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Macfarlane hyperbolic 3–manifolds

JOSEPH A QUINN

We identify and study a class of hyperbolic 3–manifolds (which we call Macfarlane
manifolds) whose quaternion algebras admit a geometric interpretation analogous to
Hamilton’s classical model for Euclidean rotations. We characterize these manifolds
arithmetically, and show that infinitely many commensurability classes of them
arise in diverse topological and arithmetic settings. We then use this perspective
to introduce a new method for computing their Dirichlet domains. We give similar
results for a class of hyperbolic surfaces and explore their occurrence as subsurfaces
of Macfarlane manifolds.

11R52, 57M27, 57M99

1 Introduction

Quaternion algebras over complex number fields arise as arithmetic invariants of com-
plete orientable finite-volume hyperbolic 3–manifolds. Quaternion algebras over totally
real number fields are similarly associated to immersed totally geodesic hyperbolic
subsurfaces of these manifolds. The arithmetic properties of the quaternion algebras
can be analyzed to yield geometric and topological information about the manifolds
and their commensurability classes. For background information on this topic, see
Maclachlan and Reid [16], Neumann and Reid [20] and Takeuchi [28].

In this paper we introduce an alternative geometric interpretation of these algebras,
recalling that they are a generalization of the classical quaternions H of Hamilton. The
author [22] elaborated on a classical idea of Macfarlane [15] to show how an involution
on the complex quaternion algebra can be used to realize the action of IsomC.H3/

multiplicatively, similarly to the classical use of the standard involution on H to realize
the action of IsomC.S2/. Here we generalize this to a class of quaternion algebras
over complex number fields and characterize them by an arithmetic condition. We
define Macfarlane manifolds as those having these algebras as their invariants.

We establish the existence of arithmetic and nonarithmetic Macfarlane manifolds and,
in each of these classes, infinitely many noncommensurable compact and noncompact
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examples. We then develop a new algorithm for computing Dirichlet domains of
Macfarlane manifolds and their immersed totally geodesic hyperbolic subsurfaces,
using the duality between points and isometries that comes from the quaternionic
structure.

Main results

Let X be a complete orientable finite-volume hyperbolic 3–manifold. Let K and B be
the trace field and quaternion algebra of X , respectively. We say that X is Macfarlane
if K is an imaginary quadratic extension of a (not necessarily totally) real field F ,
and the nontrivial element of the Galois group G.K W F / preserves the ramification
set of B and acts on it with no fixed points. We then show (in Theorem 3.4 and
Corollary 4.2) that this is equivalent to the existence of an involution | on B which,
with the quaternion norm, naturally gives rise to a 3–dimensional hyperboloid I� � B
over F . Moreover, | is unique and the action of �1.X / by orientation-preserving
isometries of H3 can be written quaternionically as

�1.X /ü I� ; .;p/ 7! p |:

By comparison, via Hamilton’s classical result one can use the standard involution �
on H to realize IsomC.S2/ quaternionically [22] as

PH1 ü H1
0; .;p/ 7! p �:

In Section 4, we describe an adaptation of the main result for hyperbolic surfaces
and show how, in certain instances, an immersion of a surface in a 3–manifold is
sufficient for the 3–manifold to be Macfarlane. We then study other topological and
arithmetic conditions under which Macfarlane manifolds arise, culminating in the
following theorem.

Theorem 1.1 (1) Every arithmetic, noncompact manifold X is finitely covered by
a Macfarlane manifold, where the index of the cover is at most jH.X;Z=2/j.

(2) Every arithmetic, compact manifold containing an immersed, closed totally
geodesic subsurface is finitely covered by a Macfarlane manifold, where the
index of the cover is at most jH.X;Z=2/j.

(3) Among the nonarithmetic manifolds, there exist infinitely many noncommensu-
rable Macfarlane manifolds in each category of noncompact and compact.

In Section 5, we use the quaternion model to improve on existing algorithms for
computing Dirichlet domains and illustrate this with some basic examples.
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2 Preliminaries

See Bonahon [5] and Ratcliffe [23] as general references for preliminary information on
hyperbolic geometry and its relevance to Kleinian and Fuchsian groups. See Quinn [22]
for preliminary information on algebras with involution, the standard Macfarlane space
and some additional historical context. See Voight [30] for a comprehensive treatment
of quaternion algebras.

2.1 Quaternion algebras

Let K be a field with char.K/ ¤ 2. In this article K will usually be one of R;C ,
a p–adic field, or a number field. Throughout this article, a number field will always
mean some K�C with ŒK WQ� <1 and with a fixed embedding into C , ie a concrete
number field (in the sense of Neumann [19]).

Definition 2.1 Let a; b2K� , which we call the structure constants of the algebra. The
quaternion algebra

�
a;b
K

�
is the associative K–algebra (with unity) K˚Ki˚Kj˚Kij ,

with multiplication rules i2 D a, j 2 D b and ij D�j i .

(1) The quaternion conjugate of q is q� WD w�xi �yj � zk .

(2) The (reduced) norm of q is n.q/ WD qq� D w2� ax2� by2C abz2 .

(3) The (reduced) trace of q is tr.q/ WD qC q� D 2w .

(4) q is a pure quaternion when tr.q/D 0.

We indicate conditions on the trace via subscript; for instance, given a subset E�
�

a;b
K

�
,

we write E0Dfq2E j tr.q/D0g and ECDfq2E j tr.q/>0g. We indicate conditions
on the norm via superscript, for instance E1 D fq 2E j n.q/D 1g.

Proposition 2.2 [30, Section 3.3] If K � C , then there exists a faithful matrix
representation of

�
a;b
K

�
into M2.C/. Moreover, under any such representation, n

and tr correspond to the matrix determinant and trace, respectively.

We will be interested in the K–algebra isomorphism class of
�

a;b
K

�
(preserving the

embedding of K ), which is not uniquely determined by the structure constants a and b .

Theorem 2.3 [17, Section 2] (1) Either
�

a;b
K

�
ŠM2.K/, or

�
a;b
K

�
is a division

algebra.

(2)
�

a;b
K

�
ŠM2.K/ if and only if there exist x;y 2K such that ax2C by2 D 1.

(3) For all x;y 2K� , we have
�

a;b
K

�
Š
�

b;a
K

�
Š
�ax2;by2

K

�
.

Algebraic & Geometric Topology, Volume 18 (2018)



1606 Joseph A Quinn

It follows that for any K , there is the quaternion K–algebra
�

1;1
K

�
ŠM2.K/. Moreover,

if
�

a;b
K

�
is not a division algebra, then its isomorphism class is unique and can be

represented by
�

1;1
K

�
. Thus we now focus on quaternion division algebras.

Example 2.4 See [17, Sections 2.6 and 2.7] for proofs of (3) and (4) below.

(1) Over R, the only quaternion division algebra up to isomorphism is H WD
�
�1;�1

R

�
,

Hamilton’s quaternions.

(2) There are no quaternion division algebras over C .

(3) Over each p–adic field, there is a unique quaternion division algebra up to
isomorphism.

(4) Over each (concrete) number field, there are infinitely many nonisomorphic
quaternion division algebras.

This raises the question of how to tell, when K is a number field, whether or not two
quaternion K–algebras are isomorphic. This can be done by investigating the local
algebras with respect to the places of K , in the following sense.

Let K be a (concrete) number field and let B D
�

a;b
K

�
. For a place v of K , let Kv

be the completion of K with respect to v . To each v , we associate an embedding
� W K ,!Kv as described in the following paragraph, and then define the localization
of B with respect to v as Bv WD B˝� Kv .

If v is infinite (ie Archimedean), then it corresponds (up to complex conjugation)
to an embedding of K into C fixing Q, under which the completion of the image
of K is either R or C , and we define � as the corresponding embedding. So if
�.K/�R then Bv D

��.a/;�.b/
R

�
, which is isomorphic to H or M2.R/. If �.K/ 6�R

then Bv D
��.a/;�.b/

C

�
, which is always isomorphic to M2.C/. If v is finite (ie non-

Archimedean), then it corresponds to a prime ideal P C ZK , where ZK is the ring of
integers of K . In this case we define � as the identity embedding into the corresponding
p–adic field KP ; thus Bv WD

�
a;b
KP

�
.

Definition 2.5 (1) B is ramified if it is a division algebra, and is split if BŠM2.K/.

(2) B is ramified at v (respectively, split at v ) if Bv is ramified (respectively, split).

(3) Ram.B/ is the set of real embeddings and prime ideals that correspond to the
places where B is ramified.

Algebraic & Geometric Topology, Volume 18 (2018)
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The set Ram.B/ provides the desired classification of isomorphism classes of quaternion
algebras over number fields as follows.

Theorem 2.6 [30, Section 14.6] (1) B is split if and only if Ram.B/D∅.

(2) Ram.B/ uniquely determines the isomorphism class of B .

(3) Ram.B/ is a finite set of even cardinality, and every such set of places of K

occurs as Ram.B/ for some B .

2.1.1 Involutions on quaternion algebras We will have need to think about involu-
tions on B besides quaternion conjugation, so we include some basic notions of more
general such involutions.

Definition 2.7 An involution on B is a map ?W B ! B , x 7! x?, such that for
all x;y 2 B ,

(1) .xCy/? D x?Cy?,

(2) .xy/? D y?x?, and

(3) .x?/? D x .

Definition 2.8 For a subset E � B , the set of symmetric elements of ? in E is
Sym.E; ?/ WD fx 2E j x? D xg.

Definition 2.9 (1) An involution ? is of the first kind if K D Sym.K; ?/.

(2) An involution ? is standard if it is of the first kind and xx? 2K for all x 2A.

(3) An involution ? is of the second kind if K ¤ Sym.K; ?/.

Proposition 2.10 [14, Section I.2] Let ? be an involution on B .

(1) 1? D 1.

(2) If ? is of the first kind, then it is K–linear.

(3) If ? is of the second kind, then ŒK W Sym.K; ?/�D 2.

2.2 The arithmetic of hyperbolic 3–manifolds

Let X be a complete orientable finite-volume hyperbolic 3–manifold, and from here
on this is what we will mean by manifold. Then �1.X / Š � < PSL2.C/ for some
discrete group � (ie � is a Kleinian group). Let y� WD f˙ j f˙ g 2 �g< SL2.C/.

Algebraic & Geometric Topology, Volume 18 (2018)
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Definition 2.11 (1) The trace field of � is K� WDQ
�
ftr. / j  2 y�g

�
.

(2) The quaternion algebra of � is B� WD
˚Pn

`D1 t`` j t` 2K�; ` 2 y�; n 2N
	

.

Remark 2.12 In the literature these are usually denoted by k0� and A0� , but we
write them differently to avoid confusion with the notation for pure quaternions.

Then K� is a concrete number field, which, recall, means it is a fixed subfield of C ,
and B� is a quaternion algebra over K� [16]. By Mostow–Prasad rigidity, these are
manifold invariants in the sense that if � and � 0 are two discrete faithful representations
of �1.X /, then K� DK� 0 and B� Š B� 0 via a K�–algebra isomorphism (though
the converse does not hold). So we may also refer to them as the trace field and
quaternion algebra of X up to homeomorphism.

Definition 2.13 Let �.2/ WD h 2 j  2 �i.

(1) The invariant trace field of � is k� WDK�.2/.

(2) The invariant quaternion algebra of � is A� WD B�.2/.

These likewise are invariants of X , but have the stronger property of being commensu-
rability invariants. That is, if � is commensurable up to conjugation to some Kleinian
group � 0 , then k� D k� 0 and A� ŠA� 0 (though the converse does not hold) [20].

We call X arithmetic if � is an arithmetic group in the sense of [6], but this admits
the following alternative characterization, which is more useful for our purposes.

Definition 2.14 [16] (1) � (or X ) is derived from a quaternion algebra if there
exists a quaternion algebra B over a field K with exactly one complex place � ,
such that B is ramified at every real place of K , and there exists an order O� B
such that � is isomorphic to a finite-index subgroup of PO1 WDO1=˙ 1.

(2) � (or X ) is arithmetic if it is commensurable up to conjugation to one that is
derived from a quaternion algebra.

If � is derived from a quaternion algebra B over a field K , then K DK� D k� and
B Š B� ŠA� . If � is arithmetic, then �.2/ is derived from a quaternion algebra. In
general, �.2/ is a finite-index subgroup of � [20].

While k� and A� are generally more suitable to the application of arithmetic, we
will work instead with B� so that we may take advantage of the natural embedding
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y� ,! B� . (To simplify notation, and where it will not cause confusion, we will often
refer to an element f˙ g 2 y� by a representative  2� .) Often, A� and B� coincide
(though not always [24]).

Proposition 2.15 (1) We have k� DK� if and only if A� Š B� .

(2) If H3=� is a knot or link complement, then A� Š B� .

Proof We prove (1); see [17, Section 4.2] for (2). The reverse implication is immediate.
For the forward implication, note that A� �B� and both are 4–dimensional vector
spaces, so if they are over the same field, then they must be the same.

We now collect some important properties of these invariants.

Theorem 2.16 [17, Section 8.2] (1) If X is noncompact, then B� Š
�

1;1
K�

�
and

A� Š
�

1;1
k�

�
.

(2) If X is noncompact and arithmetic, then there exists d 2 N such that k� D

Q
�p
�d
�
.

(3) If X is compact and arithmetic, then A� is a division algebra.

2.3 Dirichlet domains

We conclude our preliminary discussion, following [5, Section 7.4], by introducing the
type of fundamental domain we will be interested in for our application in Section 5.
Let X be a model for hyperbolic 3–space upon which � acts faithfully.

Definition 2.17 The Dirichlet domain for the action of � on X centered at c is

D�.c/ WD
˚
p 2 X j d.c;p/� d.c;  .p// for all  2 � XStab�.c/

	
:

As long as Stab�.c/D f1g, the Dirichlet domain D�.c/ is a fundamental domain for
the action of � on X , and since for us � is torsion-free, this the case for all c . There
is a more explicit characterization of D�.c/, for which the following notation is useful.

Definition 2.18 For each  2 � , let

(1) g. / be the geodesic segment from c to  .c/,

(2) zs. / be the complete geodesic hyperplane perpendicularly bisecting g. /, and

(3) E. /�X be the half-space
˚
p 2X j d.c;p/� d.c;  .p//

	
(so zs. /D @E. /).
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Since � is geometrically finite, there is some finite minimal set S � � such that

D�.c/D
\
2S

E. /:

We say that  contributes a side to D�.c/ if  2 S and for each of these, let s. / WD

zs. /\@D�.c/, which we call the side contributed by  . The idea is to understand X by
studying D�.c/ equipped with side-pairing maps on its boundary. These side-pairings
are given by applying �1 to the side contributed by  , for each  2 S .

3 Macfarlane quaternion algebras and IsomC.H3/

Our goal in this section is to show that the arithmetic definition of Macfarlane manifolds
admits the geometric interpretation of containing a hyperboloid model tailor-made for
the action of � , made precise in Theorem 3.4. Let K denote a fixed subfield of C ,
and let B denote a quaternion algebra over K .

Definition 3.1 We call B Macfarlane if

(1) there exist F �R and d 2 FC such that K D F
�p
�d
�
, and

(2) the nontrivial element � of G.K WF / preserves Ram.B/ and for all v 2Ram.B/,
�.v/¤ v .

The manifold X with Kleinian group � is Macfarlane if B� is Macfarlane.

Remark 3.2 Since F is a fixed subfield of R, the set FC WD ff 2 F j f > 0g is
well defined. In the case where F is a (recall, concrete) number field, we are only
concerned with the positivity of its elements under the identity embedding into R;
ie we form FC the same way regardless of whether or not F is totally real.

Example 3.3 (1)
�

1;1
C

�
is Macfarlane because C DR

�p
�1
�

and Ram
�

1;1
C

�
D∅.

(2) The figure-8 knot complement and its quaternion algebra
�

1;1

Q.
p
�3/

�
are Macfarlane.

(3) The quaternion algebra B over Q
�p
�5
�

that has ramification set Ram.B/D˚�
3; 1C

p
�5
�
;
�
3; 1�

p
�5
�	

is Macfarlane because � permutes the ramified
places.

(4) The quaternion algebra

B D
� p

2;
p

2

Q
p

1�
p

2

�
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is Macfarlane. To see this, take F DQ
�p

2
�

and d D
p

2� 1, and notice that
Ram.B/ consists of the pair of conjugate real embeddings that take

p
1�
p

2

to ˙
p

1C
p

2.

We now state our main result.

Theorem 3.4 B is Macfarlane if and only if it admits an involution | such that
Sym.B; |/ (which we denote by M), equipped with the restriction of the quaternion
norm, is a quadratic space of signature .1; 3/ over Sym.K; |/.

Moreover, | is unique, and letting M1
CD fp 2M j tr.p/ > 0; n.p/D 1g, a faithful ac-

tion of PB1 upon H3 by orientation-preserving isometries is defined by the group action

�BW PB1 ü M1
C; .;p/ 7! p |:

Remark 3.5 The isomorphism class of B , as a quaternion algebra over the fixed
subfield K�C , does not include nonidentity embeddings K ,!C . Thus the signature
of Sym.B; |/ over Sym.K; |/ is well defined as long as Sym.K; |/ is real.

Definition 3.6 The space M as defined in Theorem 3.4 is called a Macfarlane space.

Proof of Theorem 3.4

First we show that the existence of an involution as in the theorem is equivalent to a
condition on the field and structure constants (as in Definition 2.1) of the algebra, up
to isomorphism. Recall from Theorem 2.3 that even over a fixed field F

�p
�d
�
, the

structure constants a and b are not unique up to F
�p
�d
�
–algebra isomorphism, nor

are their signs. The idea is to show that there is a representative of this isomorphism
class which normalizes the Macfarlane space to a convenient form.

Lemma 3.7 B admits an involution with the properties described in Theorem 3.4 if
and only if B Š

�
a;b

F.
p
�d/

�
for some F �R and a; b; d 2 FC .

The reverse direction of this, in the case where B D
�

a;b

F.
p
�d/

�
, is Theorem 7.2

of [22]. This generalizes to BŠ
�

a;b

F.
p
�d/

�
because an isomorphism between quaternion

algebras is also a quadratic space isometry with respect to the quaternion norms
[30, Section 5.2], thus it transfers the multiplicative structure, the involution and the
Macfarlane space.
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So it suffices to prove the forward direction, and we do this via a series of claims. Let
B be a quaternion algebra over a field K and suppose B admits an involution | with
the properties described in Theorem 3.4.

Claim 3.8 K is of the form F
�p
�d
�
, where F D Sym.K; |/ � R and d 2 FC ,

and |jK acts as complex conjugation.

Proof If K were real, then n would be a quadratic form of signature .2; 2/, making
it impossible for B to contain a subspace of signature .1; 3/, thus K 6� R. On the
other hand, for a space to have nontrivial signature over Sym.K; |/, we must have
Sym.K; |/ � R. This means | is an involution of the second kind, which implies
ŒK W Sym.K; |/�D 2 by Proposition 2.10, as desired.

We now show that |jK acts as complex conjugation. Since �d 2 F D Sym.K; |/,�p
�d

|�2
D
�p
�d

2�|
D .�d/| D�d;

thus
p
�d

|
D˙
p
�d . Since

p
�d 62 Sym.K; |/, this leaves

p
�d

|
D�
p
�d .

Write MD Sym.B; |/. We are going to use the signature of njM to prove that B has
real structure parameters up to isomorphism, but a priori we do not know what M
is. So we will first need to establish that M includes enough linearly independent
elements of B , in the following sense.

Claim 3.9 SpanK .M/D B .

Proof We know that F � M and SpanK .F / D K , so it suffices to prove that
SpanK .M0/D B0 .

Let E D fs1; s2; s3g be a basis for M0 over F and assume by way of contradiction
that E is not linearly independent over K . Then there exists k` 2 K such thatP3
`D1 k`s` D 0. Since K D F

�p
�d
�
, we have that each k` D f`;1Cf`;2

p
�d for

some f`;1; f`;2 2 F . Substituting these into
P3
`D1k`s` D 0 and rearranging terms,

we get

f1;1s1Cf2;1s2Cf3;1s3 D�
p
�d.f1;2s1Cf2;2s2Cf3;2s3/:

But f1;1s1Cf2;1s2Cf3;1s3 and f1;2s1Cf2;2s2Cf3;2s3 both lie in M, so are fixed
by |; meanwhile by the previous claim,

p
�d

|
D �
p
�d . So applying | to both

sides of the equation gives

f1;1s1Cf2;1s2Cf3;1s3 D
p
�d.fa1; 2s1Cf2;2s2Cf3;2s3/:
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Adding the last two displayed equations then gives that f1;2s1Cf2;2s2Cf3;2s3 D 0.
Since f1;2; f2;2; f3;2 2 F , this contradicts that E is a basis for M0 over F .

We conclude that E is linearly independent over K , giving

dimK .SpanK .E//D dimK .SpanK .M0//D 3;

which forces SpanK .M0/D B0 .

Claim 3.10 B Š
�

a;b

F.
p
�d/

�
for some a; b 2 FC .

Proof The norm njM is a real-valued quadratic form of signature .1; 3/, so there
exists an orthogonal basis D for M such that the Gram matrix for njM with respect
to D is a diagonal matrix GD

njM
, with diagonal of the form .f1;�f2;�f3;�f4/ for

some f` 2 FC . Since SpanK .M/D B , this same D is also an orthogonal basis for B
over K .

Let C be the standard basis f1; i; j ; ij g for B . Then C is another orthogonal basis
for B over K and, in particular, the Gram matrix GC

n for n with respect to C is the
diagonal matrix with diagonal .1;�a;�b; ab/.

Now while GD
njM

and GC
n are not congruent over F , they are congruent over K

because D and C are both bases for B , ie there exists ı 2 GL4.K/ such that

ıGD
n ı
>
DGC

n :

But since GD
n and GC

n are diagonal and nonzero on their diagonals, ı must also be
diagonal and nonzero on its diagonal, ie there exists x` 2K� such that ı is the diagonal
matrix with diagonal .x1;x2;x3;x4/. Plugging in to the last displayed equation and
solving for the f` gives

f1 D
1

x2
1

; f2 D
a

x2
2

; f3 D
b

x2
3

; f4 D
�ab

x2
4

:

Now let B0 D
� f2;f3

F(
p
�d )

�
and recall that f2; f3 2 FC . Then B has the desired form

because, by Theorem 2.3,

B0 Š
�
f2x2

2
; f3x2

3

F.
p
�d/

�
D B:

This completes the proof of Lemma 3.7.
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Now to complete the proof of Theorem 3.4, we show that the condition on the iso-
morphism class of the symbol

�
a;b
K

�
from Lemma 3.7 is equivalent to the arithmetic

characterization of Macfarlane quaternion algebras given by Definition 3.1.

Lemma 3.11 Let B be a quaternion algebra over K D F
�p
�d
�
, where F �R and

d 2 FC . The nontrivial element of G.K W F / preserves Ram.B/ with no fixed points
if and only if there exist a; b 2 FC such that B Š

�
a;b
K

�
.

Proof With a; b;F and K as in the statement, we have
�

a;b
K

�
D
�

a;b
F

�
˝F K . Also

if a (or b ) is negative, then by Theorem 2.3, we can replace it by �ad (or �bd )
without changing the isomorphism class. So it suffices to prove that the condition on
Ram.B/ is equivalent to the existence of a quaternion algebra A over F such that
B ŠA˝F K .

If there is such an A, then Ram.B/ is the set of pairs of real (respectively, non-
Archimedean) places v; v0 of K associated with a real place in Ram.A/ that splits
into two real places of K (respectively, associated with a prime ideal of ZF that splits
in ZK ). By Theorem 2.3(3), this sets up a bijection between quaternion K–algebras of
the form A˝F K and sets of pairs of places arising as described. In this situation, the
nontrivial element � of G.K W F / will stabilize Ram.B/, and interchange v and v0 .
Conversely, if � preserves and acts freely on Ram.B/, then there are no inert or
ramified primes as these are fixed by G.K W F /, forcing the ramified places of K to
be as described above.

This completes the proof of Theorem 3.4. The following consequence has computational
advantages which will be exploited in Section 5.

Corollary 3.12 If B is Macfarlane, then there is an isomorphism B Š
�

a;b

F.
p
�d/

�
,

where a; b; d 2 FC . In this case the Macfarlane space is

MD F ˚Fi ˚Fj ˚
p
�dFij ;

and for q D wC xi C yj C zij 2 B with w;x;y; z 2 F
�p
�d
�
, the involution | is

given by

q|
D wCxi Cyj � zij:(3-1)

A final remark on Theorem 3.4 is that even though we are using M1
C as a hyperboloid

model for the group action, it is technically not a model for hyperbolic 3–space unless

Algebraic & Geometric Topology, Volume 18 (2018)



Macfarlane hyperbolic 3–manifolds 1615

F D R. In the cases of interest, F is a number field embedded in R, and this gives
us all we need to model a Macfarlane manifold. If a complete model for hyperbolic
3–space were desired, one is given by .M˝F R/1C , but this would lose the arithmetic
structure that makes Macfarlane manifolds interesting.

4 Macfarlane manifolds

In this section we explore the various conditions under which Macfarlane manifolds
arise. First we clarify how Theorem 3.4 translates to the context of Kleinian groups.
Then we look at an adaptation of our results to hyperbolic surfaces and see some settings
in which hyperbolic subsurfaces imply that manifolds are Macfarlane. The remainder
of the section culminates in a proof of Theorem 1.1, about the diverse settings in which
Macfarlane manifolds arise.

As in Section 2.2, let X denote a complete orientable finite-volume hyperbolic 3–
manifold with Kleinian group � Š �1.X /. Let K DK� and B D B� .

Definition 4.1 When X is Macfarlane and M � B is its Macfarlane space as in
Theorem 3.4, define I� WDM1

C and call this a quaternion hyperboloid model for �
(or X ).

It is immediate that I� , up to quadratic space isometry over K� , is a manifold invariant.

By the definition of B� D B , there is no confusion in speaking of � quaternionically,
as lying in PB1 rather than in PSL2.C/. In this way, � (up to choice of representatives
in y� ) and I� are both subsets of B , making sense of the following.

Corollary 4.2 If X is Macfarlane, then the action of � by orientation-preserving
isometries of H3 is faithfully represented by

�� W � ü I� ; .;p/ 7! p |:

4.1 Hyperbolic surfaces and subsurfaces

The author showed in [22] how the representation of IsomC.H3/ in
�

1;1
C

�
restricts to

a representation of IsomC.H2/ in
�

1;1
R

�
. Similarly, we seek analogs of Theorem 3.4

and Corollary 4.2 for hyperbolic surfaces. This is possible to some extent but we
must proceed with care because of the following important differences between the
3–dimensional and 2–dimensional settings. For a complete orientable finite-volume
hyperbolic surface S , the group �1.S/ admits discrete faithful representations into
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PSL2.R/ but, in the absence of Mostow–Prasad rigidity, the trace of some fixed
hyperbolic element of �1.S/ could take any value in R>2 under these representations,
so the trace field is no longer a manifold invariant. We resolve this by requiring S

to have a fixed immersion into a hyperbolic 3–manifold X under which it is totally
geodesic, which implies an injection �1.S/ ,! �1.X /. We can do this in such a way
that, taking the discrete faithful representation �1.X /Š � < PSL2.C/, we represent
�1.S/Š�< � as a fixed group of matrices.

We then define the (invariant) trace field of � and (invariant) quaternion algebra
of � on this fixed representation in the same way as in Definitions 2.11 and 2.13,
and we denote them similarly by (k�) K� and (A�) B�, respectively. These now
have properties similar to what we saw in the Kleinian setting: K� and k� are
now fixed subfields of R, B� and A� are quaternion algebras over K� and k�,
respectively [27], and A� is a commensurability invariant [17, Sections 4.9 and 5.3.2].

The results from [22, Section 6] along with the proof of Lemma 3.7 then give the
corollary below, after the following observations. The field K� is real, and so now
the involution | is of the first kind. That is, Sym.K�; |/ D K� and Sym.B�; |/
is comprised of K� and the unique 2–dimensional negative-definite subspace with
respect to the norm on B�.

Corollary 4.3 If B� Š
�

a;b
K�

�
for some a; b > 0, then it admits an involution |

such that Sym.B�; |/ (which we denote by L), equipped with the restriction of the
quaternion norm, is a quadratic space of signature .1; 2/ over K�.

Moreover, | is unique and, letting L1
CDfp 2L j tr.p/> 0; n.p/D 1g, a faithful action

of � upon H2 by orientation-preserving isometries is defined by the group action

��W �ü L1
C; .;p/ 7! p |:

Definition 4.4 We call the space L � B� as above a restricted Macfarlane space,
and we call the space I� WD L1

C a quaternion hyperboloid model for �.

We next give a way of realizing Macfarlane 3–manifolds using totally geodesic subsur-
faces. There is a stronger version of this in the arithmetic setting, which will be done
in the next subsection.

Proposition 4.5 If X contains an immersed closed totally geodesic surface, and its
trace field is F

�p
�d
�

for some F � R (not necessarily totally real ) and d 2 FC

(under the fixed embedding), then X is Macfarlane.
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Proof Let S � X be a surface as in the hypothesis. Then �1.S/ has a Fuchsian
representation �< PSL2.R/ and �1.X / has a Kleinian representation � < PSL2.C/

such that �< � . Then K��K\R is a totally real subfield. Therefore B�� B�

is a quaternion subalgebra over a subfield of F . Hence there exist a; b 2 F so
that B� D

�
a;b
K�

�
. Then B�˝K� K� D

�
a;b

F.
p
�d/

�
� B� , and since B� is a 4–

dimensional vector space over the same field, we have B� D
�

a;b

F.
p
�d/

�
. Thus X is

Macfarlane by Lemma 3.11, where we recall that, as in the proof of that lemma, if a

(or b ) is negative, we can replace it with �da (or �db ).

Remark 4.6 With an immersion as above, the action �� as given in Corollary 4.2
restricts to the action �� as given in Corollary 4.3. An example using this will be
shown in Section 5.3.

4.2 Arithmetic Macfarlane manifolds

In this subsection, we construct examples of arithmetic Macfarlane manifolds and prove
parts (1) and (2) of Theorem 1.1.

Pending the following arguments, notice that if X is the initial arithmetic manifold,
the bound on the index of its cover by a Macfarlane manifold is at most jH.X;Z=2/j
because this is the index of the group �.2/ in � and, as discussed in Section 2.2, the
invariant quaternion algebra of � is the quaternion algebra of �.2/. The rest of the
argument is separated into the noncompact and compact cases.

4.2.1 Noncompact arithmetic Macfarlane manifolds Recall from Theorem 2.16
that a noncompact manifold has a split quaternion algebra, thus the structure parameters
can always be taken as a D b D 1. So the manifold will be Macfarlane provided it
satisfies our condition on the trace field. In the arithmetic case, this is easy to control.

Lemma 4.7 Every arithmetic noncompact manifold is finitely covered by a Macfarlane
manifold.

Proof Let � be arithmetic and noncocompact. Then � is commensurable to a Bianchi
group PSL2.ZQ.

p
�d// (d 2N square-free), which has quaternion algebra

�
1;1

Q.
p
�d/

�
by Theorem 2.16; see also [17, Section 8.2]. This is Macfarlane by Lemma 3.7.

If � additionally is derived from a quaternion algebra, then B� will also be
�

1;1

Q.
p
�d/

�
and thus Macfarlane itself. Otherwise we can only say that A� D

�
1;1

Q.
p
�d/

�
, which is
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why above we work up to commensurability. It is very common for these groups to
satisfy K� D k� (so that B� DA� , making them Macfarlane), but this is not always
the case [24]. For example, the arithmetic manifold m009 in the cusped census has
invariant trace field Q

�p
�7
�

but its trace field is Q
�p
.5�
p
�7/=2

�
, which contains

no degree 2 subfield with a real place (making it not Macfarlane).

Example 4.8 Arithmetic link complements are Macfarlane by Proposition 2.15:

(1) The figure-8 knot complement is Macfarlane with trace field Q
�p
�3
�
.

(2) The Whitehead link is Macfarlane with trace field Q
�p
�1
�
.

(3) The six-component chain link is Macfarlane with trace field Q
�p
�15

�
.

For more information on arithmetic link complements, see [12; 3; 11] and Section 9.2
of [17].

4.2.2 Compact arithmetic Macfarlane manifolds Quaternion algebras of compact
manifolds can be split or can be among the infinitely many ramified possibilities over
each possible trace field. If we look at groups derived from quaternion algebras, we
can easily construct examples of compact arithmetic Macfarlane manifolds in the usual
way that these groups are formed.

Start with a concrete number field K D F
�p
�d
�

with F � R and d 2 FC , where
K has a unique complex place. Choose a pair a; b 2 K \ R such that

�
a;b
K

�
is

ramified, take an order O �
�

a;b
K

�
, then let � D PO1 and X D I3=� . Naturally, not

every isomorphism class of quaternion algebras over K admits such a choice of a; b

but there are infinitely many that do. For instance, for each split non-Archimedean
place of F that splits into a pair v1; v2 of places of K (of which there are infinitely
many, by the Chebotarev density theorem), choose the quaternion algebra B over K

with Ram.B/D fv1; v2g. Thus there are infinitely many noncommensurable compact
arithmetic Macfarlane manifolds over each such K .

We now look at a geometric condition that gives compact arithmetic Macfarlane
manifolds.

Lemma 4.9 If X is arithmetic, compact and contains an immersed closed totally
geodesic surface, then X is finitely covered by a Macfarlane manifold.

Proof Let S � X be a surface as in the hypothesis. Then �1.S/ Š �0 < � for
some Fuchsian group �0 . Then by [17, Theorem 9.5.2], �0 <� for some arithmetic
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Fuchsian group � satisfying Œk� W k�� D 2 and k� D k� \R. This implies that
K�.2/ DK�.2/

�p
�d
�

for some d 2K�.2/. Lastly, we know that �.2/ is a finite-
index subgroup of �, ie X finitely covers H3=�.2/, which contains the immersed closed
totally geodesic surface corresponding to �0.2/, so apply Proposition 4.5 to �.2/.

4.3 Nonarithmetic Macfarlane manifolds

We now complete the proof of Theorem 1.1 by providing an abundance of commensu-
rability classes of nonarithmetic examples.

Lemma 4.10 There are infinitely many commensurability classes of noncompact
nonarithmetic Macfarlane manifolds.

Proof Recall that the quaternion algebra of a noncompact manifold is necessarily split
(Theorem 2.16), so it suffices to satisfy the condition on the trace field.

In [7], an infinite class of noncommensurable link complements are generated, all
having invariant trace field Q

�p
�1;
p

2
�
, by gluing along totally geodesic 4–punctured

spheres. Since this field is not of the form Q
�p
�d
�

with d 2N and these manifolds
are noncompact, they are nonarithmetic. By Proposition 2.15, since they are link
complements, their trace fields are also Q

�p
�1;
p

2
�
, which is of the desired form.

To realize nonarithmetic compact Macfarlane manifolds, we start with an arithmetic
compact Macfarlane manifold having immersed totally geodesic subsurfaces. Then we
apply the technique of interbreeding introduced by Gromov and Piatetski-Shapiro [10].
This entails gluing together a pair of noncommensurable arithmetic manifolds along a
pair of totally geodesic and isometric subsurfaces, resulting in a nonarithmetic manifold.
We use a variation on this technique introduced by Agol [1] called inbreeding, whereby
one instead glues together a pair of geodesic subsurfaces bounding noncommensurable
submanifolds of the same arithmetic manifold.

Lemma 4.11 For every arithmetic Macfarlane manifold X containing an immersed
closed totally geodesic surface, there exist infinitely many commensurability classes of
nonarithmetic Macfarlane manifolds with the same quaternion algebra as X .

Proof Let X be as in the statement and � Š �1.X / be a Kleinian group. Then X

contains infinitely many commensurability classes of immersed closed totally geo-
desic arithmetic hyperbolic subsurfaces [17, Section 9.5]. Since Kleinian groups are
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LERF (locally extended residually finite) [2], among these are infinitely many pairs
of surfaces where each pair is isometric but noncommensurable [1, Section 4]. Let
S1 and S2 be one of these pairs. Since these are arithmetic, they each correspond to
a lattice in a quaternion subalgebra over a real subfield of F , and these lattices are
noncommensurable because of the noncommensurability of S1 with S2 .

Deform the lattices so that S1 and S2 can be glued together via the identification map
f W S1!S2 as in [1] and form the amalgamated product X1;2 WDX �f X . Since we did
this by a deformation and gluing of noncommensurable lattices, X1;2 will have a systole
inducing a matrix of nonintegral trace in any discrete faithful Kleinian representation
of �1;2 WD �1.X1;2/. Thus X1;2 is nonarithmetic. However the reflection involution
through the identified subsurface in X1;2 lies in the commensurator of � . So we have
K� DK�1;2 and B� Š B�1;2 over K� .

Lastly, by [1, Section 4], there exists an infinite sequence of choices for pairs of
surfaces S`;Sm as above so that the injectivity radius of X`;m gets arbitrarily small.
But by Margulis’s lemma, there is a lower bound to the injectivity radius of any class of
commensurable nonarithmetic manifolds. Thus in our sequence fX`;mg, we enter a new
commensurability class infinitely often as this radius approaches 0, giving infinitely
many noncommensurable nonarithmetic manifolds all with quaternion algebra B� (up
to K�–algebra isomorphism).

5 Applications

In this section, we give an example of a computational advantage of the quaternion
hyperboloid model. To encourage further exploration of this and other potential appli-
cations, we first provide a way of transferring data between the current approach and
the more conventional upper half-space model. Then we introduce a tool that improves
algorithms for finding Dirichlet domains of Macfarlane manifolds.

Throughout this section, let X be Macfarlane. Choose � Š �1.X / so that B WDB� D�
a;b

F.
p
�d/

�
with F �R and a; b; d 2FC (guaranteed by Corollary 3.12), then identify

� with its natural image in PB1 . Let | be the unique involution on B so that Sym.B; |/
is the Macfarlane space M. Then

MD F ˚Fi ˚Fj ˚
p
�dFij ;

and I�DM1
C is a hyperboloid model for X. Recall the group action from Corollary 4.2:

�� W � � I� ; .;p/ 7! p |:
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5.1 Comparison with the upper half-space model

The following is an adaptation of [22, Theorem 5.2]; we omit the computational details.

The map

(5-1) �BW B ,!M2

�
K
�p

a;
p

b
��
;

wCxi Cyj C zij 7!

�
w�x

p
a y

p
b� z

p
ab

y
p

bC z
p

ab wCx
p

a

�
;

is an injective F
�p
�d
�
–algebra homomorphism, and let us also write ��1

B to mean
the inverse of the corestriction �j�.B/W B Š

�! �B.B/, q 7! �B.q/. For future reference,
this is

��1
B W B!M2

�
K
�p

a;
p

b
��
;

�
s t

u v

�
7!
vCs

2
C
v�s

2
p

a
i C

uCt

2
p

b
C

u�t

2
p

ab
:(5-2)

Write the upper half-space model as the subspace H3DR˚RI˚RCJ of Hamilton’s
quaternions, where I2 D J 2 D�1 and IJ D�JI . Then

�� W I� !H3; wCxi Cyj C
p
�d zij 7!

y
p

b C z
p

abd I CJ

wCx
p

a
;(5-3)

is an isometry such that the Möbius action ��H3!H3 equals �
�
��.�

�1
A . � /; ��1. � //

�
.

That is, our quaternion representation �� of the group action from Corollary 4.2
transfers to the usual Möbius action via � and �B .

5.2 Quaternion Dirichlet domains

In this subsection we will see a shortcut to a method of computing Dirichlet domains,
introduced by Page [21], for Macfarlane manifolds. We focus on Page’s algorithm
because earlier ones have been specific to the noncompact arithmetic case [13; 4; 26; 25],
or have required either arithmeticity [8; 29; 21] or compactness [9; 18], whereas, as we
showed in Section 4, Macfarlane manifolds include examples from every combination
of arithmetic and nonarithmetic with compact and noncompact.

While Page’s algorithm focuses on arithmetic Kleinian groups using their character-
ization within quaternion orders, it extends easily to arbitrary (complete orientable
finite-covolume Kleinian) groups, as follows. Given a finite set of matrix generators
for the group, Page [21, Section 2.4.1] indicates an efficient way of listing the elements
of the group in order of increasing Frobenius norm. This has the effect of locating
sides of a Dirichlet domain centered at .0; 0; 0/ in the Poincaré ball model, in order of
increasing distance from the center.
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Figure 1: A 2–dimensional analog of grouping orbit points by trace

5.2.1 Page’s algorithm translated to I� Via the usual identification of the Poincaré
ball model with H3 , the point .0; 0; 0/ maps to J 2H3 , and ��1

�
from display (5-3)

maps J to the point 1 2 I� , which is the canonical choice for our center. So we will
be computing the (canonical) Dirichlet domain D�.1/� I� .

An isometry  2 � acts on 1 via ��.; 1/D  | , and we can interpret the Frobenius
norm of  as the square root of the trace of this image, as follows.

Proposition 5.1 If  D
�

r s
u v

�
2 PSL2.C/, then the trace of ��1

B . /.1/ is

jr j2Cjsj2Cjuj2Cjvj2;

the square of the Frobenius norm of  .

Proof With  as in the statement,

�B.�
�1
B . /.1//D  |

D

�
r s

u v

��
r u

s v

�
D

�
jr j2Cjsj2 ruC sv

ur C vs juj2Cjvj2

�
:

Then tr
�
��1
B .��.; 1//

�
D tr. |/D jr j2Cjsj2Cjuj2Cjvj2 .

The set of points in I� of some fixed trace t forms an ellipsoid, in particular,

(5-4)
˚

1
2
t Cxi Cyj C z

p
�dij j x;y; z 2 F; 4ax2

C 4by2
C 4abdz2

D t2
� 4

	
:

Since � is discrete, the set of points lying in each ellipsoid (which is compact) must be
finite (Figure 1 illustrates a 2–dimensional version of this). Thus, in our setup, Page’s
algorithm translates to searching for points in the orbit Orb�.1/D f | j  2 �g in
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Figure 2: A 2–dimensional analog of parametrizing zg using pure quaternions

order of increasing trace, and computing the perpendicular bisector of each one until all
sides of the Dirichlet domain D�.1/ have been found. Details and efficiency analysis
of this can be found in [21].

5.2.2 Dual isometries and points We now explain our new contribution to the al-
gorithm. Due to the quaternionic structure, points on I� are also isometries of I� .
Likewise, elements of the group � can occur among these points. In particular,
� \ I� D f 2 � j  | D  g. These isometries take a special form that makes it
especially easy to compute their perpendicular bisectors, as follows.

Theorem 5.2 (1) The elements of �\I� Xf1g are precisely the purely hyperbolic
isometries in � that fix geodesics passing through 1.

(2) For each  2 � \ I� , the midpoint between 1 and ��.; 1/ is  .

(3) If � is closed under complex conjugation, then � contains every element of the
orbit Orb�.1/� I� .

Proof Let  2 � \ I� . Then n. / D 1 and there exist w;x;y; z 2 F such that
 D w C xi C yj C z

p
�dij . Thus w2 D 1 C ax2 C by2 C abdz2 , and since

a; b 2 FC , we have that w 2 F�1 . When w D 1, it forces  D 1, and otherwise we
have tr. /D 2w 2 F>2 , making  purely hyperbolic.

Now let zg be the complete geodesic passing through 1 and  , and we will prove that 
fixes this. Notice that (as illustrated in Figure 2) the pure quaternion part of the points
on zg are scalar multiples of the pure quaternion part 0 of  , so we can write

(5-5) zg D fq 2M1
C j q0 D �p0 for some � 2Rg:
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Let p D 1
2

tr.q/C�p0 2 zg in this notation; then since  2MD Sym.B; |/, we have

��.; q/D q |
D q D

�
1
2

tr. /C 0

��
1
2

tr.q/C�0

��
1
2

tr. /C 0

�
:

If we expand this, there will be scalars r; s; t;u2F such that the expression has the form

��.; q/D r C s0C t 2
0 Cu 3

0 D .r C t 2
0 /C .sCu 2

0 /0:

But since  2
0
D 0.�

�
0
/D�n.0/ 2 F , this is indeed a point in zg as characterized

by (5-5).

Next we show that  is the midpoint between 1 and ��.; 1/. Let ı be the hyperbolic
translation along zg such that ��.ı; 1/D  . Since  is a hyperbolic translation along
the same geodesic, it commutes with ı , giving ı. /D ı ı| D  ıı| D  ı.1/D  2 .
Therefore d.1;  / and d.;  2/ both equal the translation length of ı . This proves (2),
and also shows that every purely hyperbolic translation along a geodesic through 1

occurs as a point on I� , completing the proof of (1).

For part (3), observe that if ;  | 2 � , then  .1/D  | 2 � .

Corollary 5.3 If  2 � \ I� , then zs. / perpendicularly bisects g. / at  , so  is
the closest point to 1 on zs. /.

We can use this to shorten the computation of D�.1/ by first approximating it by the
bisectors of the elements of � \ I� , and we are guaranteed that any region outside
of those does not lie in D�.1/. As we do this, we can skip the computation of their
Frobenius norm, and just look through the matrices in �\I� in order of increasing trace.
We can also skip the usually longer computation of perpendicular bisectors for these
points, instead simply taking the hyperplane whose closest point to 1 is  2 � \ I� .
As we will see in the examples at the end of this section, this often gives a lot of
information so that completing the Dirichlet domain computation is easy from there.

This method is especially effective in the event that � is closed under complex con-
jugation. However it is important to note that even in that case, an element  one
finds by searching through � \ I� in order of increasing trace does not necessarily
contribute a side to D�.1/, even if zs. / (recalling the notation from Section 2.3)
truncates the region computed so far. In particular, if  2 Orb�.1/, then  D ıı| for
some ı 2 � X I� , in which case zs.ı/ passes halfway between 1 and  . (Notice that
if  2 Orb�.1/ and  D ıı| for some ı 2 � \ I� , then  would not contribute a
side since zs. / would be excluded from the region by zs.ı/.) On the other hand, if
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 62 Orb�.1/ and does contribute a side to the region computed thus far, then it also
contributes a side to D�.1/ (at the very least, the point on that side which is closest
to 1 will not be truncated by any other side).

So invoking Theorem 5.2 when � is closed under complex conjugation gives that each
element of � \ I� either contributes a side to D�.1/ or lies on a side of D�.1/ at the
point where that side is closest to 1. If one cannot see which case a given  falls into
by some easier means, it is straightforward to check whether  factors into  D ıı|

as a word in the generators. This is will be illustrated in the examples at the end of this
section.

5.2.3 Projective pure quaternions as slopes We gain an additional tool by expand-
ing on the idea from the proof of Theorem 5.2 where we used pure quaternion parts to
characterize geodesics through 1. For each point ��.; 1/ 2O� , the geodesic ray that
starts at 1 and passes through ��.; 1/ has a pure quaternion part which is a Euclidean
ray (this can be seen in Figure 2). So we can identify these geodesic rays as follows.

Definition 5.4 The slope of wCxi Cyj C
p
�d zij 2O� is Œx;y; z� 2 F3=FC.

As we search through � \ I� (or through Orb�.1/) in order of trace, once we find
an element having slope Œx;y; z�, we know that any other element with that slope but
higher trace cannot contribute a side to D�.1/. After all, for two bisectors of the same
geodesic ray, one will be contained in the half-space of the other. So keeping track
of these slopes shortens the algorithm further because every time the slope of some
element in � \ I� is the same as one already found, we know it will not contribute a
side and can skip any more complicated means of determining this.

5.3 Examples

We conclude by clarifying these ideas with some simple worked examples. First we
look at an implementation of the 2–dimensional analogy of these ideas, then at an
application to noncompact arithmetic manifolds. Notably, the fundamental domains
shown here were drawn by hand in a basic illustration program, as the computational
method was simple enough that it did not to require advanced software.

5.3.1 A hyperbolic punctured torus Let S be the hyperbolic punctured torus. Then
�1.S/ can be represented by �< PSL2.Z/, where � is the torsion-free subgroup of
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the modular group. Then �D h; ıi, where [5, page 116]

 D

�
1 1

1 2

�
and ı D

�
1 �1

�1 2

�
:

The quaternion algebra of � is B�D
�

1;1
Q

�
DQ˚Qi˚Qj˚Qij , where i2D j 2D1

and ij D �j i , and let A D B�. Then A contains the restricted Macfarlane space
LDQ˚Qi ˚Qj , and I� WD L1

C is a quaternion hyperboloid model for S .

Recall that AŠM2.Q/. So the map (5-1) gives the Q–algebra isomorphisms

�AW A!M2.Q/; wCxi Cyj C zij 7!

�
w�x y � z

wC z yC z

�
;

��1
A W M2.Q/!A;

�
s t

u v

�
7!

1
2
.vC s/C 1

2
.v� s/i C 1

2
.uC t/j C 1

2
.u� t/ij ;

the map (5-3) gives the isometry

��W I�!H2; wCxi Cyj 7!
yCJ

wCx
;

and these transfer the Macfarlane model to the Möbius action of � on H2 . When the
context is clear, we use �Dh; ıi to mean both the matrix group and the corresponding
quaternion group under ��1

A
, where

 D 3
2
C

1
2
i C j and ı D 3

2
C

1
2
i � j:

To implement the algorithm, we want to find the points in Orb�.1/ in order of increasing
trace. Since � consists of all the nonelliptic elements of PSL2.Z/, it is closed under
transposition, therefore Orb�.1/��. Then for all t 2N ,

fq 2 Orb�.1/ j tr.qq|/D tg � fq 2�\ I� j tr.q/D tg:

But using n.�\I�/D1, and the fact that hyperbolic elements have traces in RXŒ�2; 2�,
we can characterize these elements using a Diophantine equation where the only
solutions for t lie in ZX f0;˙1g. In particular,

fq 2�\ I� j tr.q/D tg D
˚

1
2
t C 1

2
.t � 2x/i Cy j x2

Cy2
D tx� 1; x;y 2 Z

	
:

Once we know what this (finite) set is, we can find all matrices of trace t by checking
whether each element can be written in the form q D ww| for some word w in the
generators of �. If it can, we get that zs.q/ (in the notation of Definition 2.18) passes
halfway between 1 and q . If it cannot, we get that q2 2 Orb�.1/ and zs.q2/ passes
through q by Theorem 5.2.
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Table 1 lists some data from implementing this process, giving the points in �\I� up
to trace 18. For each q 2�\ I� , the direction of the corresponding geodesic ray is
given by a normalized representative of the slope of q (in the sense of Definition 5.4).
In the rightmost column, the corresponding points in H2 under �� are given.

Notice that (as predicted by Theorem 5.2) if a point q in the chart does not lie in
Orb�.1/, then later the point q2 does, and has the same slope. For example, the
elements of � \ I� at trace 3 lead to sides contributed by isometries as points at
trace 6. The points in Table 1 which lie in Orb�.1/ are in bold, and one can see that
the sides they contributed had already been found in �\ I� before they were reached
in the orbit.

Figure 3 shows in H2 which sides are contributed at each trace (the table gives the trace
of the isometry contributing the side, even though it was found earlier) until D�.1/ is
complete, and illustrates how the induced side-pairings create a punctured torus.

5.3.2 Noncompact arithmetic hyperbolic 3–manifolds In Section 4.2.1, we men-
tioned that a manifold in this class has a fundamental group which can be represented
by a torsion-free finite-index subgroup of a Bianchi group PSL2.ZQ.

p
�d//, d 2N

(square-free). Let � be such a group. Then B� D
�

1;1

Q.
p
�d/

�
is Macfarlane and we

can find a Dirichlet domain for � by a similar method to that used in the previous
subsection.

Since the only real traces occurring in PSL2.ZQ.
p
�d// lie in Z, the ellipse at trace t

can only be nonempty when t 2 f2; 3; 4; : : : g. Since PSL2.ZQ.
p
�d// is closed under

complex conjugation, Orb�.1/ � PSL2.ZQ.
p
�d//, so like in the previous example,

the ellipse at trace t is a subset of f 2 PSL2.ZQ.
p
�d// j tr. / D tg. The points

in PSL2.ZQ.
p
�d// of trace t correspond to solutions to the Diophantine equation aris-

ing from det
�

r s
s t�r

�
D 1, where r 2Z and s 2Od . Once we find those, we can use the

generators for � to determine which lie in the orbit and which are intersected by sides.

Example 5.5 The fundamental group of the Whitehead link complement can be rep-
resented by the finite-index subgroup of PSL2.ZŒ

p
�1�/ generated by

�
1 2
0 1

�
;
�

1
p
�1

0 1

�
and

�
1 0

�1�
p
�1 1

�
[17, page 62]. Suppressing some details, an implementation of the

process described above yields the Dirichlet domain for this group illustrated in Figure 4,
where we view the faces from above in H3 after applying �B� , and indicate the traces
of the isometries contributing each side.
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trace q 2 I�\� slope of q ��.q/ 2 PSL2.Z/ ��.q/ 2H2

2 1 –
�

1 0

0 1

�
J

3 3
2
C

1
2
i ˙ j Œ1;˙2�

�
1 ˙1

˙1 2

�
˙

1
2
C

1
2
J

3
2
�

1
2
i ˙ j Œ�1;˙2�

�
2 ˙1

˙1 1

�
˙1CJ

6 3C 2i ˙ 2j Œ1;˙1�

�
1 ˙2

˙2 5

�
˙

2
5
C

1
5
J

3� 2i ˙ 2j Œ�1;˙1�

�
5 ˙2

˙2 1

�
˙2CJ

7 7
2
C

3
2
i ˙ 3j Œ1;˙2�

�
2 ˙3

˙3 5

�
˙

3
5
C

1
5
J

7
2
�

3
2
i ˙ 3j Œ�1;˙2�

�
5 ˙3

˙3 2

�
˙

3
2
C

1
2
J

11 11
2
C

9
2
i ˙ 3j Œ3;˙2�

�
1 ˙3

˙3 10

�
˙

3
10
C

1
10

J

11
2
�

9
2
i ˙ 3j Œ�3;˙2�

�
10 ˙3

˙3 1

�
˙3CJ

15 15
2
C

11
2

i ˙ 5j Œ11;˙10�

�
2 ˙5

˙5 13

�
˙

5
13
C

1
13

J

15
2
�

11
2

i ˙ 5j Œ�11;˙10�

�
13 ˙5

˙5 2

�
˙

5
2
C

1
2
J

15
2
C

5
2
i ˙ 7j Œ5;˙14�

�
5 ˙7

˙7 10

�
˙

7
10
C

1
10

J

15
2
�

5
2
i ˙ 7j Œ�5;˙14�

�
10 ˙7

˙7 5

�
˙

7
5
C

1
5
J

18 9C 8i ˙ 4j Œ2;˙1�

�
1 ˙4

˙4 17

�
˙

4
17
C

1
17

J

9� 8i ˙ 4j Œ�2;˙1�

�
17 ˙4

˙4 1

�
˙4CJ

9C 4i ˙ 8j Œ1;˙2�

�
5 ˙8

˙8 13

�
˙

8
13
C

1
13

J

9� 4i ˙ 8j Œ�1;˙2�

�
13 ˙8

˙8 5

�
˙

8
5
C

1
1
J

Table 1: A punctured torus group intersected with its own quaternion hyper-
boloid model. The points which lie in Orb�.1/ are in bold.
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Trace 6

Trace 7

Trace 11: a region is enclosed.

1 3
4

3
2

3
5

1
2

13
4

3
2

3
5

J
5

J
2

J

J
10

1
2

2
5

2
5

3
10

3
10

1 3
4

3
2

3
5

1
2

13
4

3
2

3
5

J
5

J
2

J

J
10

1
2

2
5

2
5

3
10

3
10

1 3
4

3
2

3
5

1
2

13
4

3
2

3
5

J
5

J
2

J

J
10

1
2

2
5

2
5

3
10

3
10

1 3
4

3
2

3
5

1
2

13
4

3
2

3
5

J
5

J
2

J

J
10

1
2

2
5

2
5

3
10

3
10

Trace 15: the Dirichlet domain is complete.

∞

side-pairings

Figure 3: Dirichlet domain for a hyperbolic punctured torus
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Trace 3: a pair of parallel half-planes. Trace 4: a pair of hemispheres tangent
at zero.

Trace 5: four overlapping hemispheres
symmetric around the vertical axis.

Trace 7: two smaller hemispheres 
centered on real axis further truncate 
the region.

The completed Dirichlet domain. At trace 10 a pair of hemispheres tangent at zero 
completed the cusp suggested at trace 4. Several other orbit points, starting at trace 6, are 
not included because they are too far away to contribute sides. After trace 10, this is true 
for all further orbit points.

Trace 6: two parallel half-planes 
completing a cusp at infinity and two 
larger hemispheres.

Figure 4: Dirichlet domain for the Whitehead link complement
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