.K/. The relation between the nonorientable 4–
genus 4.K/ and the clasp number c4.K/ was worked out by Murakami and Yasuhara:

Proposition 1.4 [20, Proposition 2.3] For any knot K ,

(1-7) 4.K/�

�
c4.K/ if c4.K/ is even and c4.K/¤ 2;

c4.K/C 1 otherwise:

This inequality and its proof were independently communicated to us by Chuck Liv-
ingston, whose input we gratefully acknowledge. The reason for this detour into
exploring c4.K/ and us.K/ is to demonstrate in the next example that our computation
of 4.818/ in conjunction with Proposition 1.4 can be used to obtain a proof of the strict
inequalities g4.818/ < c4.818/ and g4.818/ < us.818/, facts that were first obtained
by Owens and Strle [23] using rather different techniques.

Example 1.5 The knot K D 818 has 4.K/ D 3 by Theorem 1.1. Proposition 1.4
implies that 2 � c4.K/, and thus 2 � us.K/ by (1-6). Since u.K/ D 2 we obtain
c4.K/D us.K/D 2 by (1-5) and (1-6), while g4.K/D 1.

Organization

In Section 2 we provide needed background material. We remind the reader of the
definition of the Brown invariant, introduce nonoriented band moves on knot diagrams,
and review the Goeritz form of a knot and Donaldson’s diagonalization theorem.
The main results of this section are the obstruction theorems (Theorems 2.10–2.12).
Section 3 looks at all 70 knots with crossing number 8 or 9 and employs the techniques
from Section 2 to compute their values of 4 , which proves Theorems 1.1 and 1.2.
Section 4 concludes with some observations and open questions.
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2 Background

This section describes the techniques used to determined the values of 4 for knots
with 8 or 9 crossings. The techniques come in two flavors: constructive and obstructive.
The former takes the form of a nonoriented band move on knot diagrams (described in
Section 2.2) in such a way that if two knots are related by such a move, their 4–values
differ by at most 1; see Proposition 2.4. The obstructive techniques use Donaldson’s
celebrated diagonalization theorem for definite 4–manifolds, in combination with a
construction of Goeritz. These are described in Section 2.3.

2.1 The Brown invariant

This section recalls the definition of the Brown invariant ˇ.D4; †/ of a smoothly
and properly embedded nonorientable surface † ,!D4 . Our exposition follows that
of [17].

Let V be a finite-dimensional Z2–vector space equipped with a nonsingular inner
product � W V �V ! Z2 , that is, an inner product for which x � y D 0 for all y 2 V

implies x D 0. We call .V; � / even if x �x D 0 for all x 2 V ; otherwise we say .V; � /
is odd. Every such inner product space .V; � / can be decomposed as a direct sum of
orthogonal subspaces isomorphic to

P D Z2x and T D Z2y˚Z2z

with x �x D 1D y � z and y � y D 0D z � z . These two irreducible spaces satisfy the
isomorphism P ˚ T Š P ˚ P ˚ P , and there are no other relations among them.
Accordingly, every inner product space .V; � / is isomorphic to either mP (the m–fold
orthogonal sum of P ) or nT (the n–fold orthogonal sum of T ). The former are the
odd inner product spaces, the latter the even ones.

A quadratic form on .V; � / is a function qW V !Z4 with q.xCy/Dq.x/Cq.y/C2x�y

for all x;y 2 V . Here �2W Z2 ! Z4 is the unique homomorphism sending 1 to 2.
Restricting q to the irreducible summands of .V; � / gives a decomposition of q as a
sum of quadratic forms on P or T .
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The space P D Z2x admits two quadratic forms q�1 and q1 , defined by qi.x/D i .
Similarly, the space T D Z2y˚Z2z admits exactly four quadratic forms q0;0 , q0;2 ,
q2;0 and q2;2 , given by qi;j .y/ D i and qi;j .z/ D j . Of these the first three are
mutually isomorphic, but are not isomorphic to the fourth one, giving precisely two
isomorphism classes of quadratic forms on T .

The relation P˚T Š 3P of inner product spaces induces relations among the quadratic
forms qi;j and qk as q˙1 ˚ q0;0 Š q˙1 ˚ q�1 ˚ q1 and q˙1 ˚ q2;2 Š 3q�1 . Of
course since q0;0 is isomorphic to both q0;2 and q2;0 , we may replace q0;0 in the first
relation above by either of q0;2 or q2;0 . These relations further imply the relations

(2-1) 2q0;0 Š 2q2;2 and 4q�1 Š 4q1;

which lead to the following unique decomposition of a quadratic form .V; � ; q/:

q Š

�
direct sums of copies of q0;0 and at most one copy of q2;2 if .V; � / is even,
direct sums of copies of q1 and at most three copies of q�1 if .V; � / is odd.

We define the Brown invariant ˇ.q/ 2 Z8 of .V; � ; q/ by setting

ˇ.q0;0/D ˇ.q0;2/D ˇ.q2;0/D 0; ˇ.q2;2/D 4; ˇ.q�1/D�1; ˇ.q1/D 1;

and by imposing additivity ˇ.q0˚ q00/D ˇ.q0/Cˇ.q00/ under the direct sum of the
quadratic forms q0 and q00 . The relations (2-1) show that the Brown invariant is well
defined modulo 8.

For the next lemma we define the norm jxj for x 2 Z8 as the smallest absolute value
jyj with x � y .mod 8/. For example j7j D 1.

Lemma 2.1 For an odd quadratic inner product space .V; � ; q/, we have

jˇ.q/j � dimZ2
V:

Proof Since .V; � / is odd we can write .V; � /Š nP with nD dimZ2
V . Then q is

isomorphic to an n–fold direct sum of copies of P�1 and P1 , and its Brown invariant
ˇ.q/ is therefore an n–fold sum whose summands are either �1 or 1. It follows that
jˇ.q/j � n as claimed.

Given a nonorientable surface †�D4 , smoothly and properly embedded, Guillou and
Marin [16] define an odd form q†W H1.†IZ2/! Z2 that is quadratic with respect to
the linking pairing � on H1.†IZ2/. We omit the details of the definition of q† as they
are not relevant to our subsequent discussion. The Brown invariant ˇ.†;D4/ 2 Z8
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K K0 DK # h K DK0 # h0

h h0

Figure 1: Nonorientable band moves are symmetric: if a knot K0 is obtained
from a knot K by a nonorientable band move using the band h , then K is also
obtained from K0 by a nonorientable band move using the “dual band” h0 of h .

of the embedding †�D4 is defined as the Brown invariant ˇ.q†/ of the quadratic
inner product space .H1.†IZ2/; � ; q†/. The following is a direct consequence of
Lemma 2.1.

Corollary 2.2 For a nonorientable surface †�D4 , smoothly and properly embedded,
the inequality jˇ.†;D4/j � b1.†/ holds.

2.2 Nonoriented band moves

We describe here a move on knots that will be one of our fundamental tools in seeking
concrete nonorientable surfaces †, smoothly and properly embedded in D4 , with
boundary a given knot K .

Definition 2.3 A nonoriented band move on an oriented knot K is the operation of
attaching an oriented band hD Œ0; 1�� Œ0; 1� to K along Œ0; 1�� @Œ0; 1� in such a way
that the orientation of the knot agrees with that of Œ0; 1�� f0g and disagrees with that
of Œ0; 1�� f1g (or vice versa), and then performing surgery on h, that is replacing the
arcs Œ0; 1�� @Œ0; 1��K by the arcs @Œ0; 1�� Œ0; 1�.

The resulting knot K0 shall be said to have been obtained from K by a nonoriented
band move, and we write K0 DK # h to indicate this operation.

Note that if K0 was obtained from K by a nonoriented band move and K0 DK # h,
then the knot K is also obtained from K0 by a nonoriented band move and KDK0#h0

where h0 is the “dual band” of h; see Figure 1.
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94
1
�! 103

h

103 D 94 # h

Figure 2: Our convention for labeling nonoriented bands is illustrated at left,
where the handle h is represented by a dotted line, and its “framing” of 1 is
indicated in the labeled arrow. The band is fully drawn, including its right-
handed half-twist, at right. The caption on the left is shorthand notation for the
caption on the right. As convention dictates, “positive framings” correspond
to right-handed half-twists, and “negative framings” to left-handed half-twists.

Remark 2.1 (on band-move notation) Before proceeding, we pause to introduce
some pictorial notation for band moves. We shall represent a band h in a knot diagram
of K by drawing a dotted line representing the core

˚
1
2

	
� Œ0; 1� of h. We shall then

use an integer n to indicate the number of half-twists to be introduced into h with
respect to the blackboard (or paper) framing, where as is usual n> 0 corresponds to
n right-handed half-twists and n< 0 corresponds to jnj left-handed half-twists. This
framing shall appear in the caption of the figure, where we write K n

�!K0 to indicate
that K0 DK # h and h is the band obtained from its core

˚
1
2

	
� Œ0; 1� by adding the

framing n. Figure 2 illustrates this convention.

Remark 2.2 We note that in writing K n
�!K0 we mean that the knot K under the

indicated nonoriented band move transforms into either the knot K0 or its reverse mirror
knot �K0 . In all of our computations we determined K0 from its crossing number
and its Alexander polynomial, two data points which do not differentiate between K0

and �K0 . Since 4.K
0/D 4.�K0/ this does not affect our claims.

The following proposition is an easy but very useful observation.

Proposition 2.4 If the knots K and K0 are related by a nonoriented band move, then

4.K/� 4.K
0/C 1:

If a knot K is related to a slice knot K0 by a nonoriented band move, then 4.K/D 1.
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c c0

�.c/D 1 �.c0/D�1

Figure 3: The weights ˙1 associated to the two different types of crossings
c and c0

Proof Let †0 be a nonorientable smoothly embedded surface in D4 with @†0 DK0

and with b1.†
0/D 4.K

0/. Let h be a band such that K is obtained from K0 by a
nonoriented band move on h, and let † be the surface in D4 obtained by attaching
the band h to †0 along Œ0; 1�� @Œ0; 1��K0 , and pushing the interior of h into D4 so
as to make † properly (and smoothly) embedded in D4 . Then † is a nonorientable
surface with @†DK and with b1.†/D b1.†

0/C 1, and so

4.K/� b1.†/D b1.†
0/C 1D 4.K

0/C 1;

as needed. If K0 is slice, the above construction can be repeated by using a slice disk
for †0 , rendering † a Möbius band.

2.3 Goeritz forms and Donaldson’s diagonalization theorem

Associated to a projection D of knot K are two “black-and-white” checkerboard
colorings. Each is a coloring of the regions of the knot projection with black and white
colors such that no two regions sharing an edge receive the same color. There are
exactly two such colorings: one in which the unbounded region is colored white and
the other in which it is black.

Associated to either checkerboard coloring of the knot projection D is a bilinear form
first described by Goeritz [13]. Our exposition follows that given by Gordon and
Litherland [14].

Let X0;X1; : : : ;Xn denote the white regions in the checkerboard coloring of D . We
associate to every crossing c in D a weight �.c/D˙1 as in Figure 3. Let Pi;j be the
set of double points in D that are incident to both Xi and Xj . For i; j 2 f0; : : : ; ng

Algebraic & Geometric Topology, Volume 18 (2018)



The nonorientable 4–genus for knots with 8 or 9 crossings 1833

let gij be the integer

(2-2) gij D

8̂<̂
:
�

P
c2Pi;j

�.c/ if i ¤ j ;

�
P
k¤i

gik if i D j:

Let G0D Œgij � be the .nC1/�.nC1/ matrix comprised of the coefficients gij , we refer
to G0 as the pre-Goeritz matrix associated to the above choice of checkerboard coloring
of D . The Goeritz matrix G D Œgij � is the n� n matrix obtained from G0 by deleting
its 0th row and column. The bilinear form .Zn;G/ is symmetric and nondegenerate,
indeed det G D det K .

Let F be a smoothly and properly embedded surface in D4 with @F D K , and let
W DW .F / be the twofold cover of D4 with branching set F . The surface F may
be chosen to be either oriented or nonorientable. Note that the boundary of W is
Y D Y .K/, the twofold cover of S3 with branching set K . We denote by QW the
intersection form on H2.W IZ/=Tor.

Theorem 2.5 (Gordon and Litherland [14, Theorem 3]) Let K be a knot and D a
projection of K . Pick a checkerboard coloring of D , and let nC 1 be the number of
white regions. Let F 0 be the surface with boundary equal to K , obtained from the black
regions (with twisted bands added to connect the black disks), and let F be obtained
from F 0 by pushing its interior into D4 . With W DW .F / described as above, there
is an isomorphism

.H2.W IZ/=Tor;QW /Š .Z
n;G/

of integral, symmetric, bilinear forms.

Corollary 2.6 If a knot K has a projection D with a (positive or negative) definite
Goeritz matrix G , then its twofold branched cover Y .K/ bounds a smooth, compact
(positive or negative) definite 4–manifold W .

If D is an alternating knot projection of a knot K then the Goeritz matrices G˙ associ-
ated to either of the two possible checkerboard colorings of D are definite, the subscript
in G˙ indicating the type of definiteness for each case. Indeed, by a beautiful result
of Greene’s [15], this property characterizes alternating knots. We note that all knots
with 8 or 9 crossings have alternating diagrams, with the exception of the 11 knots

(2-3) 819; 820; 821; 942; 943; 944; 945; 946; 947; 948; 949:
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Theorem 2.5 points to the importance of understanding the 4–manifold W .†/, and
we pause to elucidate some of its algebrotopological properties before continuing. It is
not hard to show that b2.W .†//D b1.†/; see Lemma 1 in [12]. More difficult is the
proof that b1.W .†//D 0, which is given in Lemma 2 in [19]. The next proposition,
whose proof can be found in [11; 22], describes other relevant aspects of the algebraic
topology of W .†/.

Proposition 2.7 (Gilmer [11], Owens and Strle [22]) Let W be a smooth, oriented,
compact 4–manifold with b1.W /D 0 and with Y D @W a rational homology 3–sphere.
Let ` denote the determinant of the intersection pairing

QW W H2.W IZ/=Tor˝H2.W IZ/=Tor! Z;

and let n be the order of

Im.Tor.H2.W IZ///! Tor.H2.W;Y IZ//:

Then jH1.Y /j D ` � n
2 .

Corollary 2.8 Let K be a knot bounding a Möbius band †�D4 , and let W DW .†/.
Then the absolute value of the square of the single generator of H2.W IZ/=Tor equals
a natural number ` that divides det K with quotient a square. In particular, if det K is
square-free, then `D˙ det K .

We conclude this section by quoting a beautiful result of Donaldson’s.

Theorem 2.9 [6] Let X be a smooth, closed, oriented 4–manifold whose intersection
form .H2.X IZ/=Tor;QX / is definite. Then QX is diagonalizable over Z.

2.4 Lower bounds on 4.K /

A combination of the Gilmer–Livingston congruence relation (1-2) and Theorems 2.5
and 2.9 can be used to obtain lower bounds on 4.K/ for certain knots K . We distin-
guish three cases according to whether �.K/C 4 �Arf.K/ is congruent mod 8 to 2, 4

or 0. The corresponding lower bounds on 4.K/ are stated in Theorems 2.10, 2.11
and 2.12, respectively.

To begin, let K be a knot such that �.K/C 4 �Arf.K/� 2 .mod 8/ and suppose that
K bounds a smoothly and properly embedded Möbius band † in D4 . Let W DW .†/
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be the twofold cover of D4 with branching set †, and note that the Gilmer–Livingston
congruence relation implies that W is positive definite. Corollary 2.8 dictates that the
square of the sole generator of H2.W .†//=Tor is some `2N that is a divisor of det K

such that det K=` is a square. We capture this statement by writing QW .†/ D Œ`�.

Assume additionally that K has a checkerboard coloring whose associated Goeritz
matrix G is negative definite, and let W .F / be the 4–manifold as in Theorem 2.5. We
can then create the smooth, closed, oriented 4–manifold X by gluing W .†/ to W .F /

along their boundaries:

X DW .F /[Y .K / .�W .†//:

Then X is negative definite, and so by Theorem 2.9 its intersection form QX must
be diagonalizable over Z. The direct sum QW .F /˚QW .†/ DQW .F /˚ Œ�`� of the
intersection forms of W .F / and W .†/ clearly embeds into QX , a condition that can
be explicitly checked for a concrete knot K . Conversely, if QW .F /˚QW .†/ does not
embed into a diagonal form of equal rank, then K cannot bound a Möbius band in D4 ,
and we conclude that 4.K/� 2. We summarize this conclusion in the next theorem
where we use the term 1–definite as a synonym for positive definite, and similarly
�1–definite as a substitute for negative definite.

Theorem 2.10 Let K be a knot with �.K/C 4 �Arf.K/� 2� .mod 8/ for a choice
of � 2 f˙1g. Assume that K admits a checkerboard coloring for which the associated
Goeritz form G is ��–definite.

If there is no embedding of G˚Œ�`� into the �–definite diagonal form .Zrank.G/C1; � Id/
for any divisor ` 2N of det K with det K=` a square, then 4.K/� 2.

If K is a knot with �.K/C4�Arf.K/� 4 .mod 8/ then the Gilmer–Livingston relation
(1-2) reduces to

�.W .†//�ˇ.D4; †/� 4 .mod 8/

for any nonorientable surface †�D4 with @†DK , and implies that 4.K/� 2. If a
nonorientable surface † with b1.†/D 2 existed, then the above relation would force
�.W .†//D˙2 according to Corollary 2.2. Since b2.W .†//D 2, we conclude that
W .†/ is either positive or negative definite. If K is an alternating knot such that both
its Goeritz forms G˙ are definite, then one can again form a smooth, oriented, closed
and definite 4–manifold X as
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(2-4) X D

�
W .F�/[Y .K / .�W .†// if �.W .†// > 0;

W .FC/[Y .K / .�W .†// if �.W .†// < 0:

The surfaces F˙ are the surfaces formed by the black regions of the checkerboard col-
oring used to create the Goeritz form G˙ ; see Theorem 2.5. In either case, Donaldson’s
Theorem 2.9 implies that the intersection form QX of X must be diagonalizable. The
difficulty faced in this case is that it is generally hard to determine the intersection form
QW .†/ of W .†/, given that † is a hypothetical surface. Nevertheless, if † existed,
we would still obtain an embedding of QW .F˙/ into a diagonal definite form of rank
two larger, since b2.X /D b2.W .F˙//C 2. We summarize this in the next theorem.

Theorem 2.11 Let K be a knot with �.K/C4 �Arf.K/� 4 .mod 8/ and assume that
the Goeritz matrices G˙ of K , associated to the two possible checkerboard colorings
of a knot projection D of K , are positive and negative definite, respectively (with the
subscript ˙ indicating the definiteness type of G˙ ).

If there is no embedding of GC into the positive-definite form .Zrank.GC/C2; Id/ nor
of G� into the negative-definite form .Zrank.G�/C2;�Id/, then 4.K/� 3.

Lastly, we turn to the case of a knot K with �.K/C4 �Arf.K/� 0 .mod 8/. For such
knots the Gilmer–Livingston relation offers no information about 4.K/. Suppose
that K is alternating such that its Goeritz forms G˙ are definite. If K bounded a
Möbius band †�D4 , then W .†/ is either positive or negative definite with intersection
form Œ`� for some nonzero integer ` dividing det K and with det K=j`j a square, accord-
ing to Corollary 2.8. We then form again the definite, smooth, compact 4–manifold X as
in (2-4). By Donaldson’s theorem, X must have a diagonalizable intersection form QX .

Theorem 2.12 Let K be a knot with �.K/C4 �Arf.K/� 0 .mod 8/, and assume that
the Goeritz matrices G˙ of K , associated to the two possible checkerboard colorings
of a knot projection D of K , are positive and negative definite, respectively (with the
subscript ˙ indicating the definiteness type of G˙ ).

If there is no embedding of GC˚ Œ`� into the positive-definite form .Zrank.GC/C1; Id/
nor of G�˚ Œ�`� into the negative-definite form .Zrank.G�/C1;�Id/ for any divisor
` 2N of det K with det K=` a square, then 4.K/� 2.

This last theorem is stated only for completeness and possible future applications. By
happenstance, all knots K with 8 or 9 crossings with �.K/C4 �Arf.K/� 0 .mod 8/

admit nonoriented band moves to slice knots, and accordingly all such knots have 4

equal to 1; see Section 3.4.
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3 Computations of 4

This section computes the value 4.K/ for all knots K with crossing number equal
to 8 or 9, thereby proving Theorems 1.1 and 1.2. The computations are organized into
four subsections: Section 3.1 considers those 8– and 9–crossing knots that are slice
(and hence have 4 equal to 1), are concordant to a knot with a known value of 4 ,
or admit a single nonorientable band move resulting in a slice knot. Sections 3.2, 3.3
and 3.4 consider knots K with �.K/C 4 �Arf.K/ congruent to 4, 2 and 0 modulo 8,
respectively, and rely on Theorems 2.10 and 2.11 to work out the their value of 4 .
We note that while these theorems only apply to alternating knots, by happenstance
most of the nonalternating knots (2-3) with 8 or 9 crossings are already addressed in
Section 3.1 as they are all either slice (in the case of 820 and 946 ), concordant to a
knot with 4 D 1 (in the case of 821 ), or admit a single nonoriented band move to a
slice knot (in the case of 819 , 942 , 943 , 944 , 945 , 947 and 948 ). The only remaining
nonalternating knot 949 is addressed in Section 3.2 by solely relying on Proposition 2.4,
which in turn does not use the assumption of the knot being alternating.

3.1 Slice knots, concordant knots, and band moves to slice knots

Among knots with crossing number 8 or 9, the smoothly slice knots are precisely [2]

(3-1) 88; 89; 820 and 927; 941; 946:

For each of these six knots, 4 equals 1.

Additionally, there are smooth concordances [5; 4] between the knots 810 and �31

(with �K referring to the reverse mirror of K ) as well as between the knots 821 and 31 .
Since 4.31/D 1, and since 4 is a invariant of smooth concordance, we obtain

(3-2) 4.810/D 1 and 4.821/D 1:

Among knots with 8 or 9 crossings, the 38 knots

(3-3)

83; 84; 85; 86; 87; 811; 814; 816; 819;

91; 93; 94; 95; 96; 97; 98; 99; 913; 915; 917; 919; 921; 922; 923;

925; 926; 928; 929; 931; 932; 935; 936; 942; 943; 944; 945; 947; 948

bound smoothly and properly embedded Möbius bands in D4 . This is seen in Fig-
ures 10–13, where we exhibit band moves from each of the knots in (3-3) to a slice knot.
The claim about bounding Möbius bands then follows from Proposition 2.4. The only
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knot from the list (3-3) not found in the aforementioned figures is the knot K D 94 ,
which was addressed in Figure 2.

3.2 Knots with �.K /C 4 �Arf.K /� 4 .mod 8/

Among knots K with crossing number 8 or 9, those that satisfy the congruence
�.K/C 4 �Arf.K/� 4 .mod 8/ are precisely the 19 knots

(3-4)
81; 82; 812; 813; 815; 817; 818;

910; 911; 914; 918; 920; 924; 930; 933; 934; 937; 938; 949:

The Gilmer–Livingston relation (1-2) implies that 4.K/ � 2 for any such knot.
We verify that 4.K/ D 2 for all knots K in (3-4) with the exception of K D 818

by constructing an explicit nonorientable smooth and properly embedded surface †
in D4 with b1.†/D 2 and @†DK . The existence of such a surface follows from
Proposition 2.4 by finding a nonorientable band move from K to a knot K0 with
4.K

0/ D 1. Such band moves are described in Figures 14–15. We address the
exceptional knot 818 next:

Proposition 3.1 4.818/D 3.

Proof Theorem 2.11 implies that 4.818/� 3 provided we can prove that neither of
the two Goeritz matrices G˙ of 818 embed into a diagonal form of equal definiteness
(positive or negative) and of rank two larger.

We start by considering G� , the negative definite Goeritz matrix associated to the
checkerboard coloring of 818 as given in Figure 4. In that figure, G� is the incidence
matrix of the given graph, whereby each of the vertices e1; : : : ; e4 (corresponding to
generators of Z4 ) has square �3 (that is, G�.ei ; ei/D�3), and any pair of vertices
sharing an edge pairs to 1, while vertices not sharing an edge pair to 0.

An embedding
'W .Z4;G�/ ,! .Z6;�Id/

is a monomorphism 'W Z4!Z6 such that '.a/�'.b/DG�.a; b/ for any pair a; b2Z4,
where the dot product refers to the product �Id on Z6 . Let feig

4
iD1

be the basis for
.Z4;G�/ as described by Figure 4 (right), and let ffig

6
iD1

be the standard basis for
.Z6;�Id/, that is, the basis with fi � fj D�ıij . In a further simplification of notation
we shall also write ei � ej to mean G�.ei ; ej /; the nature of the vectors engaging in
the dot product determines the particular dot product being used.
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818
0
�! 77

e1

�3
e2

�3

e3

�3

e4

�3

Figure 4: K D 818 (left) and its negative-definite Goeritz form G� (right)

If an embedding ' existed, it would have to send e1 (up to a change of basis of
.Z6;�Id/) to

'.e1/D f1Cf2Cf3:

Since e1 � e3 D 0, we have that '.e3/ must share an even number of basis elements
ffig

6
iD1

with the basis elements f1; f2; f3 occurring in the formula for '.e1/. Thus
that shared number is either 0 or 2. If it is 0, then '.e3/D f4Cf5Cf6 . However,
since e1 � e2 D e3 � e2 D 1, the expression '.e2/ must share an odd number of basis
elements ffig

6
iD1

with those occurring in each of the formulas for '.e1/ and '.e3/.
That odd number cannot be 3 and thus must be 1, which is impossible as all six basis
elements ffig

6
iD1

occur in '.e1/ and '.e3/.

It follows that '.e3/ must have two basis elements in common with '.e1/, and so,
again up to a change of basis of .Z6;�Id/, it must be that

'.e3/D f1�f2Cf4:

Suppose that '.e2/ D
P6

iD1 �ifi . Then the values of e2 � ei for i D 1; 2; 3 lead to
these equations in the integer coefficients �1; : : : ; �6 :

��1��2��3 D 1;

��1C�2��4 D 1;

�2
1C � � �C�

2
6 D 3:

Writing �3 D��1��2� 1 and �4 D��1C�2� 1 by using the first two equations
and plugging these into the third equation yields

�2
1C 3�2

2C 2.�1C 1/2C�2
5C�

2
6 D 3:
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It follows that �2 D 0 and that either �1 D 0 or �1 D�1, leading to two possibilities
for '.e2/:

'.e2/D�f3�f4Cf5 or '.e2/D�f1Cf5Cf6:

We suppose first that '.e2/D�f3�f4Cf5 and write '.e4/D
P6

iD1 �ifi for some
integers coefficients �1; : : : ; �6 subject to the equations

��1��2��3 D 1;

�3C�4��5 D 0;

��1C�2��4 D 1;

�2
1C � � �C�

2
6 D 3:

The first three of these equations lead to �3 D ��1 ��2 � 1, �4 D ��1C�2 � 1

and �5 D�2.�1C 1/, which when plugged into the fourth equation yield

�2
1C 3�2

2C 6.�1C 1/2C�2
6 D 3:

It follows immediately that �1 D�1, �2 D 0 and �2
6
D 2, and the latter equation of

course has no integral solution �6 . Therefore the choice of '.e2/D�f3� f4C f5

does not lead to an embedding ' .

Secondly, suppose that '.e2/ D �f1C f5C f6 , the only remaining possibility for
'.e2/, and write again '.e4/D

P6
iD1 �ifi for integers �1; : : : ; �6 , this time subject to

��1� �2� �3 D 1;

�1� �5� �6 D 0;

��1C �2� �4 D 1;

�2
1C � � �C �

2
6 D 3:

The first three of these equations imply �3 D��1� �2� 1, �4 D��1C �2� 1 and
�6 D �1� �5 , which when inserted into the fourth equation lead to

�2
1C 3�2

2C 2.�1C 1/2C �2
5C .�1� �5/

2
D 3:

We are forced to conclude that �2 D 0 and that either �1 D 0 or �1 D �1. The
case of �1 D 0 forces the equation 2�2

5
D 1, while the case of �1 D �1 leads to

�5C .1C �5/
2 D 2, neither of which has integral solutions.
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We find that both possibilities for '.e2/ lead to equations for the coefficients of '.e4/

that have no integral solutions, and thus the embedding 'W .Z4;G�/ ,! .Z6;�Id/
cannot exist.

It is easy to see that GC D�G� , and so an embedding .Z4;GC/ ,! .Z6; Id/ would
lead to an embedding .Z4;G�/ ,! .Z6;�Id/ which was already shown not to exist.
Therefore the conditions of Theorem 2.11 are met and it follows that 4.818/� 3. The
equality 4.818/D 3 follows from the nonoriented band move indicated in Figure 4
(left) which transforms 818 into the knot 77 , and the fact that 4.77/D 2; see [2].

3.3 Knots with �.K /C 4 �Arf.K /� 2 .mod 8/

In this section we consider the 8– and 9–crossing knots K that satisfy the congruence
relation �.K/C 4 �Arf.K/� 2 .mod 8/. These are precisely the 34 knots

(3-5)

�84; �86; 87; �810; 811; �814; �816; �819; �821;

�92; �93; �95; �96; �98; 99; 912; 915; 916; �917; �921; 922; �925;

926; 928; �929; �931; �932; 935; 939; 940; 942; 945; 947; �948:

The 8– and 9–crossing knots K that satisfy �.K/C 4 �Arf.K/ � �2 .mod 8/, the
opposite congruence relation, are the mirror knots of those appearing in (3-5). The 29

underlined knots (or their mirror knots) in this list have been shown in Section 3.1 to
have 4 equal to 1, leaving us only to deal with the remaining five knots.

We will show that each nonunderlined knot K from (3-5) meets the assumptions of
Theorem 2.10, thereby proving that 4.K/� 2. We will then show that 4.K/D 2 by
finding a nonoriented band move from K to a knot K0 with 4.K

0/D 1.

Notational convention We will represent the Goeritz forms .Zn;G/ of the various
nonunderlined knots from (3-5) as incidence matrices of weighted graphs. Recall that
in such a presentation the generators e1; : : : ; en of Zn correspond to the n vertices of
the weighted graph, which in turn correspond to the white regions in the checkerboard
coloring of the diagram of K . Moreover, G.ei ; ei/ is given by the weight of the
vertex ei for each i D 1; : : : ; n, and if ni;j is the number of edges between the vertices
ei and ej , then G.ei ; ej /Dnij . For simplicity of notation we shall write ei �ej to mean
G.ei ; ej /. This weighted graph approach to describing .Zn;G/ is merely a graphical
tool that encodes the form (2-2).

An embedding

(3-6) 'W .ZnC1;G˚ Œ�d �/ ,! .ZnC1;�Id/
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is a monomorphism 'W ZnC1!ZnC1 with the property that �Id.'.ei/; '.ej //D ei �ej

for i; j D 1; : : : ; nC 1. Here enC1 is the basis element of Zn˚Z corresponding to
the last summand, and it has the properties

enC1 � enC1 D�d and enC1 � ei D 0 for i D 1; : : : ; n:

Recall that d 2N is a divisor of det K with det K=d a square; see Corollary 2.8. With
the exception of K D 940 , all nonunderlined knots K from (3-5) have square-free
determinant, forcing d D det K .

Let ffig
nC1
iD1

be the standard basis for .ZnC1;�Id/, that is, �Id.fi ; fj /D�ıij for all
1� i; j � nC 1, and also write fi �fj to mean �Id.fi ; fj /. While the dot notation is
used for both G and �Id, the nature of the vectors involved in the dot product makes
clear which form is meant.

Our approach to showing that the embedding ' does not exist is to take advantage of
the “rigidities” presented by vertices ei with square �2 or �3. Any such vertex ei

under ' maps to either f1�f2 or f1Cf2Cf3 , up to a change of basis of .ZnC1;�Id/.
Moreover since each basis element fi has square �1, then a pair of vertices ei and ej

with ei � ej D 1 must have the property '.ei/ and '.ej / share an odd number of basis
elements ffig

nC1
iD1

, and similarly if ei �ej D 0 then '.ei/ and '.ej / must share an even
number of basis elements ffig

nC1
iD1

. These requirements are restrictive enough to show
that ' cannot exist for the Goeritz forms of the nonunderlined knots in (3-5).

The nonexistence of the embedding (3-6) shows that 4.K/� 2 for the corresponding
knot K . The equality 4.K/ D 2 is derived by finding a nonoriented band move
from K to a knot K0 with 4.K

0/D 1.

Remark 3.1 We would like to emphasize that in each of the following arguments, our
computations are valid up to a change of basis of .ZnC1;�Id/ and we will usually
take this fact for granted to simplify the exposition.

K D �92 The negative definite Goeritz matrix G associated to the checkerboard
coloring of the knot K D �92 from Figure 5 (left) is given as the incidence matrix
of the weighted graph in Figure 5 (right), where all the missing vertices, indicated by
the dotted line, have weight �2. Since det 92 D 15 is square-free, we are seeking to
obstruct the existence of an embedding

'W .Z8;G˚ Œ�15�/ ,! .Z8;�Id/:

Algebraic & Geometric Topology, Volume 18 (2018)



The nonorientable 4–genus for knots with 8 or 9 crossings 1843

�92
0
�! 71

e1 e2 e6 e7 e8

�2 �2 �2 �3 �15

Figure 5: K D�92 (left) and its Goeritz form (right)

912
0
�! 73

e1 e2 e3 e4 e5

�2 �3 �2 �5 �35

Figure 6: K D 912 (left) and its Goeritz form (right)

If ' existed, we would have to have

'.ei/D fi �fiC1 for i D 1; : : : ; 6:

Let '.e7/D
P8

iD1 �ifi . Then since e7 � e6 D 1 and e7 � ej D 0 for j D 1; : : : ; 5, it
follows that

�1 D �2 D �3 D �4 D �5 D �6 and ��6C�7 D 1:

Since at most three of the coefficients �j are nonzero, we conclude that �j D 0 for
j D 1; : : : ; 6 and �7 D 1. It follows that '.e7/ D f7C�8f8 , forcing the relation
1C�2

8
D3, which has no integral solution. Thus ' cannot exist, leading to 4.�92/�2.

The equality 4.�92/D 2 follows from the nonorientable band move in Figure 5 (left)
which transforms �92 to 71 and the fact that 4.71/D 1.

K D 912 The negative definite Goeritz matrix G associated to the checkerboard
coloring of the knot K D 912 from Figure 6 (left) is given by the incidence matrix in
Figure 6 (right). Since det 912 D 35 is square-free, we seek to obstruct an embedding

'W .Z5;G˚ Œ�35�/ ,! .Z5;�Id/:
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If ' existed, we would have

'.e4/D f1Cf2Cf3Cf4Cf5 or '.e4/D f1C 2f2:

Case 1 ('.e4/D f1C f2C f3C f4C f5 ) Write '.e5/D
P5

iD1 �ifi for integers
�1; : : : ; �5 to be determined. Since e5 � e5 D�35 it follows that 35D

P5
iD1 �

2
i , and

e4 � e5 D 0 implies that �1 C �2 C �3 C �4 C �5 D 0. These two relations are in
contradiction with one another because

35D �2
1C � � �C�

2
5 � .�1C � � �C�5/

2 .mod 2/� 0 .mod 2/;

showing that the choice of '.e4/ D f1C f2C f3C f4C f5 does not extend to an
embedding ' .

Case 2 ('.e4/D f1C 2f2 ) Since e3 � e4 D 1 and '.e3/ is a sum of only two basis
elements ffig

5
iD1

, it must be that '.e3/D�f1Cf3 or '.e3/D f1�f2 .

We first pursue the case of '.e3/D �f1C f3 . Since e2 � e3 D 1, '.e2/ must share
exactly one basis element with '.e3/. This shared element cannot be f1 since this
would force '.e2/ �'.e4/¤ 0, showing that '.e3/ and '.e2/ must share f3 . Note that
'.e2/ cannot contain f2 either since this would lead yet again to '.e2/ �'.e4/¤ 0. We
are thus forced to conclude that '.e2/D�f3Cf4Cf5 . Write '.e1/D

P5
iD1 �ifi .

Then �1C2�2D 0, �1D�3 , 1D�3��4��5 and
P5

iD1 �
2
i D 2. The three linear

equations lead to �1 D �3 D�2�2 and �5 D�2�2��4� 1, which when plugged
into the quadratic equation give

9�2
2C�

2
4C .2�2C�4C 1/2 D 2:

This forces �2D 0 and �2
4
C.�4C1/2D 2, the latter of which has no solution �4 2Z.

Next we turn to the only remaining possibility, namely '.e3/Df1�f2 . Since e2 �e3D1,
'.e3/ and '.e2/ must share exactly one basis element fi , i D 1; : : : ; 5. Accordingly,
we must have '.e2/D˙fi ˙ fj with i 2 f1; 2g and j 2 f3; 4; 5g. However each of
these cases leads to '.e2/ �'.e4/¤ 0, contradicting e2 � e4 D 0.

It follows that the embedding ' cannot exist, implying that 4.912/ � 2. The non-
oriented band move from 912 to 73 in Figure 6 (left) shows that 4.912/D 2 seeing
as 4.73/D 1.

K D 916 The negative definite Goeritz matrix G associated to the checkerboard
coloring of the knot K D 916 from Figure 7 (left) is given in Figure 7 (right). Since
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916
0
�! 62

e1 e2 e5 e6 e7

e4

e3

�2 �2 �4 �2 �2 �39

�2

Figure 7: K D 916 (left) and its Goeritz form (right)

det 916 D 39 is square-free, we wish to obstruct the existence of an embedding

'W .Z7;G˚ Œ�39�/ ,! .Z7;�Id/:

Any such ' would have

'.e3/D f1Cf2Cf3Cf4:

Since ei �e4D1 and ei �eiD�2 for iD2; 4; 5, each '.ei/ has exactly one basis element
in common with '.e3/, and that common basis element is different for each i D 2; 4; 5.
Indeed if we had for instance �f1 common to '.e2/ and '.e4/, we would be forced
to have '.e2/D�f1Cf5 and '.e4/D�f1�f5 , which would make it impossible to
satisfy the relations '.e1/ �'.e2/D 1 and '.e1/ �'.e4/D 0 simultaneously. A similar
argument shows that neither of the other two pairs f'.e2/; '.e5/g and f'.e4/; '.e5/g

can share the same basis element with '.e3/. Thus we conclude that

'.e2/D�f1Cf5; '.e4/D�f2Cf6; '.e5/D�f3Cf7:

Since e1 � e2 D 1, '.e1/ shares exactly one basis element with '.e2/. This shared
element cannot be f5 since the other basis element for '.e1/ would have to come
from ff2; f3; f4; f6; f7g, each choice of which would lead to '.e1/ � '.ei/ ¤ 0 for
some i ¤ 1; 2. This leaves '.e1/D f1�f4 as the only possibility. Lastly, e6 � e5 D 1

says that '.e6/ must contain one and only one of f3 or f7 . However either choice
for the other basis element in '.e6/ leads to one of '.e6/ �'.ei/, i D 1; 2; 3; 4 being
nonzero, a contradiction. Thus ' cannot exist, and so 4.916/ � 2, showing that
4.916/D 2 given the nonoriented band move from 916 to 62 in Figure 7 (left) and
seeing as 4.62/D 1.
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939
1
�! 811

e1 e2 e3 e5 e6

e4

�4 �3 �2 �55

Figure 8: K D 939 (left) and its Goeritz form (right). Here e2 has square
�2 and e4 has square �3 .

K D 939 The negative definite Goeritz matrix G associated to the checkerboard
coloring of the knot K D 939 in Figure 8 (left) is the incidence matrix of the weighted
graph in Figure 8 (right). Since det 939 D 55 is square-free, we aim to show that no
embedding

'W .Z6;G˚ Œ�55�/ ,! .Z6;�Id/

exists. Any such ' would have

'.e1/D f1Cf2Cf3Cf4 and '.e2/D�f4Cf5:

Note that '.e1/ D 2f1 is not possible because e1 � e2 D 1. Since e2 � e3 D 1 and
e1 � e3 D 0, we have that '.e3/ shares exactly one basis element with '.e2/ and
an even number of basis elements with '.e1/. The shared element among '.e3/

and '.e2/ may be either f4 or f5 , leading to the possibilities '.e3/D f4�f1�f6

or '.e3/D�f5�f1Cf2 .

Case 1 ('.e3/ D f4 � f1 � f6 ) Since e3 � e4 D 1 D e1 � e4 then '.e4/ shares an
odd number of basis elements with each of '.e1/ and '.e3/. This shared number
of basis elements between '.e4/ and '.e3/ cannot be three since if it were then we
would obtain '.e5/ � '.e4/� '.e5/ � '.e3/ .mod 2/ which is not a valid congruence.
Thus '.e4/ shares one basis element with '.e3/. Note also that '.e4/ shares an even
number of basis elements with '.e2/.

Case 1a ('.e3/ and '.e4/ share only f4 ) In this case f5 also appears as a summand
in '.e4/ and we are led to '.e4/ D �f4 � f5˙ fi for some i 2 f2; 3g. No matter
which i 2 f2; 3g we pick, we arrive at an even number of shared basis elements between
'.e4/ and '.e1/, a contradiction.
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Case 1b ('.e3/ and '.e4/ share only f1 ) In this case '.e4/ cannot contain f4

or f6 , and therefore cannot contain f5 either since e2 � e4 D 0. Thus we are forced
to conclude that in this case '.e4/D f1�f2�f3 . Moving on to '.e5/, the relation
e5 � e3 D 1 shows that '.e5/ shares with '.e3/ exactly one of f1 , f4 or f6 .

(˛ ) Suppose '.e5/ and '.e3/ share f1 . In this case we find that '.e5/D f1˙fi

for some i 2 f2; 3; 5g. The relation e5 � e2 D 0 shows that i ¤ 5. Each of the
possibilities '.e5/D f1˙f2 or '.e5/D f1˙f3 leads to one of '.e5/ �'.e1/

or '.e5/ �'.e4/ having the wrong value, a contradiction.

(ˇ ) Suppose '.e5/ and '.e3/ share f4 . Here '.e5/ D �f4 ˙ fi for some i 2

f2; 3; 5g. The relation e5 �e2D 0 forces i D 5 and '.e5/D�f4�f5 . However
this leads to the incorrect value of 1 for '.e5/ �'.e1/, a contradiction.

( ) Suppose '.e5/ and '.e3/ share f6 . Here '.e5/Df6˙fi for some i 2f2; 3; 5g.
The relation e5 � e2 D 0 forces i ¤ 5, and each of the remaining possibilities
'.e5/D f6˙ f2 and '.e5/D f6˙ f3 leads to the incorrect value of ˙1 for
'.e5/ �'.e1/, another contradiction.

Case 1c ('.e3/ and '.e4/ share only f6 ) Since e4 � e2 D 0, then '.e4/ cannot
contain f5 either, leaving us with the possibility of '.e4/D f6˙ f2˙ f3 . No matter
the choice of signs, this leads to an even number of shared basis elements between
'.e4/ and '.e1/, contradicting e4 � e1 D 1.

We conclude that the case of '.e3/D f4�f1�f6 does not lead to an embedding ' .

Case 2 ('.e3/D�f5�f1Cf2 ) As in the previous case, we find that '.e4/ shares
one basis element with '.e3/, shares an even number of basis elements with '.e2/

and an odd number with '.e1/.

Case 2a ('.e3/ and '.e4/ only share f1 ) In this case '.e4/ cannot contain f2 or f5

and thus also not f4 , since '.e2/D�f4Cf5 . This leaves us with '.e4/Df1˙f3˙f6 ,
leading to an even number of shared basis elements between '.e4/ and '.e1/, a
contradiction to the relation e4 � e1 D 1.

Case 2b ('.e3/ and '.e4/ only share f2 ) In this setup '.e4/ cannot contain f1

or f5 and thus also not f4 (again since e2 � e4 D 0). Similarly to the previous subcase
we are left with '.e4/D �f2˙ f3˙ f6 leading to the same contradiction as in the
previous subcase.
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940
0
�! 931

e1 e2

e3e4

e5

e6�3 �3

�3�3

�3

�3 or � 75

Figure 9: K D 940 (left) and its Goeritz form (right)

Case 2c ('.e3/ and '.e4/ only share f5 ) Here '.e4/ cannot contain f1 or f2 ,
while the relation e2 � e4 D 0 implies that '.e4/ must contain f4 . This implies that
'.e4/D f5Cf4˙fi for i 2 f3; 6g. Since '.e4/ shares an odd number of elements
with '.e1/ we conclude that i D 6 and that '.e4/D f5C f4˙ f6 . This, regardless
of the sign choice, implies that '.e4/ �'.e1/D�1, a contradiction.

Having exhausted all possibilities and having been led to a contradiction in each, we
conclude that the embedding ' cannot exist.

It follows that 4.939/� 2. Figure 8 (left) shows a band move from 939 to 811 and
since 4.811/D 1, it follows that 4.939/D 2.

K D 940 The negative definite Goeritz matrix G associated to the checkerboard
coloring of the knot K D 940 in Figure 9 (left) is the incidence matrix of the weighted
graph in Figure 9 (right). Since det 940 D 75D 3 �52 we wish to obstruct the existence
of an embedding

'W .Z6;G˚ Œ�d �/ ,! .Z6;�Id/

for d D 3 and for d D 75. If we assume that such a ' exists, then its restriction to
V WD Span.e1; e2; e3; e4/ is an embedding of .V;GjV�V / into .Z6;�Id/. However
the form .V;GjV�V / is isomorphic to the form considered in Proposition 3.1, where
it was shown not to embed into .Z6;�Id/. It follows that 4.940/� 2, and since the
nonoriented band move in Figure 9 (left) turns 940 into 931 , a knot with 4 equal to 1,
we conclude that 4.940/D 2.

3.4 Knots with �.K /C 4 �Arf.K /� 0 .mod 8/

The 17 knots K with crossing number 8 or 9 that satisfy the congruence relation
�.K/C 4 �Arf.K/� 0 .mod 8/ are, up to passing to mirrors, given by

(3-7)
83; 85; 88; 89; 820;

91; 94; 97; 913; 919; 923; 927; 936; 941; 943; 944; 946:
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83
1
�! 01 84

1
�! 01 85

�1
���! 01

86
1
�! 01 87

0
�! 61 811

0
�! 31 # .�31/

814
1
�! 88 816

1
�! 820 819

0
�! 01

Figure 10: Nonoriented band moves from the knots 83 , 84 , 85 , 86 , 87 , 811 ,
814 , 816 , 819 to smoothly slice knots

All of these knots have already been considered in Section 3.1 with the exception of
K D 94 for which Figure 2 shows a band move to the slice knot 103 , demonstrating
that 4.94/D 1.

4 Concluding remarks

Murakami and Yasuhara [20] proved that

4.K/�
�

1
2
c.K/

˘
;
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91
0
�! 01 93

�1
���! 61 95

1
�! 01

96
�1
���! 61 97

0
�! 61 98

�1
���! 61

99
0
�! 61 913

0
�! 89 915

0
�! 88

Figure 11: Nonoriented band moves from the knots 91 , 93 , 95 , 96 , 97 , 98 ,
99 , 913 , 915 to smoothly slice knots

where c.K/ is the crossing number of the knot K , and where x 7! bxc is the floor
function, giving the largest integer n less than or equal to the real number x . For the
case of a knot K with c.K/D 8 or c.K/D 9 this inequality becomes 4.K/� 4, an
inequality which is strict for all such knots as demonstrated by Theorems 1.1 and 1.2.
The known values of 4 from [2] show that this inequality remains strict for all knots K
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917
�1
���! 01 919

0
�! 88 921

0
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���! 01 923

0
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1
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926
�1
���! 89 928

0
�! 88 929

1
�! 946

Figure 12: Nonoriented band moves from the knots 917 , 919 , 921 , 922 , 923 ,
925 , 926 , 928 , 929 to smoothly slice knots

with c.K/ equal to either 3, 5, 6 or 7. However the above inequality does become an
equality for K D 41 . These observations prompt the following question.

Question 4.1 Does there exist a knot K with c.K/ > 4 and with 4.K/D
�

1
2
c.K/

˘
?

The knot K D 818 is special among 8– and 9–crossing knots, being the only knot that
maximizes 4 , with a maximal value of 3. We note that 818 is also special among this
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931
0
�! 41 # 41 932

1
�!L 935

1
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936
0
�! 61 942

0
�! 01 943

0
�! 01

944
0
�! 01 945

�1
���! 10137 947

0
�! 820 948

1
�! 61

Figure 13: Nonoriented band moves from the knots 931 , 932 , 935 , 936 , 942 ,
943 , 944 , 945 , 947 , 948 to smoothly slice knots. In the top center, the knot L

obtained by the indicated band move equals either the knot 11n4 or 11n21 .
We couldn’t fully identify this knot, but both 11n4 or 11n21 are slice knots,
which is sufficient for our purpose.

set of knots as it has the largest full symmetry group, namely the dihedral group D8 ;
see [2]. Other knots with 8 or 9 crossings have smaller full symmetry groups, given
by Zi and Dj with i D 1; 2 and j D 1; 2; 3; 4; 6. The group D8 does not appear
again as the full symmetry group for any knot K with c.K/� 11, and only the knot
10123 has larger full symmetry group, namely D10 . However 10123 is slice, and so
4.10123/D 1.
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81
�1
���! 72 82

0
�! 31 812

1
�! 76

813
0
�! 62 815

�1
���! 76 817

�1
���! 76

910
1
�! 52 911

0
�! 52 914

1
�! 87

Figure 14: Nonoriented band moves from the knots 81 , 82 , 812 , 813 , 815 ,
817 , 910 , 911 , 914 to knots with 4 equal to 1

Question 4.2 Is there a connection between 4.K/ and the full symmetry group of a
nonslice knot K?

A beautiful result of Edmonds [7] stipulates that a p–periodic knot K possesses a
Seifert surface S � S3 of genus g3.K/ that is preserved under the Zp–action on S3 ,
making the connection between symmetries of a knot and its various genera plausible.
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918
�1
���! 52 920

0
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1
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0
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0
�! 810 938

�1
���! 814 949

�1
���! 821

Figure 15: Nonoriented band moves from the knots 918 , 920 , 924 , 930 , 933 ,
934 , 937 , 938 , 949 to knots with 4 equal to 1
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