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The relative lattice path operad

ALEXANDRE QUESNEY

We construct a set-theoretic coloured operad RL that may be thought of as a com-
binatorial model for the Swiss cheese operad. This is the relative (or Swiss cheese)
version of the lattice path operad constructed by Batanin and Berger. By adapting
their condensation process we obtain a topological (resp. chain) operad that we show
to be weakly equivalent to the topological (resp. chain) Swiss cheese operad.

18D50; 18G30, 55P48

1 Introduction

The Swiss cheese operad SC is a 2–coloured topological operad that mixes, in its
m–dimensional part SCm , the m–dimensional and the .m�1/–dimensional parts of the
little cubes operad C . It was introduced by Voronov [23] as a natural way to define ac-
tions of C�.Cm/–algebras on C�.Cm�1/–algebras and has been used by Kontsevich [15]
in deformation quantization. As announced by Hoefel, Livernet and Stasheff [13], the
Swiss cheese operad SCm also recognizes the pair (m–fold loop space, m–fold relative
loop space). The goal of this paper is to provide a convenient combinatorial model for
(the operad of chains of) SCm , m� 1.

In [3], Batanin and Berger introduce the notion of condensation of a coloured operad.
By applying this condensation to the lattice path operad L they obtain a model for the
(operad of chains of the) little cubes operad.

We introduce the relative lattice path operad RL. It is a coloured operad in the category
of sets that has two types of colours (closed and open). Taking a cosimplicial object
ıW 4!C in a cocomplete closed monoidal symmetric category C , we adapt Batanin
and Berger’s method to obtain a functor

RL–algebra! CoendRL.ı/–algebra

that sends algebras over RL into algebras over the condensation operad of RL, that
is, the SC-type operad CoendRL.ı/.
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1754 Alexandre Quesney

The operad RL has two filtrations by suboperads RLm and RL0m , m� 1; they differ
from each other by their open/closed interacting part.

We are interested in two choices for ı :

ıTopW 4
ıyon
��! Set4

op j�j
��! Top and ıZW 4

ıyon
��! Set4

op C�.�IZ/
������! Ch.Z/;

where ıyon.Œn�/ D Hom4.�; Œn�/ is the Yoneda functor. In this manner, the conden-
sation of RLm leads to a topological operad CoendRLm

.ıTop/ and to a chain operad
CoendRLm

.ıZ/, and similarly for RL0m .

In the topological case, both SC-type operads CoendRLm
.ıTop/ and CoendRL0m.ıTop/

naturally act on the pair (m–fold loop space, m–fold relative loop space).

In order to relate our operads to the Swiss cheese operad, we use Berger’s method of
cellular decompositions. The Swiss cheese operad that we consider is denoted by SCm ,
m� 1, and is the augmented (cubical) version of Voronov’s Swiss cheese operad SCvor

m

defined in [23]. We construct a cellular decomposition of SCm that generalizes cell
decomposition of the little m–cubes operad by Berger [5]. The latter is indexed by
the extended complete graph operad Km . In contrast to the nonrelative case, there are
two ways to index the cells of SCm . This naturally leads us to consider two different
indexing operads RKm and RK0m that may be thought of as the relative versions
of Km . One obtains:

1.1 Theorem Let m�1. Any topological RKm–cellular operad (resp. RK0m–cellular
operad ) is weakly equivalent to the Swiss cheese operad SCm .

The operad CoendRLm
.ı/ has a decomposition by “cells” that are indexed by the poset

operad RKm . This is obtained by means of a map ctotW RLm ! RKm satisfying
ctot.x ıi y/� ctot.x/ ıi ctot.y/. From this (and similar considerations for RL0m ), one
obtains:

1.2 Theorem Let m � 1. The operads CoendRLm
.ıTop/ and CoendRL0m.ıTop/

are weakly equivalent to the topological Swiss cheese operad SCm . The operads
CoendRLm

.ıZ/ and CoendRL0m.ıZ/ are weakly equivalent to the chain Swiss cheese
operad C�.SCm/.

Note that, for each m� 1, the operad CoendRLm
.ıZ/ (resp. CoendRL0m.ıZ/) admits a

weakly equivalent suboperad RSm (resp. RS 0m ). These two operads RSm and RS 0m
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The relative lattice path operad 1755

are relative versions of the surjection operad Sm studied by McClure and Smith [19; 20]
and Berger and Fresse [6].

With regards to future applications, we pay close attention to the operads RL2 and RL0
2

.
They have a description by planar rooted trees with different types of vertices. The
operad RL2 encodes pairs .M;Z/ where M is a multiplicative nonsymmetric operad
and Z is bimodule over M–As (left action of M, right action of As) where As is the
operad of associative algebras; such a pair is naturally endowed with a morphism of
bimodules �WM! Z . The operad RL0

2
encodes almost similar pairs .M;Z 0/ where,

instead, Z 0 and �WM! Z 0 are in the category of bimodules over As–M.

Outline of the paper Section 2 is first devoted to setting our conventions and notations
on nonsymmetric, symmetric, coloured and SC-type operads. In particular, we spend
time on modules and weak modules over a nonsymmetric operad; this will finally be
used in Section 6. Afterwards, we define the (symmetric) coloured SC-operads, and
we explain how we condense them to obtain SC-type operads.

In Section 3 we consider the (cubical) Swiss cheese operad SC . For each integer m� 1,
we construct two cellular decompositions of SCm , one indexed by RKm and the other
indexed by RK0m .

Section 4 concerns the relative lattice path operad RL which is a coloured SC-operad.
By using the condensation process from Section 2 one obtains an SC-type operad
CoendRL.ı/. We use results of Section 3 to prove Theorem 1.2. We end the section
by exhibiting a few examples of representations of RLm and RL0m . In particular, we
show that the operads CoendRLm

.ıTop/ and CoendRL0m.ıTop/ act on the pair (m–fold
loop space, m–fold relative loop space).

In Section 5 we exhibit the suboperads RSm and RS 0m and show that the inclusions
RSm ,! CoendRLm

.ıZ/ and RS 0m ,! CoendRL0m.ıZ/ are weak equivalences.

In Section 6 we focus on the operads RL2 and RL0
2

and their representations. We
describe RL2 and RL0

2
in terms of planar rooted trees. This provides a convenient

language for describing the representations of RL2 and RL0
2

.

Acknowledgements I would like to warmly thank both Muriel Livernet for corrections
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support. I am highly indebted to the referee for numerous enlightening comments,
suggestions and corrections. I was partially supported by Bolsista da CAPES à Projeto
88881.030367/2013-01.
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1756 Alexandre Quesney

2 Preliminaries

All along the paper C D .C;˝; 1C / denotes a cocomplete closed monoidal symmetric
category. In particular, C is endowed with an object 02C such that 0˝X D0DX˝0

for all X 2C .

For two C –categories A and B (ie enriched over C ), we denote by A ˝B the
category with the pairs .a; b/ for a 2A and b 2B as objects and

HomA˝B ..a; b/; .a
0; b0// WD HomA.a; a

0/˝HomB .b; b
0/

as hom-objects, where the tensor on the right-hand side is the tensor of C .

2A Nonsymmetric operads and modules

By a nonsymmetric (non-†) operad M we mean a collection fM.n/gn�0 of objects
of C together with a unit �W 1C !M.1/ and partial composition maps

ıi WM.m/˝M.n/!M.mC n� 1/ for 1� i �m

that satisfy associativity and unit conditions (see [17, Definition 1.14]). One denotes
by As the non-† operad of associative algebras in C given by As.n/ D 1C for
n� 0. A non-† operad M is called multiplicative if there is a morphism of operads
˛W As!M. A morphism of multiplicative operads ˛W As!M and ˛0W As!M0

is a morphism of operads f WM!M0 such that f ı˛ D ˛0 .

In what follows, we recall the notions of left module, right module and bimodule over
a non-† operad.

2.1 Definition Let M and N be two non-† operads and let Z D fZ.m/gm�0 be a
collection of objects of C . Consider the morphisms

�i W Z.m/˝N .k/! Z.kCm� 1/ for 1� i �m (right action),

�WM.k/˝Z.m1/˝ � � �˝Z.mk/! Z.m1C � � �Cmk/ (left action).

Consider the following relations:

(1) Unit condition of the left action Z.m/D1C˝Z.m/
�˝id
���!M.1/˝Z.m/

�
�!Z.m/

is the identity.
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The relative lattice path operad 1757

(2) Associativity of the left action All the diagrams of the form

M.k/˝M.l/˝
N

1�p�kCl�1

Z.mp/
.id˝�˝id/ı�2;.3;iC1/

//

.�ıi�/˝id

��

M.k/˝
N

1�p<i

Z.mp/

˝Z.x/˝
N

iCl�p�kCl�1

Z.mp/

�

��

M.kC l � 1/˝
N

1�p�kCl�1

Z.mp/
�

// Z.m1C � � �CmkCl�1/

commute, where x WDmi C � � �CmiCl�1 , for 1� i � k , and �2;.3;iC1/ denotes the
permutation of the second factor with the i � 1 factors that follow.

(3) Unit condition of the right action Z.m/DZ.m/˝1C

id˝�
��!Z.m/˝N.1/

�i
�!Z.m/

is the identity.

(4) Associativity and commutativity of the right action on different inputs All
the diagrams of the following forms commute:

Z.m/˝N .k/˝N .l/ Z.mC k � 1/˝N .l/

Z.m/˝N .kC l � 1/ Z.mC kC l � 2/

�t˝id

id˝.�ıi�/ �tCi�1

�t

Z.m/˝N .k/˝N .l/ Z.mC k � 1/˝N .l/

Z.mC l � 1/˝N .k/ Z.mC kC l � 2/

�t˝id

�tı�2;3 �tCi�1

�i

(5) Associativity of the right and left actions All the diagrams of the form

M.k/˝
N

1�p�k

Z.mp/˝N .l/
M.k/˝

N
1�p<s

Z.mp/

˝Z.x/˝
N

s<p�k

Z.mp/

Z.m1C � � �Cmk/˝N .l/ Z.m1C � � �Cmk C l � 1/

.id˝id˝s�1˝�i˝id˝k�s/
ı�.sC2;kC1/;kC2

�˝id
�

�iCm1C���Cms�1�sC1

commute, where x DmsC l � 1.
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1758 Alexandre Quesney

We establish the following terminology:

� .Z; �/ is called a left module over M if � satisfies (1) and (2).

� .Z; �/ is called a right module over N if the �i satisfy (3) and (4).

� .Z; �; �/ is called a bimodule over M–N if � and �i satisfy (1)–(5)

2.2 Example A non-† operad M is canonically a bimodule over itself (ie over
M–M).

Given two non-† operads M and N , the category of bimodules over M–N is denoted
by BiModM–N ; the morphisms commute with each of the actions. A bimodule over
M–M is simply called a bimodule over M.

2.3 Definition Let Z 0 be a left (resp. right, bi) module over M0 . A morphism
of non-† operads f WM!M0 endows Z 0 with a structure of left (resp. right, bi)
module over M by pulling back the actions maps along f ; we denote the resulting
left (resp. right, bi) module over M by f �Z 0 . Explicitly, �f

�Z0 D �0 ı .f ˝ id˝k/

and �f
�Z0

i D �0i ı .id˝f /.

Moreover, if Z is a left (resp. right, bi) module over M, then a morphism gW Z! Z 0

is said f –equivariant if it is a morphism of left (resp. right, bi) modules over M,
gW Z! f �Z 0 .

2.4 Example A left module over a multiplicative operad is, by pullback, a left module
over As.

In [22, Definition 4.1], the notion of weak bimodule over a non-† operad M (in Top)
is introduced. In our framework, it refers to a right module over M together with a
weak left action

�wi WM.k/˝Z.m/! Z.kCm� 1/ for 1� i � k

that satisfies natural associativity and unit conditions, ie (1) above and (a)–(c) below:

(a) Associativity of the weak left action Diagrams of the following form commute
for all 1� i � k and 1� j � l :

M.k/˝M.l/˝Z.m/ M.k/˝Z.l Cm� 1/

M.kC l � 1/˝Z.m/ Z.kC l Cm� 2/

id˝�w
j

.�ıi�/˝id �w
i

�w
jCi�1
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(b) Associativity of the right and left actions Diagrams of the following form
commute for all 1� i � k and 1� t �m:

M.k/˝Z.m/˝M.l/ M.k/˝Z.mC l � 1/

Z.kCm� 1/˝M.l/ Z.kCmC l � 2/

id˝�t

�w
i
˝id �w

i

�iCt�1

(c) Compatibility between the actions and the operad composition Diagrams of
the following form commute for all 1� t < i � k :

M.k/˝Z.m/˝M.l/ M.kC l � 1/˝Z.m/

Z.kCm� 1/˝M.l/ Z.kCmC l � 2/

..�ıt�/˝id/ı�2;3

�w
i
˝id �w

iCl�1

�t

and those of the following form commute for all 1� i < t � k :

M.k/˝Z.m/˝M.l/ M.kC l � 1/˝Z.m/

Z.kCm� 1/˝M.l/ Z.kCmC l � 2/

..�ıt�/˝id/ı�2;3

�w
i
˝id �w

i

�tCm�1

2.5 Example A non-† operad M is a weak bimodule over itself.

2.6 Example Consider a bimodule Z over M and suppose it comes together with a
bimodule map �WM! Z ; recall that �W 1C !M.1/ denotes the unit. Precomposing
the left action � of Z by �� at all but one input provides maps

�wi WD � ı .id˝ .��/
˝i�1

˝ id˝ .��/˝k�i/WM.k/˝Z.m/! Z.kCm� 1/

that endow Z with a weak bimodule structure over M. Moreover, for this structure,
� is a morphism of weak bimodules.

As observed in [22, Lemma 4.2], one of the interesting features of the weak bimodules
is the following.

2.7 Lemma The structure of a cosimplicial object is equivalent to the structure of a
weak bimodule over As.

Algebraic & Geometric Topology, Volume 18 (2018)
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2B Coloured operads

Coloured (symmetric) operads are also known as small symmetric multicategories;
see [16, Definition 2.2.21]. For our purposes one uses left actions for the symmetric
groups †n , so that a coloured operad with set of colours Col (or a Col–coloured
operad) consists of the following:

� for each k � 0 and each .kC1/–tuple .e1; : : : ; ek I e/ of colours ei ; e 2 Col, an
object O.e1; : : : ; ek I e/ in C ;

� for each colour e , a unit 1C !O.eI e/;
� for each 1� i � k , .e1; : : : ; ek I e/ and .f1; : : : ; fl I ei/, substitution maps

ıi W O.e1; : : : ; ek I e/˝O.f1; : : : ; fl I ei/

!O.e1; : : : ; ei�1; f1; : : : ; fl ; eiC1; : : : ; ek I e/I

� for each � 2†k , a map ��W O.e1; : : : ; ek I e/!O.e��1.1/; : : : ; e��1.k/I e/.

Substitution maps are required to satisfy the natural unit, associativity and equivariance
axioms.

2.8 Example A symmetric operad P is a 1–coloured operad with

P.k/D P.�; : : : ;�„ ƒ‚ …
k

I �/:

For a coloured operad O , the category of its unary operations is called its underlying
category and is denoted by Ou : the objects of Ou are the colours; the morphisms
are Ou.e; f / WD O.eIf / for e; f 2 Col. The operadic structure of O is encoded as
functors

O.�; : : : ;�„ ƒ‚ …
k

I �/W .Oop
u /
˝k
˝Ou!C ; k � 0:

Recall that an O–algebra X is a family fX.e/ge2Col of objects X.e/ 2 C equipped
with morphisms

O.e1; : : : ; ek I e/˝X.e1/˝ � � �˝X.ek/!X.e/; e1; : : : ; ek ; e 2 Col;(2-1)

subject to the natural unit, associative and equivariance axioms.

2.9 Definition Let C be a monoidal model category; see [14]. A morphism of
Col–coloured operads O!O0 is a weak equivalence if and only if each of its compo-
nents O.n1; : : : ; nk I n/!O0.n1; : : : ; nk I n/ is a weak equivalence. Two Col–coloured

Algebraic & Geometric Topology, Volume 18 (2018)



The relative lattice path operad 1761

operads O and O0 are said weakly equivalent if there is a zig-zag of weak equivalences
of Col–coloured operads O � !O0 .

2.10 Remark The weak equivalence as described above is part of the model category
structure on the category of Col–coloured operads as established in [7, Section 3]
whenever C satisfies properties of [7, Theorem 2.1].

2C SC-operads and coloured SC-operads

The SC-type operads (see [1]) are a special type of 2–coloured operads whose struc-
ture mimics that of the Swiss cheese operad introduced in [23]. Explicitly, by an
SC-type operad (or SC-operad), one means a fcl; opg–coloured operad O such that
O.c1; : : : ; cnI cl/D 0 if there exists a 1 � i � n such that ci D op. The colour cl is
called the closed colour; the colour op is called the open colour.

Let us define the coloured version of the SC-type operads.

2.11 Definition Let Col be a set (of colours). A coloured SC-operad is a Col–coloured
operad O that satisfies the following hypotheses:

(H1) ColD Colcl tColop .

(H2) The collection of the O.e1; : : : ; ek I e/ for ei ; e 2 Colcl and k � 0 forms a
suboperad of O .

(H3) The collection of the O.e1; : : : ; ej I e/ for ei ; e 2 Colop and j � 0 forms a
suboperad of O .

(H4) O.e1; : : : ; ej I e/D 0 2 C for any e 2 Colcl if there exists 1 � i � j such that
ei 2 Colop , where j � 1.

The suboperad in (H2) is called the closed part of O ; the suboperad in (H3) is called
the open part of O . For c 2 fclI opg, a colour of Colc is called colour of type c or c

colour.

2.12 Example An SC-type operad is a Col–coloured SC-operad with Colcl D fclg
and Colop D fopg.

The underlying category Ou of a coloured SC-operad contains two particular categories:

� Ocl
u is the subcategory of Ou with objects the colours in Colcl and morphisms

the Ou.e; f / for e; f 2 Colcl ;

� Oop
u is the subcategory of Ou with objects the colours in Colop and morphisms

the Ou.e; f / for e; f 2 Colop .

Algebraic & Geometric Topology, Volume 18 (2018)
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Also, from the hypothesis on O , an O–algebra X can be seen as a pair .Xcl;Xop/

where Xcl is the subfamily fXcl.e/ge2Colcl and Xop is the subfamily fXop.e/ge2Colop .

2D SC functor-operads

Here one defines the SC analogues to the functor-operads and their algebras. The notion
of functor-operad is introduced in [21] and generalizes the notion of operad; see also [3].

Let us fix two C –categories A and B , and let k � 0.

For a collection of C –functors f�A1;:::;Ak IAkC1
W A1˝ � � � ˝Ak ! AkC1gAi2fA;Bg

and for � 2†k , we denote by ��
A1;:::;Ak IAkC1

W A1˝ � � �˝Ak !AkC1 the functor

��A1;:::;Ak IAkC1
.X1; : : : ;Xk/D �A

��1.1/
;:::;A

��1.k/
IAkC1

.X��1.1/; : : : ;X��1.k//:

A collection of C –functors f�A1;:::;Ak IAkC1
W A1 ˝ � � � ˝Ak ! AkC1gAi2fA;Bg is

called twisted symmetric if there exist C –natural transformations

��;A1;:::;Ak IAkC1
W �A1;:::;Ak IAkC1

! ��A1;:::;Ak IAkC1

for � 2†k such that ��1�2;A1;:::;Ak IAkC1
D .��1;A1;:::;Ak IAkC1

/�2��2;A1;:::;Ak IAkC1

and such that �id;A1;:::;Ak IAkC1
is the identity transformation where id denotes the

neutral element of †k .

2.13 Definition An SC functor-operad � D f�A1;:::;Ak IAkC1
gk;Ai

over .A;B/ is the
data, for each k � 0, of a twisted symmetric collection

�A1;:::;Ak IAkC1
W A1˝ � � �˝Ak !AkC1

indexed by the .kC1/–tuples .A1; : : : ;Ak IAkC1/ of categories in fA;Bg such that
AkC1 DB whenever there exists 1� i � k such that Ai DB . Such a collection is
required to be endowed with natural transformations

�ŒA�1;i1 ;:::;ŒA�k;ik IAkC1
W �A1;:::;Ak IAkC1

ı .�A1;1;:::;A1;i1
IA1
˝ � � �˝ �Ak;1;:::;Ak;ik

IAk
/

! �A1;1;:::;Ak;ik
IAkC1

for i1; : : : ; ik �0, where ŒA�a;bD .Aa;1; : : : ;Aa;bIAa/. These natural transformations
have to satisfy the following three conditions:

(1) For A02fA;Bg, the functor �A0IA0
is the identity, and

�AkC1IAkC1
ı x�k D x�k D x�k ı .�A1IA1

˝ � � �˝ �Ak IAk
/;
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where we let x�k denote �A1;:::;Ak IAkC1
, and where the equalities are obtained via

�.A1;:::;Ak IAkC1/IAkC1
and �.A1IA1/;:::;.Ak IAk/IAkC1

, respectively.

(2) The natural transformations �ŒA�1;i1 ;:::;ŒA�k;ik IAkC1
are associative.

(3) All diagrams of the form

�A1;:::;Ak IAkC1
ı.�A1;1;:::;A1;i1

IA1
˝�� �˝�Ak;1;:::;Ak;ik

IAk
/ �A1;1;:::;Ak;ik

IAkC1

��
A1;:::;Ak IAkC1

ı.�
�1

A1;1;:::;A1;i1
IA1
˝�� �˝�

�k

Ak;1;:::;Ak;ik
IAk

/ �
�.�1;:::;�kCj /

A1;1;:::;Ak;ik
IAkC1

��ı.��1
˝���˝��kCj

/ ��.�1;:::;�kCj /

commute, where the horizontal maps are �ŒA�1;i1 ;:::;ŒA�k;ik IAkC1
.

2.14 Definition Let � D f�A1;:::;Ak IAkC1
gk�0 be an SC functor-operad over .A;B/.

A �–algebra X is a pair .XA;XB / 2A˝B equipped with morphisms in AkC1 ,

˛A1;:::;Ak IAkC1
W �A1;:::;Ak IAkC1

.XA1
; : : : ;XAk

/!XAkC1
; k � 0;

subject to the following conditions:

(1) ˛A1
D 1XA1

.

(2) ˛A1;:::;Ak IAkC1
ı�� D ˛A1;:::;Ak IAkC1

, for all � 2†k .

(3) All the diagrams of the following form commute:

x�kı.�ŒA�1;i1
.X1;i1

/˝�� �˝�ŒA�k;ik
.Xk;ik

// �A1;1;:::;Ak;ik
IAkC1

.XA1;1
; : : : ;XAk;ik

/

x�k.XA1
; : : : ;XAkC1

/ XAkC1

x�k.˛ŒA�1;i1
˝���˝˛ŒA�k;ik

/ ˛A1;1;:::;Ak;ik
IAkC1

˛A1;:::;Ak IAkC1

where Xa;bDXAa;1
; : : : ;XAa;b

, x�kD�A1;:::;Ak IAkC1
, ŒA�a;bD .Aa;1; : : : ;Aa;bIAa/,

and the top horizontal map is �ŒA�1;i1 ;:::;ŒA�k;ik IAkC1
.

2.15 Remark An SC functor-operad over .A;B/ is a particular example of an
internal symmetric operad in EndA;B (the endomorphism SC-type operad of .A;B/
in Cat). The notion of internal symmetric operad was introduced in [2, Definition 9.3].
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2E Condensation

In this section, we explain how we extend the condensation process described in
[3, Section 1] to the case of coloured SC-operads.

Let O be a coloured SC-operad and let ıD .ıcl; ıop/ be a pair of functors ıclW Ocl
u !C

and ıopW O
op
u ! C . We will define the condensation operad of O , denoted by

CoendO.ı/, and an associated functor

O–algebra! CoendO.ı/–algebra:

The operad CoendO.ı/ is obtained by condensing each type of colours into one colour,
so that it is an SC-type operad. It is obtained in two steps.

From O to the SC functor-operad �.O/ Recall that, by hypotheses (H2) and (H3)
from Definition 2.11, both Ocl

u and Oop
u are C –categories. Moreover, the category C Ocl

u

(resp. C Oop
u ) of C –functors from Ocl

u (resp. from Ocl
u ) to C is a C –category. For

k � 0 and .c1; : : : ; ck I ckC1/ a tuple of elements in fclI opg satisfying

(2-2) ckC1 D op if there exists 1� i � k such that ci D op;

one lets Ai WDC Oci
u and one defines the C –functor

�.O/c1;:::;ck IckC1
W A1˝ � � �˝Ak !AkC1

as the coend

�.O/c1;:::;ck IckC1
.Xc1

; : : : ;Xck
/.n/

DO.�; : : : ;�„ ƒ‚ …
k

I n/˝Oc1
u ˝���˝Ock

u
Xc1

.�/˝ � � �˝Xck
.�/:

We have an SC analogue to [3, Proposition 1.8] or [9]:

2.16 Proposition The functors �.O/c1;:::;ckIckC1
extend to an SC functor-operad �.O/

such that the category of O–algebras and the category of �.O/–algebras are isomorphic.

Proof A straightforward verification, along the lines of [9], shows that the family of
the �.O/c1;:::;ck IckC1

forms an SC functor-operad.

Via the hypotheses (H2) and (H3) from Definition 2.11, an O–algebra X can be seen as
a pair .Xcl;Xop/, where Xcl and Xop are functors XclW Ocl

u !C and XopW O
op
u !C ,
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respectively. Therefore, the maps (2-1) induce the following maps for ekC1 2 Col:

�c1;:::;ck IckC1
.O/.Xc1

; : : : ;Xck
/.ekC1/DZ e1;:::;ek

O.e1; : : : ; ek I ekC1/˝Xc1
.e1/˝ � � �˝Xck

.ek/!XckC1
.ekC1/:

They form the maps ˛c1;:::;ck IckC1
W �.O/c1;:::;ck IckC1

.Xc1
; : : : ;Xck

/ ! XckC1
for

k � 0. We conclude that X is a �.O/–algebra because of the unit, associativity and
equivariance properties of maps (2-1). The isomorphism follows from the universal
property of the coend.

From �.O/ to the coendomorphism operad CoendO.ı/ The operad CoendO.ı/

is the coendomorphism operad of the SC functor-operad �.O/. Explicitly,

CoendO.ı/.c1; : : : ; ck I ckC1/D Hom
C

OckC1
u

.ıckC1
; �.O/c1;:::;ck IckC1

.ıc1
; : : : ; ıck

//

for .c1; : : : ; ck I ckC1/ satisfying (2-2). The composition maps

CoendO.ı/.c1; : : : ; ck I ckC1/˝CoendO.ı/.c1;1; : : : ; c1;i1
I c1/˝ � � �

˝CoendO.ı/.ck;1; : : : ; ck;ik
I ck/

�! CoendO.ı/.c1;1; : : : ; ck;ik
I ckC1/

are given by sending maps f ˝g1˝ � � �˝gk to the composite

ıckC1

f
�! �.O/c1;:::;ck IckC1

.ıc1
; : : : ; ıck

/

�.O/c1;:::;ck IckC1
.g1;:::;gk/

�������������������! �.O/c1;:::;ck IckC1

�
�.O/Œc�1;i1.ı/; : : : ; �.O/Œc�k;ik.ı/

�
˛c1;:::;ck IckC1

����������! �.O/c1;1;:::;ck;ik
IckC1

.ıc1;1
; : : : ; ıck;ik

/:

The action of †k on CoendO.ı/ is given by postcomposing with the natural transfor-
mations

��;c1;:::;ck
.ıc1

; : : : ; ıck
/W �.O/c1;:::;ck IckC1

.ıc1
; : : : ; ıck

/

! �.O/c
��1.1/

;:::;c
��1.k/

IckC1
.ıc

��1.1/
; : : : ; ıc

��1.k/
/:

Given an O–algebra X D .Xcl;Xop/, we set

Totıcl Xcl WD Hom
COcl

u
.ıcl;Xcl/ and Totıop Xop WD Hom

COop
u
.ıop;Xop/:
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Since X is a �.O/–algebra by Proposition 2.16 and since CoendO.ı/ is the co-
endomorphism operad of �.O/, it follows that the pair .Totıcl Xcl;Totıop Xop/ is
a CoendO.ı/–algebra: the action maps

(2-3) Coend�.O/.ı/.c1; : : : ; ck I ckC1/˝Totıc1
Xc1
˝ � � �˝Totıck

Xck

! TotıckC1
XckC1

are given by sending maps f ˝g1˝ � � �˝gk to the composite

ıckC1

f
�! �.O/c1;:::;ck IckC1

.ıc1
; : : : ; ıck

/

�.O/c1;:::;ck IckC1
.g1;:::;gk/

�������������������! �.O/c1;:::;ck IckC1
.Xc1

; : : : ;Xck
/

˛c1;:::;ck IckC1

���������!XckC1
:

Unit, associative and equivariance properties of the maps (2-3) are deduced from the
SC functor-operad properties of �.O/.

3 Cellular decompositions of the Swiss cheese operad

The little cubes operad C has a cellular decomposition indexed by the extended complete
graph operad K ; see [5] and [8, Section 4.1]. We extend this result to the Swiss cheese
operads SCm , m� 1, which provides a recognition principle for SC-type operads. In
particular, we construct a poset operad RKm that indexes the cells .SCm/

.˛/ of SCm .
This leads to a zig-zag of weak equivalences of operads

SCm
�
 � hocolim˛2RKm

.SCm/
.˛/ �
�! BRKm

between the Swiss cheese operad SCm and the operad of the geometric realization of
the nerve of RKm . There is a second way to index the cells .SCm/

.˛/ ; this is done by
another poset operad RK0m , providing a similar zig-zag.

3A The Swiss cheese operad

The Swiss cheese operad that we use is the cubical version of the one defined in [15].

Let m� 1. Let SymW Rm!Rm be the reflection Sym.x1; : : : ;xm/D .x1; : : : ;�xm/,
and let HalfC be the upper half space

HalfC D f.x1; : : : ;xm/ 2Rm
j xm > 0g:
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The standard cube C0 in Rm is C0 D Œ�1; 1��m . A cube C in the standard cube is of
the form C D Œx1;y1�� Œx2;y2��� � �� Œxm;ym� with �1< xj < yj < 1 for 1� j �m.

3.1 Definition For n � 0 and ci ; c 2 fcl; opg we define a topological †n–space
SCm.c1; : : : ; cnI c/ as the empty set if c D cl and there exists 1 � i � n such that
ci D op; for the other cases, it is defined as follows:

� The space of the little m–cubes operad C.m/.n/ defined in [18] for c D cl.

� The empty set if nD 0.

� The one-point space if nD 1.

� In the case sC t D n� 2 with s; t � 0 such that s colours ci are cl and t colours
cj are op, the space of configuration of 2sC t disjoint cubes .C1; : : : ;C2sCt /

in the standard cube C0 2 Rm such that Sym.Ci/ D CiCs for 1 � i � s and
Sym.Ci/D Ci for 2sC1� i � 2sC t and such that all the cubes .C1; : : : ;Cs/

are in the upper half space.

3.2 Remark Because of the symmetry conditions imposed by Sym, we may think of
SCm.c1; : : : ; cnI op/ as the configuration space of cubes .C1; : : : ;Cs/ and semicubes
.CsC1; : : : ;CsCt / lying in the standard semicube HalfC\C0 .

Similarly to the little m–cubes operad C.m/ , the composition maps

ıi W SCm.c1; : : : ; cnI c/�SCm.d1; : : : ; dr I ci/

! SCm.c1; : : : ; ci�1; d1; : : : ; dr ; ciC1; : : : ; cnI c/

are defined as substitutions of cubes. We denote the resulting SC-type operad by SCm .

3B The SC extended complete graph operad

We define the SC (or relative) extended complete graph operad RK . It is an SC-type
operad in the category of posets. We provide two filtrations by suboperads fRKmgm�1

and fRK0mgm�1 . Their closed parts are isomorphic to Km and their open parts are
isomorphic to Km�1 , where fKmgm�1 denotes the extended complete graph operad
defined in [8, Section 4.1].
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3B1 Definition of RK Given n colours ci 2 fcl; opg, we denote by fzc1; : : : ; zcng

the set with

(3-1) zci D

�
i if ci D cl;

i if ci D op:

A colouring and an orientation .�; �/ on the complete graph on fzc1; : : : ; zcng is, for
each 1� i < j � n, a strict positive natural number �i;j 2N>0 and an orientation �i;j

(that is, zci ! zcj or zci  zcj ). A monochromatic acyclic orientation of a complete
graph is a colouring and an orientation such that there exist no oriented cycles with the
same colour, ie there are no configurations of the form zci1

! zci2
! � � � ! zcik

! zci1

with �i1;i2
D �i2;i3

D � � � D �ik�1;ik
D �ik ;i1

. A marked monochromatic acyclic
orientation .�; �/c is a monochromatic acyclic orientation .�; �/ together with a
colour c 2 fcl; opg.

If there exists an i such that ci D op, then we define RK.c1; : : : ; cnI cl/ as the empty
set. Otherwise, RK.c1; : : : ; cnI c/ is the set of the marked monochromatic acyclic
orientations .�; �/c of the complete graph on fzc1; : : : ; zcng.

The poset structure is given by

.�; �/c � .�0; � 0/c () .�i;j ; �i;j /D .�
0
i;j ; �

0
i;j / or �i;j < �

0
i;j for all i < j:

Given a permutation � 2†n and an element .�; �/c 2RK.c1; : : : ; cnI c/, the resulting
element � � .�; �/c 2RK.c��1.1/; : : : ; c��1.n/I c/ is given by permuting the numbers i

by � leaving the underline, the orientation, and the colouring unchanged. For example,
the edges i ! j of .�; �/c with colours �i;j become the edges �.i/! �.j / with
the same colours �i;j .

The compositions

RK
W RK.c1; : : : ; cnI c/�RK.c1;1; : : : ; c1;k1

I c1/� � � � �RK.cn;1; : : : ; cn;kn
I cn/

!RK.c1;1; : : : ; cn;kn
I c/

send a tuple .˛I˛1; : : : ; ˛n/ of RK.c1; : : : ; cnI c/ � � � � �RK.cn;1; : : : ; cn;kn
I cn/ to

an element in RK.c1;1; : : : ; cn;kn
I c/ obtained as follows. The subcomplete graph

with the vertices in the same block fci;1; : : : ; ci;ki
g is oriented and coloured as ˛i 2

RK.ci;1; : : : ; ci;ki
I ci/; the edges with vertices in two different blocks are oriented and

coloured as the edges between the corresponding vertices in ˛ 2 RK.c1; : : : ; cnI c/.
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For example,

RK
�

2

1 2
op
I

3

1 2
op
;

5

1 2
�
D

2

3
2

2
5

2

1 4

2 3
op

3B2 Filtrations of RK We define two different filtrations of RK by suboperads
.RKm/m�1 and .RK0m/m�1 .

For m� 1, the suboperad RKm �RK is defined as follows. The closed part is

RKm.cl; : : : ; clI cl/D f.�; �/
cl
2RK.cl; : : : ; clI cl/ j �i;j �m for all i < j g:

The nonclosed part is defined, for an .nC1/–tuple of colours .c1; : : : ; cnI op/, by

RKm.c1; : : : ; cnI op/D f.�; �/
op
2RK.c1; : : : ; cnI op/ j �i;j � �mg;

where

�mD
8̂̂̂<̂
ˆ̂:

m if ci D cj D cl;

m� 1 if ci D cj D op;

m� 1 if i ! j or i  j ;

m if i ! j or i  j:

The second suboperad RK0m �RK is obtained by exchanging the last two conditions
on �i;j above. Explicitly,

RK0m.cl; : : : ; clI cl/DRKm.cl; : : : ; clI cl/

and

RK0m.c1; : : : ; cnI op/D f.�; �/
op
2RK.c1; : : : ; cnI op/ j �i;j � �m0g;

where

�m0 D
8̂̂̂<̂
ˆ̂:

m if ci D cj D cl;

m� 1 if ci D cj D op;

m if i ! j or i  j ;

m� 1 if i ! j or i  j:

3.3 Remark For mD 1 the conditions where �i;j �m� 1 cannot be satisfied. It
follows that RK1.c1; : : : ; cnI op/ and RK0

1
.c1; : : : ; cnI op/ are empty whenever the

tuple .c1; : : : ; cn/ has more than one open colour.
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3C Cellular decompositions of the Swiss cheese operad

The idea of cellular decomposition of operads comes from [5]. It consists of cellular
decompositions of each space that are compatible with the operad structure.

Recall from [3, Section 3.1] that, given a topological space X and a poset A, an
A–cellulation of X is a functor ‚W A! Top such that

(1) colim˛2A‚.˛/ŠX ;

(2) for each ˛2A, the canonical map colimˇ<˛‚.ˇ/!‚.˛/ is a closed cofibration;

(3) for each ˛ 2A, the “cell” ‚.˛/ is contractible.

Such an A–cellulation provides a zig-zag of weak equivalences

(3-2) X Š colim˛2A‚.˛/ hocolim˛2A‚.˛/! hocolim˛2A.�/Š BA;

where BA denotes the realization of the nerve of the category A. Moreover, if X

and A are operads and if the cellular decomposition of X is compatible with its
operadic structure, then all the objects in (3-2) are operads and the weak equivalences
are morphisms of operads. It is straightforward to check that this holds for SC-type
operads for which the notion of a compatible cellular decomposition is as follows.

3.4 Definition Let A be a poset SC-type operad. A topological SC-type operad O is
called an A–cellular operad if, for each .nC1/–tuple of colours .c1; : : : ; cnI c/, there
is an A.c1; : : : ; cnI c/–cellulation of O.c1; : : : ; cnI c/,

‚c1;:::;cnIc W A.c1; : : : ; cnI c/! Top;

subject to the following two compatibilities:

(1) Compatibility with the †n–action

‚c
��1.1/

;:::;c
��1.n/

Ic.� � ˛/D � �‚c1;:::;cnIc.˛/

for all � 2†n and ˛ 2A.c1; : : : ; cnI c/.

(2) Compatibility with the operadic composition

O�‚c1;:::;cnIc.˛/�‚c1;1;:::;c1;k1
Ic1
.˛1/� � � � �‚cn;1;:::;cn;kn Icn

.˛n/
�

�‚c1;1;:::;cn;kn Ic
.A.˛I˛1; : : : ; ˛n//

for all variables c , ci , ci;j , ˛ and ˛i , where O and A denote the composition
maps of O and A, respectively.
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In what follows, one shows that Berger’s cellular decomposition of the little m–cubes
operad (see [5, Theorem 1.16] and [8]) extends to SCm .

3.5 Theorem Let m � 1. The Swiss cheese operad SCm has the structure of an
RKm–cellular operad as well as the structure of an RK0m–cellular operad.

Proof We start by the RK0m–cellular decomposition; we explain at the end of the
proof how to proceed for the other decomposition.

We use the description of SCm via cubes and semicubes given in Remark 3.2. The
integer m� 1 is fixed.

3.6 Notation For C1 either a cube or a semicube and C2 either a cube or a semicube,
we write C1��C2 if they are separated by a hyperplane Hi orthogonal to the i th

coordinate axis for some i �� such that whenever there is no separating hyperplane Hi

for i <�, the left element C1 lies in the negative side of H� and C2 lies in the positive
side of H� .

For ˛D .�; �/c 2RK0m.c1; : : : ; ck I c/, we define SCm.c1; : : : ; ck I c/
.˛/ to be the cell

f.C1; : : : ;Ck/2SCm.c1; : : : ;ck Ic/ jCi��i;j
Cj if zci!zcj and Cj ��i;j

Ci if zci zcj g:

For example, consider the configurations

X D

1
2

H1

; Y D

1
2

H1

and Z D

1

2H2

in SC2.op; clI op/, and the elements

˛ D
1

1 2
op
; ˇ D

1

1 2
op

and  D
2

1 2
op

that form RK0
2
.op; clI op/. The cell SC2.op; clI op/

.˛/ is made of configurations of
type X ; the cell SC2.op; clI op/

.ˇ/ is made of configurations of type Y ; and the cell
SC2.op; clI op/

. / is made of configurations of types X , Y and Z , where those of
type Z intersect with configurations of type X or Y whenever C1 and C2 are separated
by 2 hyperplanes H1 and H2 .
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As a remark, note that in SCm , whenever C1 is a semicube and C2 is a cube, if Hm

exists, then C1 lies in the negative side of Hm (eg Z ). From this one can see that,
with this definition of the cells, the condition �i;j � m � 1 if i ! j given in the
definition of RK0m is necessary for ensuring the contractibility of the cells. Indeed, if
one removes the above condition, then there exists

ım D
m

1 2
op

that indexes the space SCm.op; clI op/
.ım/ , which is homotopic to the .m�2/–sphere

(for mD 2, one has SC2.op; clI op/
.ı2/ D SC2.op; clI op/

.˛/ tSC2.op; clI op/
.ˇ/ ).

Our definition recovers that of Berger when considering the open part and the closed
part of SCm separately. The main input of our construction, then, resides in the
interaction between cubes and semicubes. At first sight it could appear useless to
consider separating hyperplanes between cubes and semicubes since contractibility is
not hindered by their relative positions (for example, SCm.op; clI op/ is contractible).
However it is important to do so for the operadic composition of the cells. This is
because, in a configuration of cubes and semicubes, if one substitutes a semicube, then
a cube may appear; the position of such a cube has to be compared with that of the
other cubes. For instance, consider the following substitution:

1

2
3

H1

H2 ı1

1
2

D

1

3
4

2

H1

H2

Then in the resulting configuration (the right-hand side standard semicube), knowing
the position of 2 relative to 3 and 4 requires the knowledge of the position of 1 relative
to 2 and 3 in the first term (the left-hand side standard semicube).

In what concerns the contractibility of the cells, both closed and open cells are known
as being contractible; the same argument as [5, Theorem 1.16] shows that open/closed
cells also are.

The fact that colim˛2RK0m.c1;:::;ck Ic/ SCm.c1; : : : ; ck I c/
.˛/ Š SCm.c1; : : : ; ck I c/ es-

sentially follows from the following two facts:
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(1) If x 2 SCm.c1; : : : ; ck I c/ then there exists an ˛ 2RK0m.c1; : : : ; ck I c/ such that
x 2 SCm.c1; : : : ; ck I c/

.˛/ . This is immediate since any two cubes/semicubes are
separated by a hyperplane. For example, if Ci is a semicube and Cj a cube, then
˛ D .�; �/c may be chosen such that �i;j Dm and �i;j D i ! j .

(2) If ˛ D .�; �/c and ˇ D .�0; � 0/c are not comparable (neither ˛ � ˇ nor ˛ � ˇ )
and are such that there exists

x D .C1; : : : ;Ck/ 2 SCm.c1; : : : ; ck I c/
.˛/
\SCm.c1; : : : ; ck I c/

.ˇ/;

then x 2 SCm.c1; : : : ; ck I c/
. / for a  such that  < ˛ and  < ˇ . This follows

from the observation that, for each i < j such that .�i;j ; �i;j / and .�0i;j ; �
0
i;j / are not

comparable, there exists �00i;j < �i;j D �
0
i;j such that Ci��00

i;j
Cj or Cj ��00

i;j
Ci ; let

us denote by � 00i;j the corresponding orientation. The element  D .�00; � 00/c is given
by .�00i;j ; �

00
i;j / as above whenever i < j indexes incomparable components and by

.�00i;j ; �
00
i;j /Dminf.�i;j ; �i;j /; .�

0
i;j ; �

0
i;j /g otherwise.

The other cellular decomposition (indexed by RKm ) is obtained by exchanging, in
Notation 3.6 above, the terms negative and positive. In what concerns the closed
and the open parts, such an exchange is not relevant. However, as we have remarked
before, whenever C1 is a semicube and C2 is a cube, if Hm exists, then C1 lies in the
negative side of Hm , hence the condition �i;j �m�1 if i j given in the definition
of RKm .

4 The operad RL

4A Definition of the operad RL

We describe a coloured SC-operad RL in the category of sets, Set.

The operad RL has two natural filtrations by suboperads RLm and RL0m for m� 1.
For each m � 1, we can think of RLm and RL0m as mixes between the suboperads
Lm and Lm�1 of the lattice paths operad L introduced in [3]. The operad RL has two
types of colours, the closed colours N and the open colours N , while L has one type
of colours N .

We generalize [3, Section 2] which serves as a basis for this section. In particular we
refer to [loc. cit.] for the definition of the category of bipointed small categories Cat�;� ,
ordinals Œn� and for the tensor product of ordinals Œi �˝ Œj �. Decorating each object of
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the ordinal Œn� with an underline gives the underlined ordinal Œn�. One denotes by N

the set of the natural numbers decorated by an underline; for n 2N and k 2Z��n one
lets nCk WD nC k . Let us denote by evW N tN!N the map defined by ev.e/D n

if e D n or e D n.

Definition of RL The set of colours of RL is ColDColcltColop , where Colcl WDN

and Colop WDN . Hence, n 2 Colcl whereas n 2 Colop .

For a .kC1/–tuple of colours .e1; : : : ; ek I e/ in Col, the set RL.e1; : : : ; ek I e/ is
defined as

� the empty set ∅ if e 2 Colcl and if there is an i such that ei 2 Colop ,

� Cat�;�.ŒeC 1�; Œe1C 1�˝ Œe2C 1�˝ � � �˝ Œek C 1�/ otherwise.

The substitutions maps are the natural extension to that of L; that is, they are given by
tensor and composition in Cat�;� .

4.1 Remark Accordingly, one recovers the lattice path operad

RL.n1; : : : ; nk I n/D L.n1; : : : ; nk I n/

D Cat�;�.ŒnC 1�; Œn1C 1�˝ Œn2C 1�˝ � � �˝ Œnk C 1�/

for all .kC1/–tuples .n1; : : : ; nk I n/ of colours in Colcl DN .

For instance, an element x 2RL.n1; n2I n/ is a functor xW ŒnC 1�! Œn1C1�˝Œn2C 1�

that sends .0; nC 1/ to ..0; 0/; .n1C 1; n2C 1// and is determined by the image of
the n remaining objects of ŒnC 1� and the morphisms into the lattice Œn1C1�˝Œn2C 1�.

4.2 Example The following lattice path x belongs to RL.3; 2I 3/:

(4-1)

.0; 3/ � x.4/

� � � x.2/D x.3/

x.1/

x.0/ � .4; 0/
1

2

2

1 1
2

1
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Integer strings representation In [3, Section 2.2] a description of L in terms of
integer strings is given. One has the obvious similar bijective correspondence for RL,
where one considers natural numbers and underlined natural numbers; the latter corre-
spond to the open colours. Additionally, we put an extra label according to the nature
of the output colour. Explicitly, given a lattice path x 2RL.e1; : : : ; ek I e/, one runs
through it starting from x.0/ (or x.0/) and ending at x.eC 1/. Along the way, each
time one meets an edge that is parallel to the i–axis one writes down i if ei 2 Colcl
and i if ei 2 Colop ; one writes down a vertical bar each time one meets an x.a/ for
1� ev.a/� ev.e/. One adds an op if the output colour belongs to Colop .

The ev.e/ vertical bars of the integer string x subdivide it into ev.e/C 1 (possibly
empty) substrings. The substrings are indexed by Œev.e/�.

4.3 Example The lattice path x given in (4-1) corresponds to the integer string
.12j211jj21/op .

4.4 Example .121/op 2RL.1; 0I 0/ whereas .121/ 2RL.1; 0I 0/.

Let us exhibit the corresponding composition on integer string representations via an
example.

4.5 Example .12j14231jj24/op ı2 .13j213j31/op D .124j1632451jj426/op .

We renumber the integer string .12j14231jj24/op by increasing the integers greater
than 2 by 2 (which is one less than the number of integers in the second integer string)
to obtain.12j16251jj26/op . We increase the integers of the second integer string by 1

(one less than the value of 2) to obtain .24j324j42/op . Finally, we replace the three
occurrences of 2 by the three substrings 24, 324 and 42.

The action of the symmetric group � � x 2 RL.e��1.1/; : : : ; e��1.k/I e/ is obtained
by permuting the number i (resp. i ) of the integer string representation of x by the
number �.i/ (resp. �.i/).

4.6 Example For x D .12j3211jj21/op and �.1/D 2, �.2/D 3, �.3/D 1, one has
� �x D .23j1322jj32/op .

The underlying category of RL It follows directly from [3, Section 2.4] and the defi-
nition of RL that the two underlying subcategories .RL/clu and .RL/opu are (canonically
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isomorphic to) the simplicial category 4. Thus, for each k � 0, one has a functor

RL.�; : : : ;�I�/W .4op/k �4! Set;

that is, a multisimplicial/cosimplicial set.

Dual interpretation of RL For later use, let us mention that RL has a dual inter-
pretation as given in [3, Lemma 2.7]. In particular, an element x 2RL.e1; : : : ; ek I e/

determines a k–tuple .x1; : : : ;xk/24.Œe1�; Œe�/�� � ��4.Œek �; Œe�/. The value of xi.r/

corresponds to the substring of the integer string x in which the .rC1/st occurrence
of i (or i ) appears. We refer to [loc. cit.] for more details.

4.7 Example The integer string x from Example 4.3 determines the pair .x1;x2/ 2

4.Œ3�; Œ3�/�4.Œ2�; Œ3�/ given by

x1W .0; 1; 2; 3/ 7! .0; 1; 1; 3/ and x2W .0; 1; 2/ 7! .0; 1; 3/:

Filtrations of RL by suboperads Let us define two maps

ci;j ; yci;j W RL.e1; : : : ; ek I e/!N:

The map ci;j is defined as in [3, Section 2.9] and will be used to defined the complexity
index for the closed and the open parts of RL. The map yci;j will be used to control
the interaction between the closed and the open part.

For 1� i < j � k , we denote by

�ij W RL.e1; : : : ; ek I e/!RL.ei ; ej I e/

the projection induced by the canonical projection

pij W Œe1C 1�˝ � � �˝ Œek C 1�! Œei C 1�˝ Œej C 1�:

For x 2 RL.e1; : : : ; ek I e/ and 1 � i < j � k , we define cij .x/ as the number of
changes of directions in the lattice paths �ij .x/.

The second number yci;j .x/ is defined as follows. Recall that if x 2RL.e1; : : : ; ek I e/,
then its integer string representation is, in particular, a sequence of numbers (underlined
or not) between 1 and k . For 1� i � k , we set i� (resp. i� ) to be the first occurrence
of i (resp. i ) in the integer string representation. Equivalently, i� (resp. i� ) is the first
edge of the lattice x which is in the i th direction. We write r� < s� if the element r�

precedes s� .
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For 1� i < j � k , we set

(4-2) yci;j .x/D

8̂̂̂<̂
ˆ̂:

ci;j .x/ if i� < j�;

ci;j .x/C 1 if i� > j�;

ci;j .x/C 1 if i� < j�;

ci;j .x/ if i� > j�:

For m� 1, we define RLm.e1; : : : ; ek I e/ as the set of elements x 2RL.e1; : : : ; ek I e/

satisfying the three conditions

max
.i;j/

ci;j .x/�m; max
.i;j/

ci;j .x/�m� 1 and max
.i;j/ or .i;j/

yci;j .x/�m:

Changing the number defined in (4-2) to

(4-3) yc0i;j .x/D

8̂̂̂̂
<̂
ˆ̂̂:

ci;j .x/C 1 if i� < j�;

ci;j .x/ if i� > j�;

ci;j .x/ if i� < j�;

ci;j .x/C 1 if i� > j�;

provides another filtration of RL by suboperads RL0m . Explicitly, RL0m.e1; : : : ; ek I e/

is the set of elements x 2RL.e1; : : : ; ek I e/ satisfying the three conditions

max
.i;j/

ci;j .x/�m; max
.i;j/

ci;j .x/�m� 1 and max
.i;j/ or .i;j/

yc0i;j .x/�m:

A relation between these two filtrations and the two cellular decompositions of SCm

from Theorem 3.5 is given in the next section.

4B The operad CoendRLm
.ı/ as an SC-type operad

Given a functor ıW 4!C , where C is a monoidal model category, by following the
method developed in [3, Sections 3.5–3.6], we construct a zig-zag of weak equivalences
of operads

(4-4) CoendRLm
.ı/ CoendcRLm

.ı/! BıRKm

whenever ı satisfies some conditions. Here, BıA denotes the ı–realization of the
nerve of the category A. The intermediate operad bRLm is defined using homotopy
colimits in C applied on a decomposition of RLm indexed by RKm .

We use most of the material from and the same conventions as in [3, Sections 3.5–3.6].
In particular, we require ı to be a standard system of simplices. This confers on
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homotopy colimits good properties, such as compatibility with the symmetric monoidal
structure of C . The functors ıyon , ıTop and ıZ defined hereafter are standard systems
of simplices.

Let

ıTopW 4
ıyon
��! Set4

op j�j
��! Top and ıZW 4

ıyon
��! Set4

op C�.�IZ/
������! Ch.Z/

be the two functors, where

� ıyon.Œn�/D Hom4.�; Œn�/ is the Yoneda functor,

� j � jW Set4
op
! Top is the geometric realization, and

� C�.�IZ/W Set4
op
! Ch.Z/ is the normalized chain complex.

Let us recall that for ıD.ıcl; ıop/ with ıcl; ıopW 4!C , the functor �.RLm/c1;:::;ck Ic.ı/

denotes the ı–realization

�.RLm/c1;:::;ck Ic.ı/.n/DRLm.�; : : : ;�„ ƒ‚ …
k

I n/˝4k ıc1
.�/˝ � � �˝ ıck

.�/;

where we use implicitly the strong monoidal functor Set!C , E 7!
`

e2E 1C .

We use the same functor ıcl D ıop and we denote it by ı . This way, by using conden-
sation from Section 2E, we define the SC-type operad CoendRLm

.ı/ and similarly for
CoendRL0m.ı/.

The idea for providing the zig-zag (4-4) follows that of (3-2) and relies on a de-
composition of �.RLm/c1;:::;ck Ic.ı/ by “cells” �.RLm/˛.ı/ indexed by the ˛ 2

RKm.c1; : : : ; ck I c/. Under some properties, the right-sided weak equivalence results
from “the contraction of the cells”, that is, from weak equivalences �.RLm/˛.ı/! I ,
where I denotes the constant cosimplicial object In D 1C ; the left-sided weak equiva-
lence is induced by the natural map hocolim �.RLm/˛.ı/! colim �.RLm/˛.ı/.

In fact, Batanin and Berger [3, Theorem 3.8] show that, in the closed case, (4-4) holds
provided that Lm is strongly ı–reductive. Here we extend their result to RLm . For
consistency we recall the notion of strong ı–reductivity in our context. Let us also
recall that a weak equivalence in C is called universal if any pullback of it is again a
weak equivalence.

4.8 Definition Let ı be a standard system of simplices in C . The operad RLm

is called ı–reductive if for any n � 0 and k � 0 and any colours ci ; c 2 fclI opg
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satisfying (2-2), the map �.RLm/c1;:::;ck Ic.ı/
n! �.RLm/c1;:::;ck Ic.ı/

0 is a universal
weak equivalence.

The operad RLm is called strongly ı–reductive if in addition the induced maps
CoendRLm

.ı/.c1; : : : ; ck I c/! �.RLm/c1;:::;ck Ic.ı/
0 are universal weak equivalences

in C .

4.9 Theorem Let ı be a standard system of simplices in C . If the operad RLm

(resp. RL0m ) is strongly ı–reductive, the operad CoendRLm
.ı/ (resp. CoendRL0m.ı/)

is weakly equivalent to BıRKm (resp. BıRK0m ).

Proof The cells �.RLm/˛.ı/ are obtained via a map

ctotW RLm.e1; : : : ; ek I e/!RKm.c1; : : : ; ck I c/

for each .kC1/–tuple of colours .c1; : : : ; ck I c/ in fcl; opg and ei 2 Colci
, e 2 Colc .

Such a map is defined in (4-7) below and recovers the maps from [3, Proposition 3.4]
in the closed case (ie c D cl). Note that there is a slight inaccuracy in [3] since, as we
will show in Example 4.12 and Lemma 4.11, including in the closed case, the map ctot

is not a morphism of coloured operads but instead satisfies

(4-5) ctot.x ıi y/� ctot.x/ ıi ctot.y/:

Such an inequality is sufficient to apply the method developed in [3, Sections 3.5–3.6],
however. Indeed, for ˛ 2RKm.c1; : : : ; ck I c/ and ei 2 Colci

, e 2 Colc , let us define

(4-6) .RLm/˛.e1; : : : ; ek I e/ WD fx 2RLm.e1; : : : ; ek I e/ j ctot.x/� ˛g:

It follows that RLm.e1; : : : ; ek I e/D colimRKm.c1;:::;ck Ic/.RLm/˛.e1; : : : ; ek I e/; the
inequality (4-5) ensures the compatibility of the decomposition with the operadic
structures, so that it implies that this is an equality of coloured operads. Moreover, the
operad bRLm , given by

bRLm.e1; : : : ; ek I e/D hocolimRKm.c1;:::;ck Ic/.RLm/˛.e1; : : : ; ek I e/;

is an operad (again, because of (4-5) and because of the compatibility of hocolim with
symmetric monoidal structure). It turns out that (4-6) forms a multisimplicial subcom-
plex of RLm.�; : : : ;�I e/, so it makes sense to take its ı–realization �.RLm/˛.ı/. In
fact, as cosimplicial objects, �.RLm/c1;:::;ck Ic.ı/D colimRKm.c1;:::;ck Ic/ �.RLm/˛.ı/,
and �.bRLm/c1;:::;ck Ic.ı/ identifies with hocolimRKm.c1;:::;ck Ic/ �.RLm/˛.ı/.
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From these considerations, it is straightforward to verify that the proof of Theorem 3.8
in [3] generalizes to our case: the ı–reductivity implies that �.RLm/˛.ı/ ! I is
a weak equivalence, and via the strongly ı–reductivity, the left-sided weak equiva-
lence of the zig-zag (4-4) results from the weak equivalence hocolim �.RLm/˛.ı/

0!

colim �.RLm/˛.ı/
0 .

4.10 Proposition If ı is ıTop or ıZ , the operads RLm and RL0m are strongly ı–
reductive. Consequently, the operads CoendRLm

.ı/ and CoendRL0m.ı/ are weakly
equivalent to the topological (resp. chain) Swiss cheese operad SCm (resp. C�SCm )
if ı is ıTop (resp. ıZ ).

Proof Again, this is a straightforward generalization of [3, Examples 3.10], where it
is shown that Lm is strongly ı–reductive if ı is ıTop or ıZ . The very same method
applies in our context by considering �.RLm/c1;:::;ck Ic.ı/ instead of �.Lm/k.ı/.

For a .kC1/–tuple .c1; : : : ; ck I c/ of colours in fcl; opg and ei 2 Colci
, e 2 Colc , let

ctotW RLm.e1; : : : ; ek I e/!RKm.c1; : : : ; ck I c/

be as follows. Recall the notation zci from (3-1). The element ctot.x/D .�; �/ 2RKm

is defined, for 1� i < j � k , by

(4-7) �i;j D ci;j .x/ and �i;j D

�
zci! zcj if zc�i < zc

�
j ;

zci zcj if zc�i > zc
�
j :

Similarly, let c0totW RL0m!RK0m be the map defined by the formula (4-7) for x 2RL0m .

4.11 Lemma For all x;y 2 RLm and i such that x ıi y makes sense, one has the
inequality ctot.x ıi y/ � ctot.x/ ıi ctot.y/. For all x;y 2RL0m and i such that x ıi y

makes sense, one has the inequality c0tot.x ıi y/� c0tot.x/ ıi c0tot.y/.

Proof We show the first assertion; the second one is similar. In the following arguments
the type of colours does not matter, so we abusively forget about the underline. Let
x 2RLm.e1; : : : ; epI e/ and y 2RLm.f1; : : : ; fqI ei/ for some 1� i � p .

For an integer a¤ i , one defines a0 WD a if a< i and a0 WD aC q� 1 if a> i .
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Recall that, by definition, the complete graph .�; �/D ctot.x/ ıi ctot.y/ is given by

.�kCi�1;lCi�1; �kCi�1;lCi�1/D .ck;l.y/; �k;l.ctot.y/// for 1� k < l � qI

.�r 0;s0 ; �r 0;s0/D .cr;s.x/; �r;s.ctot.x/// for 1� r < s � p
such that i 62 fr; sgI

.�r;kCi�1; �r;kCi�1/D .cr;i.x/; �r;i.ctot.x/// for 1� r < i; 1� k � qI

.�kCi�1;s0 ; �kCi�1;s0/D .ci;s.x/; �i;s.ctot.x/// for i < s � p; 1� k � q:

On the other hand, recall that the integer string y is subdivided in niC1 substrings that
are delimited by the ni vertical bars (ni WDev.ei/). Recall that the integer string xıiy is
obtained by substituting the bth occurrence of i by the bth substring (indexed by b�1)
of y together with a reindexation of the values. It follows that ckCi�1;lCi�1.x ıi y/D

ck;l.y/ and that the order in which the pair ..k C i � 1/�; .l C i � 1/�/ appears in
x ıi y is the same as the order in which the pair .k�; l�/ appears in y . Similarly, one
has cr 0;s0.x ıi y/D cr;s.x/, and the order in which .r 0�; s0�/ appears in x ıi y is the
same as the order in which the pair .r�; s�/ appears in x .

Moreover, it is straightforward to see that cr;kCi�1.x ıi y/ � cr;i.x/ and that the
equality holds if and only if k is present in at least one substring per switch between r

and i . Such an equality is illustrated below; there is at least one k in each of the
cr;i.x/ blocks of substrings:

x D . i� i � � � i r� i r � � � r i � � � i /

y D .

0‚…„ƒ
j

1‚…„ƒ
k� j � � � j

‚…„ƒ„ ƒ‚ …
1

j

‚…„ƒ
k„ƒ‚…
2

j � � � j

‚…„ƒ
k j � � � j

ni‚…„ƒ
k„ ƒ‚ …

cr;i .x/

/

Here, only the integers r , i and k are written; the arrows indicate the substitutions.

In the equality case, the order in which .r�; .k C i � 1/�/ appears in x ıi y is the
same as the order in which .r�; i�/ appears in x . Similar considerations hold for the
inequality ckCi�1;s0.x ıi y/� ci;s.x/.

It follows from the above paragraphs that ctot.x ıi y/� ctot.x/ ıi ctot.y/.

4.12 Example Here is an example of x and y such that ctot.xıi y/< ctot.x/ıi ctot.y/.
For x D .121j1/ and y D .1j12j2/, one has .121j1/ ı1 .1j12j2/D .1312j2/, and

ctot.xı1y/D

1

2 1
1 2

3

�

1

2 2
1 2

3

D
2

1 2 ı1
1

1 2 Dctot.x/ı1ctot.y/:
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4C Action on cochains

One has the obvious relative version of [3, Proposition 2.20]:

4.13 Proposition Let X and Y be two simplicial sets equipped with a simplicial
map f W Y ! X . The pair .ZŒX �;ZŒY �/ (resp. .Hom.ZŒX �;Z/;Hom.ZŒY �;Z//)
is a coalgebra (resp. an algebra) over RL. In particular, CoendRL.ıZ/ acts on
.C �.X IZ/;C �.Y IZ//.

Proof The RL–coaction in the closed case is as in [3, Proposition 2.20]. Otherwise,

ZŒRL.e1; : : : ; ek I n/�˝ZŒYn�! tensor products of ZŒXni
� and ZŒYnj �

is given by x˝ y 7! tensor products of x�i .y/ and f .x�j .y//, where the xi and xj

are the components of the dual interpretation of x from Section 4A; ie x corresponds
to the k–tuple .x1; : : : ;xk/ 2 4.Œe1�; Œe�/ � � � � � 4.Œek �; Œe�/. Since f is a map of
simplicial sets, the result directly follows from [loc. cit.].

4D Action on iterated relative loop spaces

In this section we show that, for any two topological spaces Y � X pointed at the
same point �, the operads CoendRLm

.ıTop/ and CoendRL0m.ıTop/ act on the pair
.�mX; �m.X;Y //. Here, �mX denotes the m–fold loop space of X , and �m.X;Y /

denotes the m–fold relative loop spaces of .X;Y /.

For m� 1 let �m be the simplicial m–simplex and @�m its boundary. For 0�p�m,
let ƒm

p be the m–horn at p . Explicitly, .ƒm
p /k � �

m
k

is given by elements of the
form yzW Œk�! Œm� for zW Œk�! Œn� and yW Œn�! Œm� with n<m, and if nDm� 1,
then p 2 Im.y/. For more details on these simplicial sets we refer to [11, pages 6–7].
It immediately follows from the definitions that:

4.14 Lemma Let x 2 �m . If x 62 ƒm
p , then there is a k 2 fm � 1;mg such that

x D ��W Œn�� Œk� ,! Œm�. Moreover, if k Dm� 1, then �D @pW Œm� 1� ,! Œm� is the
p–face map (p 62 Im.@p/); if k Dm, then �D idW Œm�! Œm� is the identity map. In
particular, if x 62 @�m , then k Dm; hence x is surjective.

Let SmD�m=@�m be the simplicial m–sphere. Let KclŒm� WD .Sm;�/ and K
p
opŒm� WD

.�m=ƒm
p ; @�

m=ƒm
p /. Both KclŒm� and K

p
opŒm� are simplicial objects in the category

CFin whose objects are pairs .A;B/ of finite sets pointed at the same point with
� � B � A and whose morphisms f W .A;B/! .A0;B0/ are morphisms of pointed
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sets f W A!A0 such that f .B/�B0 . The wedge sum is given by .A;B/_.A0;B0/D
.A_A0;B _B0/.

The inclusion ƒm
p � @�

m induces the projection � W Kp
opŒm�!KclŒm�, which is a map

of simplicial objects in CFin.

4.15 Proposition Let m� 1 and 0�p�m. For p odd, the pair .KclŒm�;K
p
opŒm�/ is

a coalgebra over RLm in CFin. For p even, the pair .KclŒm�;K
p
opŒm�/ is a coalgebra

over RL0m in CFin.

Proof Let us fix m�1. In order to simplify notation, we denote KclŒm� (resp. K
p
opŒm�)

by Kcl (resp. Kop ). An element x 2RL.e1; : : : ; ek I e/ induces maps

x�W Kcl
n!Kcl

e1
�� � ��Kcl

ek
if eDn and yx�W Kop

n !Kc1
e1
�� � ��Kck

ek
if eDn:

In what concerns the closed part (e D n), this is [3, Proposition 2.16]. For e D n, let
.x1; : : : ;xk/ 2 4.Œe1�; Œn�/� � � � �4.Œek �; Œn�/ be the k–tuple corresponding to x in
the dual interpretation of RL; see Section 4A. For 1 � i � k , let ni D ev.ei/. For
y 2�m=ƒm

p , the i th component of yx�.y/ is given by

yx�i .y/D

�
x�i .y/ if xi W Œni �! Œn�;

�.x�i .y// if xi W Œni �! Œn�:

We prove that if x 2RLm for p odd (resp. x 2RL0m for p even) then yx�.y/ belongs
to K

c1
e1
_ � � � _K

ck
ek

. From now on, let us suppose that there are i ¤ j such that x�i .y/

and x�j .y/ are not at the base point.

Suppose i corresponds to an open colour (ie ei D ni ). In this case, x�i .y/W Œni �!

Œn�! Œm� is not at the base point, ie x�i .y/ 62ƒ
m
p . From Lemma 4.14, this means that

Im.xi/\y�1.r/¤∅ for each r 2 Œm� such that r ¤ p .

(1) Suppose j corresponds to an open colour. This means that x�j .ys/ is not at
the base point and then Im.xj / \ y�1.r/ ¤ ∅ for each r 2 Œm� such that
r ¤ p . Therefore, i and j appear in m common fibres of y . Consequently,
ci;j .x/�m>m� 1.

(2) Suppose j corresponds to a closed colour. This means that �.x�j .y// 62 @�
m ,

that is, x�j .y/W Œnj �! Œn�! Œm� does not belong to @�m and thus is surjective
(Lemma 4.14). It follows that Im.xj / intersects all the fibres of y ; that is,
Im.xj /\y�1.r/¤∅ for each r 2 Œm�. In particular, yW Œn�! Œm� is surjective,
and then there are two cases for xi :
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(a) Im.xi/\y�1.p/¤∅ (ie Im.xi/\y�1.r/¤∅ for each r 2 Œm�), and so
ci;j .x/ � mC 1 > m (because i and j appear in mC 1 common fibres
of y ).

(b) Im.xi/\ y�1.p/ D ∅. When p is odd, this implies that ci;j .x/ > m if
j� < i� and ci;j .x/ > m� 1 if j� > i� . When p is even, this implies
that ci;j .x/ >m if j� > i� and ci;j .x/ >m� 1 if j� < i� .

Let us illustrate what happens in (b) when p is odd and j� < i� . In the integer string
representation of x ,

x D .

0‚…„ƒ
j i j � � � j

p�2‚…„ƒ
ij j

p�1‚…„ƒ
j i„ ƒ‚ …

ci;j .x/j0;p�1�p

j

p‚…„ƒ
j j

pC1‚…„ƒ
j i j � � � j

m�1‚…„ƒ
ij j

m‚…„ƒ
j i„ ƒ‚ …

ci;j .x/jpC1;m�m�p

/ with j� < i�;

we only represent (relevant occurrences of) the integers i and j ; the mC 1 substrings
represent the fibres y�1.r/ for r 2 Œm�, so that if n>m, then these substrings would
be subdivided (to end up with n vertical bars). Condition (2) says that the j are
present in each of the mC 1 substrings. Case (b) says that the i are present in all
the mC 1 substrings except the substring p . The number of switches ci;j .x/j0;p�1

(resp. ci;j .x/jpC1;m ) between i and j in the first p substrings (resp. in the last m�p

substrings) is then � p (resp. �m�p ). If ci;j .x/j0;p�1D p , the conditions j� < i�

and p odd imply that, in the substring p�1, the occurrences of j all appear before that
of i . Therefore, because of the presence of j in the substring p , there is an additional
switch, ie ci;j .x/� ci;j .x/j0;p�1C 1C ci;j .x/jpC1;m � pC 1Cm�p >m.

4.16 Corollary Let � � Y � X be topological spaces. For m � 1, the pair
.�mX; �m.X;Y // is an algebra over CoendRLm

.ıTop/ and over CoendRL0m.ıTop/.

Proof The m–fold relative loop space �m.X;Y /D HomTop�.jK
p
opŒm�jıTop ; .X;Y //

is, by adjunction, homeomorphic to the ıTop–totalization of .X;Y;�/.K
p
opŒm�;�/ . Sim-

ilarly, the m–fold loop space �mX D HomTop�.jKclŒm�jıTop ;X / is homeomorphic
to the ıTop–totalization of .X;�/.KclŒm�;�/ . Proposition 4.15 implies that the pair
..X;�/.KclŒm�;�/; .X;Y;�/.K

p
opŒm�;�// is an RLm–algebra for p odd and an RL0m–

algebra for p even. The result follows from condensation (Section 2E).

5 The relative surjection operad

We define two SC-type operads RSm and RS 0m that are suboperads of CoendRLm
.ıZ/

and CoendRL0m.ıZ/, respectively. We show that these inclusions are weak equivalences.
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Since we are using ıZ–realization, the Dold–Kan correspondence provides a convenient
way to present the cosimplicial chain complex �c1;:::;ck Ic.RLm/.ıZ/ as well as the
operad CoendRLm

.ıZ/. We closely follow [4, Section 3] in which this point of view
is adopted. In particular, we refer to [4, Section 3.3] for normalized totalizations
of (co)simplicial abelian groups; we adopt the same notation except that since we
have defined RLm in the category of sets, we apply ZŒ�� to make it a multisim-
plicial/cosimplicial abelian group. This way, one identifies CoendRLm

.ıZ/ with
Nor Nor.ZŒRLm�/, where Nor.�/ stands for the normalized realization of multisimpli-
cial abelian groups and Nor.�/ stands for the normalized totalization of cosimplicial
dg-abelian groups.

Let .c1; : : : ; ck I c/ be a .kC1/–tuple of colours in fcl; opg. As complexes, we set

RSm.c1; : : : ; ck I c/
�
WD Nor.ZŒRLm.�; : : : ;�I e/�/;

where e is of type c such that ev.e/ D 0 and the colours in the i th input are of
type ci for 1 � i � k . More explicitly, RSm.c1; : : : ; ck I c/

� is obtained fromL
�D�.n1C���Cnk/

ZŒRLm.e1; : : : ; ek I e/�, where e is of type c such that ev.e/ D 0

and ni WD ev.ei/ with ei of type ci for 1� i � k , by modding out the images of the
simplicial degeneracies.

We closely follow [4, Equations (4) and (5)], in which the following whiskering map
and partial compositions are defined for the closed case.

On an integer string x 2RLm.e1; : : : ; ek I e/ with ev.e/D 0, the n–whiskering wn.x/

is a signed sum of integer strings obtained from x by copying integers and adding
a vertical bar between each copy (eg i 7! i ji ji ) with the requirement that the total
number of vertical bars is n. Note that there is no bar between two adjacent integers
with different values (eg i jj is not allowed).

5.1 Example .1j12j2j2/op is a term of w3..12/op/.

The whiskering
wW RSm! Nor Nor.ZŒRLm�/

is defined by x 7!…wn.x/ for x2RLm.e1; : : : ; ek I e/ with ev.e/D0, and is extended
by linearity.

Let f 2RSm.c1; : : : ; ck I c/ and g 2RSm.d1; : : : ; dj I ci/ be two integer strings. We
define their partial composition by

(5-1) f ı
RSm

i g D f ıi wvali .f /g;
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where vali.f / is one less than the number of occurrences of zci in the integer string f .
We extend the partial compositions ıRSm

i by linearity.

We define an operad RS 0m in the same way as RSm by replacing RLm by RL0m in
the above paragraphs.

5.2 Proposition The partial compositions ıRSm

i and ıRS0m
i respectively endow RSm

and RS 0m with operad structures. The inclusions wW RSm ,! CoendRLm
.ıZ/ and

w0W RS 0m ,! CoendRL0m.ıZ/) are weak equivalences of operads.

Proof Except for signs, the fact that w is compatible with the operadic structures is
straightforward from the definition. To get signs for the whiskering, we can proceed
by a laborious induction, by requiring the whiskering to be a morphism of operads.
One can also remark that, concerning signs, the type of the colours (closed or open)
does not matter. This is because closed and open colours obey the same (co)simplicial
and composition rules (with different constraints). Thus, signs can be chosen using
the same method as in the nonrelative case (disregarding for signs only the colour):
One could proceed as proposed in [4, Proposition 3.2], that is, embed RSm into the
operad of coendomorphisms of the chains of a high-dimensional simplex. Then choose
signs in such a way that they match with those of [6, Section 2.2] in the closed and in
the open cases and, in fact, in the open/closed case, disregarding type of colours when
choosing signs. This can be compared with Proposition 4.13, by asking the map f to
be idW �n!�n .

Let us denote by

� W Nor Nor.ZŒRLm�/! Nor.ZŒRLm�/
0
DRSm

the map induced by the projection pW Nor.ZŒRLm�/
�! Nor.ZŒRLm�/

0 . Such a map
is a weak equivalence by Proposition 4.10. Moreover it satisfies � ıw D id. Thus, w
is a weak equivalence.

6 The operads RL2 and RL0

2

6A The operad RL2 in term of trees

6A1 The sets of RT In what follows we will consider planar rooted trees; we refer
to [17, Part II, Section 1.5] for the terminology. Our trees have only one external edge,
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called the root; all the other edges have 2 adjacent vertices. The external vertices
(vertices that are adjacent to only one edge) are called the leaves. Given a vertex v of
a rooted tree T , the minimal subtree of T containing both the root and v has only one
edge originating from v ; such an edge is called the output of v . The edges originating
from a vertex that are not the output are called the inputs. In our planar trees, the set of
the edges originating from a vertex v is cyclically ordered in the clockwise direction.
This induces a linear order on the set of the inputs of v . This also canonically endows
the set of the leaves with a linear order.

One considers planar rooted trees with 4 types of vertices: white round-shaped , called
closed vertices; white square-shaped , called open vertices; black round-shaped ,
called neutral vertices; and black arrow-shaped , called the arrows. A white vertex is
either a closed vertex or an open vertex.

6.1 Definition Let T be a planar rooted tree. Let � be a vertex of T . We denote
by T� the maximal subtree of T such that the output of � is the root of T� .

Let .e1; : : : ; ek ; e/ be a .kC1/–tuple of colours in Col. The set RT .e1; : : : ; ek I e/

is the empty set if e 2 Colcl and there exists a i such that ei 2 Colop ; otherwise,
RT .e1; : : : ; ek I e/ is the set of equivalence classes of planar rooted trees T satisfying
the following:

� The set of the arrows is a subset of the leaves of T and is of cardinal ev.e/.

� The set of closed vertices is labelled by the set fi 2 f1; : : : ; kg j ei D nig and
open vertices by fi 2 f1; : : : ; kg j ei D nig in such a way that

(F1) the vertex labelled by i 2 f1; : : : ; kg has ev.ei/ inputs,

(F2) there is no white vertex above an open vertex; ie if � is an open vertex,
then in the tree T� the vertex � is the unique white vertex.

� If e is an open colour (ie e D n for some n), then the root of T is decorated by
an op.

The equivalence class is the same as in [10, Section 3.2.1]. Explicitly, it is the finest
one in which two planar rooted trees are equivalent if one of them can be obtained
from the other by either

� the contraction of an edge with neutral adjacent vertices, or

� removing an neutral vertex with only one edge originating from it and joining
the two edges adjacent to this vertex into one edge.
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3

1 2 1 3

2

4

op

1 2

op

Figure 1: Examples of trees in RT : a tree of RT .3; 2; 2I 6/ (left), a tree of
RT .2; 0; 3; 3I 5/ (middle), and a tree of RT .2; 2I 5/ (right).

6.2 Remark In the closed case, the trees of RT .n1; : : : ; nk I n/ have no open vertices.

The operadic structure of RT is explicitly given in the next section and corresponds to
the substitution of trees into white vertices.

6A2 Correspondence between RT and RL2 Let us start by constructing a bi-
jection of sets ˆW RT .e1; : : : ; ek I e/ ! RL2.e1; : : : ; ek I e/ for each .kC1/–tuple
.e1; : : : ; ek I e/ of colours.

The map ˆ For a T 2 RT .e1; : : : ; ek I e/, let us construct an integer string in
RL2.e1; : : : ; ek I e/ as follows. One runs through the tree T in clockwise direction
starting from the root in such a way that one passes exactly two times on each edge
(once per direction). On our way, each time one meets a closed (resp. an open) vertex
labelled by an i 2 f1; : : : ; kg one writes down the corresponding label i (resp. the
corresponding label with an underline i ), and each time one meets an arrow one writes
down a vertical bar. One adds an extra label op if the root is decorated by op.

The map ˆ�1 To an integer string representation one assigns a tree with one closed
(resp. open) vertex for each different integer (resp. underlined integer) and one arrow for
each vertical bar. The white vertices have one input less than the number of occurrences
for the corresponding integer; the corresponding tree is constructed such that its order
fits with the reading (from the left to the right) of the integer string. One adds an extra
label op on the root if the integer string is decorated by op. Note that when two equal
integers (or two vertical bars) are adjacent in the integer string this forces the creation
of a neutral vertex.

6.3 Example Via ˆ, the tree from Figure 1 (middle) corresponds to the integer string
.1j1j13jj3234j4j443/op .
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�

1

2

3

op

1 �

1

2

D �

�

1

3

4
2

op

D �

1

3

4
2

op

Figure 2: An example of composition in RT

We endow RT with an operadic structure by transferring the composition maps of RL2

along the bijections above. Explicitly, T ıv T 0 WDˆ�1.ˆ.T / ıv ˆ.T
0// for all com-

posable T;T 0 2 RT . One can check that the composition maps in RT are given
by substitution of planar rooted trees into white vertices: Let T 2RT .e1; : : : ; ek I e/

and let v be a vertex of T labelled by ei . For a tree T 0 2 RT .f1; : : : ; fj I ei/, the
tree T ıv T 0 2RT .e1; : : : ; ei�1; f1; : : : ; fj ; eiC1; : : : ; ek I e/ is given as follows. The
vertex v of T is substituted by the tree T 0 in such a way that

� the root of T 0 is identified with the root of v ,

� the ordered set of the ni D ev.ei/ arrows of T 0 is identified with the ordered set
of the ni inputs of v .

The set of the white vertices of T ıv T 0 is labelled by the set f1; : : : ; kC j � 1g

associated to .e1; : : : ; ei�1; f1; : : : ; fj ; eiC1; : : : ; ek/. See Figure 2.

By construction one has:

6.4 Proposition The coloured operads RL2 and RT are isomorphic.

6B The operad RL0
2

in term of trees

This section is the analogue of the previous section for RL0
2

. We define an op-
erad RT 0 as follows. For a .kC1/–tuple .e1; : : : ; ek I e/ of colours in Col, the set
RT 0.e1; : : : ; ek I e/ is defined as RT .e1; : : : ; ek I e/ is, except that the condition (F2)
from Section 6A1 is replaced by the following condition:

(F20) There is no white vertex below an open vertex; ie if � is a white vertex of T ,
then in the tree T� either the vertex � is the unique open vertex or there is no
open vertex.
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In particular, for the closed part, RT 0.n1; : : : ; nk I n/DRT .n1; : : : ; nk I n/.

The operadic composition for RT 0 is the same as for RT , and we have the analogue
of Proposition 6.4:

6.5 Proposition The coloured operads RL0
2

and RT 0 are isomorphic.

Here is an example of an element of RT 0.3; 2; 2I 6/ and its corresponding element in
RL0

2
.3; 2; 2I 6/:

3

1 2

op

 ! .31j1j1j132jj2j23/op:

6C A few remarks on the operads RS2 and RS 0
2

6.6 Proposition As an operad, RS2 is generated by the elements

�cl D .12/; Tk D .1213 � � � 1k1/ for k � 2 (closed part);

�op D .12/op (open part);

Tj D .1213 � � � 1j 1/op for j � 2;

incD .1/op;

and the two unit elements idclD.1/ and idopD.1/op. As an operad, RS 0
2

is generated by

�cl; Tk ; �op; T 0j ; inc; idcl; idop

for k � 2 and j � 2, where T 0j D .1213 � � � 1j 1/op .

Proof We prove the statement for RS2 ; the case RS 0
2

is similar. We suppose by
induction on N that any integer string of RS2 with N different integers is obtained
by operadic compositions of elements cited in the statement. The cases N D 1 and
N D 2 are trivially verified.

In what follows we abusively do not mark the distinction between underlined and
nonunderlined integers. Let x be an integer string of RS2 with NC1 different integers.
Because of the filtration condition (4-2), x can be written as a sequence .A1 � � �An/,
where the Ai are nonempty sequences of integers such that if j belongs to Ai , then
j 62As for s ¤ i . Moreover, because of the symmetric group action, one can suppose
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that the integers of Ai are smaller than the integers of Aj whenever i < j . In this
case, if n> 1, then xD .˛ ı1 .A1 � � �An�1//ımax An�1C1 . zAn/, where zAn is obtained
from An by decreasing each number by max An�1 , and ˛ is .12/; .12/op; .12/op ,
.12/op or .12/op . Since the Ai are not empty, .A1 � � �An�1/ as well as An have at
most N different integers and thus satisfy the induction hypotheses. If n D 1 then
either x is Tk (or Tk ) for some k , or x is such that A1 D jB1jB2j � � � jBpj with
1 � p <N and for some integer j . Thus there exists at least one Bi0

that contains
2� q �N � .p�1/ elements, and x D .jB1j � � �Bi0�1jajBi0C1j � � � jBpj /ıa zBi0

for some a, which concludes the proof.

Via Proposition 6.4, the generators of RS2 described in Proposition 6.6 correspond to
the trees

idcl D 1 ; �cl D

1 2

; Tk D

1

2 3 k � 1 k
� � �

and

idop D 1

op
; �op D

1 2

op„ ƒ‚ …
(open part)

; incD 1

op
; Tj D

1

2 3 j � 1 j
� � �

op

for the closed and nonclosed parts, respectively. For RS 0
2

the element T 0j corresponds to

1

2 3 j � 1 j
� � �

op

The operadic structure of RS2 is described in terms of trees by means of Proposition 6.4;
the whiskering w defined in Section 5 has a corresponding map on RT (roughly, it
consists in adding arrows linked to the white vertices) and the composition of two
trees is given by transferring the formula (5-1) to RT . One has a similar description
for RS 0

2
. For the closed part, details are given in [4] with a slightly different convention.

A full description of the operad RS 0
2

in terms of similar trees is given in [12].

6D The algebras over RL2

We describe the algebras over RL2 , where RL2 is implicitly seen in C by means of
the strong symmetric monoidal functor Set!C , E 7!

`
e2E 1C . Precisely, we show

that RL2 encodes the pairs .M;Z/ subject to the following conditions:
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(I) M is a multiplicative non-† operad.

(II) Z is in BiModM–As , and there is a morphism �WM! Z in BiModM–As .

Let E be the category with objects the pairs .M;Z/ satisfying the two conditions
(I) and (II) above; morphisms are the pairs .f;g/W .M;Z/! .M0;Z 0/ subject to the
following conditions:

� f WM!M0 is a morphism of multiplicative non-† operads,

� gW Z! Z 0 is an f –equivariant morphism of left modules over M,

� g is a morphism of bimodules over As, and

� �0 ıf D g ı �.

6.7 Remark Note that E is well defined since, by the last condition �0 ıf D g ı �,
the morphism � of (II) associated to .M;Z/ is unique. The pair .As;As/ is the initial
object of E .

6.8 Remark As observed in Example 2.6, since here we have a morphism As! Z ,
it follows from (II) that Z is, in particular, a weak bimodule over As (see also the
proof of Proposition 6.9). By Lemma 2.7 this is equivalent to saying that Z is endowed
with a cosimplicial structure. Likewise, the multiplicative structure of M endows it
with a cosimplicial structure. These are the cosimplicial structures involved in the
ı–totalization that gives rise to the CoendRL2

.ı/–algebra .TotıM;Totı Z/.

6.9 Proposition The category of RL2–algebras in C is isomorphic to the category E.

Proof We use the interpretation of RL2 in terms of planar trees; see Proposition 6.4.

Let .M;Z/ be an RL2–algebra. This means that for each T 2 RL2.e1; : : : ; epI e/

one has a corresponding operation

T 2 Hom.products of M.ni/ and Z.nj /;Z.n//
or

T 2 Hom.products of M.ni/;M.n//

according to the type of the output e , where ns D ev.es/ is the value of es , 1� s � p

and nD ev.e/.

Let us write explicitly the induced structures on M and Z .
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(1) Operadic structure on M The partial compositions on elementary trees are
given by

1 i � 1

i C 1
k

1 l

: : : : : :  ! ıi WM.k/˝M.l/!M.kC l � 1/:

The operadic structure of RL2 provides the associativity condition for partial composi-
tions of M. This is similar to (3) below, which we describe in detail.

(2) Multiplicative structure on M The morphism ˛W As.k/!M.k/ is given by
the corolla in a neutral vertex with k inputs. For kD1, one has that ˛D�W 1C!M.1/

is the unit. Note that the isomorphism As.k/˝As.l/! As.kCl�1/ corresponds
to the equivalence relation made on the neutral vertices (see Definition 6.1). The
multiplication in M is given by operations as

WM.2/˝M.3/DAs.2/˝M.2/˝M.3/!M.5/:

(3) Left action of M on Z The k–corollas in a closed vertex with k open vertices
at the inputs give the left action �:

1

2
3 kC1

1
m1 1

mk

: : :

op

 ! �WM.k/˝Z.m1/˝ � � �˝Z.mk/! Z.m1C � � �Cmk/:

The operadic structure of RL2 gives the associativity of the left action:

3

iC1

iC2C l

kC lC2

: : :

op

iC2

iC1C l

1

2

: : :

D �.2;i/;iC1

0BB@
1

2

i

iC2

kC1

: : :

op

iC1

1 x
: : :

ıiC1

1

2

lC1

: : :

op

1CCA

D
2

iC1
iC2

iC1C l
: : :

iC2C l

kC lC2op1

ı1

1 i�1
iC1

k

1 l

: : : : : :

1

2

;

where i; k; l;x are as in Definition 2.12.1 and �.2;i/;iC1 is the block permutation
(�.2;i/;iC1.s/ D s C 1 for 2 � s � i , �.2;i/;iC1.i C 1/ D 2 and �.2;i/;iC1.s/ D s

otherwise). The first decomposition corresponds to the top-right path in the diagram of
Definition 2.12.1; the second decomposition corresponds to the left-bottom path.
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Note that, by precomposing �M with ˛W As!M, one has a left action of As:

1
2 k

1
m1 1 mk

: : :

op

 ! �As
W As.k/˝Z.m1/˝� � �˝Z.mk/!Z.m1C� � �Cmk/:

(4) Right action of As on Z This is given by

1 t �1 tC1

k

1 l

: : :

: : :

: : :

op

 ! �t W Z.k/D Z.k/˝As.l/! Z.kC l � 1/:

The associativity for the right action is given by operadic composition of RL2 . Precisely,
for the left-sided square of Definition 2.12.1, As.k/˝As.l/ŠAs.kC l � 1/ leads to
the left-bottom path, while the top-right path corresponds to the decomposition of the
above tree as

1 i�1 iC1

mCk�1

1 l

: : :

: : :

: : :

op
v

ıv

1 t �1 tC1

m

1 k

: : :

: : :

: : :

op

:

The right-sided square of Definition 2.12.1 is obtained similarly.

(5) Associativity of the left M–action and right As–action on Z This is the
square of Definition 2.12.1 and is obtained by considering trees as

: : : : : :

op
1

2
sC1 kC1

D
: : : : : :

op
1

2
sC1 kC1

ısC1

op

D
: : : : : :

1 op

ı1
: : : : : :

op
1

2
sC1 kC1

:

(6) The morphism �W M ! Z This is given by corollas in a closed vertex with an
open output:

1 k: : :

op

 ! �WM.k/! Z.k/:
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Note that the operations such as those given by k–corollas in a closed vertex with
1� j � k open vertices at inputs 1� b1 < � � �< bj � k ,

1

vb1

vbr

k

vbj

: : : : : :

op

 ! �b1;:::;bj WM.k/˝Z.m1/˝� � �˝Z.mj /!Z
�
k�jC

X
1�p�j

mp

�
;

can be obtained by precomposing the left action � by As.1/! Z.1/ at the all inputs
other than the bi . This results from the fact that such a k–corolla is obtained as

(6-1)

0BB@
0BB@� � �

0BB@ v1

vb1 vbr

vk

vas
vbj

: : : : : :

op

ıvk

op

1CCA � � � ıvas

op

1CCA ıvas�1

op

� � � ıv1

op

1CCA ;
where the as are the inputs other than the bj (a1D 1 in the picture above). In particular,
the weak left action is obtained whenever j D 1 and the left action corresponds to
j D k . Doing this to the corollas of �As in (3) above endows Z with a structure of
weak bimodule over As.

Let us remark that, because of the decomposition

1 k: : :

op
D

1 k: : :

op
v ıv

1 k: : :
;

the morphism As! Z given by the left-sided tree corresponds to �˛W As!M! Z .
More generally, note that any tree can be obtained as a composition of elementary
trees: trees as in (1)–(4), (6) above and corollas in a neutral vertex. Therefore, for
.M;Z/ 2E , the operation corresponding to a given a tree T is defined as given by
any of the decompositions of T in elementary trees; the independence of this operation
regarding the different decompositions is ensured by the properties of .M;Z/. For
instance, the two decompositions

op

D

0B@ v2
v4

op

ıv2 op

1CAıv4 op
D

v
op

ıv ;

correspond to (2 iterations of) the diagram of Definition 2.1(2), plus the fact that �
is a left module map and �W 1C !M is the unit. Here, the penultimate tree is not
elementary but it admits a decomposition into elementary trees as in (6-1).
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6E The algebras over RL0
2

We show that the operad RL0
2

encodes the pairs .M;Z/ subject to the following
conditions:

(I0) M is a multiplicative non-† operad.

(II0) Z is in BiModAs–M with a morphism �WM! Z in BiModAs–M .

Let E 0 be the category with objects the pairs .M;Z/ satisfying the two conditions
(I0) and (II0) above; morphisms are the pairs .f;g/W .M;Z/! .M0;Z 0/ subject to the
following conditions:

� f WM!M0 is a morphism of multiplicative non-† operads,

� gW Z! Z 0 is an f –equivariant morphism of right modules over M,

� g is a morphism of bimodules over As, and

� �0 ıf D g ı �.

6.10 Proposition The category of RL0
2
–algebras in C is isomorphic to the category E 0.

Proof The only significant differences with Proposition 6.9 are the following. The
right action of M on Z is given by the k–corollas in an open vertex with a closed
vertex at an input:

1
i�1 iC1

k

1 l: : :

: : : : : :

op

 ! �i W Z.k/˝M.l/! Z.kC l � 1/:

The operations such as those given by k–corollas in a neutral vertex with 1� j � k

open vertices at inputs 1� b1 < � � �< bj � k ,

1

vb1

vbr

k

vbj

: : : : : :

op

 ! �b1;:::;bj WAs.k/˝Z.m1/˝� � �˝Z.mj /!Z
�
k�jC

X
1�p�j

mp

�
;

are obtained via the left action of As on Z , using the fact that �˛W As!M! Z is a
morphism of left modules.
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