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Nonexistence of boundary maps for some
hierarchically hyperbolic spaces

SARAH C MOUSLEY

We provide negative answers to questions posed by Durham, Hagen and Sisto on the
existence of boundary maps for some hierarchically hyperbolic spaces, namely maps
from right-angled Artin groups to mapping class groups. We also prove results on
existence of boundary maps for free subgroups of mapping class groups.

57M07; 20F36, 20F65

1 Introduction

Let � be a finite graph with vertex set V .�/D fs1; : : : ; skg. The right-angled Artin
group determined by � , denoted by A.�/, is the group with the presentation

A.�/D hs1; : : : ; sk W Œsi ; sj �D 1() sisj is an edge in �i:

Let S D Sg;n be a connected, oriented surface of genus g with n punctures, and let
Mod.S/ denote the mapping class group of S. Clay, Leininger and Mangahas [6] and
Koberda [8] construct “nice” embeddings of right-angled Artin groups to mapping
class groups. Behrstock, Hagen and Sisto [3; 2] introduced a geometric structure called
a hierarchically hyperbolic space (HHS). Important examples of spaces that are HHSs
include mapping class groups of surfaces and right-angled Artin groups. Durham,
Hagen and Sisto [7] constructed a boundary for hierarchically hyperbolic spaces (see
Section 2). In that paper, the authors ask the following question, motivated by a desire
to develop a notion of geometrically finite subgroups of mapping class groups:

Question 1.1 Let A.�/ be a right-angled Artin group embedded in Mod.S/ in the
sense of either Clay, Leininger and Mangahas [6] or Koberda [8]. Does the embedding
A.�/!Mod.S/ extend continuously to an injective map @A.�/! @Mod.S/?

We prove that in general the answer to Question 1.1 is no by providing, for each type
of embedding, an explicit example where the embedding does not extend continuously.
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Theorem 1.2 There exists a surface S, a right-angled Artin group �, a Clay–Leininger–
Mangahas embedding �W A.�/!Mod.S/, and a Koberda embedding �0W A.�/!
Mod.S/ such that, regardless of the HHS structure on A.�/, neither � nor �0 extends
continuously to a map @A.�/! @Mod.S/.

Clay–Leininger–Mangahas (CLM) embeddings are quasi-isometric embeddings (see
Theorem 2.5). Thus Theorem 1.2 shows that the sufficient conditions for extendability
of maps between hierarchically hyperbolic spaces are different than those for existence
of Cannon–Thurston maps for Gromov hyperbolic spaces. Indeed, quasi-isometric
embeddings between Gromov hyperbolic spaces always extend continuously to maps
between Gromov boundaries.

We also prove the following result, which gives a complete characterization of the
Koberda embeddings of free groups sending all generators to powers of Dehn twists
that have continuous extensions:

Theorem 1.3 Let f˛1; : : : ; ˛kg be a collection of pairwise intersecting curves in S

and � the graph with V .�/D fs1; : : : ; skg and no edges. For sufficiently large N , the
homomorphism

�W A.�/!Mod.S/ defined by �.si/D T N
˛i

for all i

is injective by the work of Koberda [8]. Moreover, � extends continuously to a
map @A.�/! @Mod.S/ if and only if f˛1; : : : ; ˛kg pairwise fill S, where A.�/ is
equipped with any HHS structure.

In fact, we prove something stronger than Theorem 1.3. We prove a nonexistence result
(Theorem 5.3) for a class of Koberda embeddings of right-angled Artin groups that
are not necessarily free groups. We also prove an existence result (Theorem 6.1) for a
class of embeddings of free groups that includes the Koberda embeddings described in
Theorem 1.3 as well as a class of CLM embeddings. The following question remains
open:

Question 1.4 Let A.�/!Mod.S/ be a CLM embedding of a free group that sends
some pair of generators of A.�/ to mapping classes whose full supports together do
not fill S. Is it always the case that � does not extend? In other words, does the
forward direction of Theorem 1.3 hold for CLM embeddings? (Theorem 6.1 proves the
backwards direction).
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Nonexistence of boundary maps for some hierarchically hyperbolic spaces 411

Idea behind the nonexistence proofs (Theorems 1.2, 1.3 and 5.3) All of the embed-
dings �W A.�/!Mod.S/ we present that do not extend share the following key feature:
for some pair of noncommuting generators a and b of A.�/, the subsurface Y filled
by the full supports of �.a/ and �.b/ is a proper subsurface of S. For the embeddings
we consider, this allows us to produce two sequences in A.�/ that converge to the same
point in @A.�/, but whose images do not converge to the same point in @Mod.S/. We
choose the nth term of the first sequence so that the annular projection of its image
to some boundary component 
 of Y is distance O.n/ from a basepoint, while the
projection to 
 of the image of the second sequence has bounded diameter. We then
show that O.n/ is fast enough to conclude that every accumulation point in @Mod.S/
of the image of the first sequence has a term associated to 
 . On the other hand,
accumulation points of the image of the second sequence have no such term. Thus the
images of the sequences do not converge to the same point in @Mod.S/.

The following open question arises naturally from our nonexistence proofs:

Question 1.5 Let Teich.S/ denote the Teichmüller space of a surface S, equipped
with the Weil–Petersson metric. There is a hierarchically hyperbolic space structure on
Teich.S/, where the set of domains is all nonannular subsurfaces of S (see Brock [5]).
Given that we show annular subsurface projections can obstruct extendability, we
wonder if an orbit map from A.�/ to Teich.S/ corresponding to a CLM embedding
A.�/!Mod.S/ extends continuously to a boundary map. (Note that this is clearly
not the case for the Koberda embeddings described in Theorem 2.6, since applying
powers of a Dehn twist to a point in Teich.S/ can move it only a bounded amount.)

In Section 2 we will recall relevant definitions and theorems and introduce notation.
Section 3 will establish a handful of lemmas that will be used for proving Theorem 1.2.
Section 4 is devoted to proving Theorem 1.2 for a CLM embedding, and in Section 5
we prove Theorem 1.2 for a Koberda embedding. Using similar techniques, we then
prove that a more general class of Koberda embeddings of right-angled Artin groups do
not extend continuously (Theorem 5.3), which will imply one direction of Theorem 1.3.
In Section 6 we will prove Theorem 6.1, which will imply the other direction of
Theorem 1.3.

Remark We call the embeddings that send generators of our right-angled Artin group
to mapping classes that are pseudo-Anosov on subsurfaces CLM embeddings and
those that send generators to powers of Dehn twists Koberda embeddings, even though
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412 Sarah C Mousley

Koberda [8] proved that both these types of embeddings are injective. We do this
primarily to distinguish the two types of embeddings, but also to emphasize that CLM
embeddings have nice geometric properties (see Theorem 2.5).
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2 Background

In this section, we recall some needed definitions and theorems.

Notation Let f;gW X ! R be functions. Given constants A � 1 and B � 0, we
write f �

A;B
g to mean f .x/� 1

A
g.x/�B for all x 2X, and will just write f � g

when the constants are understood.

2.1 Curves and subsurfaces

Throughout this paper, we let S DSg;n denote a connected, oriented surface of genus g

with n punctures. Define the complexity of S to be �.S/D 3g�3Cn. We will always
assume �.S/ � 1. Additionally, we fix a complete hyperbolic metric on S. That is,
we assume that S is of the form S D H2=ƒ, where ƒ � IsomC.H2/ and ƒ acts
properly discontinuously and freely on H2 .

For i D 1; 2, let z
i be a bi-infinite path in H2 with ends limiting to distinct points
xi and yi on @H2. We say that z
1 and z
2 link if the geodesic connecting x1 to y1

intersects the geodesic connecting x2 to y2 in the interior of H2.

By a curve in S, we will always mean the geodesic representative in the homotopy
class of an essential, simple, closed curve in S. By a multicurve in S, we will always
mean a collection of pairwise disjoint curves in S. We write i.˛; ˇ/ to denote the
geometric intersection number of curves ˛ and ˇ . We say that a pair of curves ˛ and
ˇ fills S if for every curve 
 in S we have i.
; ˛/ > 0 or i.
; ˇ/ > 0.
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Nonexistence of boundary maps for some hierarchically hyperbolic spaces 413

A nonannular subsurface Y of S is a component of S after removing a (possibly
empty) collection of pairwise disjoint curves on S. Additionally, we require that Y

satisfies �.Y /� 1; in particular, we do not consider a pair of pants to be a subsurface.
We define @Y to be the collection of curves in S that are disjoint from Y and also
are contained in the closure of Y , treating Y as a subset of S. When Y ¤ S, the path
metric completion of Y is a surface with boundary, and the image of this boundary
under the map induced by the inclusion Y � S is @Y .

An annular subsurface of S is defined as follows. Let ˛ be a curve in S. Choose a
component z̨ of the preimage of ˛ in H2, and let h 2ƒ be a primitive isometry with
axis z̨ . Define

Y D .H2�fx;yg/=hhi;

where x and y are the fixed points of h on @H2. Observe that Y is a compact annulus
and int.Y /! S is a covering. We say that Y is the annular subsurface of S with
core curve ˛ . We define @Y to be ˛ .

For any subsurface Y of S, we will write Y � S, even though when Y is an annulus,
Y is not a subset of S.

Given f 2 Mod.S/ and a curve or simple bi-infinite geodesic 
 in S, we define
f .
 / to be the curve or simple bi-infinite geodesic obtained as follows. Consider a
component z
 of the preimage of 
 in H2 . Choose a representative  in the isotopy
class of f and lift it to a map z W H2!H2. We define f .
 / to be the image in S of
the geodesic in H2 that connects the endpoints of z .z
 / on @H2. Given Y � S, if Y

is nonannular, we let f .Y / denote the nonannular subsurface in its isotopy class. If Y

is an annulus with core curve ˛ , we let f .Y / denote the annular subsurface of S with
core curve f .˛/.

2.2 Curve complex

Let Y be a subsurface of S. If Y satisfies �.Y /� 1, the curve complex of Y , denoted
by C.Y /, is the simplicial complex whose vertices are curves contained in Y , and if
�.Y / > 1, a set of vertices forms a simplex if and only if they are pairwise disjoint.
If �.Y /D 1, then we define the simplices of C.Y / differently. In the case that Y is
a once-punctured torus, a set of vertices forms a simplex if and only if they pairwise
intersect exactly once. If Y is a four-times-punctured sphere, a set of vertices forms a
simplex if and only if they pairwise intersect exactly twice.
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Now let Y be a compact annulus. Consider all embedded arcs in Y that connect one
boundary component to the other. We define two arcs to be equivalent if one can be
homotoped to the other, fixing the endpoints of the arcs throughout the homotopy.
In this case, the curve complex of Y is the simplicial complex whose vertices are
equivalence classes of arcs, and a set of vertices forms a simplex if and only if for each
pair of vertices there exist representative arcs of each whose restrictions to int.Y / are
disjoint. The following simple formula will be useful to us: given inequivalent arcs ˛
and ˇ in C.Y /,

(1) dC.Y /.˛; ˇ/D j˛ �ˇjC 1;

where ˛ �ˇ denotes the algebraic intersection number of ˛ and ˇ .

2.3 Markings and subsurface projection

A marking � on S is a maximal collection of pairwise disjoint curves in S, denoted by
base.�/, together with another collection of associated curves called transversals: for
each ˇ 2 base.�/ its associated transversal 
ˇ is a curve that intersects ˇ minimally
(ie once or twice) and is disjoint from all other curves in base.�/.

Let Y be a subsurface of S and ˇ a multicurve in S. We will now define the projection
of ˇ to Y , which we will denote by �Y .ˇ/. Suppose Y is not an annulus and ˇ
is a single curve. If ˇ is disjoint from Y , define �Y .ˇ/ D ∅. If ˇ is contained
in Y , define �Y .ˇ/D ˇ . Otherwise, ˇ\Y is a collection of essential arcs in Y with
endpoints on @Y . For each such arc 
 , take the geodesic representatives of the boundary
components of a small regular neighborhood of 
 [@Y that are contained in Y . Define
�Y .ˇ/ to be the collection of all such curves over all arcs 
 in ˇ \ Y . If ˇ is a
multicurve, define �Y .ˇ/ to be the union of the projections to Y of each curve in ˇ .

Now let Y be an annular subsurface with core curve ˛ and int.Y /! S the associated
covering. Let ˇ be a multicurve or a bi-infinite, simple geodesic in S. Consider the
components of the full preimage of ˇ in int.Y / that are arcs. We will view each such
component as having endpoints on the boundary of Y . In this case, we define �Y .ˇ/

to be the (equivalence classes of) arcs in this collection that have an endpoint on each
boundary component of Y . When convenient, we will write �˛.ˇ/ instead of �Y .ˇ/.

We now describe how to project a marking � to Y � S. If Y is nonannular or Y

is an annulus whose core curve is not contained in base.�/, we define �Y .�/ D

�Y .base.�//. Otherwise, Y is an annulus with core curve ˛ 2 base.�/, and we define
�Y .�/ to be �Y .
˛/, where 
˛ is the transversal associated to ˛ .
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Nonexistence of boundary maps for some hierarchically hyperbolic spaces 415

Given any subsurface Y � S, we define

dY .�; �
0/D diamC.Y /.�Y .�/[�Y .�

0//;

where � and �0 are markings, collections of curves, or (when Y is an annulus) bi-
infinite simple geodesics in S. A useful fact about subsurface projection is the following:
for all f 2Mod.S/,

dY .f .�/; f .�
0//D df �1.Y /.�; �

0/:

In this paper, we utilize the following theorem, which involves subsurface projections:

Theorem 2.1 [11, Lemma 2.3] For all subsurfaces W of S, given any marking or
multicurve � such that �W .�/¤∅, we have that diamC.W /.�W .�// � 2. If W is
an annulus, then diamC.W /.�W .�//� 1.

Masur and Minsky [11] define the marking graph of S, denoted by �M.S/, to be the
graph whose vertices are markings and vertices are adjacent if one can be obtained from
the other by an elementary move; see [11] for a complete definition. Giving �M.S/ the
path metric d �M.S/ and Mod.S/ a word metric dMod.S/ , there is an action of Mod.S/
on �M.S/ by isometries for which every orbit map is a quasi-isometry. The following
theorem gives a relationship between distances in �M.S/ and subsurface projections:

Theorem 2.2 [11, Lemma 3.5] For any subsurface W of S and any markings �
and �0 on S, we have that dW .�; �

0/� 4d �M.S/.�; �
0/.

We say that distinct subsurfaces X and Y are disjoint if �X .@Y /D∅ and �Y .@X /D∅.
We say that X is a proper subsurface of Y , denoted by X ¨ Y , if �Y .@X / ¤ ∅
and �X .@Y / D ∅. We say that X and Y are overlapping, denoted by X t Y , if
�Y .@X / ¤ ∅ and �X .@Y / ¤ ∅. In the case where X and Y are not annuli, these
relationships, respectively, are disjointness, proper containment and intersection without
containment as subsets of S. We say X and Y fill S if for every curve 
 in S we
have �X .
 /¤∅ or �Y .
 /¤∅.

The following theorems will be used to prove our results. The first theorem was proved
in [1] and later a simpler proof with constructive constants appeared in [9].

Theorem 2.3 (Behrstock inequality [1, Theorem 4.3; 9, Lemma 2.13]) Let X and
Y be overlapping subsurfaces of S and � a marking on S. Then

dX .�; @Y /� 10 D) dY .�; @X /� 4:
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Theorem 2.4 (Bounded Geodesic Image Theorem [11, Theorem 3.1]) There exists
a constant K0 depending only on S such that the following is true: Let Y and Z be
subsurfaces of S with Y a proper subsurface of Z . Let v1; : : : ; vn be any geodesic
segment in C.Z/ satisfying �Y .vi/¤∅ for all 1� i � n. Then

diamC.Y /.�Y .v1/[ � � � [�Y .vn//�K0:

2.4 Partial order on subsurfaces

Let � and �0 be markings on S and K � 20. Let �.K; �; �0/ denote the collection
of subsurfaces Y of S such that dY .�; �

0/ � K . Behrstock, Kleiner, Minsky and
Mosher [4] define the following partial order on �.K; �; �0/: given X;Y 2�.K; �; �0/

such that X t Y , define X �Y if and only if one of the following equivalent conditions
is satisfied:

dX .�; @Y /� 10; dX .@Y; �
0/� 4; dY .�; @X /� 4 or dY .@X; �

0/� 10:

That these conditions are equivalent is a consequence of Theorem 2.3; see Corollary 3.7
in [6].

2.5 Embedding RAAGs in Mod.S /

If f 2 Mod.S/ is such that there exists a representative in the isotopy class of f
that pointwise fixes the complement of a nonannular subsurface Y , we say that f is
supported on Y . Given such an f , we define the translation length of f on C.Y / to be

�Y .f /D lim
n!1

dY .�; f
n.�//

n
;

where � is any marking on S. If f 2 Mod.S/ is a power of a Dehn twist about a
curve ˛ , we say that f is supported on the annular subsurface Y with core curve ˛ ,
and define �Y .f / to be the absolute value of the power. In either case, we say that Y

fully supports f if �Y .f / > 0. By the work of Masur and Minsky [10], when Y is
nonannular, Y fully supports f if and only if f is pseudo-Anosov on Y .

Clay, Leininger and Mangahas [6] proved the following result, which allows us to find
quasi-isometrically embedded right-angled Artin subgroups inside Mod.S/:

Theorem 2.5 [6, Theorem 2.2] Let � be a finite graph with V .�/D fs1; : : : ; skg,
and let fX1; : : : ;Xkg be a collection of nonannular subsurfaces of S. Suppose sisj

is an edge in � if and only if Xi and Xj are disjoint, and sisj is not an edge in �
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Nonexistence of boundary maps for some hierarchically hyperbolic spaces 417

if and only if Xi t Xj or i D j . Then there exists a constant C > 0 such that the
following holds: Let ff1; : : : ; fkg be a set of mapping classes of S such that fi is
pseudo-Anosov on Xi and satisfies �Xi

.fi/� C for all i . Then the homomorphism

�W A.�/!Mod.S/ defined by �.si/D fi for all i

is a quasi-isometric embedding, implying that � is injective, since A.�/ is torsion-free.

Koberda [8] also has a result which produces right-angled Artin subgroups of Mod.S/.
Below we give a special case of Koberda’s result that we will use.

Theorem 2.6 [8, Theorem 1.1] Let f˛1; : : : ; ˛kg be a collection of distinct curves
in S. Let � be the graph with V .�/D fs1; : : : ; skg and with sisj an edge in � if and
only if i.˛i ; j̨ /D 0. Then, for sufficiently large N , the homomorphism

�W A.�/!Mod.S/ defined by �.si/D T N
˛i

for all i

is injective, where T˛i
denotes a Dehn twist about ˛i .

2.6 Gromov boundary of hyperbolic spaces

A geodesic metric space X is Gromov hyperbolic (or just hyperbolic) if there exists
a ı � 0 such that, given any geodesic triangle in X, each side is contained in the
ı–neighborhood of the union of the other two sides. Given a Gromov hyperbolic space
.X; dX / and points x;y; z 2X, the Gromov product of x and y with respect to z is
defined as

.x;y/z D
1
2
.dX .x; z/C dX .y; z/� dX .x;y//:

We say that a sequence .xn/ in X converges at infinity if lim infi;j!1.xi ;xj /z D1

for some (any) z 2X. We define two such sequences .xn/ and .yn/ to be equivalent
if lim infi;j!1.xi ;yj /z D1 for some (any) z 2X. The Gromov boundary of X is
the collection of all such sequences up to this equivalence, and is denoted by @GX or
just @X when it is clear from context that we are using the Gromov boundary.

One Gromov hyperbolic space that this paper is concerned with is the curve complex
of S, which was proved to be Gromov hyperbolic by Masur and Minsky [11]. We can
now state a corollary of Theorem 2.4 that will be useful later.

Corollary 2.7 Let X and Y be subsurfaces of S with X a proper subsurface of Y .
Suppose .�n/n2N is a sequence of markings on S such that �Y .�n/! � for some
� 2 @C.Y /. Then diamC.X /.�X .�1/[�X .�2/[ � � � / <1.
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Proof For each n, choose ˛n 2 �Y .�n/. Because �Y .�n/! � 2 @C.Y /, we can
choose L large so that for all n�L we have

(2) .˛n; ˛L/˛1
� 2C dY .@X; ˛1/;

where the Gromov product is computed in C.Y /. Consider n�L. Let 
n be a geodesic
in C.Y / with endpoints ˛n and ˛L . If there exists a vertex v on 
n with �X .v/D∅,
then v and @X form a multicurve in Y , which implies that

.˛n; ˛L/˛1

D
1
2
.dY .˛n; ˛1/CdY .˛L; ˛1/�dY .˛n; ˛L//

�
1
2

�
dY .˛n; v/CdY .v; ˛1/CdY .˛L; v/CdY .v; ˛1/� .dY .˛n; v/CdY .v; ˛L//

�
D dY .v; ˛1/� dY .v; @X /CdY .@X; ˛1/� 1CdY .@X; ˛1/:

But this contradicts (2), so we conclude that �X .v/¤∅ for all v on 
n . We can now
apply Theorems 2.1 and 2.4 to see that, for all n�L,

dX .�n; �L/� diamC.X /.�X .�n//CdX .˛n; ˛L/CdiamC.X /.�X .�L//� 2CK0C2;

where K0 is as in Theorem 2.4. Therefore,

diamC.X /.�X .�1/[�X .�2/[� � � /� diamC.X /.�X .�1/[� � �[�X .�L//C2.K0C4/

<1:

2.7 Hierarchically hyperbolic spaces

In [3], Behrstock, Hagen and Sisto define the notion of a hierarchically hyperbolic
space. Roughly, a hierarchically hyperbolic space is a quasi-geodesic metric space X ,
equipped with additional structure which we will call a hierarchically hyperbolic space
(HHS) structure. An HHS structure consists of an index set G and for each W 2 G a
Gromov hyperbolic space yC W and a projection map �W W X ! 2

yC W . The elements
of G and the projection maps must satisfy a long list of properties. See [3; 2].

The first example of a hierarchically hyperbolic space is Mod.S/, where here G is
the collection of all subsurfaces of S, yC W is the curve graph of W for W 2 G , and
projection �W is given by composing an orbit map for the action of Mod.S/ on �M.S/

with the subsurface projection map defined in Section 2.3. The works of Masur and
Minsky [10; 11], Behrstock [1] and Behrstock, Kleiner, Minsky and Mosher [4] imply
that Mod.S/ is a hierarchically hyperbolic space. See [2, Section 11 ] for details. In
fact, the notion of hierarchical hyperbolicity was motivated by a desire to generalize
some of the machinery surrounding mapping class groups.
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Nonexistence of boundary maps for some hierarchically hyperbolic spaces 419

In [3], it is shown that a large class of CAT.0/ cube complexes can be equipped with a
hierarchically hyperbolic structure, including the universal covers of Salvetti complexes
associated to right-angled Artin groups. The CAT.0/ cube complex we are primarily
concerned with is the Cayley graph X of A.�/ when � has no edges (that is, A.�/ is
a free group). We equip A.�/ with a hierarchically hyperbolic structure by equipping
X with such a structure and then associating A.�/ with X.

2.8 Boundary of hierarchically hyperbolic spaces

In [7], the authors construct a boundary for hierarchically hyperbolic spaces. Here we
will describe convergence in this boundary for Mod.S/ and for free groups. With the
exception of Theorem 5.3, these will be the only examples we will need.

As a set, the HHS boundary of Mod.S/ is defined as follows:

@Mod.S/D
n P

Y�S

cY �Y

ˇ̌
cY � 0 and �Y 2 @C.Y / for all Y;

P
Y�S

cY D 1;

and if cY 0 ; cY > 0; then Y and Y 0 are disjoint or equal
o
:

In [7], the authors define a topology on Mod.S/ [ @Mod.S/. In this topology, [7,
Definition 2.10] tells us that a sequence of mapping classes .gn/n2N in Mod.S/
converges to a point

Pk
iD1 ci�i in @Mod.S/, where ci > 0 for all i ,

Pk
iD1 ci D 1 and

�i 2 @C.Yi/ for pairwise disjoint subsurfaces Y1; : : : ;Yk , if and only if the following
statements hold: for a fixed marking � on S,

(1) limn!1 �Yi
.gn�/D �i for each i D 1; : : : ; k ,

(2) limn!1 dYi
.�;gn�/=dYj

.�;gn�/D ci=cj for each i; j D 1; : : : ; k , and

(3) limn!1 dW .�;gn�/=dYi
.�;gn�/D 0 for every (any) i D 1; : : : ; k and every

subsurface W � S that is disjoint from Yj for all j D 1; : : : ; k .

Let � be a graph with no edges, and let A.�/ be the corresponding free group, equipped
with an HHS structure. The HHS boundary of A.�/ will be denoted by @A.�/. We
do not define @A.�/ here because Theorem 4.3 in [7] implies that the identity map
A.�/!A.�/ extends to a homeomorphism A.�/[@GA.�/!A.�/[@A.�/. Thus,
two sequences in A.�/ converge to the same point in @GA.�/ if and only if they
converge to the same point in @A.�/. (See Section 2 of [7] for the definition of @A.�/.)

Another useful fact on convergence is that Mod.S/[ @Mod.S/ and A.�/[ @A.�/

are sequentially compact (see Theorem 3.4 of [7]).
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To understand Question 1.1 and the statements of our theorems, one last definition is
needed.

Definition 2.8 Let �W A.�/!Mod.S/ be an injective homomorphism and let A.�/

and Mod.S/ be equipped with any fixed HHS structures. We say that � extends
continuously to a map @A.�/!@Mod.S/ if there exists a function x�W A.�/[@A.�/!
Mod.S/[ @Mod.S/ such that

(1) x�jA.�/ D � ,

(2) x�.@A.�//� @Mod.S/, and

(3) x� is continuous at each point in @A.�/.

Remark 2.9 To establish that �W A.�/!Mod.S/ extends continuously, it is enough
to show that, for all x 2 @A.�/, given any two sequences .xn/ and .yn/ in A.�/

that converge to x , we have that .�.xn// and .�.yn// converge to the same point in
@Mod.S/. This follows from a diagonal sequence argument (see the end of the proof
of Theorem 5.6 in [7] for details).

3 Lemmas on subsurface projections

The following lemmas are the heart of our proof of Theorem 1.2:

Lemma 3.1 Suppose X and Y are disjoint subsurfaces of S, and if Y is an annulus,
then the core of Y is not contained in @X. If � and �0 are markings and f 2Mod.S/
a mapping class supported on X, then jdY .�; f .�

0//� dY .�; �
0/j � 4.

Proof If Y is not an annulus, then �Y .f .�
0//D �Y .�

0/, so the claim clearly holds.
Assume then that Y is an annular subsurface of S with core ˛ , and let int.Y /! S

be the associated covering. If X is not an annulus, define Z to be the component
of S �X that contains ˛ . If X is an annulus with core ˇ , let Z be the component
of S containing ˛ after removing a small regular neighborhood of ˇ . Let z̨ be
the component of the preimage of ˛ in int.Y / that is a closed curve. Let zZ be the
component of the preimage of Z in int.Y / that contains z̨ .

Abusing notation, we let f denote a representative in the isotopy class of f that fixes
Z pointwise. Consider the lift of f to int.Y / that fixes a point on z̨ , and thus fixes
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x
y

Qf .x/

Qf .v/
 D Qf .
 /

x


Y

Qf .y/

r

v

Qf .r/

xr

xv
D t.Œ��; ��� Œ0; 1�/

D zZ[

Figure 1: The arc ˇ0 is the concatenation of r , 
 and v . The concatenation of
xr ; x
 and xv is equivalent to Qf .ˇ0/ , and that representative of Qf .ˇ0/ intersects
ˇ0 at most once (drawn is the exactly once case). See the proof of Lemma 3.1.

zZ pointwise. Let Qf W Y ! Y denote the continuous extension of that lift. Consider
ˇ0 2 �Y .�

0/. We will show

(3) dC.Y /.ˇ
0; Qf .ˇ0//� 2:

This will complete the proof because (3), the triangle inequality and Theorem 2.1 imply
that

jdY .�; f .�
0//� dY .�; �

0/j

� dY .�
0; f .�0//

� diamC.Y /.�Y .�
0//C dC.Y /.ˇ

0; Qf .ˇ0//C diamC.Y /.�Y .f .�
0///

� 1C 2C 1D 4:

Inequality (3) holds if ˇ0 is contained in zZ because, in that case, Qf .ˇ0/D ˇ0 . Thus,
we assume ˇ0 is not contained in zZ . We break ˇ0 up into three parts. Let 
 be the
largest subpath of ˇ0 contained in zZ . Let x and y denote the endpoints of ˇ0 on @Y .
Removing 
 from ˇ0 yields rays r and v that limit to x and y , respectively.

We now construct an arc equivalent to Qf .ˇ0/ that intersects ˇ0 at most once. Figure 1
illustrates the construction. Let t W Œ��; ��� Œ0; 1�! Y be a small tubular neighborhood
of 
 such that t jf0g�Œ0;1� D 
 and t.Œ��; �� � f0; 1g/ � @ zZ . Let R and V denote
the components of int.Y /� zZ containing r and v , respectively. Because Qf fixes zZ
pointwise, Qf restricts to homeomorphisms of both R and V , implying that Qf .r/ and
Qf .v/ are contained in R and V , respectively. Consequently, in R there exists a ray xr

based at t.��; 0/ or t.�; 0/ that limits to Qf .x/ and is disjoint from r . If xr is based at
t.��; 0/, define x
 D t jf��g�Œ0;1� . Otherwise, define x
 D t jf�g�Œ0;1� . Choose xv to be
an arc in V from x
 .1/ to Qf .y/ that intersects v at most once. Observe that the arc
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obtained by concatenating xr , x
 and xv is equivalent to Qf .ˇ0/ and intersects ˇ0 at most
once.

Therefore, by (1) we have dC.Y /. Qf .ˇ
0/; ˇ0/D 1Cj Qf .ˇ0/ �ˇ0j � 2, as desired.

Lemma 3.2 Given a homomorphism �W A.�/! Mod.S/ and a marking � on S,
there exists a constant M � 1 such that the following holds: Let y1 : : :yn 2 A.�/,
where each yi 2 V .�/. Then dW .�; �.y1 : : :yn/�/�M n for all subsurfaces W �S.

Proof Define M D 4 maxfd �M.S/.�; �.x/�/ W x 2 V .�/g. By the triangle inequality
and Theorem 2.2,

dW .�; �.y1 : : :yn/�/�

nX
iD1

dW .�.y1 : : :yi�1/�; �.y1 : : :yi/�/

�

nX
iD1

4d �M.S/.�.y1 : : :yi�1/�; �.y1 : : :yi/�/

D

nX
iD1

4d �M.S/.�; �.yi/�/�M n:

Lemma 3.3 Let �W A.�/! Mod.S/ be a homomorphism. Let .gn/n2N be a se-
quence of elements in A.�/ and � a marking on S. Suppose, for some subsurface
W � S , there exist constants A � 1 and B � 0 that do not depend on n such that
dW .�; �.gn/�/�A;B

kgnk, where kgnk denotes the word length of gn with respect to
the standard generating set V .�/ for A.�/. Further suppose that limn!1 kgnk D1

and that .�W .�.gn/�//n2N converges to some point �W in @C.W /. Then all accu-
mulation points of .�.gn//n2N in Mod.S/[@Mod.S/ are in @Mod.S/ and are of the
form

P
Y�S cY �Y , where cW > 0.

Proof After passing to a subsequence, we may assume that .�.gn//n2N converges.
By assumption, limn!1 dW .�; �.gn/�/D1. Combine this with Theorem 2.2 to see
that limn!1 d �M.S/.�; �.gn/�/D1. Because �M.S/ is quasi-isometric to Mod.S/
via orbit maps, it follows that limn!1 dMod.S/.1; �.gn//D1. Thus, it must be that
limn!1 �.gn/ 2 @Mod.S/.

Suppose limn!1 �.gn/D
P

Y�S cY �Y for constants cY � 0 and �Y 2 @C.Y /. We
will now argue that cW > 0. Let Z � S be such that cZ > 0. If W D Z , we are
done. So we assume W ¤Z . By definition of the topology on Mod.S/[ @Mod.S/,
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we have that limn!1 �Z .�.gn/�/ D �Z . If W ¨ Z , then Corollary 2.7 implies
that diamC.W /.�W .�.g1/�/ [ �W .�.g2/�/ [ � � � / <1. But this cannot be since
�W .�.gn/�/!�W 2@C.W /. Similarly, we cannot have Z ¨W for then Corollary 2.7
implies that diamC.Z/.�Z .�.g1/�/ [ �Z .�.g2/�/ [ � � � / < 1, contradicting that
�Z .�.gn/�/! �Z 2 @C.Z/. Now suppose that Z t W . Then by Theorem 2.3, after
passing to a subsequence, we have that

dW .@Z; �.gn/�/� 10 for all n or dZ .@W; �.gn/�/� 10 for all n:

If dW .@Z; �.gn/�/� 10 for all n, then, for all n,

dW .�; �.gn/�/� dW .�; @Z/C dW .@Z; �.gn/�/� dW .�; @Z/C 10;

contradicting that �W .�.gn/�/! �W 2 @C.W /. Similarly, if dZ .@W; �.gn/�/ �

10 for all n, then dZ .�; �.gn/�/ is bounded independent of n, contradicting that
�Z .�.gn/�/! �Z 2 @C.Z/. So it is not the case that Z t W . Therefore it must be
that W and Z are disjoint for all Z � S with cZ > 0.

Fix Z � S with cZ > 0. Lemma 3.2 together with the fact that dW .�; �.gn/�/�A;B

kgnk implies that

(4)
dW .�; �.gn/�/

dZ .�; �.gn/�/
�

1
A
kgnk�B

M kgnk
;

where M � 1 is as in Lemma 3.2. Since kgnk!1, (4) implies

lim
n!1

dW .�; �.gn/�/

dZ .�; �.gn/�/
� lim

n!1

1
A
kgnk�B

M kgnk
> 0:

Therefore, by definition of the topology of Mod.S/[ @Mod.S/, we have cW > 0, as
desired.

4 Clay–Leininger–Mangahas RAAGs

In this section, we prove the first part of Theorem 1.2. We begin with a description of
a CLM embedding �W A.�/!Mod.S/.

Embedding construction Let � be the graph with vertex set V .�/D fa; bg and no
edges. Let S DH2=ƒ, Xa and Xb be the surfaces indicated in Figure 2. For short,
let Xab denote Xa[Xb . Let BS �Xab be a component of the preimage of S �Xab

in H2, and let e@Xab be a geodesic in H2 that is in the boundary of BS �Xab .
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S

Xa

Xb

@Xab




Figure 2: Overlapping subsurfaces Xa and Xb of surface S, curve @Xab and
bi-infinite simple geodesic 


Let z
 be a geodesic in H2 that links with e@Xab and maps to a simple bi-infinite
geodesic 
 in S. Further suppose that z
 \ .BS �Xab / is an infinite ray and let p be
its endpoint on @H2. For example, take 
 to be the simple bi-infinite geodesic in S

with one end spiraling around a curve essential in S �Xab and the other end spiraling
around a curve in Xa , as in Figure 2, and take z
 to be an appropriate lift of 
 . Choose
fb 2Mod.S/ so that fb is pseudo-Anosov on Xb . To simplify arguments, we abuse
notation and let fb denote a representative in the isotopy class of fb that fixes all points
outside Xb . This ensures that Qfb fixes BS �Xab pointwise, where QfbW H

2!H2 is
the lift of fb fixing some point on e@Xab . Thus, the extension of Qfb to @H2 fixes
pointwise p and the endpoints x and y of e@Xab . Additionally, we choose fb to have
the following properties:

(1) Qfb.z
 / links with h.z
 /, where h 2ƒ is a primitive isometry with axis e@Xab ;
and

(2) �Xb
.fb/� C , where C is as in Theorem 2.5.

We note that a pseudo-Anosov on Xb satisfying (1) can be obtained from any mapping
class that is pseudo-Anosov on Xb by postcomposing with some number of Dehn
twists (or inverse Dehn twists) about @Xab . Finally, a pseudo-Anosov on Xb satisfying
(1) and (2) can be obtained from one satisfying (1) by passing to a sufficiently high
power.

Let fa 2Mod.S/ be any mapping class that is pseudo-Anosov on Xa and satisfies
�Xa

.fa/� C . Theorem 2.5 says that the homomorphism

�W A.�/!Mod.S/ defined by �.a/D fa and �.b/D fb

is a quasi-isometric embedding.

Equip A.�/ with any HHS structure. In the remainder of this section, we will prove
the following theorem, which proves the first part of Theorem 1.2:
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Theorem 4.1 The sequences .an/n2N and .anbn/n2N converge to the same point
in @A.�/, but .�.an//n2N and .�.anbn//n2N do not converge to the same point in
@Mod.S/.

We will divide the proof of Theorem 4.1 into two propositions.

Proposition 4.2 The sequences .an/n2N and .anbn/n2N converge to the same point
in @A.�/.

Proof Let X be the Cayley graph of A.�/. By the discussion in Section 2.8, to show
that .an/n2N and .anbn/n2N converge to the same point in @A.�/, it is enough to
show that they converge to the same point in @GX. Now the Gromov product satisfies

.ai ; aj bj /1 Dmin.i; j /!1 as i; j !1:

Thus, limn!1 an D limn!1 anbn in @GX, as desired.

Throughout the rest of this section, � will denote a fixed marking on S. To continue,
we require the following lemma:

Lemma 4.3 There exist constants A � 1 and B � 0 such that for all n � 1 we
have d@Xab

.�; �.anbn/�/ �
A;B

n. Consequently, after passing to a subsequence,
.�@Xab

.�.anbn/�//n2N converges to a point in @C.@Xab/.

Proof We begin by establishing the following claim:

Claim 1 Let n � 1. Then Qf n
b
.z
 / has endpoint p and links with hi.z
 / for all

1� i � n.

Proof of Claim 1 By our choice of Qfb and z
 , we know the claim holds for nD 1.
Let n� 2. Inductively, suppose that Qf n�1

b
.z
 / has endpoint p and links with hi.z
 / for

all 1� i � n� 1. Let I be the interval in @H2 that connects the endpoints of e@Xab

and does not contain p , oriented from the repelling fixed point of h to the attracting
fixed point. We will use interval notation when speaking about connected subsets
of I. Now Qfb extends continuously to a homeomorphism of @H2, which we will also
denote by Qfb , and because Qfb fixes the endpoints of e@Xab , this extension restricts
to a homeomorphism of I. Let z be the endpoint of z
 in I, and let x 2 @I be the
attracting fixed point of h. Because Qf n�1

b
.z
 / links with hi.z
 / for all 1 � i � n� 1

and has endpoint p , we have

(5) . Qf n�1
b .z/;x�� .hi.z/;x� for all 0� i � n� 1:
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Since Qfb.z
 / has endpoint p and links with h.z
 /, it must be that Qfb.z/ 2 .hz;x�. It
follows from this, the fact that Qfb and h fix x , that Qfb and h commute by uniqueness
of map lifting, and (5) that, for all 0� i � n� 1,

(6) Qf n
b .z/D

Qf n�1
b . Qfb.z// 2 Qf

n�1
b .h.z/;x�D h. Qf n�1

b .z/;x�� h.hi.z/;x�

D .hiC1.z/;x�:

Because Qfb fixes p , we have Qf n
b
.p/D p . This combined with (6) implies that Qf n

b
.z
 /

links with hiC1.z
 / for all 0� i � n� 1, proving Claim 1.

By Claim 1, after replacing Qf n
b
.z
 / with the geodesic connecting its endpoints, the

images of Qf n
b
.z
 / and z
 in .H2 � fx;yg/=hhi intersect each other at least n times,

and all these intersections have the same sign. Now apply (1) to see that

d@Xab
.
; �.bn/
 /� nC 1:

It follows that

(7) d@Xab
.�; �.bn/�/� d@Xab

.
; �.bn/
 /�d@Xab
.�; 
 /�d@Xab

.�.bn/�; �.bn/
 /

� nC1�2d@Xab
.�; 
 /:

Lemma 3.1 says that jd@Xab
.�; �.anbn/�/� d@Xab

.�; �.bn/�/j � 4. This together
with (7) implies that

d@Xab
.�; �.anbn/�//� n:

From this and the fact that C.@Xab/ is quasi-isometric to R, it is immediate that
.�@Xab

.�.anbn/�//n2N has a subsequence converging to a point in @C.@Xab/.

Proposition 4.4 The sequences .�.an//n2N and .�.anbn//n2N do not converge to
the same point in Mod.S/[ @Mod.S/.

Proof After passing to a subsequence, we may assume .�.an//n2N and .�.anbn//n2N

converge to points p and q , respectively, in Mod.S/[ @Mod.S/ and, by Lemma 4.3,
that .�@Xab

.�.anbn/�//n2N converges to a point in @C.@Xab/. Lemmas 3.3 and 4.3
imply that q is in @Mod.S/. Say q D

P
Y�S c

q
Y
�

q
Y

, where c
q
Y
� 0 and �q

Y
2 @C.Y /

for all Y � S. Then Lemmas 3.3 and 4.3 also imply that c
q

@Xab
> 0.

Now, if p were in Mod.S/, then we would be done since clearly then p ¤ q . So
we will assume that p 2 @Mod.S/, and let p D

P
Y�S c

p
Y
�

p
Y

. Now observe that, by
Lemma 3.1 and Theorem 2.1,

d@Xab
.�; �.an/�/� d@Xab

.�; �/C 4� 5:

Algebraic & Geometric Topology, Volume 18 (2018)



Nonexistence of boundary maps for some hierarchically hyperbolic spaces 427

Thus, .�@Xab
.�.an/�//n2N does not limit to a point on @C.@Xab/. So, by definition

of the topology of Mod.S/[ @Mod.S/, it must be that c
p

@Xab
D 0. Since c

q

@Xab
> 0,

we see that p ¤ q , which completes the proof.

5 Koberda RAAGs

In this section we complete the proof of Theorem 1.2. Following this, we will discuss
how to use similar techniques to prove a large class of Koberda embeddings do not
extend.

Let ˛ and ˇ be the pair of intersecting curves on S DH2=ƒ depicted in Figure 3. Let
� be the graph with V .�/Dfa; bg and no edges. For sufficiently large N , Theorem 2.6
says that the homomorphism

�W A.�/!Mod.S/ defined by �.a/D T˛
N and �.b/D Tˇ

N

is injective, where T˛ and Tˇ denote Dehn twists about ˛ and ˇ , respectively.
Throughout this section, we let � be a fixed marking on S. Equip A.�/ with an
HHS structure.

In this section we prove the following theorem, which will complete the proof of
Theorem 1.2:

Theorem 5.1 There exists g2A.�/ such that the sequences .an/n2N and .angn/n2N

converge to the same point in @A.�/, but .�.an//n2N and .�.angn//n2N do not
converge to the same point in @Mod.S/.

As a step towards proving Theorem 5.1, we prove the following lemma, in which we
construct g 2A.�/:

Lemma 5.2 There exist constants A�1 and B�0 and a word g2A.�/ such that for
all n� 1 we have d�.�; �.a

ngn/�/�
A;B

n, where � is the curve shown in Figure 3.
Consequently, after passing to a subsequence, .��.�.angn/�//n2N converges to a
point in @C.�/.

Proof We will prove that there exist constants c1 , c2 and c3 such that gD bc1ac2bc3

has the desired properties.

Let A be the annulus in Figure 3. Let zA be a component of the preimage of A in H2.
Let ž be a component of the preimage of ˇ such that a segment of ž is in the boundary
of zA, and let z� denote the component of the preimage of � in the boundary of zA. Let
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zA
z�

p

z̨

ž h. ž/

z


h.z
 /

e�.b/c3.z
 / e�.a/c2 e�.b/c3.z
 /

e�.b/c1 e�.a/c2 e�.b/c3.z
 /

˛ˇ

�

A




H2
������������! S

Figure 3: Curves ˛ , ˇ and � bounding an annulus A , and simple bi-infinite
geodesic 
 on surface S, and the universal cover H2 of S as in Lemma 5.2

h 2ƒ be a primitive isometry with axis z�. Let z̨ be the component of the preimage of
˛ that links with ž and h. ž/ and contains a segment that is in the boundary of zA.

Let Y˛ be the component of S�˛ that contains �. To simplify arguments, we let �.a/
denote a representative in its isotopy class that fixes Y˛ pointwise. Let e�.a/W H2!H2

be the lift of �.a/ that fixes some point on z̨ . Similarly define Yˇ to be the component
of S �ˇ containing �, choose a representative in the isotopy class of �.b/ that fixes
Yˇ pointwise, and let e�.b/ be the lift of �.b/ that fixes some point on ž. It then
follows that e�.a/ D 1 on zY˛ and e�.b/ D 1 on zYˇ;

where for i 2 f˛; ˇg we let zYi denote the component of the preimage of Yi in H2

whose boundary contains Q{ . Observe that e�.i/ fixes the endpoints of z� for i 2 fa; bg.

Choose a geodesic z
 in H2 that links with both ž and z� and maps to a simple
bi-infinite geodesic in S. Further, suppose that z
 \ zY˛ \ zYˇ is an infinite ray, and
let p denote its endpoint on @H2. For example, take 
 to be the simple bi-infinite
geodesic in S with one end spiraling around a curve essential in Y˛\Yˇ and the other
end spiraling around a curve essential in S �Yˇ as in Figure 3, and take z
 to be an
appropriate component of the preimage of 
 . Observe that e�.a/ and e�.b/ must fix p .

Now choose c3 2 Z so that e�.b/c3.z
 / links with z̨ . Then choose c2 2 Z so that
e�.a/c2 e�.b/c3.z
 / links with h. ž/. Finally, choose c1 2 Z so that

e�.b/c1 e�.a/c2 e�.b/c3.z
 /

links with h.z
 /. See Figure 3.
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To simplify notation, define

g D bc1ac2bc3 2A.�/ and e�.g/ D e�.b/c1 e�.a/c2 e�.b/c3 :

As in Lemma 4.3, we have that e�.g/n.z
 / has endpoint p and links with hi.z
 / for all
1� i � n, implying that d�.
; �.g

n/
 /� nC 1. It follows that

(8) d�.�; �.g
n/�/� d�.
; �.g

n/
 /� d�.�; 
 /� d�.�.g
n/�; �.gn/
 /

� nC 1� 2d�.�; 
 /:

Now Lemma 3.1 says that jd�.�; �.angn/�/� d�.�; �.g
n/�/j � 4. This together

with (8) implies that d�.�; �.a
ngn/�/� n: From this and the fact that C.�/ is quasi-

isometric to R, it is immediate that .��.�.angn/�//n2N has a subsequence converging
to a point in @C.�/.

Proof of Theorem 5.1 Let g 2 A.�/ be as in Lemma 5.2. By the discussion in
Section 2.8, to show that .an/n2N and .angn/n2N converge to the same point @A.�/
it is enough to show that they converge to the same point in @GX, where X is the
Cayley graph of A.�/. Now the Gromov product satisfies

.ai ; aj gj /1 D .a
i ; aj .bc1ac2bc3/j /1 Dmin.i; j /!1 as i; j !1:

Therefore, limn!1 an D limn!1 angn in @GX, as desired.

To finish this proof, we mimic the proof of Proposition 4.4. Replacing b with g ,
and @Xab with �, and Lemma 4.3 with Lemma 5.2, we find that .�.an//n2N and
.�.angn//n2N do not converge to the same point in @Mod.S/.

Our techniques used to prove Theorem 5.1 can be used to prove a more general statement
on nonexistence of boundary maps for right-angled Artin groups that are not necessarily
free groups. To prove this more general statement, one needs to understand HHS
structures for all right-angled Artin groups. In the following theorem, by a standard
HHS structure on A.�/, we mean one induced by a factor system generated by a rich
family of subgraphs of � . We refer the reader to [3], specifically Proposition 8.3 and
Remark 13.2, for details and to [7] for a general description of the corresponding HHS
boundary. In the proof of the following theorem, we freely use definitions and notations
used in [3; 7].

Theorem 5.3 Let f˛1; : : : ; ˛kg be any collection pairwise distinct of curves in S.
Let � be the graph with V .�/ D fs1; : : : ; skg and sisj an edge in � if and only if
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i.˛i ; j̨ /D 0. Give A.�/ a standard HHS structure, or if A.�/ is a free group, any
HHS structure. If there exist distinct intersecting curves ˛i and j̨ that do not fill S,
then any corresponding Koberda embedding �W A.�/ ! Mod.S/ does not extend
continuously to a map @A.�/!Mod.S/.

Proof Consider the subgraph ƒ of � with V .ƒ/D fsi ; sj g. Contained in the Salvetti
complex S� associated to � there is a subcomplex that is the Salvetti complex associ-
ated to A.ƒ/. We let zSƒ denote the lift of this subcomplex to the universal cover zS�
of S� that contains 1. Let R be a rich family of induced subgraphs of � , and let F
be the corresponding factor system in zS� . Lemma 8.4 of [3] tells us that

F 0 D fF \ zSƒ W F 2 Fg

is a factor system in zSƒ . Associating A.�/ and A.ƒ/ with zS� and zSƒ , respectively,
we equip each with the HHS structures corresponding to their respective factor systems.
We first argue that the inclusion map A.ƒ/! A.�/ extends continuously to a map
@A.ƒ/! @A.�/. If � extends continuously to a map @A.�/! @Mod.S/, it will
follow that A.ƒ/!Mod.S/ extends continuously to a map @A.ƒ/! @Mod.S/; we
will show that this is impossible.

First, consider A.ƒ/! A.�/. Given U 2 F 0 such that U is not a 0–cube, define
�.U / to be the parallelism class of the �–minimal F 2 F such that U D F \ zSƒ .
Observe that U and V are nested (respectively orthogonal) if and only if �.U / and
�.V / are nested (respectively orthogonal). This together with Lemma 10.11 of [7]
implies that .A.ƒ/ ! A.�/; �/ is a hieromorphism. Theorem 5.6 of [7] gives a
condition guaranteeing that a hieromorphism extends continuously. In our case, if the
following claims are true, we can apply Theorem 5.6 to conclude that A.ƒ/!A.�/

extends continuously.

Claim 1 � is injective.

Proof of Claim 1 Suppose U;V 2 F 0 and �.U /D �.V /. Then �.U /v �.V / and
�.V /v �.U /. Thus, U � V and V � U, implying U D V , as desired.

Claim 2 If ŒF � 2 F is not a class of 0–cubes and there exists no U 2 F 0 satisfying
�.U / D ŒF �, then diam yC F

.�F . zSƒ// is bounded above uniformly for some (any)
F 2 ŒF �.

Proof of Claim 2 Let ŒF � 2 F be as in Claim 2. First, suppose there exists F 2 ŒF �

such that F \ zSƒ ¤∅. By Lemma 8.5 in [3], we have gF . zSƒ/� F \ zSƒ . If F \ zSƒ
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is a 0–cube, then diam yC F .�F . zSƒ// � 1, so the claim holds. Otherwise, there must
exist F 2 F such that F ¨ F and F \ zSƒ D F \ zSƒ . It follows that C F is coned off
in yC F and that gF . zSƒ/� F . This implies that diam yC F

.�F . zSƒ//� 4.

Now assume F \ zSƒ D ∅ for all F 2 ŒF �. An argument like that in the proof of
Proposition 8.3 of [3] shows that we can find g 2A.�/; � 0 2R; and x 2A.ƒ/ so that
g zS� 0 2 ŒF � and

(9) g
g zS�0

. zSƒ/� g. zS� 0\ƒ\Lk xg/� g. zS� 0\Lk xg/;

where xg D g�1x and Lk xg denotes the link of xg . Now if � 0 \ƒ\Lk xg D ∅, then
g

g zS�0
. zSƒ/ D fgg, implying that diam yC .g zS�0 /

.�
g zS�0

. zSƒ// � 1. Assume then that
� 0\ƒ\Lk xg ¤∅. Then by definition of R and F , we have that � 0\Lk xg 2R and
g. zS� 0\Lk xg/ 2 F � f0–cubesg. If g. zS� 0\Lk xg/ is not a proper subcomplex of g zS� 0 ,
then � 0 � Lk xg , implying that x zS� 0 is parallel to g zS� 0 (see Lemma 2.4 in [3]). But
this cannot be because .x zS� 0/\ zSƒ D x. zS� 0\ƒ/¤∅ and no factor parallel to g zS� 0

intersects zSƒ nontrivially. Therefore, g. zS� 0\Lk xg/ must be a proper subcomplex
of g zS� 0 . Thus, Cg. zS� 0\Lk xg/ is coned off in yC .g zS� 0/. This together with (9) implies
that diam yC .g zS�0 /

.�
g zS�0

. zSƒ//� 4, completing the proof of Claim 2.

We now argue that A.ƒ/!Mod.S/ does not extend continuously to a map @A.ƒ/!
@Mod.S/. Let � denote a geodesic representative of an essential boundary component
of a small regular neighborhood of ˛i [ j̨ . Using the proof techniques of Lemma 5.2,
we can construct g 2 A.ƒ/ so that d�.�; �.s

n
i gn/�/ grows linearly in n. For later

convenience, we construct g so that when written in reduced form, the first letter of g

is s˙1
j . As in Proposition 4.4, we see that the sequences .�.sn

i // and .�.sn
i gn// do not

converge to the same point in Mod.S/[@Mod.S/. Now observe that .sn
i / and .sn

i gn/

converge to the same point in @GA.ƒ/. Therefore, by the discussion in Section 2.8,
.sn

i / and .sn
i gn/ converge to the same point in @A.ƒ/. We have now established

that A.ƒ/! Mod.S/ does not extend continuously to a map @A.ƒ/! @Mod.S/.
Therefore, A.�/!Mod.S/ does not extend continuously when A.�/ is equipped
with a standard HHS structure.

Now suppose A.�/ is a free group equipped with any HHS structure. Then, by the
discussion in Section 2.8, because .sn

i / and .sn
i gn/ converge to the same point in

@GA.�/, we have that .sn
i / and .sn

i gn/ converge to the same point in @A.�/. Because
.�.sn

i // and .�.sn
i gn// do not converge to the same point in @Mod.S/, it follows that

A.�/!Mod.S/ does not extend continuously.
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6 Existence of boundary maps for some free groups

In this section, we show that a class of embeddings of free groups in Mod.S/, which
includes a class of Koberda embeddings and a class of CLM embeddings, extend
continuously.

Throughout this section, let � be the graph with V .�/D fs1; : : : ; skg and no edges,
and let A.�/ denote the corresponding right-angled Artin group (a rank k free group).
Equip A.�/ with an HHS structure. Let fX1; : : : ;Xkg be a collection of distinct,
pairwise overlapping and pairwise filling subsurfaces of S and ff1; : : : ; fkg a collection
of mapping classes such that fi is fully supported on Xi . Let � be a fixed marking
on S. The main theorem of this section is the following, which implies the remaining
direction of Theorem 1.3 in the introduction:

Theorem 6.1 Let A.�/ be the rank k free group equipped with any HHS structure.
Let fX1; : : : ;Xkg be a collection of distinct, pairwise overlapping and pairwise filling
subsurfaces of S, and ff1; : : : ; fkg a collection of mapping classes such that fi is
fully supported on Xi . There exists a C > 0 such that, if �Xi

.fi/� C for all i , then
the homomorphism

�W A.�/!Mod.S/ defined by �.si/D fi for all i

is a quasi-isometric embedding and extends continuously to a map @A.�/! @Mod.S/.

We emphasize the arguments we will use to establish that � is a quasi-isometric
embedding are essentially the same as those used by Clay, Leininger and Mangahas
to prove Theorem 2.5. In particular, when the Xi are all nonannular, that � is a
quasi-isometric embedding is Theorem 2.5. To prove Theorem 6.1, we require the
following proposition:

Proposition 6.2 There exists K> 0 such that the following holds: For each 1� i � k ,
assume �Xi

.fi/ � 2K . Let �W A.�/! Mod.S/ be the homomorphism defined by
�.si/D fi for all i . Consider g1 : : :gk 2A.�/, where for each i we have gi D x

ei

i

for some xi 2 fs
˙1
1
; : : : ; s˙1

k
g and ei > 0, and xi ¤ xiC1 , and x

e1

1
: : :x

ek

k
is a reduced

word. Let Yi be the subsurface of S that fully supports �.xi/. Then:

(1) For each 1� i � k , we have d�.g1:::gi�1/Yi
.�; �.g1 : : :gk/�/�Kei .

(2) For all 1� i < j � k , we have �.g1 : : :gi�1/Yi � �.g1 : : :gj�1/Yj , where �
denotes the partial order on �.K; �; �.g1 : : :gk/�/.

(3) The homomorphism �W A.�/!Mod.S/ is a quasi-isometric embedding.
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Proof Define K DK0C 20C 2 maxfdXi
.�; @Xj / W 1 � i; j � k and i ¤ j g, where

K0 is maximum of the constants in Theorem 6.12 of [11] and Theorem 2.4. Statements
(1) and (2) of this proposition are essentially Theorem 5.2 in [6]. The difference is that
Theorem 5.2 does not allow for the homomorphism to send a generator to a power of a
Dehn twist. The only obstruction to Theorem 5.2 holding for homomorphisms � of
this type is the following: Suppose Xi is the subsurface that fully supports �.si/, and
let � 2A.�/ be a nonempty word in letters commuting with si , not including si . If
Xi is nonannular, then dXi

.�.�/�0; �00/D dXi
.�0; �00/ for any markings �0 and �00 .

This not necessarily true if Xi is an annulus. However, this issue does not arise for
us because A.�/ a free group implies no such � exists. Thus, the arguments used
to prove Theorem 5.2 in [6] also prove our statements (1) and (2). The proof of our
statement (3) is the same as the proof in [6] of Theorem 2.5, using our statement (1)
instead of their Theorem 5.2.

The proof of the next lemma is essentially contained in the proof of Theorem 6.1 in [6].
We include a proof here for completeness.

Lemma 6.3 Let �W A.�/!Mod.S/, g1 : : :gk 2A.�/ and Yi be as in Proposition
6.2. Let G be a geodesic in C.S/ with one end in �S .�/ and the other end in
�S .�.g1 : : :gk/�/. Then, for each 1 � i � k , there exists a curve 
i on G such
that ��.g1:::gi�1/Yi

.
i/D∅. If ji � j j � 3 and 
i and 
j are two such curves, then

i ¤ 
j .

Proof Fix 1 � i � k . By way of contradiction, suppose for all curves v on G , we
have ��.g1:::gi�1/Yi

.v/¤∅. Then Theorems 2.4 and 2.1 together imply that

d�.g1:::gi�1/Yi
.�; �.g1 : : :gk/�/� 4CK0:

But Proposition 6.2 says d�.g1:::gi�1/Yi
.�; �.g1 : : :gk/�/ �K > K0C 4, a contra-

diction. Thus, there must exist a curve 
i on G such that ��.g1:::gi�1/Yi
.
i/D∅, as

desired. Note that this implies that 
i and @�.g1 : : :gi�1/Yi form a multicurve.

Now consider 
i and 
j , where 1 � i < j � k and ji � j j � 3. We will show that

i and 
j are distinct curves. To the contrary, suppose 
i D 
j . Because of the
filling assumption on fX1; : : : ;Xkg, the pair of subsurfaces YiC1 and YiC2 fill S.
Thus, �.g1 : : :giC1/YiC1D �.g1 : : :gi/YiC1 and �.g1 : : :giC1/YiC2 are also a pair
of subsurfaces that fill S. Thus, it must be that ��.g1:::gn�1/Yn

.
i/ ¤ ∅ for some
n 2 fi C 1; i C 2g. In any case, i < n< j .
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In the remainder of this proof, to simplify notation, for each l we define Yl D

�.g1 : : :gl�1/Yl . By Proposition 6.2, we have

Yi � Yn � Yj ;

where � is the partial order on �.K; �; �.g1 : : :gk/�/. In particular, these three
subsurfaces are pairwise overlapping. This together with the assumption that 
i D 
j

and Theorem 2.1 implies that

dYn
.@Yi ; @Yj /� dYn

.@Yi ; 
i/C dYn
.
j ; @Yj /� 2C 2D 4:

It follows from this and the definition of � that

dYn
.�; �.g1 : : :gk/�/� dYn

.�; @Yi/C dYn
.@Yi ; @Yj /C dYn

.@Yj ; �.g1 : : :gk/�/

� 4C 4C 4D 12:

But this cannot be, because dYn
.�; �.g1 : : :gk/�/ � K � 20 by Proposition 6.2.

Therefore, 
i and 
j are distinct curves.

We have now developed the tools we will need to prove Theorem 6.1.

Proof of Theorem 6.1 Define C D 2K , where K is as in Proposition 6.2 and, for
each 1� i � k , assume that �Xi

.fi/� C . By Proposition 6.2, � is a quasi-isometric
embedding.

Let X denote the Cayley graph of A.�/. Choose x 2 @GX. Let 
 be the infinite
geodesic ray in X based at 1 limiting to x in @GX. We think of 
 as an infinite word
of the form y1y2y3 : : : , where each yi 2 fs

˙1
1
; : : : ; s˙1

k
g and the word y1y2 : : :yi is

a reduced word for all i . By construction, the sequence .y1 : : :yn/ converges to x in
X [@GX. Let .hn/ be another sequence in A.�/ that converges to x in X [@GX. We
will show that .�.hn// and .�.y1 : : :yn// converge to the same point in @Mod.S/. By
the discussion in Section 2.8, this will prove the theorem. We will consider two cases:
(1) there does not exist N �1 such that yiDyN for all i �N , and (2) such an N exists.
In both cases, we will assume each hn is written in the form hn D gn;1 : : :gn;N.n/ ,
where for all i we have gn;i D x

en;i

n;i for some en;i > 0 and xn;i 2 fs
˙1
1
; : : : ; s˙1

k
g

satisfying xn;i ¤ xn;iC1 , and x
e;1
n;1
: : :x

en;N.n/

n;N.n/
is a reduced word.

Case 1 Suppose there does not exist N � 1 such that yi D yN for all i �N . Then we
can think of 
 as an infinite word of the form g1g2g3 : : : , where gi D x

ei

i for some
ei > 0 and xi 2 fs

˙1
1
; : : : ; s˙1

k
g satisfying xi ¤ xiC1 , and x

e1

1
: : :x

ei

i is a reduced
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word for all i . Define Yi to be the subsurface that fully supports �.xi/. For short, we
let Yi denote �.g1 : : :gi�1/Yi .

Because .hn/ and .y1 : : :yn/ converge to the same point in @GX and X is a tree,
hn and y1 : : :yn must agree on longer and longer initial segments as n!1. In
particular, given L�1, there exists M such that, for all n�M, we have gn;1 : : :gn;LD

g1 : : :gL . Consider n �M and k � e1 C � � � C eL . Choose a curve ˇ 2 base.�/.
Given � 2 A.�/, let G.�/ denote some choice of geodesic in C.S/ with endpoints
ˇ and �.�/ˇ . By Lemma 6.3, for all 1 � i � L there exist curves 
i and 
 0i
on G.y1 : : :yk/ and G.hn/, respectively, such that �Yi

.
i/ D ∅ and �Yi
.
 0i / D ∅.

Observe that
dS .
i ; @Yi/� 1 and dS .


0
i ; @Yi/� 1:

Choose 
r to be the curve in f
i W 1 � i � Lg closest to �.y1 : : :yk/ˇ . Lemma 6.3
tells us that if ji � j j � 3, then 
i ¤ 
j . So necessarily dS .ˇ; 
r / �

1
3
L. Thus, the

Gromov product, computed in C.S/, is

.�.y1 : : :yk/ˇ; �.hn/ˇ/ˇ

D
1
2
ŒdS .ˇ; �.y1 : : :yk/ˇ/C dS .ˇ; �.hn/ˇ/� dS .�.y1 : : :yk/ˇ; �.hn/ˇ/�

�
1
2

�
dS .ˇ; 
r /C dS .
r ; �.y1 : : :yk/ˇ/C dS .ˇ; 


0
r /C dS .


0
r ; �.hn/ˇ/

�
�
dS .�.y1 : : :yk/ˇ; 
r /C dS .
r ; @Yr /C dS .@Yr ; 


0
r /C dS .


0
r ; �.hn/ˇ/

��
�

1
2
ŒdS .ˇ; 
r /C dS .ˇ; 


0
r /� 2�

�
1
2

�
1
3
L� 2

�
:

It follows that

(10) lim inf
k;n!1

.�.y1 : : :yk/ˇ; �.hn/ˇ//ˇ D1:

Because .hn/ is an arbitrary sequence converging to x , we could have taken it to be
.y1 : : :yn/. Thus, (10) tells us two things: (1) .�.y1 : : :yn/�/ converges to a point
in @C.S/, and (2) .�.y1 : : :yn/�/ and .�.hn/�/ converge to the same point in @C.S/.
By definition of the topology on Mod.S/[ @Mod.S/, this tells us that .�.y1 : : :yn//

and .�.hn// converge to the same point in @Mod.S/.

Case 2 Assume there exists N � 1 such that yi D yN for all i �N. Corollary 6.2
in [7] tells us that the action of Mod.S/ by left multiplication extends to an action
of Mod.S/ on Mod.S/[ @Mod.S/ by homeomorphisms. Consequently, if we can
show that .�..y1 : : :yN�1/

�1hn//n2N and .�.yN : : :yn//n2N converge to the same
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point in @Mod.S/, then .�.hn//n2N and .�.y1 : : :yn//n2N must converge to the
same point in @Mod.S/. Furthermore, ..y1 : : :yN�1/

�1hn/n2N and .yN : : :yn/n2N

converge to the same point in @GX. Thus, without loss of generality we assume N D 1.
By our assumption, y1 : : :yn D yn

1
for all n.

Let Y be the subsurface that fully supports �.y1/, and let @Y D fˇ1; : : : ; ˇlg. Then

(11) lim
n!1

dY .�; �.y
n
1
/�/

n
>0 and �Y .�.y

n
1 /�/!�Y for some �Y 2@C.Y /:

Further observe that, for all i ,

(12) lim
n!1

dˇi
.�; �.yn

1
/�/

n
� 0:

If (12) is an equality, let �i be any point in @C.ˇi/. Otherwise, define �i 2 @C.ˇi/ to
be limn!1 �ˇi

.�.yn
1
/�/. For all subsurfaces W disjoint from Y and not an annulus

with core curve in @Y , Lemma 3.1 and Theorem 2.1 imply that dW .�; �.y
n
1
/�/ �

dW .�; �/C 4� 6. Consequently,

lim
n!1

�.yn
1 /D cY �Y C

lX
iD1

ci�i ;

where

cY C

lX
iD1

ci D 1 and
ci

cY

D lim
n!1

dˇi
.�; �.yn

1
/�/

dY .�; �.y
n
1
/�/

:

Because .hn/ and .yn
1
/ converge to the same point in @GX, given any L� 1, for all

sufficiently large n we have xn;1 D y1 and en;1 �L. So, by removing finitely many
initial terms from .hn/, for convenience we may assume that gn;1 D y

en;1

1
for all n.

Observe that en;1!1 as n!1. It is immediate from this and the definition of
the topology of Mod.S/[ @Mod.S/ that limn!1 �.gn;1/D limn!1 �.y

n
1
/. Thus,

to finish the proof, we must show limn!1 �.gn;1/D limn!1 �.hn/. By passing to
subsequences, we may assume that either N.n/D 1 for all n or N.n/� 2 for all n.
If the former holds, then hn D gn;1 , and we are done. Assume then that N.n/� 2 for
all n. To proceed, we require the following claims:

Claim 1 dY .�.gn;1/�; �.hn/�/ is bounded above, independent of n.

Claim 2 Let W be a subsurface that is disjoint from Y . Then dW .�.gn;1/�; �.hn/�/

is bounded above, independent of n.
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We postpone the proofs of these claims and for now assume they are true. First, observe
that Claim 1 and (11) imply that �Y .�.hn/�/! �Y . If Inequality (12) is strict, then
Claim 2 implies that �ˇi

.�.hn/�/! �i . Further observe that Claims 1 and 2 imply
that, for all W disjoint from Y ,

lim
n!1

dW .�; �.gn;1/�/

dY .�; �.gn;1/�/
D

limn!1 dW .�; �.gn;1/�/=en;1

limn!1 dY .�; �.gn;1/�/=en;1

D
limn!1 dW .�; �.hn/�/=en;1

limn!1 dY .�; �.hn/�/=en;1

D lim
n!1

dW .�; �.hn/�/

dY .�; �.hn/�/
:

It follows that limn!1 �.gn;1/D limn!1 �.hn/, as desired.

To finish the proof, we will now prove Claims 1 and 2. For each n, let Zn denote the
subsurface that fully supports �.xn;2/.

Proof of Claim 1 Fix n� 1. Because Y fully supports �.xn;1/, by Proposition 6.2,
we know Y � �.gn;1/Zn , where � denotes the partial order on �.K; �; �.hn/�/.
Thus, dY .@�.gn;1/Zn; �.hn/�/� 4. Therefore,

dY .�.gn;1/�; �.hn/�/� dY .�.gn;1/�; @�.gn;1/Zn/C dY .@�.gn;1/Zn; �.hn/�/

� dY .�; @Zn/C 4:

There are finitely many possibilities for Zn , so this completes the proof of Claim 1.

Proof of Claim 2 Fix n� 1. Because Y and Zn fill S , and Y and W are disjoint,
it must be that �Zn

.@W / ¤ ∅. There are two cases to consider: (1) W t Zn , and
(2) W ¨ Zn . First, suppose that W t Zn . It then follows from Proposition 6.2,
Theorem 2.1 and the definition of K that

dZn
.@W; �.gn;2 : : :gn;N.n//�/

� dZn
.�; �.gn;2 : : :gn;N.n//�/� dZn

.@Y; @W /� dZn
.�; @Y /

�K� 2� 1
2
K � 10:

Thus Theorem 2.3 implies that dW .@Zn; �.gn;2 : : :gn;N.n//�/ � 4. From this and
Theorem 2.2 we find that

(13) dW .�.gn;1/�; �.hn/�/D dW .�; �.gn;2 : : :gn;N.n//�/

� dW .�; @Zn/C dW .@Zn; �.gn;2 : : :gn;N.n//�/

� 4 maxfd �M.S/.�; �i/ W 1� i � kgC 4;

Algebraic & Geometric Topology, Volume 18 (2018)



438 Sarah C Mousley

where �i is a fixed choice of marking with @Xi � base.�i/ for each 1� i � k . This
provides a uniform bound in the case that W t Zn .

Now suppose that W ¨ Zn . First, observe that because Zn fully supports �.xn;2/,
the sequence .�Zn

.�.xn;2/
m�//m2N converges to a point in @C.Zn/. Thus, by

Corollary 2.7 there exists a constant M, which depends on W and xn;2 , such that
dW .�; �.gn;2/�/�M for all n. Note that there are only finitely many possibilities
for xn;2 , so M can be chosen to be independent of n. This implies that

dW .�.gn;1/�; �.hn/�/� dW .�; �.gn;2 : : :gn;N.n//�/

� dW .�; �.gn;2/�/C dW .�.gn;2/�; �.gn;2 : : :gn;N.n//�/

�M C d�.gn;2/�1W .�; �.gn;3 : : :gn;N.n//�/:

Now, if N.n/D 2, then we can apply Theorem 2.1 to see that

d�.gn;2/�1W .�; �.gn;3 : : :gn;N.n//�/D d�.gn;2/�1W .�; �/� 2;

and Claim 2 is established. Suppose then that N.n/� 3. Let Vn denote the subsurface
that fully supports �.xn;3/. Observe that, because �Zn

.�.xn;2// � 2K and @Y and
@W form a multicurve, we have

dZn
.@�.gn;2/

�1W; @Vn/

� dZn
.@W; @�.gn;2/

�1W /� dZn
.@W; @Y /� dZn

.�; @Y /� dZn
.�; @Vn/

� 2K� 2� 1
2
K� 1

2
K > 2:

This together with Theorem 2.2 establishes that @�.gn;2/
�1W and @Vn do not form a

multicurve. Thus, �.gn;2/
�1W t Vn . So, to bound

d�.gn;2/�1W .�; �.gn;3 : : :gn;N.n//�/

from above independent of n, we can use the same techniques used above to bound
dW .�; �.gn;2 : : :gn;N.n//�/ when W t Zn . This completes the proof of Claim 2,
and thus the proof of Theorem 6.1.
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