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Groups of homotopy classes of phantom maps

HIROSHI KIHARA

We introduce a new approach to phantom maps which largely extends the rational-
ization-completion approach developed by Meier and Zabrodsky. Our approach
enables us to deal with the set Ph.X; Y / of homotopy classes of phantom maps and
the subset SPh.X; Y / of homotopy classes of special phantom maps simultaneously.
We give a sufficient condition for Ph.X; Y / and SPh.X; Y / to have natural group
structures, which is much weaker than the conditions obtained by Meier and McGib-
bon. Previous calculations of Ph.X; Y / have generally assumed that ŒX;� yY � is
trivial, in which case generalizations of Miller’s theorem are directly applicable, and
calculations of SPh.X; Y / have rarely been reported. Here, we calculate not only
Ph.X; Y / but also SPh.X; Y / in many important cases of nontrivial ŒX;� yY � .

55Q05; 55P60

1 Introduction

Given two pointed CW-complexes X and Y , a map f W X ! Y is called a phantom
map if for any finite complex K and any map hW K!X , the composite f h is null-
homotopic. Let Ph.X; Y / denote the subset of ŒX; Y � consisting of homotopy classes
of phantom maps. Since Ph.X; Y /D 0 for any finite complex X , the phantom map
concept is a key to understanding maps with infinite-dimensional sources, and has been
an important topic in homotopy theory since its discovery; see McGibbon [14] and
Roitberg [24].

We briefly review the main results of the theory of phantom maps, focusing on the
two most important subjects: natural group structure on Ph.X; Y / and calculation of
Ph.X; Y /.

Recall that a space is called an H0–space (resp. co-H0–space) if its rationalization
is homotopy equivalent to a product of Eilenberg–Mac Lane spaces (resp. coproduct
of Moore spaces). Let yZ denote the product

Q
p
yZp of the p–completions of Z, in

which Z is diagonally contained.
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584 Hiroshi Kihara

Theorem A Let X be a connected CW-complex and Y a nilpotent CW-complex of
finite type with �1 finite.

(1) If X is a co-H0–space or Y is an H0–space, Ph.X; Y / has a natural, divisible,
abelian group structure.

(2) Suppose that X is a Postnikov space with �1 locally finite, the classifying space
of a compact Lie group, or an infinite loop space with �1 torsion. Suppose that
Y is a nilpotent finite complex or an iterated loop space of such a space. Then
there is a noncanonical bijection

Ph.X; Y /Š
Y
i>0

H i .X I�iC1.Y /˝ yZ=Z/:

Furthermore, if X is a co-H0–space or Y is an H0–space, this bijection can be
taken as an isomorphism of groups.

Remark 1.1 (1) Zabrodsky stated [34, Theorem B(d)] that Ph.X; Y / is a divisible
abelian group assuming only that X and Y are 1–connected with finite type. However,
it is thought that this assertion is incorrect; see [14, page 1236]. Meier, McGibbon,
Roitberg and coauthors have attempted to find a sufficient condition such that Ph.X; Y /
has a natural group structure. Theorem A(1) was essentially proposed by Meier [19]
and McGibbon [12, Theorem 4]; see also Roitberg and Touhey [25, page 302].

(2) Ph.X; Y / is described as the quotient of the set that is (noncanonically) isomorphic
to the product

Q
i>0H

i .X I�iC1.Y /˝ yZ=Z/ by the group action of ŒX;� yY � (see the
works of Meier [20], Zabrodsky [34], and Roitberg and Touhey [25]). Theorem A(2),
which is a central result in the calculation of Ph.X; Y /, follows immediately from
this description since ŒX;� yY � is trivial by generalizations of Miller’s theorem (see
Proposition 6.3(1)). Though most experts on phantom maps have attempted to calculate
Ph.X; Y /, an effective method has not been found in cases where ŒX;� yY � is nontrivial.
Thus, such a method is most desirable.

We are also interested in the subset SPh.X; Y / of Ph.X; Y / consisting of homotopy
classes of special phantom maps, defined by the exact sequence of pointed sets

(1-1) 0! SPh.X; Y /! Ph.X; Y /
eY ]

��! Ph.X; LY /;

where eY W Y ! LY D
Q
p Y.p/ is a natural map called the local expansion (see [24,

page 150]). The target Y is usually assumed to be nilpotent of finite type.
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SPh.X; Y / is less clearly understood than Ph.X; Y /, and although we know that a
result similar to Theorem A(1) holds under the finite-type condition on X (see [12,
Theorem 4]), calculations of SPh.X; Y / have rarely been reported.

In this paper, we develop a new approach to phantom maps which enables us to deal with
Ph.X; Y / and SPh.X; Y / simultaneously and to address the following two problems:

Problem 1 Identify a weaker sufficient condition such that Ph.X; Y / and SPh.X; Y /
have natural group structures.

Problem 2 Calculate Ph.X; Y / and SPh.X; Y /, especially in the cases where ŒX;� yY �
is nontrivial.

Our solution to Problem 1 is given in Theorem 2.3(1). Our solution to Problem 2
is given in Proposition 2.5 and Theorem 2.7. Proposition 2.5 directly generalizes
Theorem A(2) (see Remark 2.6). Theorem 2.7 gives a method for calculating not only
Ph.X; Y / but also SPh.X; Y / in various important cases of highly nontrivial ŒX;� yY �;
the power of Theorem 2.7 is illustrated by Corollaries 2.8–2.10.

2 Main results

2.1 Solution to Problem 1

Let CW denote the category of pointed connected CW-complexes and homotopy
classes of maps and let N denote the full subcategory of CW consisting of nilpotent
CW-complexes of finite type.

Definition 2.1 Let Q be the full subcategory of CWop � N consisting of .X; Y /
satisfying the following condition:

(Q) For each pair i; j > 0, the rational cup product

[W H i .X IQ/˝H j .X IQ/!H iCj .X IQ/

or the rational Whitehead product

Œ ; �W .�iC1.Y /˝Q/˝ .�jC1.Y /˝Q/! �iCjC1.Y /˝Q

is trivial.

Remark 2.2 A pair .X; Y / 2 CWop� N is in Q if X is a co-H0–space or Y is an
H0–space. Q contains many other pairs (see Section 4.2).
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We have the following fundamental theorem regarding natural group structures on
Ph.X; Y / and SPh.X; Y /.

Theorem 2.3 Let .X; Y / be an object of Q.

(1) Ph.X; Y / and SPh.X; Y / have natural divisible abelian group structures, for
which SPh.X; Y / is a subgroup of Ph.X; Y /.

(2) Let .f op; g/W .K;L/! .X; Y / be a morphism of CWop �N . Then the images
Im Ph.f; g/ and Im SPh.f; g/ are divisible abelian subgroups of Ph.X; Y / and
SPh.X; Y /, respectively.

(3) If X is a co-H–space or Y is an H–space, the group structures on Ph.X; Y /
and SPh.X; Y / are compatible with the multiplicative structures on ŒX; Y �.

Remark 2.4 (1) By Remark 2.2, Theorem 2.3(1) generalizes Theorem A(1). Fur-
thermore, we have a natural epimorphismY

i>0

H i .X I�iC1.Y /˝ yZ=Z/! Ph.X; Y /

and a similar natural epimorphism onto SPh.X; Y / for .X; Y / 2Q (Propositions 5.10
and 5.12); such natural epimorphisms are obtained for the first time (see Theorem A(2)
and Remark 1.1(2)).

(2) Part 2 of Theorem 2.3 describes a new feature of natural group structures on
phantom maps and provides a means of calculating Ph.X; Y / and SPh.X; Y / (see
Theorem 2.7).

2.2 Solution to Problem 2

We begin with a direct generalization of Part 2 of Theorem A.

A space whose i th homotopy group is zero for i � n and locally finite for i D nC1 is
said to be n1

2
–connected. Let us define the classes A, B , A0 and B0 by:

AD the class of 1
2

–connected Postnikov spaces, the classifying spaces of compact
Lie groups, 1

2
–connected infinite loop spaces and their iterated suspensions.

B D the class of nilpotent finite complexes, the classifying spaces of compact Lie
groups and their iterated loop spaces.

A0 D the class of 11
2

–connected Postnikov spaces of finite type and their iterated
suspensions.

B0 D the class of BU , BO , B Sp, B SO, U=Sp, Sp =U , SO =U , U=SO, and their
iterated loop spaces.
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A pair .X; Y /2A�B is in Q if Y is an iterated loop space of a nilpotent finite complex
or if Y is the classifying space of a connected Lie group. Any pair .X; Y / 2A0�B0 is
in Q.

By showing that ŒX;� yY �D 0 if .X; Y / is in A�B or A0

�B0

(Corollary 6.4), we
generalize Theorem A(2). Let LZ denote the product

Q
p Z.p/ of the p–localizations

of Z, in which Z is diagonally contained.

Proposition 2.5 Let .X; Y / be in A�B or A0 �B0 . Then there exist bijections

Ph.X; Y /Š
Y
i>0

H i .X I�iC1.Y /˝ yZ=Z/;

SPh.X; Y /Š
Y
i>0

H i .X I�iC1.Y /˝ LZ=Z/:

If .X; Y / is in Q, then these bijections can be taken to be natural isomorphisms of
abelian groups.

Remark 2.6 The following notes relate to Proposition 2.5:

(1) We should note the following points:

� Besides Miller’s theorem, the theorem of Anderson and Hodgkin can be general-
ized and used to calculate Ph.X; Y / (see Proposition 6.3 and Corollary 6.4).

� In the generalized Miller’s theorem for calculating Ph.X; Y /, the target spaces
can be the classifying spaces of compact Lie groups.

These points have been largely overlooked in the literature; an exception is Meier [20],
who proved Proposition 6.3(2) for ADK.Z; n/ with n� 3 and B D BU , and hence
calculated the group of homotopy classes of phantom maps.

(2) Recall that calculations of SPh.X; Y / have rarely been reported. We should also
note the following points:

� The vanishing of ŒX;� yY � enables us to calculate not only Ph.X; Y /, but also
SPh.X; Y / (see Remark 6.2(2)).

� The last assertion on the group structures on Ph.X; Y / and SPh.X; Y / is novel.

Next, we present a new method for calculating the groups Ph.X; Y / and SPh.X; Y /
for .X; Y / 2Q with ŒX;� yY �¤ 0. Note that in the following theorem, p] Ph.K; Y /
and p] SPh.K; Y / are the subgroups of Ph.X; Y / and SPh.X; Y / (Theorem 2.3(2)).
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Theorem 2.7 Let .X; Y / be in Q. Let X 0 i
�!X

p
�!K be a cofibration sequence

with ŒX 0; � yY �D 0, or a fibration sequence with weakly contractible map�.X
0; � yY /.

Then there exist natural split exact sequences of abelian groups given by

0! p] Ph.K; Y /! Ph.X; Y /

!

Y
i>0

H i .X I�iC1.Y /˝ yZ=Z/=p
�H i .KI�iC1.Y /˝ yZ=Z/! 0;

0! p] SPh.K; Y /! SPh.X; Y /

!

Y
i>0

H i .X I�iC1.Y /˝ LZ=Z/=p
�H i .KI�iC1.Y /˝ LZ=Z/! 0:

Using Theorem 2.7, we can produce infinitely many computational examples. We
illustrate its power through the following computational results.

Corollary 2.8 Let X be a connected infinite loop space with �1.X/=torsionŠ Zm

for some m� 0, and let Y be in B . Suppose that .X; Y / is in Q. Then we have the
natural isomorphisms of groups

Ph.X; Y /Š
Y
i>0

H i .X I�iC1.Y /˝ yZ=Z/=p
�H i .T I�iC1.Y /˝ yZ=Z/;

SPh.X; Y /Š
Y
i>0

H i .X I�iC1.Y /˝ LZ=Z/=p
�H i .T I�iC1.Y /˝ LZ=Z/;

where the map p from X to the m–dimensional torus T is defined to be the composite
X !K.�1.X/; 1/!K.�1.X/=torsion; 1/D T of the canonical maps.

Let Khni denote the n–connected cover of K .

Corollary 2.9 Suppose that K is a 11
2

–connected finite complex and Y is in B , or
that K is a 21

2
–connected finite complex and Y is in B0 . If .Khni; Y / is in Q, there

exist natural isomorphisms of groups

Ph.Khni; Y /Š
Y
i>0

H i .KhniI�iC1.Y /˝ yZ=Z/=p
�H i .KI�iC1.Y /˝ yZ=Z/;

SPh.Khni; Y /Š
Y
i>0

H i .KhniI�iC1.Y /˝ LZ=Z/=p
�H i .KI�iC1.Y /˝ LZ=Z/;

where pW Khni !K is the canonical map.

Algebraic & Geometric Topology, Volume 18 (2018)



Groups of homotopy classes of phantom maps 589

Corollary 2.10 Let .X; Y / be in Q. Suppose that X is the product of connected
CW-complexes X 0 and K (ie X 0 �K ). Suppose that .X 0; Y / is in A�B or A0 �B0 .
Then there exist natural isomorphisms of groups

Ph.X; Y /Š Ph.K; Y /˚Hom. zH�.X 0IQ/˝H�.KIQ/; ��C1.Y /˝ yZ=Z/;

SPh.X; Y /Š SPh.K; Y /˚Hom. zH�.X 0IQ/˝H�.KIQ/; ��C1.Y /˝ LZ=Z/;

where Hom denotes the module of homomorphisms of graded Q–modules.

See Example 6.6 for another computational result on Ph.X; Y / and SPh.X; Y /.

In the forthcoming paper, we use our approach to study the group of weak identities
[23; 16]. We demonstrate that our approach is also useful for investigating the Gray
index of phantom maps [5; 6; 7; 18] in the succeeding article.

The paper is organized as follows. For a given map 'W Y ! Y 0 , the subset P '.X; Y /
of ŒX; Y � is defined as

P '.X; Y /D fŒf � 2 ŒX; Y � j '].Œf �/D 0g:

In Section 3, we develop a general theory leading to the double coset formula for
P '.X; Y / (Proposition 3.6) that enables us to treat Ph.X; Y /, SPh.X; Y / and Ph.X; LY /
simultaneously. This formula encourages the study of the conditions under which the
group ŒX;�Y.0/�Š Œ†X; Y.0/� is abelian, to which Section 4 is devoted. In Section 5,
the results of Sections 3 and 4 are applied to phantom maps, and Theorem 2.3 is estab-
lished. In Section 6, we prove Proposition 2.5, Theorem 2.7, and Corollaries 2.8–2.10.

3 Double coset formula

In this section, we develop a general theory that enables simultaneous treatment of
Ph.X; Y /;SPh.X; Y / and Ph.X; LY /; see the exact sequence (1-1) of pointed sets.

For a given map 'W Y ! Y 0 , the subset P '.X; Y / of ŒX; Y � is defined as

P '.X; Y /D fŒf � 2 ŒX; Y � j '].Œf �/D 0g:

Under certain conditions on ' , we determine the rational homotopy structure of the
double looping of the fibration sequence

F ! Y
'
�! Y 0
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(Proposition 3.1) and establish the double coset formula for P '.X; Y / (Proposition 3.6).
By applying these results to the profinite completion cY W Y ! yY , the local expansion
eY W Y ! LY , and the natural map dY W LY ! yY , we can investigate Ph.X; Y /, SPh.X; Y /
and Ph.X; LY / simultaneously (see Corollary 5.3, Propositions 5.4 and 5.7).

Notation Here and throughout, the subscript .0/ denotes the rationalization of a
nilpotent space or a nilpotent group.

Proposition 3.1 Let Y , Y 0 be 1–connected CW-complexes. Suppose that 'W Y ! Y 0

induces monomorphisms on the rational homotopy groups. Then:

(1) The homotopy fiber F of ' is nilpotent and the principal fibration

.�Y /.0/! .�Y 0/.0/! F.0/

is trivial.

(2) F is rationally equivalent to
Q
i>0K.�iC1.Y

0/.0/=�iC1.Y /.0/; i/:

To prove Proposition 3.1, we require the following lemma.

Lemma 3.2 Let Z  
�!Z0

p
�!B be a fibration sequence such that Z , Z0 , and B

have the homotopy type of a CW-complex. Suppose that Z and Z0 are simple rational
spaces with trivial Postnikov invariants and that  W Z!Z0 induces monomorphisms
on the homotopy groups. Then the fibration pW Z0! B is trivial and the base B is a
simple rational space with trivial Postnikov invariants.

Proof First, we construct a homotopy left inverse � of  W Z!Z0 . Fix homotopy
equivalences Z'

Q
K.�i .Z/; i/ andZ0'

Q
K.�i .Z

0/; i/ (see Remark 3.3). Choose
left inverses si of the monomorphisms �i . /W �i .Z/! �i .Z

0/ of Q–modules and
define the homotopy equivalence hW Z!Z to be the composite

Z
 
��!Z0 '

Y
K.�i .Z

0/; i/

Q
K.si ;i/
������!

Y
K.�i .Z/; i/'Z:

Then, the desired homotopy left inverse � of  W Z!Z0 is defined to be the composite

Z0 '
Y

K.�i .Z
0/; i/

Q
K.si ;i/
������!

Y
K.�i .Z/; i/'Z

g
��!Z;

where g is a homotopy inverse of h.
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Next, consider the morphism of fibrations

Z0 B �Z

B

.p;�/

p proj

We can then easily see that this morphism is a trivialization of the fibration of interest.
Since .p; �/W Z0!B�Z is a homotopy equivalence, B admits an H–space structure,
and hence all the Postnikov invariants of B vanish.

Proof of Proposition 3.1 Since F is nilpotent by [11, Proposition 4.4.1], we have
the fibration

.�Y /.0/
.�'/.0/

�����! .�Y 0/.0/
@.0/

�! F.0/:

We can apply Lemma 3.2 to complete the proof.

Remark 3.3 Since the product of infinitely many Eilenberg–Mac Lane complexes
need not have the homotopy type of a CW-complex, the product in Proposition 3.1
should be interpreted as the weak product (see [32]). We can now operate in the
category CW . This interpretation is used throughout the paper.

Remark 3.4 In Proposition 3.1, the assumption that Y and Y 0 are 1–connected can
be replaced by the assumption that ']W �1.Y /! �1.Y

0/ is a monomorphism. Then,
by the universal covering argument, we observe that �0.F /Š �1.Y 0/=�1.Y / and that
each component of F is rationally equivalent to

Q
i>0K.�iC1.Y

0/.0/=�iC1.Y /.0/; i/.

Recall that for a connected space X and a map 'W Y ! Y 0 , the subset P '.X; Y / of
ŒX; Y � is defined by

P '.X; Y /D fŒf � 2 ŒX; Y � j '].Œf �/D 0g:

Consider the principal �Y 0–fibration �Y 0! F ! Y , where F is the homotopy fiber
of ' . This fibration generates an exact sequence of pointed sets

ŒX;�Y 0�! ŒX; F �! P '.X; Y /! 0

and the group ŒX;�Y 0� acts on ŒX; F � in an obvious way.

Lemma 3.5 (orbit formula) P '.X;Y / is isomorphic to the orbit space ŒX;F �=ŒX;�Y 0�.

Proof See [11, Lemma 1.4.7].
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A more useful formula for P '.X; Y / can be established under certain conditions.

Proposition 3.6 (double coset formula) Suppose that the map 'W Y ! Y 0 is compat-
ible with Proposition 3.1 and that the homotopy fiber F of ' is rational. Then we have
the isomorphisms

P '.X; Y /Š .�'.0//]ŒX;�Y.0/�nŒX;�Y
0
.0/�=.�r

0/]ŒX;�Y
0�

Š '.0/]Œ†X; Y.0/�nŒ†X; Y
0
.0/�=r

0
]Œ†X; Y

0�;

where r 0W Y 0! Y 0
.0/

denotes the rationalization of Y 0 .

Proof Rationalizing ' yields the following commutative diagram:

Y Y.0/

Y 0 Y 0
.0/

r

' '.0/

r 0

Since F is rational, this diagram is a homotopy pullback. Thus the natural map

.r]; ']/W ŒX; Y �! ŒX; Y.0/��ŒX;Y 0
.0/
� ŒX; Y

0�

has a kernel that is isomorphic to

.�'.0//]ŒX;�Y.0/�nŒX;�Y
0
.0/�=.�r

0/]ŒX;�Y
0�

(see [11, Proposition 2.2.2]). Thus, we merely require that if '].Œf �/ D 0, then
r].Œf �/D 0. This is easily seen from Proposition 3.1(1).

4 The functor Œ � ; � �.0/�

By Proposition 3.6, if ŒX;�Y 0.0/�Š Œ†X; Y 0.0/� is abelian, P '.X; Y / has an abelian
group structure. Motivated by this inference, we investigate the functor Œ � ; � �.0/�Š
Œ† � ; �.0/� and use the results of Scheerer [26] to find a necessary and sufficient condition
under which the group ŒX;�Y.0/�Š Œ†X; Y.0/� is abelian. We also study spaces with
trivial rational cup and Whitehead products.

4.1 Necessary and sufficient condition that ŒX; �Y.0/� is abelian

First we review the relevant background material (see [2, Chapter VI, Section 1]).
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Let L be a nilpotent Lie algebra over Q. Then L can be endowed with a group
structure via the Baker–Campbell–Hausdorff formula

x �y D xCyC 1
2
Œx; y�C 1

12
ŒŒx; y�; y�C 1

12
ŒŒy; x�; x�C � � � :

This group .L; � /, denoted by expL, is a nilpotent rational group [8, Chapter 10].

Let .C;�/ be a connected cocommutative graded coalgebra over Q, and .�; Œ ; �/ a
reduced graded Lie algebra over Q. The Q–module HomQ.C; �/ of homomorphisms
of graded Q–modules is a (nongraded) Lie algebra over Q with the Lie bracket defined
by

Œf; g�W C
�
��! C ˝C

f˝g
���! � ˝�

Œ ; �
��! �:

If Cn D 0 for sufficiently large n, HomQ.C; �/ is a nilpotent Lie algebra. Thus we
define the group

exp HomQ.C; �/D lim
 ��
n

exp HomQ.C�n; �/

as the inverse limit of nilpotent groups, where C�n is the subcoalgebra of C of all
elements of degree � n.

Recall that the rational homology H�.X IQ/ of an arcwise connected space X is a
connected cocommutative graded coalgebra over Q whose coproduct is induced by the
diagonal map of X . Recall also that for a 1–connected space Y , the rational homotopy
group ��.�Y /˝Q equipped with the Samelson product is a reduced graded Lie
algebra over Q, and that the Samelson product of �Y is the Whitehead product of Y .

Let 1-CW denote the full subcategory of CW consisting of 1–connected CW-complexes,
and let Gr denote the category of groups.

Proposition 4.1 The functor Œ � ; � �.0/�W CWop� 1-CW! Gr is naturally isomorphic
to the functor exp HomQ.H�. � IQ/; ��.� � /˝Q/.

Proof The proof follows from Proposition 1 in [26, Section 0.1], the remark on [26,
page 71] and the natural isomorphism H�.� � IQ/ Š U��.� � .0// of graded Hopf
algebras, where U denotes the universal enveloping algebra functor [22, Appendix].

We introduce the following full subcategory of CWop � 1-CW .

Definition 4.2 Let Q� be the full subcategory of CWop � 1-CW whose members
.X; Y / satisfy the condition (Q) (see Definition 2.1).
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Theorem 4.3 (1) Let .X; Y / be an object of CWop�1-CW . Then .X; Y / is in Q�

if and only if ŒX;�Y.0/� is abelian.

(2) The functor Œ � ; � �.0/� D Œ† � ; �.0/�W Q� ! Gr is naturally isomorphic to the
functor

Q
i>0H

i . � I�iC1. � /.0//. In particular, Œ � ; � �.0/�D Œ† � ; �.0/� on Q�

is a Q–module-valued functor.

Proof (1) By definition, we have

exp HomQ.H�.X IQ/; ��.�Y /˝Q/D lim
 ��
n

exp HomQ.H�n.X IQ/; ��.�Y /˝Q/:

Thus, Proposition 4.1 and the Mal’cev correspondence [8, page 118] imply that the group
ŒX;�Y.0/� is abelian if and only if the Lie algebra HomQ.H�.X IQ/; ��.�Y /˝Q/

is abelian. Hence, we show that .X; Y / is in Q� if and only if the Lie algebra
HomQ.H�.X IQ/; ��.�Y /˝Q/ is abelian.

()) We observe that the bracket Œ ; � of HomQ.H�.X IQ/; ��.�Y /˝Q/ is trivial.
It is sufficient to observe that the composite

Œf; g�p;qW Hn.X IQ/
�p;q

���!Hp.X IQ/˝Hq.X IQ/

fp˝gq

�����! .�p.�Y /˝Q/˝ .�q.�Y /˝Q/
Œ ; �
��! �n.�Y /˝Q

is zero for any f; g and any p; q; n with p C q D n, where �p;q is the composi-
tion of � and the projection onto Hp.X IQ/˝Hq.X IQ/. It is easily verified that
[W Hp.X IQ/˝H q.X IQ/!Hn.X IQ/ is zero if and only if �p;q is zero. Thus
we have Œf; g�p;q D 0.

(() Suppose that

[W H i .X IQ/˝H j .X IQ/!H iCj .X IQ/

and
Œ ; �W .�iC1.Y /˝Q/˝ .�jC1.Y /˝Q/! �iCjC1.Y /˝Q

are nonzero for some i and j . Then it is not difficult to find

f; g 2 HomQ.H�.X IQ/; ��.�Y /˝Q/

with Œf; g�¤ 0.

(2) As is shown in the proof of part (1), the Lie algebra

HomQ.H�.X IQ/; ��.�Y /˝Q/
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is abelian for .X; Y / 2Q� . Thus we have

ŒX;�Y.0/�Š exp HomQ.H�.X IQ/; ��.�Y /˝Q/

D HomQ.H�.X IQ/; ��.�Y /˝Q/

D

Y
i>0

H i .X I�iC1.Y /.0//:

4.2 C0–spaces and W0–spaces

The spaces defined below are important in the context of Theorem 4.3.

Definition 4.4 (1) X is called a C0–space if the cup product on the reduced
cohomology zH�.X IQ/ is trivial.

(2) Y is called a W0–space if the Whitehead product on the higher rational homotopy
groups

L
i>1 �i .Y /˝Q is trivial.

See [9, Proposition 5.5] and [10] for properties characterizing C0–spaces. Spaces with
trivial Whitehead product have been investigated by Siegel [27], who referred to them
as W –spaces.

Example 4.5 The classes of C0– and W0–spaces properly contain co-H0–spaces
and H0–spaces, respectively. Many finite Grassmannians (eg CP n with n > 1) are
W0–spaces but not H0–spaces.

A pair .X; Y / 2 CWop � 1-CW is in Q� if X is a C0–space or Y is a W0–space. Let
us see that Q� contains many pairs .X; Y / in which X is not a C0–space and Y is
not a W0–space.

Given a pair .X; Y / of connected spaces, define DX;Y by

DX;Y D fi > 0 jH
i .X IQ/¤ 0 and �iC1.Y /˝Q¤ 0g:

Then the condition (Q) is equivalent to the same vanishing condition for any i; j 2DX;Y
with iCj 2DX;Y . Note that if Y is a loop space, a classifying space, or a homogeneous
space of a Lie group, then DX;Y is finite.

Example 4.6 (1) .X; Sn/ is in Q� if and only if either n is odd or the rational
cup product

[W Hn�1.X IQ/˝Hn�1.X IQ/!H 2n�2.X IQ/

is trivial.
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(2) Let X be a connected CW-complex with H�.X IQ/DHev.X IQ/. Then .X; Y /
is in Q� if the Whitehead product on �odd.Y /˝Q is trivial. In particular, if Y
is a homogeneous space of a Lie group, then .X; Y / is in Q� .

Proof (1) Recall that

��.S
n/˝QD

�
Q � 1n if n is odd;
Q � 1n˚Q � Œ1n; 1n� if n is even;

where 1n denotes the homotopy class of the identity map of Sn . Then the proof follows
immediately from the definition of Q� .

(2) The first clause is obvious. To prove the latter, we set Y D G=H and consider
the fiber sequence H i

�!G
p
�!G=H . Since ��.H/˝QD �odd.H/˝Q, the map

p]W �odd.G/˝Q! �odd.G=H/˝Q is surjective. Since the Whitehead product on
�odd.G/˝Q is trivial, the Whitehead product on �odd.G=H/˝Q is also trivial.

5 Applications to phantom maps

In this section, we apply the results of Sections 3 and 4 to phantom maps, and also
prove Theorem 2.3.

The source is considered to be a connected CW-complex and the target is a nilpotent
CW-complex of finite type over Zl , where Zl is the localization of Z at a nonempty
set l of primes. (A nilpotent space of finite type over Zl is defined in [11, page 79],
referred to as an f Zl–nilpotent space.) A nilpotent space of finite type over Z defines
a nilpotent space of finite type in the usual sense.

For a nilpotent space Y of finite type over Zl , the profinite l–completion yY and the
l–local expansion LY are defined by yY D

Q
p2l
yYp and LY D

Q
p2l Y.p/ , respectively,

where yYp and Y.p/ are the p–profinite completion and the p–localization of Y respec-
tively [30]. Thus, we can establish a commutative diagram of natural transformations

Y

LY yY

eY cY

dY

Similarly, for a finitely generated Zl–module M , the profinite l–completion yM and
the l–local expansion LM are defined by yM D

Q
p2l
yMp and LM D

Q
p2lM.p/ ,
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respectively. Then there exist natural isomorphisms

yM ŠM ˝ yZl and LM ŠM ˝ LZl ;

and the commutative diagram of natural transformations is given as

M

LM yM

eM cM

dM

The following lemma generalizes Meier and Zabrodsky’s result [34, page 137] (see
also [14, Theorem 5.1] and [25, Section 1]).

Proposition 5.1 Let X be a connected CW-complex and Y a nilpotent CW-complex
of finite type over Zl . Then a map f W X ! Y is a phantom map if and only if the
composite X f

�!Y
cY
�! yY is null-homotopic.

Proof .)/ The proof is outlined in [34, page 137].

.(/ Let p be a prime in l . Under the assumption on Y , we have �i . yYp/Š �i .Y /yp
(see the proof of [31, Theorem 3.9]). Thus the p–profinite completion of Y coincides
with the completion of Y at p in the context of [11, Definition 10.2.3] (see [11,
Theorems 11.1.1 and 11.1.2]). Hence, the reverse implication immediately follows
from [11, Theorem 13.1.1].

Remark 5.2 (1) Recall that we have assumed that l ¤∅ (ie Zl ¤ Q). In the case
where l D ∅, yY is a singleton, and hence Proposition 5.1 does not hold. But we
know that any phantom map to a nilpotent space of finite type over Q is trivial (see
[20, Theorem 1] or [29, Theorem 3.3(b)]).

(2) As implemented by Meier and Zabrodsky [34] and Roitberg and Touhey [25], our
approach to phantom maps is based on Proposition 5.1. Though another characterization
of phantom maps, Theorem B(b) in [34], is also easily generalizable to an arbitrary
nilpotent source, it is not relevant to our approach. See [14] for the other approaches to
phantom maps.

(3) Hereafter, for simplicity, we assume that the target Y is nilpotent of finite type.
However, all of the results remain valid under appropriate modification, even if the
target is regarded as nilpotent of finite type over Zl rather than nilpotent of finite type.
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Recall the definition of P '.X; Y / in Section 3.

Corollary 5.3 Let X be a connected CW-complex and Y a nilpotent CW-complex of
finite type. Then

Ph.X; Y /D P cY .X; Y /;

SPh.X; Y /D P eY .X; Y /;

Ph.X; LY /D P dY .X; LY /:

Proof The first equality follows immediately from Proposition 5.1. Since dY DQ
p cY.p/

, the third equality also follows from Proposition 5.1. Futhermore, since
dY eY D cY , the second equality follows from the definition of SPh.X; Y / and the first
equality.

Using Corollary 5.3, we apply the results of Section 3 to the study of phantom maps.
Let FY , F 0Y and F 00Y denote the homotopy fibers of cY , eY and dY , respectively.

Proposition 5.4 Let Y be a 1–connected CW-complex of finite type.

(1) FY , F 0Y and F 00Y are homotopically equivalent, respectively, to the productsY
i>0

K.�iC1.Y /˝ yZ=Z; i/;Y
i>0

K.�iC1.Y /˝ LZ=Z; i/;Y
i>0

K.�iC1.Y /˝ yZ= LZ; i/:

(2) The natural sequence

F 0Y
iY
�! FY

pY
�! F 00Y

is a trivial fibration sequence.

Proof (1) Note that

�i . yY /D �i .Y /˝ yZ;

�i . LY /D �i .Y /˝ LZ

and that yZ=Z, LZ=Z and yZ= LZ are Q–modules. Then the homotopy types of FY , F 0Y
and F 00Y are determined by Proposition 3.1.
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(2) Since cY D dY eY , we have the natural fibration sequence

F 0Y ! FY ! F 00Y :

This sequence is trivial as per Lemma 3.2.

The triviality of the fibration sequence F 0Y ! FY ! F 00Y is exploited in the calculation
of SPh.X; Y / in Section 6.

Remark 5.5 For a nilpotent CW-complex Y of finite type, the homotopy fibers FY ,
F 0Y , and F 00Y are determined by Proposition 5.4 and Remark 3.4. In the case of finite
�1.Y /, the homotopy type of FY is determined by the method described by Roitberg
and Touhey [25]. Their proof is based on the results of Meier [20] and Steiner [29],
whose works are mentioned in Remark 5.2(1).

Remark 5.6 From the definition of a phantom map, it is easily seen that Ph.X; Y /D
Ph.X; zY / holds (without the finite-type assumption imposed on Y ), where zY denotes
the universal cover of Y . Consequently, our approach is valid under the weaker
assumption that the target has finitely generated higher homotopy groups. In [17,
page 367], such a space is called a finite-type target. The classifying space of any
compact Lie group is a finite-type target.

The following proposition describes a special case of Proposition 3.6.

Proposition 5.7 (double coset formula) Let X be a connected CW-complex, and Y
a nilpotent CW-complex of finite type. Then there exist natural isomorphisms

Ph.X; Y /Š .�c.0//]ŒX;�Y.0/�nŒX;� yY.0/�=.�yr/]ŒX;� yY �

Š c.0/]Œ†X; Y.0/�nŒ†X; yY.0/�=yr]Œ†X; yY �;

SPh.X; Y /Š .�e.0//]ŒX;�Y.0/�nŒX;� LY.0/�=.�Lr/]ŒX;� LY �

Š e.0/]Œ†X; Y.0/�nŒ†X; LY.0/�=Lr]Œ†X; LY �;

Ph.X; LY /Š .�d.0//]ŒX;� LY.0/�nŒX;� yY.0/�=.�yr/]ŒX;� yY �

Š d.0/]Œ†X; LY.0/�nŒ†X; yY.0/�=yr]Œ†X; yY �;

where yr and Lr denote the rationalization of yY and LY respectively.

Proof By Remark 5.6, it is sufficient to prove that Proposition 5.7 holds when Y is
1–connected. This follows from Proposition 3.6, Corollary 5.3 and Proposition 5.4.
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Remark 5.8 Proposition 5.7 is analogous to the double coset formulas describing
local and adelic genera of a group and a space; see [11, pages 147, 169, 242 and 262]
and [13].

The following corollary generalizes McGibbon’s result [12, page 266].

Corollary 5.9 Let X be a connected CW-complex and Y a nilpotent CW-complex of
finite type. Then the following natural exact sequence of pointed sets exists:

0! SPh.X; Y /! Ph.X; Y /
e]

�! Ph.X; LY /! 0:

Proof According to Proposition 5.7, both Ph.X; Y / and Ph.X; LY / are quotient sets
of ŒX; .� yY /.0/�, implying that e] is surjective. The remainder of the proof follows
from the definition of SPh.X; Y /.

We now closely study natural group structures on phantom maps.

Let 0! LZ=Z �
�! yZ=Z $

�! yZ= LZ! 0 denote the canonical exact sequence of Q–
modules.

Proposition 5.10 Let .X; Y / be an object of Q. Then there are natural isomorphisms

ŒX; FY �Š
Y
i>0

H i .X I�iC1.Y /˝ yZ=Z/;

ŒX; F 0Y �Š
Y
i>0

H i .X I�iC1.Y /˝ LZ=Z/;

ŒX; F 00Y �Š
Y
i>0

H i .X I�iC1.Y /˝ yZ= LZ/:

Under these isomorphisms, iY ]W ŒX; F 0Y �! ŒX; FY � and pY ]W ŒX; FY �! ŒX; F 00Y � are
identified with

Q
i>0H

i .X I�iC1.Y /˝ �/ and
Q
i>0H

i .X I�iC1.Y /˝$/, respec-
tively.

Proof By Remarks 5.5 and 5.6, we may assume that Y is 1–connected. For a
simultaneous treatment of cY W Y ! yY , eY W Y ! LY and dY W LY ! yY , we denote one
mapping by ' D 'Y W ˛Y ! ˇY and let F 'Y be its homotopy fiber. Then P '.X; ˛Y /
coincides with Ph.X; Y /, SPh.X; Y / and Ph.X; LY / in the respective cases. Let ˛ , ˇ
and ' also denote the corresponding functors and natural transformations for finitely
generated Z–modules.
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Since the homotopy fiber F 'Y is rational (Proposition 5.4), Proposition 3.1 implies that
the principal fibration

.�˛Y /.0/! .�ˇY /.0/! F
'
Y

is trivial; hence ŒX; F 'Y � is isomorphic to the orbit space ŒX; .�˛Y /.0/�nŒX; .�ˇY /.0/�
by [11, Lemma 1.4.7]. Note that 1�˛ and 1�ˇ preserve condition (Q). Then, from
Theorem 4.3,

.�'Y /.0/]W ŒX; .�˛Y /.0/�! ŒX; .�ˇY /.0/�

is identified withY
H i .X I�iC1.Y /˝'Z.0//W

Y
H i .X I�iC1.Y /˝ .˛Z/.0//

!

Y
H i .X I�iC1.Y /˝ .ˇZ/.0//:

Note that

.ˇZ/.0/=.˛Z/.0/ D .ˇZ=˛Z/.0/ D ˇZ=˛Z:

Then we obtain the natural isomorphism

ŒX; F
'
Y �Š

Y
i>0

H i .X I�iC1.Y /˝ˇZ=˛Z/:

Theorem 4.3 also implies that iY ] and pY ] are identified.

Proof of Theorem 2.3 By Remarks 5.5 and 5.6, we assume that Y is 1–connected,
and use the notations introduced in the proof of Proposition 5.10; note that ˛D 1 since
'Y D cY or eY .

(1) Since, by Theorem 4.3, ŒX; .�ˇY /.0/� is a Q–module, we have

P '.X; Y /Š .�'/.0/]ŒX; .�Y /.0/�nŒX; .�ˇY /.0/�=.�r
0/]ŒX;�ˇY �

Š ŒX; .�ˇY /.0/�=.�'/.0/]ŒX; .�Y /.0/�C .�r
0/]ŒX;�ˇY �

Š ŒX; F
'
Y �= the image of ŒX;�ˇY �

by the proof of Proposition 5.10, where r 0 denotes the rationalization of ˇY . Thus, a
natural, divisible, abelian group structure exists on P '.X; Y /.

We can easily see that the inclusion SPh.X; Y / ,! Ph.X; Y / is a homomorphism of
abelian groups (Proposition 5.10).

(2) We treat only the case of Im Ph.f; g/; the same argument applies to Im SPh.f; g/.
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By Proposition 5.7, we have the morphism of exact sequences of pointed sets

ŒK;�yL.0/� Ph.K;L/ 0

ŒX;� yY.0/� Ph.X; Y / 0

Œf;�yg.0/� Ph.f;g/

Recall that the map ŒX;� yY.0/�!Ph.X; Y / is an epimorphism of abelian groups which
is the composite of the natural epimorphisms ŒX;� yY.0/�! ŒX; FY � and ŒX; FY �!
Ph.X; Y / (see the proof of part (1) above). By Proposition 4.1, Theorem 4.3, and the
proof of Proposition 5.10, the image of the composite

ŒK;�yL.0/�
Œf;�yg.0/�
�������! ŒX;� yY.0/�! ŒX; FY �

is identified with
Q
i>0 ImH i .f I�iC1.g/˝ yZ=Z/, which shows that Im Ph.f; g/ is

a divisible abelian subgroup of Ph.X; Y /.

(3) We treat first the case of Ph.X; Y /.

Define the maps � and @ by the long fibration sequence

� � � !� yY
@
�! FY

�
�! Y

cY
�! yY :

Consider the commutative diagram

ŒX;� yY.0/�

ŒX; FY � ŒX; Y �

Ph.X; Y /

@.0/]

�

�]

where � is the identification map by the action of the group ŒX;� yY �. Since the group
structure on Ph.X; Y / is characterized by the property that the composite �@.0/] is an
epimorphism of groups (see the proof of part (1) above), it is sufficient to see that the
composite

(5-1) ŒX;� yY.0/�
@.0/]

���! ŒX; FY �
�]
�! ŒX; Y �

preserves multiplication.
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First, suppose that X is a co-H–space. Then the result follows from [32, Theorem 5.21
in Chapter III].

Second, suppose that Y is an H–space. Then, FY admits an H–structure such that
@W � yY ! FY and �W FY ! Y are H–maps (see the proof of [28, Theorem 9.1] and
[33, page 15]). Thus, we see that the composite

� yY.0/
@.0/

�! FY
�
�! Y

is an H–map, and hence that the composite (5-1) preserves multiplication.

The result for SPh.X; Y / follows from that for Ph.X; Y / since SPh.X; Y / is a subgroup
of Ph.X; Y / for .X; Y / 2Q.

Remark 5.11 From the proof of Theorem 2.3, it is obvious that a result similar to
Theorem 2.3 holds for Ph.X; LY /.

Proposition 5.12 Let .X; Y / be an object of Q. Then there exists a natural commuta-
tive diagram of groups

0 0

ŒX;� LY � ŒX; F 0Y � SPh.X; Y / 0

ŒX;� yY � ŒX; FY � Ph.X; Y / 0

ŒX;� yY � ŒX; F 00Y � Ph.X; LY / 0

0 0

iY ]

1 pY ] eY ]

where all rows and all columns except the left column are exact; ŒX; FY �, ŒX; F 0Y � and
ŒX; F 00Y � are regarded as groups by the natural isomorphisms in Proposition 5.10.

Proof The exactness of the rows follows immediately from the proof of Theorem 2.3(1)
and Remark 5.11. The exactness of the right and the middle columns follows from
Corollary 5.9 and Proposition 5.10 respectively. The commutativity is obvious.

Algebraic & Geometric Topology, Volume 18 (2018)



604 Hiroshi Kihara

6 Calculations of Ph.X; Y / and SPh.X; Y /

In this section, we prove Proposition 2.5, Theorem 2.7 and Corollaries 2.8–2.10.

6.1 Ph.X; Y / and SPh.X; Y / in the case of trivial ŒX; � yY �

In this subsection, we prove Proposition 2.5, generalizing Theorem A(2) not only for
Ph.X; Y /, but also for SPh.X; Y /. Though analogous results in all cases can be found
for Ph.X; LY /, we omit their statements and proofs, since they follow from the results
for Ph.X; Y /, Remark 5.2(3), and the isomorphism Ph.X; LY /Š

Q
p Ph.X; Y.p//.

First, let us consider pairs .X; Y / with ŒX;� yY � locally finite (and, in particular, with
ŒX;� yY � trivial).

Proposition 6.1 Let X be a connected CW-complex and Y a nilpotent CW-complex
of finite type. If the group ŒX;� yY � is locally finite, we have the isomorphisms

Ph.X; Y /Š
Y
i>0

H i .X I�iC1.Y /˝ yZ=Z/;

SPh.X; Y /Š
Y
i>0

H i .X I�iC1.Y /˝ LZ=Z/:

Further, if .X; Y / is in Q, these isomorphisms can be taken as natural isomorphisms of
abelian groups.

Proof We may assume that Y is 1–connected by Remark 5.6.

The case of Ph.X; Y / By Proposition 5.7, we have

Ph.X; Y /Š .�c.0//]ŒX;�Y.0/�nŒX;� yY.0/�=.�yr/]ŒX;� yY �:

Define the map

 k W � yY.0/!� yY.0/;  k.˛/D ˛
k for k � 1:

Since  k is a homotopy equivalence, .�yr/#ŒX;� yY �D 0, and Ph.X; Y / is given by

Ph.X; Y /Š .�c/.0/]ŒX;�Y.0/�nŒX;� yY.0/�Š ŒX; FY �

by Proposition 3.1. The desired isomorphism is implied by Proposition 5.4. If .X; Y /
is in Q, the isomorphism can be taken as a natural isomorphism of abelian groups by
Proposition 5.10 and the proof of Theorem 2.3(1).
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The case of SPh.X; Y / By Corollary 5.3 and Lemma 3.5, we have the commutative
diagram

ŒX; F 0Y � ŒX; FY �

SPh.X; Y / Ph.X; Y /

whose vertical arrows are quotient maps. As previously determined, the right vertical
arrow is bijective. Since the upper arrow is injective by Proposition 5.4(2), the left
vertical arrow must be bijective. The above argument completes the proof.

Remark 6.2 The following notes relate to Proposition 6.1.

(1) Meier [20] and Zabrodsky [34] identified the set Ph.X; Y / when investigating the
case of ŒX;� yY �D 0 (see [14, Section 5]). In [25, Theorem 1.5], Ph.X; Y / is identified
in the more general case of finite ŒX;� yY �.

(2) Naturally, the local finiteness of ŒX;� LY � implies the same results for SPh.X; Y /.
However, the above assertion regarding SPh.X; Y / is more useful since important van-
ishing results appear in the form ŒX;� yY �D 0, as demonstrated in the next proposition.

Proposition 6.3 (1) (generalization of Miller [21, Theorem A]) Let A be in A and
let B be a nilpotent finite complex. Then map�.A; yB/ is weakly contractible.

(2) (generalization of Anderson and Hodgkin [1, Theorem I]) Let A be in A0 and
let B be (the identity component of) a space in B0 . Then map�.A; yB/ is weakly
contractible.

Proof (1) This follows immediately from the generalizations of Miller’s theorem
[21] developed by Zabrodsky [34], Friedlander and Mislin [4] and McGibbon [15]; the
finite-type condition on the Postnikov space was removed in [15, page 3244].

(2) Here, we may assume that A is a 11
2

–connected Postnikov space of finite type.
We prove the weak contractibility of map�.A; yB/ in four steps.

Step 1 We prove the result for BDBU ; similar proofs can be found for BO and B Sp.

Suppose that A is an Eilenberg–Mac Lane space K.�; n/ with � finite and nD 2 or
� finitely generated, with n� 3. The rationalization �! �.0/ induces the following
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morphism of fibration sequences:

map�.K.�; n/; FBU / map�.K.�.0/; n/; FBU /

map�.K.�; n/; BU / map�.K.�.0/; n/; BU /

map�.K.�; n/;bBU/ map�.K.�.0/; n/;bBU/

'0

'

'00

By [1, Corollary 4.8], ' is a weak homotopy equivalence. Since FBU is rational
(Proposition 5.4), '0 is a weak homotopy equivalence [11, Section 19.5]. Since
K.�.0/; n/!� is an HZ=p–equivalence for any prime p , map�.K.�.0/; n/; bBU /
is weakly contractible [11, Sections 19.2 and 19.5], and hence the null component of
map�.K.�; n/; bBU / is weakly contractible. On the other hand, we have

ŒK.�; n/;bBU �Š ŒK.�; n/;�2bBU �
Š �2.map�.K.�; n/;bBU//D 0;

which implies that map�.K.�; n/; bBU / is weakly contractible.

For general A, the result is proved by induction using Dwyer’s version of the Zabrodsky
lemma [3, Proposition 3.4].

Step 2 The result for BDB SO is obtained from the result for BO using the fibration
sequence

f˙1g ! B SO! BO:

Step 3 The result for B D U=Sp is obtained from the results for BU and B Sp using
the fibration sequence

U=Sp! B Sp! BU:

Applying similar arguments, we can obtain results for B D Sp =U , SO =U and U=SO.

Step 4 We express the identity component of �B as �0B. Observe that if map�.A; yB/
is weakly contractible, then

map�.A;�
k yB/Šmap�.A;

1
�k0B/

is also weakly contractible. This statement completes the proof.
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Corollary 6.4 Let .X;Y / be in A�B or A0�B0. Then the mapping space map�.X;� yY /
is weakly contractible.

Proof This immediately follows from Proposition 6.3.

Remark 6.5 Proposition 6.3(2) and its use in proving the results apply equally to the
representing spaces of conjugate K–theory KC� [1].

Proof of Proposition 2.5 The result follows from Proposition 6.1 and Corollary 6.4.

6.2 Ph.X; Y / and SPh.X; Y / in the case of nontrivial ŒX; � yY �

In this subsection we prove Theorem 2.7 and Corollaries 2.8–2.10

Proof of Theorem 2.7 The case of Ph.X; Y / By Corollary 5.3 and the comment
before Lemma 3.5, the morphism of exact sequences of pointed sets is given by

ŒX;� yY � ŒX; FY � Ph.X; Y / 0

ŒK;� yY � ŒK; FY � Ph.K; Y / 0

p]
p] p]

We observe that p]W ŒK;� yY �! ŒX;� yY � is surjective. In the cofibration case, the
surjectivity follows immediately from the assumption; in the fibration case, the surjec-
tivity is inferred from the assumption via Dwyer’s version of the Zabrodsky lemma [3,
Proposition 3.4]. Next, consider the induced morphism

0 ŒX;� yY � ŒX; FY � Ph.X; Y / 0

0 Ker� p]ŒK; FY � p] Ph.K; Y / 0

 

�

of exact sequences of pointed sets, where ŒX;� yY � denotes the image of ŒX;� yY � and
� denotes the map induced by the natural quotient map ŒK; FY �! Ph.K; Y /. By
Theorem 2.3 and its proof, this is a morphism of exact sequences of abelian groups.
Since p]W ŒK;� yY �! ŒX;� yY � is surjective,  is also surjective. We regard this
morphism of exact sequences as a short exact sequence of chain complexes, and take
its homology exact sequence. Thus we find that

Ph.X; Y /=p] Ph.K; Y /Š ŒX; FY �=p]ŒK; FY �;

Algebraic & Geometric Topology, Volume 18 (2018)



608 Hiroshi Kihara

which gives the desired exact sequence (see Proposition 5.10 and its proof, Proposition
4.1 and Theorem 4.3). Since p] Ph.K; Y / is a divisible abelian group (Theorem 2.3(2)),
the short exact sequence splits.

The case of SPh.X; Y / As mentioned in the introduction of Section 6.1, Ph.X; Y /
and Ph.X; LY / generate analogous results. Thus there exists a morphism of exact
sequences of abelian groups

0 p] Ph.K; Y / Ph.X; Y /
Y
i>0

H i .X I�iC1.Y /˝ yZ=Z/

p�H i .KI�iC1.Y /˝ yZ=Z/
0

0 p] Ph.K; LY / Ph.X; LY /
Y
i>0

H i .X I�iC1.Y /˝ yZ= LZ/

p�H i .KI�iC1.Y /˝ yZ= LZ/
0

� eY ]

Regarding this morphism as a short exact sequence of chain complexes, we take its
homology exact sequence. Thus we obtain the exact sequence

0! Ker �! SPh.X; Y /!
Y
i>0

H i .X I�iC1.Y /˝ LZ=Z/

p�H i .KI�iC1.Y /˝ LZ=Z/
! 0

by Corollary 5.9. Define the abelian group AKer � by the pullback diagram

AKer �
Q
i>0

H i .X I�iC1.Y /˝ LZ=Z/

Ker � SPh.X; Y /

in the category of abelian groups, where the right vertical arrow is the natural quotient
map (see Proposition 5.10 and the proof of Theorem 2.3(1)). Since the right vertical
arrow is an epimorphism, this diagram is also a pushout diagram, implying that the
two horizontal arrows share a single cokernel. Thus it is seen that

AKer � D
Y
i>0

p�H i .KI�iC1.Y /˝ LZ=Z/;

which implies that Ker � D p] SPh.K; Y / by the proof of Theorem 2.3(2), and the
desired exact sequence is obtained. The short exact sequence splits by the divisibility
of p] SPh.K; Y /.

We use Theorem 2.7 to prove Corollaries 2.8–2.10.
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Proof of Corollary 2.8 Let X 0 be the fiber of pW X ! T . Note that X 0 is a
1
2

–connected infinite loop space. Since map�.X
0; � yY / is weakly contractible by

Corollary 6.4 and Ph.T; Y / vanishes, we obtain the result from Theorem 2.7.

Proof of Corollary 2.9 Consider the fibration sequence

�K.n/!Khni
p
��!K;

where K.n/ is the Postnikov n–stage of K . Since map�.�K
.n/; � yY / is weakly

contractible by Corollary 6.4 and Ph.K; Y / vanishes, we obtain the result from
Theorem 2.7.

Proof of Corollary 2.10 Consider the fibration sequence

X 0
i
�!X

p
��!K;

where i is the map .1; 0/W X 0 ! X 0 � K D X and p is the canonical projection
onto K . By Corollary 6.4, we can apply Theorem 2.7 to .X; Y /. The canonical section
.0; 1/W K!X 0 �K DX of the fibration p shows that p]W Ph.K; Y /! Ph.X; Y / is
injective and splits the exact sequences of Theorem 2.7. The products of quotients of
cohomology groups are easily identified with the Hom-modules in the statement.

Last, we apply Theorem 2.7 to pairs .X; Y / in Q admitting a cofibration sequence
X 0

i
�!X

p
�!K with ŒX 0; � yY �D 0.

The Grassmannians Gn.F/ and G1.F/ are defined by Gn.F/D lim
��!m

Gn;m.F/ and
G1.F/D lim

��!n
Gn.F/ for F DR, C , H , where the finite Grassmannian Gn;m.F/ is

the space of n–dimensional subspaces in FnCm .

Example 6.6 Let Gn.F/=Gn0;m0.F/ be the quotient complex of Gn.F/ by Gn0;m0.F/

.n0; m0 <1, n0 � n �1/. Let Y be a space in B such that .Gn.F/=Gn0;m0.F/; Y /

is in Q. Then there exist natural isomorphisms of groups

Ph.Gn.F/=Gn0;m0.F/; Y /Š
Y
i>0

H i
�
Gn.F/=Gn0;m0.F/I�iC1.Y /˝ yZ=Z

�
p�H i

�
†Gn0;m0.F/I�iC1.Y /˝ yZ=Z

� ;

SPh.Gn.F/=Gn0;m0.F/; Y /Š
Y
i>0

H i
�
Gn.F/=Gn0;m0.F/I�iC1.Y /˝ LZ=Z

�
p�H i

�
†Gn0;m0.F/I�iC1.Y /˝ LZ=Z

� ;

where p is the canonical map Gn.F/=Gn0;m0.F/ ! †Gn0;m0.F/. Furthermore, if
F DC or H , then

p�H i
�
†Gn0;m0.F/I�iC1.Y /˝ yZ=Z

�
D p�H i

�
†Gn0;m0.F/I�iC1.Y /˝ LZ=Z

�
D 0:
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Proof Consider the cofibration sequence

Gn.F/!Gn.F/=Gn0;m0.F/
p
��!†Gn0;m0.F/:

Since ŒGn.F/;� yY �D 0 by Corollary 6.4 and Ph.†Gn0;m0.F/; Y /D 0, we obtain the
result from Theorem 2.7.
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