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Higher cohomology operations and R–completion

DAVID BLANC

DEBASIS SEN

Let R be either Fp or a field of characteristic 0 . For each R–good topological
space Y , we define a collection of higher cohomology operations which, together
with the cohomology algebra H�.Y IR/ , suffice to determine Y up to R–completion.
We also provide a similar collection of higher cohomology operations which deter-
mine when two maps f0; f1W Z ! Y between R–good spaces (inducing the same
algebraic homomorphism H�.Y IR/!H�.Z IR/) are R–equivalent.

55P60; 55N99, 55P15, 55P20

Introduction

We describe complete sets of invariants for the R–homotopy types of R–good topolog-
ical spaces and maps between them, consisting of systems of higher R–cohomology
operations (where R is either Fp or a field of characteristic 0).

Higher homotopy or cohomology operations (see Toda [37], Spanier [35; 36], Adams [1]
and Maunder [30]) should be thought of as inductively defined systems of obstructions
to rectifying homotopy-commutative diagrams. In particular, an nth order cohomology
operation is attached to a diagram F W I ! ho Top indexed by a lattice in the sense of
Blanc and Markl [15, Section 2] — that is, a directed category I of length nC 1 such
that, for all but the initial object i0 in I, F.i/ is a product of R–module Eilenberg–
Mac Lane spaces (an R–GEM).

0.1 Example The simplest example is a Toda bracket [3], for a diagram of the form

(0.2) Y

�

$$f
// W0

�

66

g
// W1

h
// W2;

with W0 , W1 and W2 R–GEMs, and each adjacent composition nullhomotopic (see
Adams [1] and Harper [26]).
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248 David Blanc and Debasis Sen

This defines a secondary cohomology operation in the sense of Adams [1], since f
represents a set of cohomology classes in H�.Y IR/, on which the set of primary
R–cohomology operations represented by g vanish. The fact that h ıg � � indicates
a relation among primary operations.

Our general strategy for rectification of any F W I ! ho Top is to inductively rectify,
and then make fibrant, longer and longer final segments of the given diagram. In our
example, we first make W2 fibrant and change h into a fibration (so the subdiagram
W1

h
�!W2 is fibrant). We then change g up to homotopy so that h ı g D �, using

Blanc, Johnson and Turner [11, Lemma 5.11]. Factoring g as W0
k0
�! Fib.h/ i

,!W1 ,
and then changing k 0 into a fibration k makes W0

g
�!W1

h
�!W2 fibrant. To simplify

notation we denote i ı k simply by gW W0!W1 .

We think of the following solid diagram of vertical and horizontal fibration sequences
as the template for our Toda bracket (depending only on W0

g
�!W1

h
�!W2 ):

(0.3)

Y

9? 

''

f

))

'

&&

Fib.k/ �
�

`

//
� _

��

Fib.zg/
� _

��

q
// // �W2� _

��

W0

k
����

� �
j

'

//

g

((

W 0
0

zg
����

G
// // PW2

p
����

Fib.h/ �
� i

// W1

h
// // W2

The nullhomotopy G exists since h ı zg ı j D g ı hD � and j is a weak equivalence.

Now, any map f W Y !W0 with g ı f � � factors up to homotopy through a map
'W Y ! Fib.zg/. To rectify (0.2), ' and f should induce a map  W Y ! Fib.k/D
Fib.q/. The obstruction to doing so — namely the homotopy class of the composite
q ı 'W Y ! �W2 — is called the value of the Toda bracket hf;g; hi (for the given
choices of k and ' ).

0.4 The basic construction Our object in this paper is to associate to each R–good
space Y a sequence hhY ii D .hhY iin/1nD2

of higher cohomology operations which
serve as a complete set of invariants for the R–homotopy type of Y , constructed
roughly as follows:
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(a) We start with H�.Y IR/ as a ‚R –algebra — ie a graded R–algebra with an
action of the primary R–cohomology operations (such as Steenrod squares). We
then choose a CW resolution of this ‚R –algebra, given by an inductively defined
simplicial ‚R –algebra V� , with the nth stage obtained from the .n�1/–truncation
by attaching a free ‚R –algebra Vn along a map x@n

0
W Vn! Vn�1 (see Section 1.11

below). Our goal is to realize V�!H�.Y IR/ by a coaugmented cosimplicial space
Y !W �D limn W �

Œn�
, for which Y ! Tot W � is the R–completion map of Bousfield

and Kan [20].

(b) To carry out this program, we use a double induction: if W �

Œn�1� realizes V�

through simplicial dimension n � 1, we can choose a map xd0
n�1
W W n�1

Œn�1�
! W n

realizing x@n
0
W Vn ! Vn�1 (with W n an R–GEM). Then xd0

n�1
ı d0 is nullhomo-

topic by a nullhomotopy Fn�2W W n�2
Œn�1�

! PW n , with Fn�2 ı d0 factoring through
an�3W W n�3

Œn�1�
! �W n , as in Example 0.1 above. One can in fact choose Fn�2 so

that an�3 is nullhomotopic.

(c) Step (b) can be repeated, and the k th obstruction an�k again turns out to be
nullhomotopic. We end up with an nth order cohomology operation hhY iin with value
a�1W Y !�n�1W n . The fact that this too vanishes allows us to extend W �

Œn�1�
to a

cosimplicial space W �

Œn�
(which will be n–coskeletal, up to homotopy). We call the

system WD .W �

Œn�
/n2N a sequential realization of V� for the space Y , and think of it

as a template for a sequence hhY ii D .hhY iin/1nD2
of higher cohomology operations.

(d) Finally, given a space Z with H�.Y IR/ Š H�.Z IR/, the augmentation of
‚R –algebras "W V0! H�.Z IR/ can be realized by a map "Œ0�W Z !W 0

Œ0�
. If we

can extend this to a coaugmentation "W Z !W � WD lim W �

Œn�
, we would obtain an R–

equivalence between Z and Y . The obstruction to extending the .n�1/st approximation
"Œn�1�W Z !W �

Œn�
for " to "Œn� is a map a�1W Z !�n�1W n as above — the value

associated to Z for the nth order cohomology operation hhY iin .

0.5 Main results In order to apply the machinery described above, we need the
following important technical result:

Theorem A Any CW resolution V� of the ‚R –algebra H�.Y IR/ can be realized by
a coaugmented cosimplicial space Y !W � with each W n an R–GEM, obtained as
the limit of a sequential realization as above.

See Theorem 2.33 below. This allows us to produce various templates for the system of
higher cohomology operations hhY ii, based on the algebraic resolution of our choice.
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The sequence of higher cohomology operations presented here is dual to the higher ho-
motopy operations of Blanc [6] and Blanc, Johnson and Turner [13], which correspond
to the André–Quillen cohomology obstructions for distinguishing between different
realizations ��Y of a …–algebra (see Blanc, Dywer and Goerss [10]). Such André–
Quillen classes appear also in the dual context of distinguishing between different
realizations of a given abstract ‚R –algebra � (see Blanc [8] and Biedermann, Raptis
and Stelzer [5]). However, the higher cohomology operations of Blanc [8] correspond
to André–Quillen cocycles (for a specific algebraic resolution V� of H�.Y IR/). We
therefore would like to collect together the various higher order cohomology operations
corresponding to a given André–Quillen cohomology class. We do this by means
of suitable (split) weak equivalences, called comparison maps, between sequential
realizations for various algebraic resolutions, and show:

Theorem B Any two sequential realizations of two CW resolutions V� for the same
space Y are connected by a zigzag of comparison maps.

See Theorem 3.20 below.

Our two main results may then be summarized as follows:

Theorem C For R either Fp or a field of characteristic 0, let Y and Z be R–good
spaces and # W H�.Y IR/!H�.Z IR/ an isomorphism of ‚R –algebras. Then # is
realizable by a zigzag of R–equivalences between Y and Z if and only if the system
of higher operations associated to this initial data vanishes.

See Theorem 4.18 below.

By extending the ideas sketched in Section 0.4, one can use any sequential realization
for Y to define a system of higher cohomology operations associated to any two maps
f0; f1W Z ! Y which induce the same map in cohomology; although the construction
is more complicated, these operations still take values in the groups ŒZ ; �n�1W n�,
and we have:

Theorem D For R either Fp or a field of characteristic 0, let f0; f1W Z ! Y be
two maps between R–good spaces which induce the same morphism of ‚R –algebras
H�.Y IR/!H�.Z IR/. Then f0 is R–equivalent to f1 if and only if the associated
system of higher operations vanishes.

See Theorem 5.29 below.
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0.6 Organization Section 1 provides some background material on (co)simplicial
constructions and on sketches and their algebras. In Section 2 we define and study
sequential realizations of algebraic resolutions. In Section 3 we show how any two
such sequential realizations may be connected by a zigzag of comparison maps. In
Section 4 we construct the higher cohomology operations used to distinguish between
spaces, including a detailed rational example in Section 4.24, while in Section 5 we
define the analogous invariants for maps.

The appendix reviews the notions of enriched sketches and their mapping algebras,
which are used to generalize and prove Theorem A.

0.7 Acknowledgements We would like to thank the referee for his or her careful and
pertinent comments.

The research of Blanc was supported by Israel Science Foundation grants 74/11 and
770/16, and that of Sen by INSPIRE grant No. IFA MA-12.

1 Background

In this section we present some background material on (co)simplicial theory and
algebraic theories that will be used throughout the paper.

1.1 Definition Let � denote the category of finite ordered sets and order-preserving
maps (see May [31, Section I.2]), and �C the subcategory with the same objects, but
only monic maps. A cosimplicial object G� in a category C is a functor �! C , and a
restricted cosimplicial object is a functor �C! C . More concretely, we write Gn for
the value of G� at the ordered set Œn�D f0< 1< � � �< ng. The maps in the diagram
G� are generated by the coface maps d i D d i

nW G
n!GnC1 for 0� i � nC1, as well

as codegeneracy maps sj D s
j
n W G

n!Gn�1 for 0� j < n in the nonrestricted case,
satisfying the usual cosimplicial identities. Dually, a simplicial object G� in C is a
functor �op! C . The category of cosimplicial objects over C will be denoted by C� ,
and the category of simplicial objects over C will be denoted by C�op

. However, the
category of simplicial sets is denoted simply by SD sSet, and that of pointed simplicial
sets by S� D sSet� . By a space we always mean a pointed simplicial set.

There are natural embeddings c.�/�W C! C� and c.�/�W C! C�op
, defined by let-

ting c.A/� denote the constant cosimplicial object which is A in every cosimplicial
dimension, and similarly for c.A/� .
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1.2 Latching and matching objects For a cosimplicial object G�2C� in a complete
category C , the nth matching object for G� is defined to be

(1.3) M nG� WD lim
�W Œn�!Œk�

Gk ;

where � ranges over the nonidentity surjective maps Œn�! Œk� in �. There is a natural
map �nW Gn!M nG� induced by the structure maps of the limit, and any iterated
codegeneracy map sI D ��W G

n!Gk factors as

(1.4) sI
D proj� ı�

n;

where proj� W M
nG�!Gk is the structure map for the copy of Gk indexed by � (see

Bousfield and Kan [20, Section X.4.5]).

Note that the inclusion �C ,!� induces a forgetful functor U W C�! C�C , and its
right adjoint F W C�C! C� is given by .FG�/n DGn�M nG� , with codegeneracies
given by (1.4) and coface maps by the cosimplicial identities.

The nth latching object for G� 2 C� is

LnG� WD colim
� W Œk�!Œn�

Gk ;

where the maps � are now nonidentity injective maps, with �nW LnG�!Gn defined
by the structure maps.

These two constructions have analogues for a simplicial object G� over a (co)complete
category C : the latching object

LnG� WD colim
� W Œk�!Œn�

Gk ;

and the matching object
MnG� WD lim

�W Œn�!Œk�
Gk ;

equipped with the obvious canonical maps.

1.5 Definition Let C be a pointed category. If it is complete, the nth Moore chain
object of G� 2 C� is

(1.6) CnG� WD

n\
iD1

Kerfdi W Gn!Gn�1g;

with differential @G�
n D @n WD .d0/jCnG� W CnG� ! Cn�1G� . The nth Moore cycle

object is ZnG� WD Ker.@G�
n /.
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Dually, if C is cocomplete, the nth Moore cochain object of G� 2 C�op
is

(1.7) C nG� WD Coker
� n�1a

iD1

Gn ?i d i

��!Gn

�
with differential

ın�1
W C n�1G�! C nG�

induced by d0
n�1

, and structure map vnW Gn! C nG� .

We denote the cofiber of ın�1 by ZnG� , with structure map wnW C nG�!ZnG� .

1.8 Cochain complexes in C In general, a cochain complex in C is a commuting
diagram A� of the form

(1.9)
A0 ı0

//

!!

A1 ı1
//

##

A2 � � � � � �An�1 ın�1
//

$$

An ın
//

$$

AnC1 � � �

0

==

0

;;

0 � � � � � � 0

::

0

::

0 � � �

(so ın ı ın�1 D 0 for all n).

We let ChC denote the category of nonnegatively graded cochain complexes over C ,
and by ChC�n the category of n–truncated cochain complexes A� in C (for which
Ai D 0 unless 0� i � n).

The category ChC of nonnegatively graded chain complexes over C is defined analo-
gously.

The Moore cochain functor C �W C�C ! ChC has a right adjoint (and left inverse)
E W ChC! C�C with .EA�/

n DAn, d0
n D ı

n, and d i
n D 0 for i � 1. This holds also

for ChC�n if we truncate C�C , too.

When C is a model category, we have several possible model category structures on C� ,
C�C, ChC, and ChC�n (see eg Hirschhorn [28, Section 15.3], Bousfield and Kan [19]
and Chachólski and Scherer [21, Section 12]).

In particular, ChC�n has two different Reedy model category structures, depending on
how we choose the degrees in (1.9); in both cases, the weak equivalences are defined
levelwise. In the right Reedy model structure, fibrations are also defined levelwise,
and an n–cochain complexes A� is cofibrant if for each k � n the natural map
ZkA� WD Cof.ık�1/! AkC1 is a cofibration (with A�1 WD �). In the left Reedy
model structure, cofibrations are defined levelwise, and an n–cochain complex A�
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is fibrant if for each k � n the natural map Ak ! Ker.ıkC1/ is a fibration (with
A�1 WD �). Evidently, right Reedy cofibrancy implies left Reedy cofibrancy, and left
Reedy fibrancy implies right Reedy fibrancy.

Note that the Moore cochains functor C �W S�
� ! ChS� preserves cofibrancy and

weak equivalences among cofibrant objects in the (right) Reedy model structures (see
Bousfield and Kan [20, Proposition X.6.3]).

By analogy with the usual fiber/cone construction for (co)chain complexes we have:

1.10 Fibers and cones (i) For any map f W A�!B� in C�C we define the restricted
cosimplicial object C � D Fib.f / by setting C n WDAn �Bn�1 , with coface maps

C nC1 D AnC1 � Bn

C n

d0

OO

D An

d0

OO

f n

;;

� Bn�1

and

C nC1 D AnC1 � Bn

C n

d i

OO

D An

d i

OO

� Bn�1

d i�1

OO

for i � 1

and a natural projection `W C �!A� . For dj ı d0W C n�1! C nC1 we verify that

prBn ı dj
ı d0
D d

j�1

Bn�1 ıf
n�1
ı prAn�1

D f n
ı d

j�1

An�1 ı prAn�1 D prBn
ı d0
ı dj�1

for all j > 0, while clearly prBn.dj ı d i/D prBn.d i ı dj�1/ for 1� i < j .

(ii) Similarly, for a map f W A� ! B� in C�
op
C we define the restricted simplicial

object C� D Cone.f / by setting Cn WDAn�1qBn , with

d
Cn

i WD

�
fn�1? d

Bn

0
if i D 0;

d
An�1

i�1
? d

Bn

i if i � 1;

and a natural inclusion mW B� ,! C� .

1.11 Simplicial CW objects A simplicial object G� 2 C�op
over a pointed category

C is called a CW object if it is equipped with a CW basis .Gn/n2N in C such that
GnDGnqLnG� , and di jGn

D0 for 1� i �n. In this case, x@Gn

0
WDd0jGn

W Gn!Gn�1

is called the attaching map for Gn . By the simplicial identities x@Gn

0
factors as

(1.12) x@
Gn

0
W Gn!Zn�1G� �Gn�1:

Note that we have an explicit formula

(1.13) LnG� WD
a

0�k<n

a
0�i1<���<in�k�n�1

Gk ;
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where the iterated degeneracy map sin�k
: : : si2

si1
, restricted to the basis object Gk , is

the inclusion into the copy of Gk indexed by .i1; : : : ; in�k/.

1.14 Remark Given G 2 C , define G˝�Sn in ChC be the chain complex with G in
dimension n and � elsewhere. A CW object G� over C with CW basis .Gn/

1
nD0

is the
colimit of an inductively constructed sequence of skeleta sk0 G� ,! sk1 G� ,!� � � , in the
usual sense (see Goerss and Jardine [25, Section VII.1]), starting with sk0 G� WD c.G0/� .

To do so, note that the attaching map x@Gn

0
W Gn!Zn�1G� defines a chain map

�W Gn˝� Sn�1
! C� skn�1 G�;

which has an adjoint z�W E 0.Gn˝� Sn�1/! U 0 skn�1 G� , where E 0W ChC ! C�
op
C is

left adjoint to the Moore chain functor C�W C�
op
C ! ChC and U 0W C�op

! C�
op
C is the

forgetful functor (compare Section 1.8).

Note that U 0 has a left adjoint F 0W C�
op
C ! C�op

given by .F 0G�/n D GnqLnG� ,
(compare Section 1.2). If # W F 0U 0 ! Id is the counit for the adjunction, we have
skn G� as the pushout in

(1.15)

F 0U 0 skn�1 G�

PO
F 0m
��

#
// skn�1 G�

��

F 0 Cone.z�/ // skn G�

for m as in Section 1.10(ii).

1.16 Cosimplicial CW objects A cosimplicial CW object G� 2 C� with CW basis
.Gn/n2N may be defined analogously as the limit of a tower of coskeleta

� � � ! csk2 G�! csk1 G�! csk0 G�

(see [loc. cit.]), starting with csk0 G� WD c.G0/� , by thinking of its attaching maps as
a cochain map 'W C � cskn�1 G�!Gn˝� Sn�1 (where Gn˝� Sn�1 is the cochain
complex with Gn in dimension n� 1 and zero elsewhere).

The map ' has an adjoint y'W U cskn�1 G�! E.Gn˝� Sn�1/, and we have cskn G�

as the pullback in

(1.17)

cskn G�

PB

��

// F Fib.y'/

F`
��

cskn�1 G�
�

// FU cskn�1 G�

with � the unit for FU and ` as in Section 1.10(i), using the notation of Section 1.2.
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1.18 List of functors For the reader’s convenience we list the main functors we have
defined for simplicial and cosimplicial objects in a category C :

(a) The Moore cochain complex functor C �W C�C! ChC and its right adjoint (and
left inverse) E W ChC! C�C .

(b) The Moore chain complex functor C�W C�
op
C ! ChC and its left adjoint (and

right inverse) E 0W ChC! C�
op
C .

(c) The forgetful functor U W C�! C�C and its right adjoint F W C�C! C� (adding
codegeneracies).

(d) The forgetful functor U 0W C�op
! C�

op
C and its left adjoint F 0W C�

op
C ! C�op

(adding degeneracies).

When there is no danger of confusion, we denote C �.U.W �// simply by C �W � and
C�.U 0.G�// by C�G� .

1.19 Definition A simplicial category C (in the sense of Quillen) is one in which, for
each (finite) K 2 S and X 2 C , we have objects X ˝K and XK in C equipped with
appropriate adjunction-like isomorphisms. In particular, such categories are simplicially
enriched. A simplicial model category is a simplicial category with a model category
structure satisfying axiom SM7 of Quillen [32, Sections II.1–II.2]). The basic examples
are S and S� .

1.20 Assumption From now on C will be a pointed simplicial model category in
which all objects are cofibrant — so in particular it is left proper.

The main example we shall be concerned with is C D S� , so we shall sometimes refer
to the objects of C — denoted by boldface letters X , Y , and so on — as “spaces”.

1.21 G–resolution model structure Let G be a class of homotopy group objects in
a model category C as above, closed under loops. A map i W A!B in ho C is called
G–monic if i�W ŒB ;G �! ŒA;G � is onto for each G 2 G . An object Y in C is called
G–injective if i�W ŒB ;Y �! ŒA;Y � is onto for each G–monic map i W A!B in ho C .
A fibration in C is called G–injective if it has the right lifting property for the G–monic
cofibrations in C .

The homotopy category ho C is said to have enough G–injectives if each object is the
source of a G–monic map to a G–injective target. In this case, G is called a class of
injective models in ho C .
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Recall that a homomorphism in the category sGp of simplicial groups is a weak
equivalence or fibration when its underlying map in S� is such.

A map f W W �!Y � in C� is called a G–equivalence if f �W ŒY �;G �! ŒW �;G � is a
weak equivalence in sGp for each G 2 G . Bousfield [19, Theorem 3.3] showed that if
G is a class of injective models in ho.C/, then C� has a left proper pointed simplicial
model category structure with such maps as weak equivalences.

1.22 G–completion Given a class G of injective models in C as above, a G–
resolution of an object Y 2 C is a G–fibrant W � equipped with a G–trivial cofibration
c.Y /� ,! W � (see Definition 1.1). In this case yLGY WD Tot W � is called the G–
completion of Y , where Tot W � 2 C is constructed as in [19, Section 2.8]. Moreover,
a map f W Y ! Z in C is a G–equivalence if and only if yLGf W yLGY ! yLGZ is a
weak equivalence in C . An object Y 2 C is called G–complete if Y ! yLGY is a
weak equivalence, and it is G–good if Y ! yLGY is a G–equivalence — so yLGY is
G–complete (see Bousfield [19, Section 8]). We say that two maps f0; f1W Z ! Y

between G–good objects in C are G–equivalent if yLGf0 �
yLGf1W

yLGZ ! yLGY are
homotopic (for a suitable fibrant and cofibrant model of the G–completion).

A cosimplicial object W � 2 C� is called weakly G–fibrant if it is Reedy fibrant (see
Hirschhorn [28, Section 15.3]), and every W n is in G for n� 0. A weak G–resolution
of an object Y 2 C is a weakly G–fibrant W � which is G–equivalent to c.Y /� . In this
case there is a natural weak equivalence yLGY ! Tot W � , by [19, Theorem 6.5].

1.23 Example The example we have in mind is the class G D GR of all R–GEMs
in C D S� , for some ring R. In this case the G–completion is the Bousfield–Kan
R–completion [20].

1.24 Sketches and their algebras An (FP–)sketch in the sense of Ehresmann [22]
(cf Lawvere [29] is a small category ‚ with a specified set P of (finite) products.
This generalizes Lawvere’s notion of a theory, which requires that Obj.‚/D N . A
‚–algebra (or ‚–model) is a functor �W ‚! Set� preserving the products in P ,
with natural transformations as model morphisms (see Borceux [18, Section 4.1]). We
write �fBg for the value of � at B 2‚. The category of ‚–algebras is denoted by
‚–Alg. Examples of categories of such models include varieties of universal algebras,
such as groups, rings, and modules over rings.

1.25 Remark In homotopy theory such theories often arise by choosing a collection A

of objects in a model category C (as in Assumption 1.20), and letting ‚D‚A denote
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the full subcategory of the homotopy category ho C consisting of objects of C which
are representable as finite-type products of objects in A — that is, products of the form

(1.26)
Y

A2A

Y
i2IA

A;

where each indexing set IA is finite. When each A 2A is a homotopy group object
in C , ‚–algebras have a natural underlying group structure; in such cases we call the
sketch ‚ algebraic.

For every Y 2C we then have a realizable ‚–algebra �DH�
‚

Y , with �fBgD ŒY ;B �C
for every B 2‚. A ‚–algebra is called free if is isomorphic to H�

‚
B for some B 2‚.

Note, however, that even though the forgetful functor U W ‚–Alg! SetA to A–graded
sets has a left adjoint F W SetA!‚–Alg, not all ‚–algebras in its image are free by
our definition: because F preserves colimits, any ‚–algebra in the image of F is a
coproduct of monogenic free ‚–algebras (those realizable by on object of A), and
conversely. For our purposes, however (see Theorem 2.33 below), it is necessary that
any free ‚–algebra be realizable in C .

1.27 Example For any commutative ring R, let A WD fK .R; n/g1
nD1

in C D S� ;
we then have an FP–sketch ‚R in ho S� whose objects are “finite-type” R–GEMs
of the form

Q1
nD1 K .Vn; n/, where Vn D Rkn is a free R–module of dimension

kn <1. Since each B 2‚R is an R–module object, all ‚R –algebras take values in
R–modules.

Note that the realizable ‚R –algebra � DH�
‚R

Y has �fK .R; n/g DH n.Y IR/, so
we denote it simply by H�.Y IR/; it is the R–cohomology algebra of Y , equipped
with the action of the primary R–cohomology operations. When R D Fp , ‚R is
the homotopy category of such Fp –GEMs, and a ‚R –algebra is an unstable algebra
over the mod p Steenrod algebra, as in Schwartz [34, Section 1.4]. When RDQ, a
‚R –algebra is just a graded commutative Q–algebra.

More generally, for any limit cardinal �, let R–Mod� denote the set of isomorphism
types of free R–modules of dimension < �, and let

A� WD fK .V; n/ j V 2R–Mod�; 1� n�1g:

The FP–sketch ‚�
R

then consists of the R–GEMs which are finite-type products of the
form

Q1
nD1 K .Vn; n/ with Vn a free R–module of dimension < �.
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Note that since finite products in R–Mod are also coproducts,
Q

In
Vi is itself in

R–Mod� , since In is finite and � is infinite. However, we must be able to distinguish
the generating set A from the resulting sketch ‚R , in order to define what we mean
by “finite-type” products or coproducts.

We note the following two standard facts about an algebraic sketch ‚:

1.28 Lemma If � is an ‚–algebra and B 2 ‚, there is a natural isomorphism
Hom

‚–Alg.H
�
‚

B ; �/Š �fBg.

1.29 Proposition [16, Section 6] The category s‚–Alg of simplicial ‚–algebras
has a model category structure, in which the weak equivalences and fibrations are
defined on the underlying (graded) simplicial groups.

1.30 Definition For any algebraic sketch ‚, a CW resolution of a ‚–algebra � is
a cofibrant replacement "W V�

'
�! c.�/� equipped with a CW basis .Vn/n2N as in

Section 1.11, with each Vn a free ‚–algebra.

1.31 Remark In fact, any CW object V� for which each Vn is a free ‚–algebra and
each attaching map x@Vn

0 for n� 0 surjects onto Zn�1V� is a CW resolution. Here we
set Z�1V� WD � and x@V0

0
WD ", so that

(1.32) " ı x@
V1

0
D 0:

Thus one can easily construct (nonfunctorial) CW resolutions of any ‚–algebra � .

Moreover, by dualizing [8, Proposition 3.12] (see also [7, Proposition 12]) we can
choose a CW basis for any free simplicial resolution in ‚R–Alg when R is a field.
However, we shall not make use of this fact.

2 Realizing simplicial ‚–algebra resolutions

Let ‚ be an algebraic sketch obtained as in Remark 1.25 from a set A of homotopy
group objects in a model category C . In this section we show how a CW resolution V�

of a realizable ‚–algebra � can itself be realized over C .

Any algebraic resolution V�! � is clearly realizable by a cosimplicial object �W � 2

c.ho C/ (for which the cosimplicial identities hold up to homotopy), but it is not clear
a priori that this can be rectified to a strict cosimplicial object W � in C . This is in fact
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possible in the two cases described in Theorem A.11 in the appendix. However, for the
purposes of this paper, we need not only the existence of this realization W � , but also
the particular form it takes, described as follows:

2.1 Definition Let ‚ be a sketch in ho C as in Remark 1.25, and let V� be a simplicial
CW resolution of the ‚–algebra H�

‚
Y for some Y 2 C , with CW basis .Vn/

1
nD0

. A
sequential realization

WD hW �

Œn�;
�W �

Œn�in2N

of V� for Y consists of a tower of Reedy fibrant and cofibrant Y –coaugmented
cosimplicial objects

(2.2) � � � !W �

Œn�

�Œn�
��!W �

Œn�1�

�Œn�1�
���!W �

Œn�2�! � � � !W �

Œ0�

in C� , with each �Œn� a Reedy fibration. We call W �

Œn�
the nth stage of W, and set

W � WD holimn W �

Œn�
to be the limit of the tower (2.2). This tower must satisfy the

following requirements for each n� 0:

(a) The coaugmentation "Œn�W Y !W �

Œn�
realizes V�! H�

‚
Y through simplicial

dimension n — that is, we have a natural isomorphism

(2.3) H�‚W k
Œn�fBg

Š
�!VkfBg for all B 2‚ and � 1� k � n;

using the notation of Example 1.27.

(b) The coaugmentation "Œn�1�W Y !W �

Œn�1�
lifts along the �Œn�W W �

Œn�
!W �

Œn�1�

to "Œn�W Y !W �

Œn�
.

(c) Each W �

Œn�
is obtained from W �

Œn�1�
as follows: assume given a fibrant realization

W n 2 C of Vn and let D� 2 ChC be a left Reedy fibrant replacement of
W n˝�Sn�1 . Assume that we can realize the nth attaching map x@Vn

0
W Vn!Vn�1

of V� by a cochain map F W C �W �

Œn�1�
!D� in the category of coaugmented

cochain complexes (that is, defined in dimensions �1� k � n� 1). Note that
.W n˝� Sn�1/�1 D 0.

Let zF W UW �

Œn�1�
!ED� the corresponding map of restricted cosimplicial objects

as in Section 1.16, and set �W �

Œn�
WD Fib. zF / as in Section 1.10, take a pullback

(2.4)

�W �

Œn�
PB

��

// F �W �

Œn�

F`
��

W �

Œn�1�

�
// FUW �

Œn�1�
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as in (1.17), with W �

Œn�
a Reedy fibrant and cofibrant replacement (see Hirschhorn

[28, Section 15.3]) for �W n .
We start the process with W �

Œ0�
WD c.W 0/� .

(d) For reasons which will appear later, we sometimes require the chain map
F W C �W �

Œn�1�
!D� in step (c) to be a levelwise (ie left Reedy) cofibration. If

this is true for each n� 1, we say that the sequential realization W is cofibrant.

2.5 Understanding the passage from W �

Œn�1�
to W �

Œn�
We now give an explicit

description of the construction of W �

Œn�
from W �

Œn�1�
, also introducing some auxiliary

notation:

(i) What does a left Reedy fibrant replacement for W n˝� S n�1 look like? In
order for the coaugmented cochain complex D� in ChC to be left Reedy fibrant, the
structure map Dk�1! Ker.ık

D
/ (into the “k –cocycles” — not the same as ZkD� of

Definition 1.5) must be a fibration for each k . In addition, since .W n˝� Sn�1/k D 0

for k ¤ n� 1, Dk must be contractible.

It is natural for such a D� to be described by a downward induction, starting with
DnD0 and Dn�1DW n . Thus Ker.ın�1

D
/DW n , too, so Dn�2 must be a contractible

object equipped with a fibration to W n — ie it is a path object for W n , in the sense of
Quillen [32, Section I.2]. We could choose it to be the standard path object PW n of
Equation (A.3), but this may not be a good choice if we also want Fk W C kW �

Œn�1�
!Dk

to be a cofibration for each k , as in Definition 2.1(d). Thus we let ın�2
D
W Dn�2!Dn�1

be some fibration xp0W PW n!W n with PW n contractible.

At the .n�3/rd stage we see that Ker.ın�2
D

/ is the fiber �1W n of xp0 , and again
ın�3

D
W Dn�3 ! Dn�2 must be a fibration xp1W P�1W n ! �1W n (with P�1W n

contractible), followed by the inclusion N�1W �1W n ,! P�0W n .

Proceeding by induction, for each �1� j � n� 1 we obtain a fibration sequence

(2.6) �jC1W n N�
jC1

,��!P�j W n xpj

���j W n

in C , called the j th modified path-loop fibration, with P�j W n contractible. By
convention we set W n WD�0W n D P��1W n , with the identity map as

(2.7) N�0W �0W n D�!P��1W n:

Thus Dk D P�n�k�2W n for each �1� k � n� 1, and the differential ık
D
W Dk !

DkC1 is the composite

(2.8) P�n�k�2W n xp
n�k�2

����!�n�k�2W n N�
n�k�2

����!P�n�k�3W n:
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For later use we may (and shall) assume (see Step VIII in proof of Theorem A.11) that
for each 0� j � n� 1, (2.6) fits into a commutative diagram

(2.9)
�jC1W n

�jC1'

����

� � N�
jC1

// P�j W n

P�j'

����

xpj

// // �j W n

D

����

��j W n �
� �

// P�j W n
p
// // �j W n

in which the bottom sequence is the usual path-loop fibration for �j W n , and the
vertical maps are all trivial fibrations.

(ii) The map F W C �W �

Œn�1�
! D� and its fiber As in Definition 2.1(c), the nth

attaching map for V� is to be realized by a cochain map F W C �W �

Œn�1�!D� in the
category of coaugmented cochain complexes given by maps Fk W C kW �

Œn�1�
!Dk D

P�n�k�2W n for each �1� k � n� 1, so by Section 1.10 the restricted cosimplicial
object �W �

Œn�
D Fib. zF / is given by

(2.10) �W k
Œn� WDW k

Œn�1� �P�n�k�1W n

in dimension 0� k � n, while by (2.7) we have

(2.11) �W n
Œn� WDW n

Œn�1� �W n:

We denote the two structure maps for the product (2.10) by

(2.12)  k
Œn�W

�W k
Œn�!W k

Œn�1�; qk
Œn�W

�W k
Œn�! P�n�k�1W n;

respectively. By Section 1.10 we see that the coface maps zd i
k
W �W k

Œn�
! �W kC1

Œn�
are

determined by

(2.13) Fk
ı vk
ı k

Œn� D qkC1
Œn�
ı zd0

k ;

where vk W W k
Œn�1�

! C kW �

Œn�1�
is the structure map for (1.7). For i D 1 we have

(2.14) ık�1
D ı qk

Œn� D N�
n�k�1

ı xpn�k�1
ı qk
Œn� D qkC1

Œn�
ı zd1

k ;

while for i � 2 we have

(2.15) qkC1
Œn�
ı zd i

k D 0:

When k D n� 1 we have xp0 ı qn�1
Œn�
D qn

Œn�
ı zd1

n�1
, in accordance with (2.7).
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We note also that if the given W �

Œn�1�
is equipped with a coaugmentation "Œn�1�W Y !

W �

Œn�1�
, we also have a coaugmented version "Œn�W Y ! �W �

Œn�
for the restricted cosim-

plicial object �W �

Œn�
, which is defined in the same way by setting �W �1

Œn�1�
WD Y .

(iii) Making eW �

Œn�
into a full cosimplicial object W �

Œn�
Given the restricted cosim-

plicial object �W �

Œn�
obtained in step (ii), we first define a full cosimplicial object �W �

Œn�

by setting

(2.16) G k
WD

�
P�n�k�1W n if k � n;

� if k > n

(using (2.7)). We then let

(2.17) �W r
Œn� WD

�W r
Œn� �

Y
0<k<r

Y
0�i1<���<ik�r�1

G r�k

DW r
Œn�1� �

Y
0�k�r

Y
0�i1<���<ik�r

G r�k

be the construction denoted by cskn G� in (1.17). See Section 1.2 and (2.10) (and
compare (1.13) in the dual case).

The codegeneracy map st W �W rC1
Œn�

! �W r
Œn�

is defined into the factor G r�k of �W r
Œn�

indexed by the k –tuple I D .i1; : : : ; ik/ by projecting �W rC1
Œn�

onto the factor G r�k

indexed by the unique .kC1/–tuple J D .j1; : : : ; jkC1/ satisfying the cosimplicial
identity sI ı st D sJ . The coface maps of �W �

Œn�
are determined by those of �W �

Œn�
and

the cosimplicial identities, and we have a natural map of restricted cosimplicial objects
gW U �W �

Œn�
! �W �

Œn�
, which is a dimensionwise trivial fibration.

2.18 Remark �W �

Œn�
is obviously n–coskeletal. Moreover, it is Reedy fibrant, since

the natural map
y�r
W �W r

Œn�!M r �W �

Œn�

(cf Section 1.2) is just the product of �r W W r
Œn�1�

!M r W �

Œn�1�
(which is a fibration,

since W �

Œn�1�
is Reedy fibrant) with the projection onto the appropriate factors in (2.17)

(which is a fibration since all objects G k are fibrant). Moreover, the composites of

�W k
Œn�

gk

�� �W k
Œn�

 k
Œn�
���W k

Œn�1�

for each k fit together to define a map of cosimplicial objects 0�
Œn�
W �W �

Œn�
�W �

Œn�1�
,

which is a Reedy fibration (for the same reason).

Finally, we let hŒn�W W
�

Œn�
! �W �

Œn�
be a (functorial) Reedy cofibrant replacement (see

Hirschhorn [28, Section 15], and compare Bousfield and Kan [20, Section X.4.2]), so
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hŒn� is a trivial Reedy fibration, and we set �
Œn�
W W �

Œn�
!W �

Œn�1�
to be the composite

0�
Œn�
ı hŒn� — again a Reedy fibration. Thus the full cosimplicial object W �

Œn�
is Reedy

fibrant and cofibrant, and dimensionwise weakly equivalent to �W �

Œn�
. Since the latter is

n–coskeletal, we see that W �

Œn�
is n–coskeletal “up to homotopy”.

2.19 Lemma Let .C �; ı
C
/ be a cochain complex and .D�; ı

D
/ a left Reedy

fibrant .n�1/–truncated cochain complex as in Section 2.5(i) in a pointed model
category C , and let Zj C � WD Coker.ıj�1

C
/ with structure map wj W C j !Zj C � as

in Definition 1.5. Any cochain map Fj W C j !Dj defined for k � j < n induces a
unique map ak�1W Zk�1C �!�n�k�1W n with

(2.20) N�n�k�1
ı ak�1

ıwk�1
D Fk

ı ık�1
C ;

in the notation of (2.6) and (2.8).

Proof By assumption, we have the following solid commuting diagram:

(2.21)

C kC1 F kC1
// P�n�k�3W n D DkC1

�n�k�2W n

?�
N�n�k�2

OO

C k

ık
C

OO

F k
// P�n�k�2W n

xpn�k�2

OOOO

D Dk

ık
D

OO

Zk�1C �

xd0

cc

ak�1
// �n�k�1W n

?�
N�n�k�1

OO

0

dd

C k�1

wk�1

;;

a

44
ık�1

C

OO

F k�1

// P�n�k�1W n

xpn�k�1

OOOO

D Dk�1

ık�1
D

OO

Then

N�n�k�2
ı xpn�k�2

ıFk
ı ık�1

C D ık
D ıFk

ı ık�1
C D FkC1

ı ık
C ı ı

k�1
C D 0:

Since N�n�k�2 is a monomorphism, in fact xpn�k�2 ıFk ı ık�1
C
D 0, Therefore, since

(2.6) is a fibration sequence, Fk ı ık�1
C

factors through aW C k�1!�n�k�1W n as
indicated in (2.21). Moreover, since N�n�k�1ıaıık�2

C
DFkıık�1

C
ıık�2

C
D0 and N�n�k�1

is a monomorphism, too, the map a factors through ak�1W Zk�1C �!�n�k�1W n

as in (2.21), satisfying (2.20).
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We next note the following technical fact about Moore chain objects:

2.22 Lemma Let W � 2 C� be a Reedy cofibrant cosimplicial object over a model
category C as in Assumption 1.20, and B a homotopy group object in C . Then for any
Moore chain ˛ 2 CnŒW

�;B � for the simplicial group ŒW �;B �:

(a) ˛ can be realized by a map aW W n! B with a ı d i
n�1
D 0 for all 1 � i � n,

and thus induces a map xaW C nW �!B with xa ı vn D a.

(b) If ˛ is a Moore cycle, we can choose a nullhomotopy H W W n�1!PB�B Œ0;1�

for a ıd0
n�1

such that H ıd
j
n�2
D 0 for 1� j � n� 1, and thus induces a map

H W C nW �! PB with H ı vn DH .

Proof Since W � is Reedy cofibrant, the simplicial space U� Dmap�.W
�;B/ 2 sS�

is Reedy fibrant, so we have an isomorphism

(2.23) �?W �iCnU�! Cn�iU� for all i � 0

(see [20, Proposition X.6.3]). Thus we can represent ˛ 2 Cn�0U� by a map a 2 CnU� ,
which implies (i).

If ˛ is a cycle, then @n.˛/D Œa ı d0
n�1

� vanishes in �0Cn�1U� , so we have a nullho-
motopy H for a ı d0

n�1
in

PCn�1 map�.W
�;B/D Cn�1 map�.W

�;PB/�map�.W
n�1;PB/;

which implies (ii).

From the description in Section 2.5 we can actually deduce:

2.24 Proposition Any W �

Œn�
obtained from W �

Œn�1�
as in Definition 2.1(c) will satisfy

Definition 2.1(a)–(b), and the limit W � of (2.2) is a Reedy fibrant cosimplicial object
over C which realizes the given algebraic resolution V�!H�

‚
Y .

Proof In the setting of Definition 2.1, with C � D C �W �

Œn�1�
for Reedy cofibrant

W �

Œn�1�
, we can use Lemma 2.22(a) to represent the attaching map x@n

0
W Vn!Zn�1V�

for the CW resolution V� by a map Fn�1W C n�1W �

Œn�1�
!W n (see Step IV in the

proof of Theorem A.11 below). From (2.16) and (2.17), we then see that W �

Œn�
realizes

V� through simplicial dimension n.

Moreover, W � is as stated because the maps �Œn� restrict to trivial fibrations

�k
Œn�W W

k
Œn�!W k

Œn�1�

for each 0� k < n, so W k D holimn W k
Œn�

in C .
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2.25 Higher cohomology operations When Fk�1 also exists that makes (2.21)
commute, we have

(2.26) ak�1
ıwk�1

D xpn�k�1
ıFk�1;

so Fk�1 is a nullhomotopy for ak�1 ıwk�1 in the sense of Quillen [32, Section I.2].
Note that Lemma 2.19 also makes sense for k D n� 1, where Fn D 0.

If we choose Fn�1 as in the proof of Proposition 2.24, the map Fn�1 ı ın�2 , which
induces an�2 ıwn�2 , is nullhomotopic, with nullhomotopy Fn�2 . We can then think
of an�3 ıwn�3W C n�2!�1W n as the value of the secondary cohomology operation
corresponding to the diagram

(2.27)
C n�3

0

&&
ın�3

// C n�2

0

33
ın�2

// C n�1 F n�1
// W n

as in (0.2). Only W n is an R–GEM, but this suffices to let us think of each value
an�3 ı wn�3 of this Toda bracket in ŒC n�3; �W n� as a collection of cohomology
classes for C n�3 . This nevertheless qualifies as a higher cohomology operation as
described in the introduction, if we use a truncation of �C as our indexing category I.

By what we say above, if an�3 ıwn�3 � �— that is, the secondary operation corre-
sponding to (2.27) vanishes — then the choice of a nullhomotopy Fn�3 yields a value
an�4 ıwn�4W C n�4!�2W n for the corresponding third order operation, and so on.
This observation is the key to what we are doing in this paper.

2.28 Definition Let ‚ be an algebraic sketch, as in Remark 1.25, associated to
A � Obj C , so that by definition any B 2 ‚ is of the form B WD

Q
A2A

Q
i2IA

A

with each IA a finite indexing set (see (1.26)).

We then say that ‚ is allowable if the natural map

(2.29)
a

A2A

a
i2IA

H�‚A!H�‚B

is an isomorphism for any such B 2‚.

2.30 Remark If we write I WD
`

A2A IA and denote the copy of A indexed by
i 2 IA by Bi , we have B D

Q
i2I Bi . For any ‚–algebra � we then have, by
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Lemma 1.28 and (2.29),

(2.31)
Y
i2I

�fBig D

Y
i2I

Hom
‚–Alg.H

�
‚Bi ; �/

D Hom
‚–Alg

�a
i2I

H�‚Bi ; �

�
D Hom

‚–Alg.H
�
‚B ; �/:

2.32 Lemma If R is Fp or a field of characteristic 0 and � is any limit cardinal, the
FP–sketch ‚�

R
of Example 1.27 is allowable.

Proof Every B 2‚�
R

has the form B D
Q1

nD1

Q
In

K .Vi ; n/ for Vi 2R–Mod� and
finite indexing sets In . Then H�.B IR/D

`1
nD1

`
In

H�.K .Vi ; n/IR/ (see Blanc
and Sen [17, Lemma 4.17]).

We are now in a position to state our first important technical result:

2.33 Theorem Let ‚ be an allowable algebraic sketch in C and let V� be any CW
resolution of the realizable ‚–algebra H�

‚
Y . Then there is a cofibrant sequential

realization WD hW �

Œn�
; �W �

Œn�
in2N of V� for Y , with each W k

Œn�
in ‚.

We defer the proof to the appendix, where we actually prove a more general result
(which is needed elsewhere).

2.34 Remark If we want to use the allowability of ‚�
R

in Lemma 2.32 for Theorem
2.33, the choice of the cardinal � may depend on the size of graded R–vector space
H�.Y IR/ (see Blanc and Sen [17, Section 3]). However, in the most commonly
encountered case, H�.Y IR/ will be of finite type, and we may choose the CW
resolution V� to be finite type in each simplicial dimension, too. In this case we can
make do with the original ‚R D‚

!
R

of Example 1.27.

3 Comparing cosimplicial resolutions

Cosimplicial resolutions of the type constructed in Section 2 play a central role in our
theory of higher cohomology operations, but they depend on many particular choices.
In this section we shall show how any two such cosimplicial objects are related by a
zigzag of maps of a particularly simple form.

Although many of the results hold more generally, from now on we restrict attention to
the algebraic sketch ‚R for R either Fp or a field of characteristic 0 (see Example 1.27),
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with CD S� . This allows us to assume for convenience that all the objects in each stage
of our sequential realizations are simplicial R–modules (though the maps between
them need not be strict simplicial homomorphisms).

We shall also assume from here on that all spaces are connected. The modifications
needed for the nonconnected case should be clear.

We first note the following general facts about model categories:

3.1 Lemma Let X and Y be two weakly equivalent fibrant and cofibrant objects in a
simplicial model category C .

(a) There is a diagram of weak equivalences

(3.2)

Zs

��

t

��

X
h

88

f
// Y

j

ff

g

jj

where h WD f 0 ı i0 , s ı j D g , t ı h D f , s ı h D IdX , t ı j D IdY and the
notation f 0; i0 is as in the proof.

(b) There are maps X qY
F
�!Z

G
�!X �Y , with F a cofibration which is a trivial

cofibration on each summand, G a fibration which is a trivial fibration onto each
factor, and the induced maps X !X and Y ! Y are identities.

Proof (a) By Quillen [32, Section I.1]) we have homotopy equivalences f W X ! Y

and gW Y !X with a homotopy H W g ıf � IdX fitting into a commutative diagram

(3.3)

X

PO

� � i1
//

f
��

D

��

X ˝�Œ1�

f 0

��
H

��

p

((

X?
_i0

oo

D

��

Y
� � j

//

g

++

D

55

Z

s

$$

t

++

X
f

  

X Y

with all maps weak equivalences, where Z is the pushout, the maps i0 and i1 are
induced by the inclusions �Œ0� ,!�Œ1� and p is induced by �Œ1���Œ0�.
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(b) Choose a weak equivalence f W X ! Y , and factor it as X k
�! yZ `

�!Y , with k

a trivial cofibration and ` a trivial fibration. By the LLP and fibrancy of X we have
a retraction r W yZ ! X for k , and by RLP and cofibrancy of Y we have a section
uW Y ! yZ for `, both weak equivalences. Set

� WD .IdX > .r ıu//? .f > IdY /W X qY !X �Y:

Factor k ? uW X q Y ! yZ as X q Y
k0?u0
��!Z0

p
�! yZ (a cofibration followed by a

trivial fibration), and r>`W yZ!X �Y as yZ i
�!Z00 r

0>`0
��!X �Y (a trivial cofibration

followed by a fibration). Finally, factor i ıpW Z0 '�!Z00 as Z0 e
�!Z

q
�!Z0 (a trivial

cofibration followed by a trivial fibration):

(3.4)

X

Id

��

� � inc
//

k

' ++

X qY

�

��

k?u

&&

� � k0?u0
//

F

��

Z0

p

'

yyyy
iıp '

��

� s

e

'

%%
yZ � s

i

'
%%r>`xx

'

r

ss

Z
q

'yyyy

G

ee
X X �Y

proj
oooo Z00

r 0>`0

'
oooo

Then F WD e ı .k 0?u0/ is a cofibration, G WD .r 0> `0/ıq is a fibration, and the claim
follows by tracking the weak equivalences in (3.4) (and similarly for Y ).

3.5 Definition Given two CW resolutions "W V� ! � and 0"W 0V� ! � of a ‚R –
algebra � , with CW bases .Vn/n2N and .0V n/n2N , an algebraic comparison map
‰W V�!

0V� is a system

(3.6) ‰ D h'; �; .x'n; x�n/n2Ni;

where 'W V�! 0V� is a split monic weak equivalence of simplicial ‚R –algebras with
retraction �W 0V�!V� (with 0"ı x'0D "), induced by inclusions of coproduct summands
x'nW Vn ,!

0V n with retractions x�n for each n� 0.

3.7 Lemma Any two CW resolutions ".0/W V .0/
�
!� and ".1/W V .1/

�
!� of the same

‚R –algebra � have a common “algebraic h–cobordism” CW resolution "W V�! � ,
with algebraic comparison maps ‰.i/W V .i/

�
! V� for i D 0; 1.
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Proof Let .V .i/
n /n2N be CW bases for V .i/

�
for i D 0; 1. Since X D V .0/

�
and

Y D V .1/
�

are fibrant and cofibrant in s‚R–Alg (cf Proposition 1.29), they have
homotopy equivalences f W X ! Y and gW Y ! X as in Lemma 3.1(a). We make
explicit the construction of the lemma by producing a CW basis .Vn/n2N for Z D V�

in (3.3), together with inclusions of coproduct summands x'n
.i/
W V

.i/
n ,! Vn for each

n� 0 as in Definition 3.5.

If we write e0; e1 2 �Œ1�0 and � 2 �Œ1�1 for the nondegenerate simplices, we have
Vn D

0V nqLnV� , with

(3.8) 0V n WD V .0/
n ˝ .sn�1e0/q

n�1a
kD0

ŒV .0/
n ˝ .sn�1

yk
�/�q ŒV .1/

n ˝ .sn�1e1/�

q

n�1a
kD0

ŒskV
.0/
n�1
˝ .sn�1

yk
�/�:

Here sn is the iterated degeneracy map sn : : : s0 and sn
yk
WD sn : : : skC1ysksk�1 : : : s0 .

The face maps are calculated as usual on each factor of a˝ b , except that

(3.9) dn.sn�1u˝ .sn�2�//D fn�1u˝ .sn�2e1/ 2 ŒV
.1/
n�1
˝ .sn�2e1/�

for kD n�1 in the second line of (3.8), by (3.3), where f W V .0/
�
!V .1/

�
is the chosen

homotopy equivalence.

Note that 0V n is not a CW basis object for V� , since the summands in the second line
of (3.8) always have at least two nonvanishing face maps.

However, for any v 2 0V n we can define vŒ0� WD v and vŒkC1� WD vŒk��sn�k�1dn�kv
Œk�

by induction on k , and find that div
Œk�D 0 for n�k < i � n, so vŒn� is a Moore chain.

Note that for v 2 U in summands U on the first line of (3.8) we have simply v D vŒn� .

Explicitly, we replace each generator v D sku˝ .sn�1
yk

�/ of a summand in the second
line of (3.8) for 0V n by

(3.10) vŒn�D

8̂̂<̂
:̂

kP
iD0

.�1/i Œsk�iu�˝ Œ.s
n�1
yk

�/� .sn�1
ykC1
�/� if k < n� 1;

nP
iD1

.�1/i Œsn�ifn�1u˝ .sn�2e1/� sn�iu˝ .s
n�2�/� if k D n� 1:

Thus vŒn� always has the form vC
Pk

iD1 ui , with the elements ui all degenerate.

The ‚R –algebra retraction �0W Vn!
0V n onto the summand 0V n therefore takes vŒn�

to v . This implies that if fvigi2I are generators of 0V n , the new elements fvŒn�i gi2I
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still generate a free sub-‚R –algebra of Vn , because any relation of the form

 .v
Œn�
1
; : : : ; v

Œn�

k
/D 0

in Vn , where  is some primary R–cohomology operation, implies that also

0D �0. .v
Œn�
1
; : : : ; v

Œn�

k
//D  .�0.v

Œn�
1
/; : : : ; �0.v

Œn�

k
//D  .v1; : : : ; vk/;

which can hold only if  �0 since the elements vi are generators of a free ‚R –algebra.

Therefore, if we write Vn for the sub-‚R –algebra of Vn generated by all elements
vŒn� as v varies over a set of generators for (each summand of) 0V n , we still have a
coproduct of free ‚R –algebras VnD VnqLnV� , where Vn now serves as an nth CW
basis object for V� .

Moreover, we still have inclusions of coproduct summands x'n
.i/
W V

.i/
n ,! Vn inducing

split trivial cofibrations of simplicial ‚R –algebras '.i/W V .i/
�
! V� for i D 0; 1. We

can use these to further write Vn WD U nqV
.0/
n qV

.1/
n .

3.11 Definition Given an algebraic comparison map ‰ D h'; �; .x'n; x�n/n2Ni be-
tween two CW resolutions "W V�! � and 0"W 0V�! � of a realizable ‚R –algebra �
(see Definition 3.5), and sequential realizations W and 0W of V� and 0V� , respectively,
a comparison map ˆW W! 0W over ‰ is a system

(3.12) ˆD heŒn�; rŒn�; .Pek
n/

n�1
kD0; . Ne

k
n /

n�1
kD0; .Pr k

n /
n�1
kD0; . Nr

k
n /

n�1
kD0in2N

consisting of:

(i) Split fibrations of the modified path-loop fibrations of (2.6) fitting into a diagram

(3.13)
�kC10W

n

Ne
kC1
n����

� �
0N�kC1

// P�k 0W
n

Pek
n����

0xpk

// // �k 0W
n

Nek
n����

�kC1W n

Nr
kC1
n

AA

� � N�kC1
// P�kW n

Pr k
n

AA

xpk

// // �kW n

Nr k
n

AA

for each 0� k < n, in which both upward and downward squares commute, as
well as

(3.14) Pek
n ıPr k

n D Id and Nek
n ı Nr

k
n D Id for all 0� k < n:

We require that for all 0� k < n, the maps Nek
n realize �k x'n and the maps Nr k

n

realize �k x�n .
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(ii) A cosimplicial map eŒn�W
0W
�

Œn�!W �

Œn�
realizing 'W V�! 0V� through simplicial

dimension n, with section rŒn�W W
�

Œn�
! 0W

�

Œn� realizing � , such that for each
0� k < n, both squares in the following diagram commute:

(3.15)

C k.0W
�

Œn�1�/

0F k

��

C k .ek
Œn�1�

/

// // C k.W �

Œn�1�
/

F k

��

C k.0W
�

Œn�1�/

0F k

��

C k.W �

Œn�1�
/

F k

��

? _
C k .rk

Œn�1�
/

oo

P�n�k�20W
n

Pen�k�2
n

// // P�n�k�2W n P�n�k�20W
n

P�n�k�2W n? _

Pr n�k�2
n

oo

When each map Nek
n W �

k 0W
n � �kW n and ek

Œn�
W 0W

k
Œn�� W k

Œn�
is a trivial fibra-

tion (and thus each map Nr k
n W �

kW n ,!�k 0W
n and rk

Œn�
W 0W

k
Œn� ,!W k

Œn�
is a trivial

cofibration in S� ), we say that ˆ is a trivial comparison map.

If we only have

(3.16) ˆD
˝
eŒn�; rŒn�; .Pek

n/
n�1
kD0; . Ne

k
n /

n�1
kD0; .Pr k

n /
n�1
kD0; . Nr

k
n /

n�1
kD0

˛N
nD0

as above, we say that ˆW W! 0W is an N –stage comparison map over ‰ .

3.17 Remark If we let N|k
Œn�
W �kXn ,!�k 0W

n denote the inclusion of the fiber of
Nek
n W �

k 0W
n� �kW n , we see that the splitting Nr k

n W �
kW n ,! �k 0W

n induces a
retraction Nsk

Œn�
W �k 0W

n��kXn for N|k
Œn�

, defined x 7! x� Nr k
n Ne

k
n .x/, and thus a map

(3.18) �k 0W
n Ns

k
Œn�
>Nek

n

'
����!�kXn ��kW n;

which is a weak equivalence for each 0 � k < n (using the abelian group structure
on all spaces). As we shall see, in many cases we can assume (3.18) is actually an
equality.

3.19 Definition A zigzag of comparison maps between two sequential realizations
W.0/ and W.1/ of a realizable ‚R –algebra � is a (possibly infinite) sequence of
cospans of comparison maps starting from W.0/ and ending at W.1/ , which is locally
finite in the sense that for each n� 0, only finitely many of the comparison maps in
the zigzag between the nth stages .W �

Œn�
/.0/ and .W �

Œn�
/.1/ are not the identity map.

We say that two abstract sequential realizations W.0/ and W.1/ (of arbitrary spaces
Y .0/ and Y .1/ ) are weakly equivalent if they are related by a zigzag of comparison
maps.
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Similarly, if only the nth stages .W �

Œn�
/.0/ and .W �

Œn�
/.1/ of two such sequential realiza-

tions W.0/ and W.1/ are related by a zigzag of comparison maps, we say that W.0/

and W.1/ are n–equivalent, or that .W �

Œn�
/.0/ and .W �

Œn�
/.1/ are weakly equivalent.

3.20 Theorem Any two cofibrant sequential realizations W.0/ and W.1/ of Y are
weakly equivalent.

Proof We prove the theorem in two main steps:

(i) Different algebraic resolutions We first show that, given an algebraic compari-
son map ‰W V�! 0V� for Y and a cofibrant sequential realization W of V� , there is a
cofibrant sequential realization 0W of 0V� with a comparison map ˆW W! 0W over ‰ ,
constructed (with the maps eŒn�W

0W
�

Œn�!W �

Œn�
and sections rŒn�W W

�

Œn�
! 0W

�

Œn� ) by
induction on n� 0:

At the nth stage, we may assume by Lemma 3.1 that eŒn�1� is a fibration and rŒn�1� is a
cofibration in the resolution model category ChC�n , so in particular e

j

Œn�1�
is a fibration

and r
j

Œn�1�
a cofibration for 0� j � n� 1 (see Bousfield [19, Section 3.2]).

Since Vn is a coproduct summand in 0V n D Vnq U n , the map x'nW Vn ,!
0V n is

simply the inclusion, while x�nW
0V n ,! Vn has the form Id? � . If we realize Vn by

W n and U n by Xn then 0V n is realized by 0�W n WDXn�W n . By Definition 2.1, the
nth stage of W is determined by the choice of left Reedy fibrant replacement D� of
W n˝� Sn�1 , equipped with a left Reedy cofibration F W C �W �

Œn�1�
!D� realizing

the given attaching map x@n
0
W Vn! Cn�1V� .

If K� is similarly a left Reedy fibrant replacement for Xn˝� Sn�1 , the attaching
map 0x@n

0
W 0V n! Cn�1

0V� has the form x@n
0
? � , and we may realize � W U n! Cn�1

0V�

by T W C � 0W
�

Œn�1�!K� (not a cofibration) and �W U n! Vn by ZW D�!K� .

Consider the following diagram in the left Reedy model category of n–truncated
cochain complexes over C , in which P� is the pushout of the upper left square and
the map p with section r is induced by C �rŒn�1� :

(3.21)

C �W �

Œn�1�

PO

� _

F
��

� �

C�rŒn�1�

// C �0W
�

Œn�1�
� _

j

��

C�eŒn�1�

ss

T

  

D�

Z

77

� � r
// P�

p

jj
S

// K�
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Since, by Definition 3.5, Cn�1� ı
0x@n

0
Dx@n

0
ı x�n , also Cn�1� ı � Dx@

n
0
ı x�njU n

Dx@n
0
ı � ,

so the outer square in (3.21) commutes up to homotopy. Since F is a cofibration, we
may change Z up to homotopy to make it commute on the nose by Blanc, Johnson
and Turner [11, Lemma 5.11]. The maps Z and T then induce S as indicated. This
allows us to extend (3.21) to a commuting diagram

(3.22)

C �W �

Œn�1�
� _

F
��

� �

C�rŒn�1�

// C �0W
�

Œn�1�
� _

j

��

C�eŒn�1�

ss

T>.pıj/

""

D�
� � r

// P�

p

jj

S>p
// K� �D�

proj

gg

We now factor S >p as a cofibration G0W P� ,!E� followed by a trivial fibration
t W E��K��D� (in the left Reedy model structure on truncated cochain complexes).
If we set GW C � 0W

�

Œn�1�!E� equal to G0 ı j , Nr W E�!D� equal to proj ı t , and
NeW D�! E� equal to the cofibration G0 ı e , we see that E� is a left Reedy fibrant
replacement for 0�W n˝�Sn�1 (since K��D� is a product of fibrant objects), G is a
left Reedy cofibration, and they fit into a diagram

(3.23)
C �W �

Œn�1�
� _

F
��

� �

C�rŒn�1�

// C �0W
�

Œn�1�
� _

G
��

C�eŒn�1�

ss

D�
� � Ne

// E�

Nr
ff

in which both the left and right squares commute, and Nr ı Ne D Id.

Applying the functorial procedure of Definition 2.1(c) to the two vertical arrows in
(3.23) again, we obtain n–stage comparison map ˆW W! 0W extending the given
.n�1/–stage comparison map.

(ii) Reducing to the case of one algebraic resolution Assume W.0/ and W.1/ are
associated respectively to the two CW resolutions V .0/

�
and V .1/

�
of the ‚R –algebra

� DH�.Y IR/, with CW bases .V .i/
n /n2N for i D 0; 1.

By Lemma 3.7, there is a third CW resolution 0"W 0V�! � , with CW basis .0V n/n2N ,
equipped with algebraic comparison maps ‰.i/W V .i/

�
! 0V� for i D 0; 1. By step (i),
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there are then two sequential realizations 0W.i/ of 0V�!� , for i D 0; 1, each equipped
with a comparison map ‰.i/W W.i/! 0W.i/ over ‰.i/ . Thus we are reduced to dealing
with the case where the two (cofibrant) sequential realizations W.0/ and W.1/ (ie the
0W.i/ just constructed) are of the same CW resolution V�!� , with CW basis .Vn/n2N .
We construct a zigzag of comparison maps between them, by induction on n� 0:

We assume by induction the existence of a cospan of .n�1/–stage trivial comparison
maps ˆ.i/W W.i/!W for i D 0; 1 over IdV� . For nD 0 this is simply

W
�.0/

Œ�1�
D c.Y /� DW

�.1/

Œ�1�
:

By Definition 2.1(c), the nth stage for W.i/ is determined by the choice of left Reedy
fibrant replacements D�

.i/
of W n˝�Sn�1 (where W n is some realization of the nth al-

gebraic CW basis object Vn ), together with left Reedy cofibrations F .i/W C �W
�.i/

Œn�1�
!

D�
.i/

for i D 0; 1 realizing the given attaching map x@n
0
W Vn! Cn�1V� .

For i D 0; 1, consider the following diagram in the left Reedy model category ChC�n ,
in which P� is again the pushout of the upper left square

(3.24)

C �W
�.i/

Œn�1�

PO

� _

F.i/

��

� �

C�rŒn�1�

'
// C �0W

�

Œn�1�
� _

j.i/

��

C�eŒn�1�

ss

G.i/

''

D�
.i/
� � r.i/

'
// P�
.i/

p.i/
gg

� � S.i/

'
// 0E�

.i/

�.i/

'

ee

// // �

The retraction p.i/ for the trivial cofibration r.i/ is induced by the retraction C �e
.i/

Œn�1�

for the trivial cofibration C �r
.i/

Œn�1�
, so p.i/ is a weak equivalence. Factor p.i/ as a

trivial cofibration k.i/W P
�
.i/
! 0E�

.i/
followed by a fibration �.i/W 0E�.i/!D�

.i/
(also a

weak equivalence), so 0E�
.i/

is in particular a fibrant replacement for P�
.i/

since 0E�
.i/

is fibrant.

Now set G.i/ WD S.i/ ı j.i/W C
� 0W

�

Œn�1� ,!
0E�
.i/

(a cofibration). Because the maps
�i ıG.i/DF.i/ıC

�eŒn�1� realize the same algebraic attaching map �W Vn˝�Sn�1!

C �V� for i D 0; 1, they are weakly equivalent in the arrow category of ChC�n�1 . Thus
G.0/ and G.1/ are weakly equivalent fibrant and cofibrant objects in the under category
C � 0W

�

Œn�1�nChC�n�1 with its standard model category structure (see Hirschhorn [28,
Theorem 7.6.5(a)]). We can therefore apply Lemma 3.1(b) to obtain an intermediate
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object G fitting into the following diagram, in which all four triangles commute, and
s.i/ ıf.i/ D Id for i D 0; 1:

(3.25)

C �0W
�

Œn�1�
� _

G

��

iIG.0/

vv

� u
G.1/

((
0E�
.0/

��

f.0/

'

// 0E�

s.1/

66

s.0/

hh

0E�
.1/

_?

f.1/

'

oo

Again applying the functors of Definition 2.1(c) to all three downward arrows of (3.25)
yields a new n–stage sequential realization 0W (corresponding to GW C �W �

Œn�1�
,! 0E� )

with two new n–stage trivial comparison maps 0ˆ.i/W 0W.i/! 0W for i D 0; 1.

The two composites

(3.26) W.0/
ˆ.0/

// 0W.0/
0ˆ.0/

// 0W 0W.1/
0ˆ.1/
oo W.1/

ˆ.1/

oo

then yield the required cospan of n–stage comparison maps.

4 Higher cohomology operations

The notion of secondary and higher cohomology operations has a long history in
homotopy theory, going back to the 1950s, but there is no completely satisfactory
general theory of such operations. Here we follow the point of view taken in Blanc
and Markl [15] and Blanc, Johnson and Turner [12], where they are subsumed under
the notion of general pointed higher homotopy operations.

We want to think of a cofibrant sequential realization W for a space Y as providing a
template for an infinite sequence of operations of order n for nD 2; 3; : : : , potentially
acting on any space Z with H�.Z IR/ (abstractly) isomorphic to H�.Y IR/. The
operation of order n is defined only when specific choices have been made inductively
for all lower order operations in such a way that they all vanish.

The sequence of such choices is called a “strand” of the higher cohomology operation
associated to the given sequential realization W, and the corresponding “system of
higher cohomology operations” will be an equivalence class of strands under comparison
maps.
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4.1 Definition Let � DH�.Y IR/ be the ‚R –algebra associated to a space Y , and
"W V� ! � a CW resolution with CW basis .Vn/n2N . Assume we are also given
initial data consisting of a sequential realization WD hW �

Œn�
; �W �

Œn�
in2N of V� , and an

isomorphism of ‚R –algebras # W �!H�.Z IR/ for some space Z .

An n–strand for 0 � n �1 SŒn� D ."Œ0�; "Œ1�; : : : ; "Œn�/ for .W;Z ; #/ consists of a
compatible collection of coaugmentations "Œk�W Z !W �

Œk�
for k D 0; : : : ; n realizing

# ı "W V� ! H�.Z IR/ through simplicial dimension n. Compatibility means that
"Œk�1�D �Œk� ı"Œk� (cf Definition 2.1(c)). In particular, an 1–strand for .W;Z ; #/ is
an infinite sequence SŒ1� WD ."Œ0�; : : : ; "Œn�; : : : / of such compatible coaugmentations.

Given an .n�1/–strand SŒn�1� for .W;Z ; #/, consider the composite � of

Z
"Œn�1�
���!W 0

Œn�1�

F 0
Œn�1�
���!P�n�2W n xp

n�2

��!�n�2W n N�
n�2

��!P�n�3W n;

which by (2.14) represents the component

q2
Œn�1� ı d1

ı d0
ı "Œn�1�

of the iterated coface map from Z into P�n�3W n . As in Lemma 2.19, since

d1
ı d0
ı "Œn�1� D d2

ı d1
ı "Œn�1�

and q2
Œn�1�

ıd2D 0 by (2.15), we see that � is the zero map. Since N�n�2 is monic, this
means that the composite

xpn�2
ıF0

Œn�1� ı "Œn�1�

is already zero, so F0
Œn�1�

ı "Œn�1� factors through the fiber �n�1W n of xpn�2 . We
denote the resulting map by

a�1
Œn�1�W Z !�n�1W n;

with

(4.2) N�n�1
ı a�1

Œn�1� D F0
Œn�1� ı "Œn�1�;

as in (2.20).

Note that # induces an isomorphism ŒZ ; �n�1W n�Š �f�n�1W ng so the homotopy
class Œa�1

Œn�1�
� may be identified with an element

(4.3) Val.SŒn�1�/ 2 �f�
n�1W ng Š �f�n�1W n

g;

called the value of the .n�1/–strand SŒn�1� .
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4.4 Remark We do not need the full sequential realization W to define Val.SŒn�/,
but only the restricted cosimplicial set �W �

Œn�
of its .n�1/st stage W �

Œn�1�
. Thus a

0–strand is completely determined by a choice of a realization "W Z ! W 0
Œ0�

of
# ı "W V0!H�.Z IR/. Such an " always exists, and is unique up to homotopy.

Note also that Definition 4.1 can be stated purely in the language of ‚R –mapping
algebras — see Baues and Blanc [2] and the appendix below.

4.5 Lemma Given an .n�1/–strand SŒn�1� D ."Œ0�; "Œ1�; : : : ; "Œn�1�/ for .W;Z ; #/,
the coaugmentation "Œn�1�W Z !W �

Œn�1�
extends to a coaugmentation "Œn�W Z !W �

Œn�

if and only if Val.SŒn�1�/D 0 in �f�n�1W ng.

Proof If the value is zero, we can choose a nullhomotopy F�1
Œn�
W Z ! P�n�1W n

for a�1
Œn�1�

, (in the sense of Quillen [32, Section I.2]), with xpn�1 ıF�1
Œn�
D a�1

Œn�1�
. This

extends "Œn�1� to a coaugmentation z"Œn�W Z ! �W 0
Œn�

as in the proof of Theorem A.11,
which also shows how to extend z"Œn� to a coaugmentation for �W �

Œn�
, and thus (after

making it Reedy cofibrant) for W �

Œn�
.

Conversely, since W 0
Œn�
D �W 0

Œn�
D W 0

Œn�1�
� P�n�1W n by (2.10) and step (iii) of

Section 2.5, given an extension "Œn�W Z !W 0
Œn�

of "Œn�1� , we can compose it with the
projection q0

Œn�
W �W 0

Œn�
! P�n�1W n to obtain a nullhomotopy F�1

Œn�
for a�1

Œn�1�
.

4.6 Correspondence of strands Note that if ‰W V�! 0V� is an algebraic comparison
map between two CW resolutions for a ‚R –algebra � , as in (3.6), the mutually inverse
weak equivalences 'W V�! 0V� and �W 0V�!V� induce mutually inverse isomorphisms
of ‚R –algebras '#W �0V� Š � Š �0

0V� W�# .

On the other hand, if ˆW W! 0W is an n–stage comparison map between two sequential
realizations over ‰ , as in (3.16), then . Nr n�1/�W �f�

n�1W ng ,! �f�n�10W ng is just
a split inclusion, with retraction . Nen�1/�W �f�

n�10W ng� �f�n�1W ng.

Let # W � Š H�.Z IR/ be an isomorphism of ‚R –algebras, and let SŒn� and 0SŒn�
be two n–strands for the initial data .W;Z ; #/ and .0W;Z ; #/, respectively. If
ˆ D

˝
eŒn�; rŒn�; .Pek

n/
n�1
kD0

; . Nek
n /

n�1
kD0

; .Pr k
n /

n�1
kD0

; . Nr k
n /

n�1
kD0

˛N
nD0

is an n–stage compari-
son map as above, we write 0SŒn�D r #.SŒn�/ if 0"Œk�D r0

Œk�
ı"Œk� for each 0� k � n, and

SŒn� D e#.0SŒn�/ if "Œk� D e0
Œk�
ı 0"Œk� for each 0� k � n.

From (3.13), (3.15), and (4.2) we see that

(4.7) Val.r #.SŒn�//D Nr n
� .Val.SŒn�// and Val.e#.0SŒn�//D Nen

�.Val.0SŒn�//:
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Therefore, given an n–stage comparison map ˆW W! 0W as above, an n–strand SŒn�
for W and an n–strand 0SŒn� for 0W, we see that:

4.8 (a) Val.SŒn�/D 0 if and only if Val.r #.SŒn�//D 0.

(b) If Val.0SŒn�/D 0 then Val.e#.0SŒn�//D 0, but not necessarily conversely.

This explains the need for the following:

4.9 Definition Given spaces Y and Z with # W H�.Y IR/ Š�!H�.Z IR/, we define
two equivalence relations � and � on n–strands for Z (with respect to various
sequential realizations):

The weak equivalence relation of strands � is generated by e#.0SŒn�/ � 0SŒn� for any
n–strand 0SŒn� for .0W;Z ; #/ and any comparison map ˆW W! 0W. We denote the
corresponding equivalence class by ŒSŒn��.

The strong equivalence relation of strands � is generated by the relation e#.0SŒn�/� 0SŒn�
for any n–strand 0SŒn� for .0W;Z ; #/ and any comparison map ˆW W! 0W satisfying

(4.10) .Nsn
ŒnC1�/#.Val.0SŒn�//D 0;

in the notation of Remark 3.17. We denote strong equivalence classes by ŒŒSŒn���.

4.11 Remark Clearly SŒn�� 0SŒn� implies that SŒn� � 0SŒn� , and both notions coincide
if the comparison map ˆW W! 0W is trivial — that is, if in the underlying algebraic
comparison map ‰ , V� and 0V� have isomorphic CW bases.

Also SŒn� � r #.SŒn�/ (and thus SŒn� � r #.SŒn�/) for any comparison map ˆW W! 0W,
since e#r #.SŒn�/D SŒn� and .Nsn

ŒnC1�
/#
�
Val.r #.SŒn�//

�
D .Nsn

ŒnC1�
/#. Nr

n/�.Val.SŒn�//D 0

by (4.7) and (3.18).

4.12 Lemma When SŒn� � 0SŒn� , Val.SŒn�/D 0 if and only if Val.0SŒn�/D 0.

Proof This follows from (4.7), since by (4.10) we see that Val.0SŒn�/2�f�n0W nC1g is
uniquely determined by its image Nen

�.Val.0SŒn�// under the projection in �f�nW nC1g.

4.13 Definition Given a space Y with � WD H�.Y IR/, we want to think of each
sequential realization W for Y as a template for a countable sequence hhY ii D
.hhY iin/

1
nD2

of higher operations, where for each n � 2, we define the universal
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nth order cohomology operation hhY iin associated to the space Y to be the function
that assigns to every .n�1/–strand SŒn�1� for .W;Z ; #/ the class

hhY iin.SŒn�1�/ WD Val.SŒn�1�/ 2 �f�
n�1W n

g:

We say that the operation hhY iin vanishes for Z if there is a cofibrant sequential
realization W and an .n�1/–strand SŒn�1� for .W;Z ; #/ such that hhY iin.SŒn�1�/D0.
By Lemma 4.12, this notion of the vanishing depends only the strong equivalence
classes ŒŒSŒn�1��� of the strand.

4.14 Definition Given spaces Y and Z with # W H�.Y IR/ Š�!H�.Z IR/ and a
sequential realization W of Y , we say that hhY ii vanishes coherently for .W;Z ; #/ if
there is an 1–strand SŒ1� for W as in Definition 4.1; that is, for each n� 2, we have
a given .n�1/–strand SŒn�1� for .W;Z ; #/ such that Val.SŒn�1�/D 0, which extends
to the next n–strand SŒn� using Lemma 4.5.

4.15 Example For any sequential realization W of a space Y , the sequence hhY ii
vanishes coherently for .W;Y ; Id�/, since then we have a given coaugmentation
"W Y !W � , which we can then project to each W �

Œn�
(see Proposition 2.24) to yield

"Œn� showing that Val.SŒn�1�/ D 0 for the corresponding .n�1/–strand SŒn�1� , by
Lemma 4.5.

4.16 Remark A priori, each individual strand SŒn�1� has a different template for
hhY ii— namely, the restricted cosimplicial set �W �

Œn�
of the .n�1/st stage W �

Œn�1�
of W.

However, the following result, which follows from Theorem 3.20, shows that we can
in fact use any one cofibrant sequential realization to calculate hhY iin :

4.17 Key Lemma Given Y and # W H�.Y IR/ Š�! H�.Z IR/ as above, hhY iin
vanishes for Z if and only if for every n–stage cofibrant sequential realization W of Y ,
there is an .n�1/–strand SŒn�1� for .W;Z ; #/ such that Val.SŒn�1�/D 0.

Proof By definition, hhY iin vanishes for Z if there is some cofibrant n–stage se-
quential realization 0W of Y and an .n�1/–strand S 0

Œn�1�
for .0W;Z ; #/ such that

Val.S 0
Œn�1�

/D 0. By Theorem 3.20 we know that there is a finite zigzag of cospans of
comparison maps connecting 0W to W, say

0ˆ.1/W W
.0/
D
0W!W.1/; 0ˆ.2/W W

.2/
!W.1/; 0ˆ.3/W W

.2/
!W.3/;
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and so on until 0ˆ.N /W W.N�1/ !W.N / DW. If 0ˆ.1/ D heŒk�; rŒk�; : : : inkD0
as in

(3.16), we set S.1/
Œn�1�

WD r #.S 0
Œn�1�

/ (an .n�1/–strand for W.1/ ), and see from (4.7) that
Val.S.1/

Œn�1�
/D 0. Similarly, if 0ˆ.2/D h0eŒk�; 0rŒk�; : : : inkD0

we set S.2/
Œn�1�

WD 0e#.S.1/
Œn�1�

/

(an .n�1/–strand for W.2/ ), and again see from (4.7) that Val.S.2/
Œn�1�

/D 0. Continuing
in this way we finally obtain an .n�1/–strand SŒn�1� D S.N /

Œn�1�
for W.N / DW with

Val.SŒn�1�/D 0, as required.

The converse follows from the fact that H�.Y IR/ has at least one CW resolution by
Remark 1.31, and thus there is at least one cofibrant sequential realization for Y by
Theorem 2.33.

Clearly, the .n�1/–strands S 0
Œn�1�

and SŒn�1� are weakly equivalent. However, they
are not necessarily strongly equivalent, since there is no reason for (4.10) to hold for
the even-numbered comparison maps above 0ˆ.2/ , 0ˆ.4/ , and so on.

4.18 Theorem For R either Fp or a field of characteristic 0, let Y and Z be R–good
spaces with isomorphic ‚R –algebras. Then the following are equivalent:

(a) The system of higher cohomology operations hhY ii vanishes coherently for
.W;Z ; #/ for some cofibrant sequential realization W of Y and some # .

(b) hhY ii vanishes coherently for every cofibrant sequential realization of Y .

(c) Y and Z are R–equivalent.

Proof (a)() (b) This is by Key Lemma 4.17.

(a)D) (c) Assume that hhY ii vanishes coherently — that is, there is an 1–strand
SŒ1� for some .W;Z ; #/ (where W need not be cofibrant), and thus coaugmentations
"Œn�W Z!W �

Œn�
for all n�0. These fit together to define a coaugmentation "W Z!W �

for W � WD holim W �

Œn�
, which induces an isomorphism

H�.Tot W �
IR/!H�.Z IR/:

Since Y is R–good, it is R–equivalent to the total space Tot W � ' yLGY (see
Section 1.22), and thus the map f W Z ! Tot W � induced by the coaugmentation
" realizes # , so Y and Z are related by a cospan of R–equivalences.

(c)D) (a) Conversely, if Y and Z are R–equivalent, we have a zigzag of R–
equivalences from Y to Z inducing an isomorphism of ‚R –algebras # W H�.Y IR/!
H�.Z IR/, so it suffices to consider the following two special cases:
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(i) Given a R–equivalence f W Z!Y , and some (not necessarily cofibrant) sequen-
tial realization W for Y , by precomposing the coaugmentations "Œn�W Y !W �

Œn�

with f we obtain coaugmentations "Œn� ıf W Z !W �

Œn�
, still realizing V�! � ,

since f #W � ! H�.Z IR/ is an isomorphism. This yields an 1–strand for
.W;Z ; #/ by Lemma 4.5.

(ii) On the other hand, given a R–equivalence gW Y !Z and any cofibrant sequen-
tial realization 0W for Z , by precomposing the coaugmentations "Œn�W Z !
0W
�

Œn� with g as in (a) we obtain coaugmentations "Œn�ıgW Y !
0W
�

Œn� realizing
V�!� , and thus making 0W itself with the new coaugmentations into a cofibrant
sequential realization 00W for Y . The coaugmentations "Œn�W Z!

0W
�

Œn� form an
1–strand SŒ1� for 00W, showing that hhY ii vanishes coherently for .00W;Z ; #/.

This completes the proof.

4.19 Corollary If Y and Y 0 are R–equivalent R–good spaces, any cofibrant sequen-
tial realization WD hW �

Œn�
; �W �

Œn�
in2N for Y is also a (cofibrant) sequential realization

for Y 0 .

Proof The R–equivalence implies that there is an isomorphism # W H�.Y IR/ Š

H�.Y 0IR/, so by the theorem there is an 1–strand SŒ1� for .W;Y 0; #/, and thus a
coaugmentation "0W Y 0!W � .

4.20 Low-dimensional cases As noted in Remark 4.4, given a simplicial set Z

equipped with an isomorphism of ‚R –algebras # W �!H�.Z IR/ and a sequential
realization W for � as above, we can always define a coaugmentation "Œ0�W Z !W 0

Œ0�

realizing � D # ı "W V0 ! H�.Z IR/, which is unique up to homotopy, as in the
proof of Lemma 4.5. Moreover, if xd0

0
W W 0 ! W 1 realizes the first attaching map

x@1
0
W V1! V0 D V0 , then a�1

Œ0�
WD xd0

0
ı "Œ0� is nullhomotopic, since it realizes " ı x@1

0

(see (A.12)). Thus we can always choose a nullhomotopy F�1
Œ0�

for a�1
Œ0�

, and use it do
define "Œ1�W Z !W �

Œ1�
, as in the proof of the lemma. Note however that while the map

"Œ0� is unique up to homotopy, the map "Œ1� depends on our choice of F�1
Œ0�

.

This explains why our definition of nth order cohomology operations only makes sense
for n� 2.

Thus the first case of interest is nD 2. Since ‚R consists of abelian group objects,
we can replace our 2–truncated restricted cosimplicial diagram W �

Œ1�
!W 2 by

(4.21) Z
"Œ1�
�!W 0

Œ1�
d0�d1

����!W 1
Œ1�

xd0
1
�!W 2;
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where the fact that d0 ı"Œ1�D d1 ı"Œ1� means that the first composite is nullhomotopic,
while the fact that xd0

1
ı d0 is nullhomotopic and xd0

1
ı d1 D 0 means that the second

composite is also nullhomotopic.

In particular, the first map in (4.21) represents (a collection of) R–cohomology
classes ˛ , while the remaining two represent R–cohomology operations � and � , with
�.˛/D 0 and � ı � D 0. Thus our universal secondary operation is just a (collection
of) secondary cohomology operations in the sense of Adams (see [1]), taking values in
ŒZ ; �W 2�DH��1.Z IR/.

4.22 Remark Our higher cohomology operations are modeled on Adams’ (stable)
secondary cohomology operations (see also Harper [26]). However, the more delicate
questions involving the prerequisites for an .nC1/st order operation to be defined, and
the dependence on various choices made, are hidden here in the two components of the
n–strand SŒn� , consisting of:

(a) The nth stage W �

Œn�
in the sequential approximation W encodes a preliminary

choice of nullhomotopies for that part of the diagram consisting only of spaces
in ‚R (the representing spaces for cohomology).

(b) The data associated to the specific simplicial set Z consists of the coaugmenta-
tion "Œn�W Z !W �

Œn�
, which itself is determined by:

i. The coherent system of earlier choices made, encoded in the .n�1/–strand
SŒn�1� D ."Œ0�; "Œ1�; : : : ; "Œn�1�/ (essentially, the single map "Œn�1� ).

ii. The single choice of the nullhomotopy F�1
Œn�

for a�1
Œn�

(ie the value of the
previously defined nth order operation, which must necessarily vanish in
order to proceed to the .nC1/st step).

4.23 Models for rational homotopy theory When working with RDQ it is conve-
nient to use some of the known models for rational homotopy theory (see Quillen [33]).
In particular, finite-type, simply connected rational spaces Y 2 SQ can be modelled
in the category CDGA of differential graded commutative Q–algebras (CDGAs),
using a suitable Sullivan model .A�; d/ 2 CDGA for Y (see Félix and Halperin [24,
Section 12]).

The equivalence of homotopy categories ho SQ! ho CDGA is contravariant and takes
products to coproducts and path or loop spaces to cone or suspension objects. Thus
if we try to apply Theorem 2.33 to the model .A�; d/ 2 CDGA directly, rather than
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to Y 2 SQ , we will end up with a simplicial CDGA W� , obtained as the homotopy
colimit of sequential simplicial realization (see Blanc, Johnson and Turner [14] for full
details of the simplicial version). We could in fact replace this simplicial CDGA by a
bigraded CDGA (see Félix [23], and compare Blanc [9]).

In particular, we have an adjunction ƒW Ch�Q•CDGA WU between cochain complexes
and CDGAs, where U is the forgetful functor and ƒ.V �; d/ the free graded commu-
tative algebra on the graded vector space V � , with d i W V i ! V iC1 extended as a
derivation. Note that each ƒ.V �; d/ is a Sullivan algebra, and thus a cofibrant CDGA
(see Hess [27, Section 1]).

The functor ƒ yields formal minimal models for each Q–GEM, as well as their cylinders,
cones and suspensions. For example, if V � is a graded Q–vector space which is
degreewise finite-dimensional, then ƒ.V �; 0/ is a minimal model for

Q1
iD0 K .V i ; i/.

Similarly, if A� WDƒ.V �; d/ is a Sullivan model for some space Y , and

i W .V �; d/ ,! C.V �; d/

is the inclusion into the cone (see Weibel [38, Section 1.5]), then i�W ƒ.V
�; d/!

ƒ.C.V �; d//, the corresponding cone inclusion in CDGA, is a CDGA model for the
path fibration pW PY ! Y (see Félix and Halperin [24, Section 14]).

4.24 A rational example Even though the above discussion was stated in terms of
the sketch ‚R in ho C (for C D S� ), when RDQ, as we just pointed out, we can also
apply it (mutatis mutandis) to the corresponding CDGA models.

For example, let Y be the simply connected, Q–local, finite-type space represented by
the free CDGA .A�; d/ with:

i. An DQhx;y; zi with dx D dy D dz D 0.

ii. A2n�1 DQhu; vi with duD xy and dv D xz .

iii. A3n�2 DQhq; r; s; ti with dq D xu, dr D xv , ds D yu and dt D zv .

iv. Ai for i > 3n chosen so that H i.A�/D 0 for i � 3n.

Here n> 1 is odd.

Thus .A�; d/ has rational cohomology � DH�.Y IQ/ (as a ‚Q –algebra — that is, a
graded Q–algebra) with:

i. �n DQhŒx�; Œy�; Œz�i.
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ii. �2n DQhŒy� � Œz�i.

iii. �3n�1 DQh!i, where ! is represented in A� by zuCyv .

iv. � i D 0 for i ¤ n; 2n; 3n� 1.

Note that the (formal) rational space Z WD .S n _ .S n � S n/ _ S 3n�1/Q also has
H�.Z IQ/Š � (as ‚Q –algebras). It is represented by the Sullivan model .B�; d/
with:

i. Bn DQhx;y; zi with dx D dy D dz D 0.

ii. B2n�1 DQhu; vi with duD xy and dv D xz .

iii. B3n�2 D Qhp; q; r; s; ti with dp D zuC yv , dq D xu, dr D xv , ds D yu,
and dt D zv .

iv. B3n�1 DQhwi with dw D 0, where ! is represented in B� by w .

v. Again, Bi for i > 3n chosen so that H i.B�/D 0 for i � 3n.

Let us denote by FQhxn1
; : : : ;xnk

i the free ‚Q –algebra generated by elements xni

in degree ni for i D 1; : : : ; k — so that FQhxn1
; : : : ;xnk

iŠH�
�Qk

iD1 K .Q; ni/IQ
�

(cf Section 4.23).

We may choose a (minimal) CW resolution of ‚Q –algebras V�! � with CW basis
.Vn/n2N as follows:

(a) V0 D FQhxn;yn; zn; w3n�1i, with the obvious augmentation "W V0! � .

(b) V1 D FQhu2n; v2niqU 1 , where U 1 is a free ‚Q –algebra with generators in
degrees > 3n. The attaching map x@

0
W V1!V0DV0 is defined by u2n 7! xnyn

and v2n 7! xnzn .

(c) V2 D FQhp3n; q3n; r3n; s3n; t3niqU 2 , where U 2 is again a free ‚Q –algebra
with generators in degrees > 3n. The attaching map x@

0
W V2! V1D V1qs0V0

is defined by

(4.25)
p3n 7! .s0zn/u2nC .s0yn/v2n; q3n 7! .s0xn/u2n;

r3n 7! .s0xn/v2n; s3n 7! .s0yn/u2n; t3n 7! .s0zn/v2n:

(d) For k � 3 the basis ‚Q –algebra Vk has generators in degrees > 3n.

Denote by ƒŒxn�Dƒ.M
�; 0/ the formal free CDGA model for K .Q; n/ (where M �

is the graded vector space concentrated in degree n with basis fxng; see Section 4.23).
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We can realize V� ! � through (co)simplicial dimension 2 and degree 3n by an
augmented simplicial CDGA W Œ2�

�
! B� with CW basis .Wn/n2N constructed as

follows:

Step A First, we construct the simplicial analogue of W Œ1�
�

through simplicial dimen-
sion 1:

(a) We let

W0 DƒŒxn;yn; zn;w3n�1� WDƒŒxn�qƒŒyn�qƒŒzn�qƒŒw3n�1�

with augmentation "W W0!A� defined by

xn 7! x; yn 7! y; zn 7! z; w3n�1 7! zuCyv:

(b) We let �W Œ1�
1
DW1 WDƒŒu2n; v2n�;

where the untruncated version of W1 has an additional free CDGA coproduct summand
D2 with generators in degrees > 3n. The attaching map x@

0
W W1!W

Œ2�
0

is defined
by u2n 7! xnyn , v2n 7! xnzn , and all other generators sent to 0.

(c) Dually to Step III in the proof of Theorem 2.33, we must add a coproduct summand
C W1 to obtain �W Œ1�

0
WD W0q C W1 , where the cone on the formal CDGA W1 D

ƒŒu2n; v2n�, which models the path space PW 1 , is the CDGA

C W1 Dƒ.Q.u
0
2n; v

0
2n; xu2n�1; xv2n�1/; d/

with differential

d.xu2n�1/D�u02n and d.xv2n�1/D�v02n

(see Section 4.23). We will denote this simply by ƒ.u0
2n
; v0

2n
; xu2n�1; xv2n�1/.

The augmentation "W C W1!A� is given by

u02n 7! xy; v02n 7! xz; xu2n�1 7! u; xv2n�1 7! v:

(d) Finally, we must add the degeneracies to �W Œ1�
�

(as in step (iii) of Section 2.5), that
is, we add two coproduct summands

s0W0 DƒŒs0xn; s0yn; s0zn; s0w3n�1�;

s0C W1 Dƒ.s0u02n; s0v02n; s0xu2n�1; s0xv2n�1/;

to obtain the 1–truncation of the augmented simplicial CDGA W Œ1�
�

(dual to (A.12))
in degrees � 3n given by
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W
Œ1�

1
D

d0

��

d1





s0W0

Id
��

Id




q W1 DƒŒu; v�

x@
0

tt

d1D�

��

q s0C W1

Id

ww Iduu

W
Œ1�

0
D

"

��

W0 DƒŒx;y ; z;w� q C W1 Dƒ.u
0; v0; xu; xv/

A� D ƒŒx;y; z;u; v; q; r; s; t �

Step B To extend W Œ1�
�

to W Œ2�
�

, we proceed as follows:

(a) First, we set �W Œ2�
2
DW2 WDƒŒp3n; q3n; r3n; s3n; t3n�

(where again we omit generators in degrees > 3n).

As a first approximation, we would like to use (4.25) to determine x@W2

0
W W2!W

Œ2�
1

.
However, although this will guarantee that d0 ı

x@W2
0
D 0, we would then not have

d1 ı
x@W2

0
D 0 (see Step VII in the proof of Theorem 2.33).

We therefore define x@W2

0
by

(4.26)

p3n 7! .s0zn/u2nC .s0yn/v2n� s0.znu02n/� s0.ynv02n/;

q3n 7! .s0xn/u2n� s0.xnu02n/; r3n 7! .s0xn/v2n� s0.xnv02n/;

s3n 7! .s0yn/u2n� s0.ynu02n/; t3n 7! .s0zn/v2n� s0.znv02n/;

with d1W W2!
�W Œ2�

1
the inclusion into the new cone summand

C W2 Dƒ.p
0
3n; q

0
3n; r

0
3n; s

0
3n; t

0
3n; xp3n�1; xq3n�1; xr3n�1; xs3n�1;xt3n�1/

in �W Œ2�
1
DW

Œ1�
1
qC W2 (with d. xp3n�1/D p0

3n
, and so on).

The map d0 D F1W C W2!W
Œ1�

0
is given by

(4.27)

p03n 7! �znu02n�ynv02n; xp3n�1 7! znxu2n�1Cynxv2n�1�w3n�1;

q03n 7! �xnu02n; xq3n�1 7! xnxu2n�1;

r 03n 7! �xnv02n; xr3n�1 7! xnxv2n�1;

s03n 7! �ynu02n; xs3n�1 7! ynxu2n�1;

t03n 7! �znv02n; xt3n�1 7! znxv2n�1;

as in (4.25).
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(b) In dimension 0 we have �W Œ2�
0
DW

Œ1�
0
qC†W2 , where

C†W2 Dƒ. xp
0
3n�1; xq

0
3n�1; xr

0
3n�1; xs

0
3n�1;xt

0
3n�1;

xxp3n�2; xxq3n�2; xxr3n�2; xxs3n�2;
xxt3n�2/

(with d. xxp3n�2/D xp
0
3n�1

, and so on).

The face map
d1W

�W Œ2�
1
! �W Œ2�

0

is defined on the new summand C W2 to be the quotient C W2�†W2 followed by
the inclusion †W2 ,! C†W2 , which is given by p3n 7! 0, xp3n�1 7! � xp

0
3n�1

, and
so on.

The augmentation "W C†W2!A� is given by

(4.28)

xp03n�1 7! 0; xxp3n�2 7! 0;

xq03n�1 7! xnu2n�1; xxq3n�2 7! �q3n�2;

xr 03n�1 7! xnv2n�1; xxr3n�2 7! �r3n�2;

xs03n�1 7! ynu2n�1; xxs3n�2 7! �s3n�2;

xt03n�1 7! znv2n�1;
xxt3n�2 7! �t3n�2:

The 2–truncation of �W Œ2�
�

in degrees � 3n is given by

W2 DƒŒp; q; r; s; t�

x@
0
��

x@
0

**

x@
0

**

d1

((

s0W0

D

��

D





q W1 DƒŒu; v�

x@
0

tt

d1

��

q s0C W1

D

ww

D

uu

q C W2

d0tt d1yy

W0 DƒŒx;y ; z;w�

"

��

q C W1 Dƒ.u
0; v0; xu; xv/

"

tt

q C†W2

A� DƒŒx;y; z;u; v; q; r; s; t �

Step C When we try to map W Œ2�
�

to the CDGA B� , we must modify the augmentation
"W �W Œ2�

0
!A� as follows:

In order to realize "W V0! � we must have ".w3n�1/ D w and otherwise " is the
same as in Step A. Therefore,

". xp03n�1/D ".d1. xp3n�1//D ".znxu2n�1Cynxv2n�1�w3n�1/D zuCyv�w;
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by (4.27). Therefore, we must map xxp3n�2 to an element a in B3n�2 with d.a/ D

zuC yv �w . Since d.p/ D zuC yv but w represents a nonzero element in � D
H 3n�1.Z IQ/, no such a exists. Thus the two rational spaces Y and Z are not weakly
equivalent by Corollary 4.19.

Intuitively, the element ! 2 �3n�1 is represented by the Massey product ŒzuCyv�D

hŒy�; Œx�; Œz�i in H 3n�1.Y IQ/, while ! is not a Massey product in H 3n�1.Z IQ/

since Z is formal. In our language these facts are represented by the nullhomo-
topies xp3n�1 7! znxu2n�1Cynxv2n�1�w3n�1 in Y !W � , where in the analogous
construction for Z we would have had xp3n�1 7! znxu2n�1Cynxv2n�1 .

5 Higher cohomology invariants for maps

The system of higher cohomology operations associated to a ‚R –algebra H�.Y IR/

described in the previous section may be thought of as a sequence of obstructions to
realizing an algebraic isomorphism # W H�.Y IR/ Š�!H�.Z IR/ by a map f W Z!Y

(necessarily an R–equivalence) — as well as constituting a complete collection of higher
invariants for the weak R–homotopy type of spaces.

In this section we address the analogous problem for arbitrary maps: given two maps
f0; f1W Z ! Y which induce the same morphism of ‚R –algebras  W H�.Y IR/!
H�.Z IR/, we define a sequence of higher cohomology operations which vanish
coherently if and only if f0 and f1 are R–equivalent.

5.1 Obstructions for lifting homotopies We start with the initial data .W; f0; f1/,
consisting of a sequential realization W for Y , and two maps f0 and f1 as above. Since
f0 and f1 induce the same map of ‚R –algebras, there is a homotopy H 0

Œ0�
W Z ˝I!

W 0 DW 0
Œ0�

between "Œ0� ıf0 and "Œ0� ıf1 , so

(5.2) "Œ0� ı .f0?f1/DH 0
Œ0� ı .i0? i1/:

We call HŒ0� D .H 0
Œ0�
/ a 0–strand for .W; f0; f1/.

Recall that the standard cosimplicial space �� is given by the diagram of n–simplices
with the standard maps between them, where �i W �Œk � 1� ,!�Œk� is the inclusion of
the i th face, and �j W �Œk���Œk�1� is the j th collapse map (see Bousfield and Kan
[20, Section X.2.2]). Applying the simplicial structure operation �˝�� to a fixed
space Z yields a cosimplicial space Z ˝�� .
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5.3 Definition An n–strand HŒn� D .HŒ0�
; : : : ;H

Œm�
; : : : ;H

Œn�
/ for .W; f0; f1/ is a

compatible sequence of maps of cosimplicial spaces H
Œm�
W Z˝I˝��!W �

Œm�
for mD

0; : : : ; n, each determined by the collection of k –homotopies H k
Œm�
W Z˝.I��Œk�/!

W k
Œm�

for 0� k �m such that all the downward and upward squares in the diagram

(5.4)

Z qZ
f0?f1

//

i0?i1

��

Y

"Œm�

��

Z ˝ I
H 0

Œm�
// W 0

Œm�

Z ˝ .I ��Œk � 1�/

�i
�

��

H k�1
Œm�

// W k�1
Œm�

d i

��

Z ˝ .I ��Œk�/

�
j
�

\\

H k
Œm�

// W k
Œm�

sj

YY

commute for all choices of 0� i � k �m and 0� j � k � 1.

More precisely, the choices of H k
Œm�

for 0 � k � m uniquely determine a map of
cosimplicial spaces yHŒm�W Z ˝ I ˝��! �W �

Œm�
, since the target is m–coskeletal. We

then use the left lifting property for the solid commuting square of cosimplicial spaces

(5.5)

� //
� _

��

W �

Œm�

' hŒm�
����

Z ˝ I ˝��

yHŒm�

//

H
Œm�

66

�W �

Œm�

to obtain the required map H
Œm�

, unique up to weak equivalence, using the fact that
Z ˝ I ˝�� is cofibrant and the map hŒm�W W

�

Œm�
! �W �

Œm�
is a trivial fibration by

Remark 2.18.

We say that an n–strand HŒn� extends a given .n�1/–strand HŒn�1� if

(5.6) HŒn�1� D �Œn� ıHŒn�W Z ˝ .I ���/!W �

Œn�1�

(cf (2.2)).

An 1–strand is a sequence HŒ1� WD .HŒn�
/1
nD1

satisfying (5.6) for each n> 0.
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5.7 Remark In order to extend a given .n�1/–strand HŒn�1� for a sequential real-
ization W of Y to an n–strand, we need to produce maps yH k

Œn�
W Z ˝ .I ��Œk�/!

P�n�k�1W n for 0� k � n satisfying

(5.8)

8̂̂<̂
:̂
yH k
Œn�
ı �0
� D Fk�1 ı vk�1 ıH k�1

Œn�1�
;

yH k
Œn�
ı �1
� D ı

k�2 ı yH k�1
Œn�

;

yH k
Œn�
ı �i
� D 0 for i � 2;

where ıj D ı
j
D

is the differential of D� as in (2.8).

Thus, in the following diagram we are given the solid .n�1/–strand for W �

Œn�1�
, which

we wish to extend by the dashed maps to the (given) restricted cosimplicial space �W �

Œn�
:

(5.9)

Z qZ

.i0?i1/

��

.f0?f1/
// Y

F�1

zz
"

��

Z ˝ .I ��Œ0�/

yH 0
Œn�

//

H 0
Œn�1�

))

�0
�

��

�1
�

��

P�n�1W n �

ı�1

��

W 0
Œn�1�

F 0ıv0

zz
d0

��

d1

��

D �W 0
Œn�

Z ˝ .I ��Œ1�/

yH 1
Œn�

//

H 1
Œn�1�

))

�0
�

��

�1
�

��

�2
�

��

P�n�2W n �

ı0

��

W 1
Œn�1�

F 1ıv1

zz
d0

��

d1

��

d2

��

D �W 1
Œn�

Z ˝ .I ��Œ2�/

yH 2
Œn�

//

H 2
Œn�1�

))

P�n�3W n � W 2
Œn�1�

D �W 2
Œn�

Z ˝ .I ��Œn� 1�/

yH n�1
Œn�

//

H n�1
Œn�1�

))

�0
�

:::

��

�n
�

��

P�0W n �

p ın�2

��

W n�1
Œn�1�

xd0
nzz

D �W n�1
Œn�

Z ˝ .I ��Œn�/

yH n
Œn�

// W n

5.10 Folding polytopes Consider the iterated trivial fibration of (2.9),

(5.11) �j
WD P�j�1�1

ı � � � ıP��j�1
ıP�j

ıP�j
W P�j W n� P�j W n:

If we identify the k –simplex �Œk� with (a quotient of) the k –cube Ik, each map

yH k
Œn�W Z ˝ .I ��Œk�/! P�n�k�1W n;
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after postcomposing with �n�k�1W P�n�k�1W n! P�n�k�1W n , can be identified
by adjunction with a pointed map zH k W .Z ˝ I/˝ In ! W n taking certain facets
of In to the basepoint.

Moreover, the compatibility conditions of (5.8) translate into requirements that the
restrictions of the maps zH k to certain facets of In match up in an appropriate way.
This information can be encoded by gluing together nC 1 n–cubes (corresponding to
cosimplicial dimensions 0; 1; : : : ; n) along their facets to obtain a single n–dimensional
cubical complex, as follows:

5.12 Definition The barycentric subdivision, as a triangulation of the standard n–
simplex �Œn�, exhibits it as a PL-cone on its boundary @�Œn�. We may similarly define
by induction a triangulation of the standard n–cube InD Œ0; 1�n obtained as the cone on
its boundary @In (more precisely, the join of the barycenter of In with the inductively
defined triangulation of @In ).

This allows us to define PL-homeomorphisms �nW In!�Œn�, starting with the obvious
isomorphism for nD 1, taking boundary to boundary, and extending to the interior by
applying the join with the respective barycenters.

For each n � 2, we consider the corner C of @In consisting of all .n�1/–facets
.Ek/

n�1
kD0

incident with the fixed vertex v D .0; : : : ; 0/, where

Ek D f.t1; : : : ; tn/ 2 In
W tkC1 D 0g:

We use the previously defined �n�1 to identify Ek Š In�1 with the k th face �k Œn�

of �Œn�. For the complementary corner C 0 (incident with the vertex v0 D .1; : : : ; 1/
opposite v ), we use the orthogonal projection from the last vertex of �Œn� onto the face
�nŒn� opposite it to obtain a subdivision of �nŒn� into n .n�1/–dimensional simplices,
which we identify with the n .n�1/–dimensional facets of C0 using .�n�1/�1 .

Now, for each n� 1 consider nC1 standard n–cubes In
.0/
; : : : ; In

.n/
, where we have a

PL-isomorphism �n
k

given as follows:

In
.k/ Š Ik

� In�k �k�Id
���!�Œk�� In�k :

For k<n we think of the first direction of In�k as the path direction, and the remaining
n� k � 1 directions as loop directions. This allows us to represent a pointed map
hW yZ˝�Œk�!P�n�k�1W by a map yhW yZ˝In

.k/
!W in a canonical way (sending

certain facets of In
.k/

to the basepoint).
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For any 1 � k � n we have two .k�1/–faces �0Œk� and �1Œk� of �Œk�, and the
.n�1/–dimensional prisms �0Œk�� In�k and �1Œk�� In�k are identified under the
map .�n

k
/�1 with two .n�1/–dimensional facets of In

.k/
, which we denote by Bk

0

and Bk
1

, respectively. By our convention, if 0 � k < n we have another special
.n�1/–dimensional facet of In

.k/
, denoted by

C k
WD f.t1; : : : ; tn/ 2 Ik

� In�k
j tkC1 D 0g

(the zero-face in the “path direction”).

We now define the nth folding polytope Pn for each n � 2 by taking the disjoint
union of the nC 1 n–cubes In

.0/
; : : : ; In

.n/
, and identifying Bk

1
with C k�1 for each

1� k � n.

5.13 Lemma For each n� 2, the folding polytope Pn is homeomorphic to an n–ball,
with boundary @Pn homeomorphic to an .n�1/–sphere.

5.14 Remark All the faces .Bk
1
/n
kD1

and .C k/n�1
kD0

are now interior to Pn , while the
remaining facets of the cubes In

.k/
, including .Bk

0
/n
kD1

, constitute the boundary @Pn .

5.15 Example The four constituent 3–cubes of P3 are illustrated in Figure 1, with
the dotted arrows indicating glued faces. Note that the two faces Bk

0
and Bk

1
are

adjacent for 2� k � n, while B1
0

and B1
1

are opposite each other (since the same is
true of �0Œk� and �1Œk� in �Œk�). On the other hand, C k is always adjacent to both
Bk

0
and Bk

1
.

I3
.0/

r��� r@@@

r
@
@
@

r
�
�
�

r r
r r

C 0

i

q

I3
.1/

r��� r@@@

r
@
@
@

r
�

�
�

B1
0

B1
1

r r
r r

C 1� -

I3
.2/

r��� r@@@

r
@
@
@

r
�

�
�

B2
0

C 2r r
r r

B2
1

� -

I3
.3/

r��� r@@@

r
@
@
@

r
�
�
�

B3
0

r r
r r

B3
1

Figure 1: The four 3–cubes of P3

5.16 Lemma Given two maps f0; f1W Z ! Y which induce the same algebraic
homomorphism of ‚R –algebras H�.Y IR/!H�.Z IR/ and a sequential realization
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W for Y , let H
Œn�1�
W Z ˝ I ˝�� ! W �

Œn�1�
be an .n�1/–strand as in Section 5.1.

Then there is a one-to-one correspondence between collections of maps

yH k
Œn�W Z ˝ .I ��Œk�/! P�n�k�1W n for 0� k � n

as in Remark 5.7 (satisfying (5.8)) and maps hW .Z ˝ I/˝Pn!W n such that

(5.17) hj.Z˝I /˝Bk
0
D �n�k�1

ıFk�1
ı vk�1

ıH k�1
Œn�1�

for 1� k � n and hj.Z˝I /˝ED �;

where E WD @Pn n
Sn

kD1 Bk
0

.

Proof Given a map yH k
Œn�
W Z ˝ I ˝�Œk�! P�n�k�1W n , we obtain a map

zH k
.n/W .Z ˝ I/˝ In

!W n;

where we identify Ik with �Œk� using �k and take the .kC1/st coordinate for the
path direction and the remaining n� k � 1 coordinates for the loop directions, as in
Definition 5.12.

The first condition in (5.8) says that on Bk
0

(corresponding to the 0–face of �Œk�),
yH k
Œn�

equals Fk�1 ı vk�1 ı H k�1
Œn�1�

. The second condition there says that on Bk
1

(corresponding to the 1–face of �Œk�), yH k
Œn�

equals ın�k ı yH k�1
Œn�

(where ın�k is
defined in (2.8)), which stated in terms of cubes means that it coincides with yH k�1

Œn�1�

restricted to C k�1 . Since the coface maps d i into P�n�k�1W n vanish for i � 2,
and yH k�1

Œn�
also vanishes at the other end of the path direction, and at both ends of the

loop directions, we obtain the description above.

Conversely, given such a map zH , we use its restrictions to the n–cubes I0
.n/; : : : ; I

n
.n/

to
define the maps zH k , and thus maps 0 yH k

Œn�
W Z˝.I��Œk�/!P�n�k�1W n satisfying

(5.18)

8̂̂<̂
:̂
0 yH k
Œn�
ı �0
� D �

n�k�1 ıFk�1 ı vk�1 ıH k�1
Œn�1�

;

0 yH k
Œn�
ı �1
� D �

n�k�1 ı ın�k ı 0 yH k�1
Œn�

;

0 yH k
Œn�
ı �i
� D 0 for i � 2;

for �j as in (5.11). We now show by induction on 0 � k that these lift to maps
yH k
Œn�
W Z ˝ .I ��Œk�/! P�n�k�1W n satisfying (5.8), and

(5.19) 0 yH k
Œn� D �

n�k�1
ı yH k

Œn�:

Indeed, the inductively defined lift yH k�1
Œn�

induces a map LW Z ˝ .I � @�Œk�/ !

P�n�k�1W n fitting into the solid commutative diagram
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(5.20)

Z ˝ .I ��Œk � 1�/
� _

�0
�

��

H k�1
Œn�1�

))

Z ˝ .I ��Œk � 1�/
oO

�1
�

~~

yH k�1
Œn�

&&

W k�1
Œn�1�

vk�1

��

Z ˝ .I ��Œk � 1�/
iI

�i
� .i�2/ww 0 **

P�n�kW n

ın�k

$$

C k�1W �

Œn�1�

F k�1

��

Z ˝ .I � @�Œk�/
L

//

� _

inc�
��

P�n�k�1W n

' �n�k�1

����

Z ˝ .I ��Œk�/
0 yH k

Œn�

//

yH k
Œn�

22

P�n�k�1W n

where the upper squares fit together to define L by induction, using (5.8), and the
bottom solid square then commutes by (5.18) and (5.19).

Since Z is cofibrant in C by Assumption 1.20, the map inc� is a cofibration; see [32,
Section II.2]. Moreover �n�k�1 is a trivial fibration, so we have the lifting yH k

Œn�
by

the LLP. The fact that (5.20) commutes implies that (5.8) holds for k , too. To start the
induction for k D 0, we just need the fact that �n�1 is a trivial fibration and Z˝ I is
cofibrant with LD 0, since (5.8) is then vacuous.

5.21 Definition Assume given initial data .W; f0; f1W Z!Y / with a corresponding
.n�1/–strand HŒn�1� D .HŒm�

/n�1
mD0

, as in Section 5.1. We associate to this a map
gW .Z ˝ I/˝ @Pn!W n which sends .Z ˝ I/˝Bk

0
to W n by Fk ıH k

Œn�
for each

1 � k � n, and all other .n�1/–cubes of @Pn to the basepoint. Here we use the
convention of (2.7), so Fn D xd0

n .

Since at most two additional .n�1/–facets of In
.k/

are identified with .n�1/–facets
of In

.k˙1/
, we may think of P�n�kW n as contained in map�.d

0
1

In
.k/
;W n/, so the

map induced by H k�1
Œn�
ıFk is well-defined. Moreover, these maps are compatible for

adjacent values of k by (5.8).

By Lemma 5.13 we can think of g as a map .Z ˝I/˝S n�1!W n , and because all
maps are pointed, this actually factors through the half-smash

.Z ˝ I/ËS n�1
WD ..Z ˝ I/�S n�1/=.��S n�1/;
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which can be canonically identified with †n�1.Z ˝I/_ .Z ˝I/ (see [4]). Moreover,
the map .Z ˝ I/!W n in question is nullhomotopic for n� 1, so we may restrict
attention to the factor g0W †n�1.Z ˝ I/!W n , and define the value of the .n�1/–
strand HŒn�1� to be the class

(5.22) Val.HŒn�1�/ WD Œg
0� 2 Œ†n�1.Z ˝ I/;W n�Š ŒZ ; �n�1W n�;

so it consists of a set of cohomology classes for Z .

5.23 Proposition Under the assumptions of Lemma 5.16, Val.HŒn�1�/ D 0 if and
only if HŒn�1� extends to an n–strand HŒn� .

Proof The .n�1/–strand HŒn�1� extends to an n–strand HŒn� if and only if we have
a collection of maps

yH k
Œn�W Z ˝ .I ��Œk�/! P�n�k�1W n

for 0� k � n as in Remark 5.7 satisfying (5.8), and by Lemma 5.16 this corresponds
to a map .Z ˝ I/˝ Pn ! W n whose restriction to .Z ˝ I/˝ @Pn is the map g

determined by HŒn�1� as in Definition 5.21. The map g extends to .Z ˝ I/˝Pn if
and only if g0 is nullhomotopic.

5.24 Correspondence of strands for maps Given f0; f1W Z ! Y with f �
0
D

f �
1
W H�.Y IR/!H�.Z IR/, an n–stage comparison map ˆW W! 0W between two

sequential realizations for Y as in (3.16), and n–strands HŒn� and 0HŒn� for W and 0W,
respectively, we write

0HŒn� D r #.HŒn�/

if .H k
Œm�
/0 D rk

Œm�
ıH k

Œm�
W Z ˝ .I ��Œk�/! 0W

k
Œm� and

HŒn� D e#.0HŒn�/

if H k
Œm�
D ek

Œm�
ı .H k

Œm�
/0W Z ˝ .I ��Œk�/!W k

Œm�
for each 0� k �m� n (compare

Section 4.6).

By comparing (3.13) and (3.15) with (5.9) and Definition 5.21, we see that

(5.25) Val.r #.HŒn�//D Nr n
� .Val.HŒn�// and Val.e#.0HŒn�//D Nen

�.Val.0HŒn�//;

as in (4.7), so

5.26 (a) Val.HŒn�/D 0 if and only if Val.r #.HŒn�//D 0,

(b) if Val.0HŒn�/D 0 then Val.e#.0HŒn�//D 0, as in (4.8).
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We define weak and strong equivalences relations on strands as in Definition 4.9.

5.27 Definition Given two maps f0; f1W Z ! Y inducing the same homomorphism
of ‚R –algebras �W H�.Y IR/!H�.Z IR/, the associated universal nth order co-
homology operation hhf.0;1/iin which assigns to an .n�1/–strand HŒn�1� for this data
the value

hhf.0;1/iin.HŒn�1�/ WD Val.HŒn�1�/ 2 �
0
f�n�1W n

g;

where � 0 WD H�.Z IR/. We say that hhf.0;1/iin vanishes if there is a cofibrant W
with an .n�1/–strand HŒn�1� for .W; f0; f1/ such that hhf.0;1/iin.HŒn�1�/D 0. Note
that this depends only on the strong equivalence class of HŒn�1� .

As in Definition 4.14, we then say that the system hhf.0;1/ii D .hhf.0;1/iin/1nD2
of nth

order cohomology operations for .f0; f1/ vanishes coherently for .W; f0; f1/ if there
is an 1–strand HŒ1� for this data — that is, for each n� 1, we have an n–strand HŒn�
for .W; f0; f1/ such that Val.HŒn� D 0/, which extends to the .nC1/–strand HŒnC1�

using Proposition 5.23.

The proof of Key Lemma 4.17 shows also:

5.28 Lemma Given f0; f1W Z ! Y as above, hhf.0;1/iin vanishes if and only if,
for every n–stage cofibrant sequential realization W of Y , there is an .n�1/–strand
HŒn�1� for .W; f0; f1/ with Val.HŒn�1�/D 0.

Moreover, if hhf.0;1/iin vanishes at the .n�1/–strand HŒn�1� for .W; f0; f1/, then
for any other n–stage cofibrant sequential realization 0W of Y we can choose the
.n�1/–strand 0HŒn�1� for 0W to be weakly equivalent to HŒn�1� .

In analogy to Theorem 4.18 we therefore have:

5.29 Theorem For R either Fp or a field of characteristic 0, let f0; f1W Z ! Y

be two maps between R–good spaces which induce the same map of ‚R –algebras
H�.Y IR/!H�.Z IR/. Then the following are equivalent:

(a) The system of higher cohomology operations hhf.0;1/ii vanishes coherently for
some cofibrant sequential realization W of Y .

(b) hhf.0;1/ii vanishes coherently for every cofibrant sequential realization of Y .

(c) The maps f0 and f1 are R–equivalent (cf Section 1.22).
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Proof (a)() (b) By Lemma 5.28.

(a)D) (c) Note that the projection pX W X˝��! c.X/� is a trivial Reedy fibration
for any X 2 C . Since Z qZ

i0?i1
���!Z ˝ I �

�!Z is a cylinder object in C (see
Quillen [32, Section I.1]), the same is true after applying .�/˝�� . An 1–strand
HŒ1� for a sequential realization W (with associated "W Y ! W � ) defines a map
H W .Z ˝ I/˝��!W � , fitting into a commutative diagram of cosimplicial spaces

(5.30)

Z ˝��
'

pZ
// //

ij˝Id
��

c.Z /�

c.fj /
�

++
.Z qZ /˝��

.i0?i1/˝Id
��

.f.0/?f.1//˝Id
// Y ˝��

'

pY
// // c.Y /�

"

��

.Z ˝ I/˝��
H

// W �

for j D 0; 1. Applying Tot yields a cylinder object

Tot..Z ˝ I/˝��/

for Tot..Z q Z /˝��/, and a homotopy Tot H between "� ı f0 ı Tot.pZ / and
"� ıf1 ıTot.pZ /. Since Tot.pZ / is a weak equivalence and "�W Y ! Tot W � is an
R–equivalence, we see that f0 and f1 are R–equivalent.

(c)D) (b) Let W be any cofibrant sequential realization for Y with associated
"W Y !W � . By Definition 2.1, W � is Reedy fibrant. Thus Tot W � is an R–complete
Kan complex, with "�W Y !Tot W � the R–completion map, and so the R–equivalent
maps "� ı f0 and "� ı f1 are actually homotopic (see [20, Lemma I.5.5]). We may
therefore choose a homotopy F W Z ˝ I ! Tot W � between them, whose adjoint
is the map of cosimplicial spaces zF W Z ˝ I ˝�� ! W � (see [20, Section I.3.3]).
Composing zF with the structure maps W � ! W �

Œn�
for the limit of (2.2) yields a

compatible sequence of cosimplicial maps H
Œn�
W Z ˝ I ˝��!W �

Œn�
.

This defines compatible n–strands for W and all n � 1, showing that the system
hhf.0;1/ii of higher-order operations vanishes by Proposition 5.23.

5.31 Corollary If f0; f1W Z ! Y are maps between R–complete Kan complexes
inducing the same map of ‚R –algebras  W H�.Y IR/!H�.Z IR/, the system of
higher operations .f0; f1/ is a complete set of invariants for the homotopy classes Œf0�

and Œf1�.
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5.32 A rational example for a map As in Section 4.24, we now consider an example
of the obstruction to a map f W Z!Y being rationally trivial when f �W H�.Y IQ/!
H�.Z IQ/ is the zero map:

Let Z WD S 2n�1
Q and Y WD .S n _S n/Q for n > 1 odd, with f WD Œ�n; �0n�W Z ! Y

the Whitehead product map. The free CDGA model for Y is .A�; d/ given in degrees
� 2n by A� D Qhxn;yn;u2n�1i with d.u/ D xy , while Z has the formal CDGA
model B� DƒŒz2n�1�. The CDGA model for f is 'W A�! B� mapping u to z .

Realizing the obvious minimal free algebraic resolution of H�.Y IQ/, we obtain the
1–truncated augmented simplicial CDGA �W Œ1�

�
!A�!B� in degrees � 2n depicted

in Figure 2.

�W Œ1�
1

D

d0

��

d1

��

W1 DƒŒu2n�

d0W u 7!xy

ww

d1W u 7!u0

((

W
Œ1�

0
D

"

��

W0 DƒŒxn;yn�

"W x 7!x; y 7!y

��

q C W1 Dƒ.u
0
2n
; xu2n�1/

"W xu 7!�u; u0 7!xy
rr

A� D

'

��

ƒŒx;y;u�

'W u 7!z

��

B� D ƒŒz�

Figure 2: �W Œ1�
� in degrees � 2n

As noted above, the original map f W Z ! Y is nullhomotopic if and only if we can
extend the composite �W Œ1�

�
!B� in the diagram in Figure 2 to the cone C �W Œ1�

�
!B� ,

which by Theorem 5.29 is equivalent to the vanishing of the associated system of higher
operations.

The model for the cofiber of W Œ1�
�
,! C W1 (corresponding to the loop space �W 1 )

is the formal CDGA †W1 WDƒ.xu
0
2n�1

/, and its cone (corresponding to the path space
P�W 1 ) is C†W1 WDƒ.xu

00
2n�1

; xxu2n�2/, with d.xxu2n�2/D xu
00
2n�1

.

Thus in order to extend the given map ' ı "W W
Œ1�

0
! B� (sending xu2n�1 to �z ) to

its cone, we need a map F W C†W1 ! B� sending xu00
2n�1

to �z . However, since
necessarily F.xxu/D 0, this is impossible — that is, the secondary cohomology operation
does not vanish: its value is represented by the map  W †W1 ! B� defined by
 .xu0

2n�1
/D z .
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Appendix: Proof of Theorem 2.33

In this appendix we state and prove Theorem 2.33 in a more general form needed
in Blanc and Sen [17]. For this purpose we recall the notion of a mapping algebra,
which encodes the extra structure on the mapping spaces map�.Y ;K .R; n// needed
to recover the R–completion of Y from them (see Blanc and Sen [17]).

A.1 Definition An enriched sketch .‚;P;K/ is a small subcategory ‚ of a simplicial
category C (see Definition 1.19), with ‚ closed under a given set of limits P and
under .�/K for K in a given subcategory K of S. We assume that all mapping spaces
map‚.B ;B

0/ are Kan complexes.

A ‚–mapping algebra is a pointed simplicial functor XW ‚! S� (written XW B 7!

XfBg) which preserves the limits in P and with Xf.B/K gD .XfBg/K for any B 2‚

and K 2 K . The category of ‚–mapping algebras will be denoted by Map‚ . See
Baues and Blanc [2, Section 8] and Blanc and Sen [17, Section 1] for further details.

For any Y 2 C we have a realizable ‚–mapping algebra M‚Y defined for each
B 2‚ by M‚Y fBg WDmapC.Y ;B/.

A.2 Remark Assume that in our enriched sketch .‚;P;K/, the category K includes
�Œ0� ,!�Œ1�, and P includes all finite products and the pullback squares

(A.3)
PB

PB

� � //

'

����

B�Œ1�

'ev0

����

�B
PB

� � �B
//

����

PB

ev1

����

�
� � // B �

� � // B

for any B 2‚R . For each ‚–mapping algebra X and objects B and fBig
n
iD1

in ‚

we then have natural isomorphisms

(a) i…W X
˚Qn

iD1 Bi

	
Š
�!

Qn
iD1 XfBig;

(b) iP W XfPBg Š�!PXfBg;

(c) i�W Xf�Bg Š�!�XfBg.

We assume that the objects B 2‚ are fibrant in C . In order to simplify the proof of
Theorem A.11 below, we make the following ad hoc assumption: if f W W �! Y � is a
map of cosimplicial object over C with each W n and Y n in ‚ and W �!Z �! Y �

is the functorial factorization of f as a (trivial) Reedy cofibration followed by a (trivial)
Reedy fibration, then each Zn is in ‚ , too.
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This will hold, for instance, when C D S� and ‚ consists of all simplicial R–modules
of cardinality < � (for some limit cardinal �). This is the example for which case (1)
of Theorem A.11 is needed in Blanc and Sen [17].

We have the following enriched version of Lemma 1.28:

A.4 Lemma [17, Lemma 1.9] For any ‚–mapping algebra Y and B 2‚ , there is
a natural isomorphism HomMap‚

.M‚B ;Y/ Š�!YfBg0 .

A.5 Definition To any enriched sketch .‚;P;K/ we associate a sketch �0‚ as
in Remark 1.25, with the same objects and products as ‚ , where Hom‚.B ;B 0/ WD
�0 map‚.B ;B

0/. A map of ‚–mapping algebras f W X!Y is a weak equivalence
if it induces a weak equivalence fBW XfBg !YfBg for any B 2‚ . This means that
f induces an isomorphism f#W �0X! �0Y of the corresponding �0‚–algebras.

A.6 Example For any commutative ring R, let ‚R � S� denote the enriched sketch
whose objects are finite-type R–GEMs of the form

Q1
iD1 K .Vi ;mi/ for mi � 0, with

Vi a finite-dimensional free R–module where K is as above and P includes all such
finite-type products. Since each B 2‚R is an R–module object in S� , the same is
true of XfBg, so ‚R –mapping algebras actually take value in simplicial R–modules.
The enriched sketch ‚�

R
is defined analogously (see Example 1.27).

Note that �0‚R includes also 0–dimensional Eilenberg–Mac Lane spaces, while the
algebraic sketch ‚R consists of R–GEMs in dimensions � 1 (to avoid having to deal
with the nonreduced cohomology of nonconnected spaces). Thus ‚R � �0‚R , which
motivates the following:

A.7 Definition For ‚ an enriched sketch in C and X a ‚–mapping algebra, let
‚��0‚ be a subalgebraic sketch (still closed under finite products, but not necessarily
under loops), and let V�! �0X be a CW resolution of the corresponding ‚–algebra.
A sequential realization W D hW �

Œn�
; �W �

Œn�
in2N of V� for X consists of a tower of

Reedy fibrant and cofibrant cosimplicial objects as in (2.2), such that:

(a) We have an augmentation "Œn�W M‚W 0
Œn�
! X for the simplicial ‚–mapping

algebra M‚W �

Œn�
, realizing V�! �0X through simplicial dimension n — ie we

have a natural isomorphism as in (2.3).

(b) The augmentation "Œn�1�W M‚W 0
Œn�1�

! X extends along the ‚–mapping
algebra map ��

Œn�
W M‚W 0

Œn�1�
!M‚W 0

Œn�
to "Œn�W M‚W 0

Œn�
! X.

(c) Each W �

Œn�
is obtained from W �

Œn�1�
as in Definition 2.1(c).
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A.8 Remark We do not require the sequential realization W D hW �

Œn�
; �W �

Œn�
in2N

for X to be cofibrant, as in Definition 2.1(d). Therefore, in the explicit description of
Section 2.5 we may take the fibration sequences (2.6) in step (i) to be the standard
path-loop fibrations, so

(A.9) �j W n WD�j W n

for all 0� j � n� 1. Thus (2.10) becomes simply

(A.10) �W k
Œn� DW k

Œn�1� �P�n�k�1W n

for all 0� k � n (with (2.11) still holding for k D n).

A.11 Theorem Let ‚ be an enriched sketch ‚ in a model category C as in
Remark A.2, and ‚� �0‚ an algebraic sketch.

(1) If X is a ‚–mapping algebra, and V� a CW resolution of � WD �0X with CW
basis .Vn/n2N such that each Vn is realizable by an object W n 2‚ , then there
is a sequential realization WD hW �

Œn�
; �W �

Œn�
in2N of V� as in Definition A.7.

(2) If ‚ is allowable (see Definition 2.28), Y 2 C , and V� is any CW resolution
of � WDH�

‚
Y D �0M‚Y , then V� has a cofibrant sequential realization WD

hW �

Œn�
; �W �

Œn�
in2N of V� for Y .

Thus, in both cases V� is realizable by W �Dholimn W �

Œn�
. In case (2), if ‚ is contained

in some class of injective models G in C , then Y !W � is a weak G–resolution (see
Section 1.22).

Proof In case (2), for each n� 0 we choose an object W n 2‚ realizing Vn . In both
cases, we then construct a sequential realization W by a double induction, where in the
outer induction W �

Œn�
is obtained from W �

Œn�1�
as in Definition 2.1(c), using an inner

descending induction on 0� k � n:

I Step nD 0 of the outer induction We start the induction with W �

Œ0�
WD c.W 0/�

(the constant cosimplicial object), which is weakly G–fibrant. Because V0 is a free
‚–algebra, in case (1) the ‚–algebra augmentation "W V0 ! � corresponds by
Lemma 1.28 to a unique element in Œx"Œ0�� 2 �fW

0g D �0XfW
0g, for which we

may choose a representative x"Œ0� 2 XfW 0g0 , corresponding to a map of ‚–mapping
algebras "Œ0�W M‚W 0! X by Lemma A.4. In case (2), we may realize " by a map
"W Y !W 0 by Lemma 1.28 and (2.31), since ‚ is allowable.

II Step n D 1 of the outer induction We choose a map C 0W �

Œ0�
D W 0 ! W 1

realizing the first attaching map x@1
0
W V1! V0 D V0 , with W �

Œ1�
given in dimensions
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� 1 by

(A.12)

W 0
Œ1�

d0
0

��

d1
0

��

D W 0

d0
0
Dd1

0
DId

��

xd0
0

##

� PW 1

d1
0
Dp

zz

d0
0
Dd1

0
DId

��

W 1
Œ1�

s0

OO

D W 0

D

TT

� W 1 � PW 1

D

JJ

In case (1), to define the augmentation x"Œ1� as a 0–simplex in XfW 0
Œ1�
g0 extending

x"Œ0� 2 XfW 0
Œ0�
g D XfW 0g, we use the fact that XfW 0

Œ1�
g D XfW 0g � PXfW 1g, by

Remark A.2(a)-(b), so we need only to find a 0–simplex H in PXfW 1g— which,
by (A.3), is a 1–simplex in XfW 1g with d1H D 0.

In order to qualify as an augmentation M‚W 0
Œ1�
! X of simplicial ‚–mapping

algebras, "Œ1� must satisfy the simplicial identity

(A.13) "Œ1� ı d0 D "Œ1� ı d1W M‚W 1
Œ1�! X

as maps of ‚–mapping algebras — or equivalently, these must correspond to the same
0–simplex in XfW 1

Œ1�
g D XfW 0g �XfW 1g �PXfW 1g. In the first and third factors

this obviously holds, so we need only consider the two 0–simplices in XfW 1g: in other
words, since the path fibration p in (A.12) (induced by the inclusion �Œ0� ,! �Œ1�)
becomes d0 in XfW 1g, we must choose H so that d0H is the 0–simplex .xd0

0
/#x"Œ0� .

By (1.32), " ı x@0
0
D 0 in ‚–Alg, which implies (by our choices of xd0

0
and x"Œ0� rep-

resenting x@0
0

and ", respectively) that .xd0
0
/#x"Œ0� is nullhomotopic, so the required H

exists.

In case (2), we choose a nullhomotopy for xd0
0
ı " to extend "Œ0� to the factor PW 1 ,

and thus define "Œ1�W Y !W 0
Œ1�

.

III Step n of the outer induction n � 2 To construct W �

Œn�
given W �

Œn�1�
, by

Proposition 2.24 it suffices to produce a cochain map F W C �W �

Œn�1�
! D� as in

Section 2.5 (where the left Reedy fibrant replacement D� for W n˝� Sn�1 is given
by (A.9) and (2.8)). We do so by a descending induction on the cosimplicial dimension
0� k � n�1, starting with Step IV below for kD n�1, under the following induction
hypotheses:

In stage k we assume the existence of Fj W C j W �

Œn�1�
!P�n�j�2W n (constituting a

cochain map for kC1�j �n�1) and aj W Zj W �

Œn�1�
!�n�j�2W n for k�j �n�1,

with a nullhomotopy
yFk
W C kW �

Œn�1�! P�n�k�2W n
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such that

(A.14) ak
ıwk

D p ı yFk
W C kW �

Œn�1�!�n�k�2W n;

as in (2.26). By Lemma 2.19, yFk induces yak�1W Zk�1W �

Œn�1�
!�n�k�1W n with

(A.15) � ı yak�1
ıwk�1

D yFk
ı ık�1;

as in (2.20), where �D N�n�k�1W �n�k�1W n ,! P�n�k�2W n is the inclusion. How-
ever, we do not assume in our induction hypothesis that yak�1 ıwk�1 is nullhomotopic.

IV Step kD n� 1 of the inner induction To define Fn�1W C n�1W �

Œn�1�
!W n ,

note that the simplicial space U� WDmapC.W
�

Œn�1�
;W n/ is Reedy fibrant, since W �

Œn�1�

is Reedy cofibrant. Moreover, since H�
‚

W k
Œn�1�

Š Vk for all 0� k < n by Definition
2.1(a), the attaching map x@n

0
W Vn! Vn�1 yields a homotopy class

(A.16) ˛ 2 ŒW n�1
Œn�1�;W

n�D �0M‚W n�1
Œn�1�fW

n
g D Vn�1fW

n
g

D Hom
‚–Alg.H

�
‚W n;Vn�1/D Hom

‚–Alg.Vn;Vn�1/;

where the next-to-last equality follows from Lemma 1.28, as extended in (2.31).

This ˛ is a Moore chain in �0U� by Section 1.11, so by Lemma 2.22(a), it can be rep-
resented by a map Fn�1W C n�1W �

Œn�1�
!W n , which induces an�2W Zn�2W �

Œn�1�
!

W n by Lemma 2.19 with an�2 ıwn�2 D Fn�1 ı ın�2 . Moreover, by (1.12) ˛ is in
fact a Moore .n�1/–cycle, so we have a nullhomotopy yFn�2W C n�2 ! PW n for
an�2 ıwn�2 , as in (A.14).

V Step k of the inner induction 1 < k � n � 2 Let A WD �n�k�2W n . By
assumption (Step III), we have a nullhomotopy yFk W C kW �

Œn�1�
! PA for ak ıwk ,

and yFk ıık�1 determines yak�1W Zk�1W �

Œn�1�
!�A satisfying (A.15), which is thus

a .k�1/–cycle for the Reedy fibrant bisimplicial set mapC.W
�

Œn�1�
; �A/.

Since W �

Œn�1�
realizes V� through simplicial dimension n�1> k , by Definition 2.1(a),

yak�1 ıwk�1 ı vk�1W W �

Œn�1�
! �A represents a .k�1/–cycle Œyak�1� for V�f�Ag,

as in (A.16). Because V�! � is a resolution, and thus acyclic, there is a Moore chain

k in CkV�f�Ag with @Vk

0
.
k/D Œya

k�1�. Since Vkf�Ag Š �0M‚W k
Œn�1�
f�Ag D

ŒW k
Œn�1�

; �A�, by Lemma 2.22(a) we can represent 
k by a map gk W C kW �

Œn�1�
!�A ,

while by Lemma 2.22(b) we have a homotopy

(A.17) GW gk
ı ık�1

� yak�1
ıwk
W C k�1W �

Œn�1�!�A:
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Next, concatenation of homotopies gives an action of Hom.C ; �A/ on Hom.C ;PA/

(see [35, Section 1]), which we use to define a new nullhomotopy

(A.18) Fk
WD yFk ? .� ıgk/�1

W C kW �

Œn�1�! PA

for ak ıwk (where �W �A ,! PA is the inclusion).

By Lemma 2.19, Fk induces a map ak�1W Zk�1W �

Œn�1�
!�A satisfying

(A.19) � ı za ıwk�1
D zF ı ık�1

D . yFk ? .� ıgk/�1/ ı ık�1

D . yFk
ı ık�1/ ? .� ıgk

ı ık�1/�1

D � ı Œ.yak�1
ıwk�1/ ? .gk

ı ık�1/�1/�

by (2.20), (A.18), (A.15) and the fact that the H–space structure ? and .�/�1 commutes
with precomposition of maps into �A .

Since � is a monomorphism, we conclude that

(A.20) ak�1
ıwk�1

D .yak�1
ıwk�1/ ? .gk

ı ık�1/�1/

� .yak�1
ıwk�1/ ? .yak�1

ıwk�1/�1
� 0

by (A.17), so ak�1 satisfies (A.14) for k � 1.

In case (2), the last two steps of the downward induction are no different from those
for k � 2 if we set �W �1

Œn�
DW �1

Œn�1�
WD Y , with zd0

�1
W �W �1

Œn�
! �W 0

Œn�
as the coaugmenta-

tion "Œn� . However, in case (1) we no longer have an object W k�1
Œn�1�

in C for k D 0,
so we must modify our construction somewhat, using the language of ‚–mapping
algebras, as follows:

VI Step kD1 of the descending induction By the descending induction hypotheses
III for k D 1 we have some nullhomotopy yF1W a1 ıw1 � 0 and ya0 with �ı ya0 ıw0 D

yF1 ı d0
0

by (A.15). Let B WD�n�3W n .

We can think of a1 ıw1 ı v1 as a 0–simplex a1 2M‚W 1
Œn�1�
fBg0 , of ya0 ıw0 ı v0

as a 0–simplex ya0 2 M‚W 0
Œn�1�
f�Bg0 , and of yF1 ı v1 as a 1–simplex yF1 2

M‚W 1
Œn�1�
fBg1 , implicitly using the natural isomorphism iP W M‚W 0

Œn�1�
fPBg Š

PM‚W 0
Œn�1�
fBg of Remark A.2(b), and the inclusion of j W .PK/i �KiC1 for any

Kan complex K and i � 0 (see [31, Section 23.3]). Thus yF1W a1 ıw1 � 0 means
d0
yF1 D a1 and d1

yF1 D 0 (simplicial face maps in the mapping space). The fact that
the domain of yF1 is C 1W �

Œn�1�
implies that

(A.21) .d1/�. yF1/D 0 in M‚W 0
Œn�1�fBg1;
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and (A.15) becomes

(A.22) j ı � ı i�.ya
0/D .d0/�. yF1/ in M‚W 0

Œn�1�fBg1;

again using iP , the isomorphism i� of Remark A.2(c), the inclusion �W �K ,! PK

and j W .PK/0 �K1 as above for K DM‚W 0
Œn�1�
fBg.

Moreover, we have an augmentation of simplicial ‚–mapping algebras

"Œn�1�W M‚W �

Œn�1�! X

by Definition 2.1(b) in the outer induction hypothesis. Thus "Œn�1� satisfies the simpli-
cial identity

(A.23) "Œn�1� ı .d
0/� D "Œn�1� ı .d

1/�:

In order to apply Lemma 2.19, since Y is not available in cosimplicial dimension �1,
we need to verify that ya0 is a “Moore 0–cycle” in the augmented simplicial ‚–mapping
algebra M‚W �

Œn�1�
! X — that is,

(A.24) "Œn�1�.ya
0/D 0 in Xf�Bg0;

so after postcomposition with the monic maps

Xf�Bg0
��
�!�XfBg0

�
�!PXfBg0

j
�!XfBg1

it suffices to show

(A.25) j ı � ı �� ı "Œn�1�.ya
0/D 0;

Note that the following diagram of sets commutes:

(A.26)

yF1 2M‚W 1
Œn�1�
fBg1

.d0
1
/�

��

.d1
1
/�

((

ya0 2M‚W 0
Œn�1�
f�Bg0

"Œn�1�

��

jı�ı��
// M‚W 0

Œn�1�
fBg1

"Œn�1�

��

M‚W 0
Œn�1�
fBg1

"Œn�1�
uu

Xf�Bg0
jı�ı��

// XfBg1

where the left-hand square commutes by naturality of j ı �ı �� , and the right-hand side
commutes by (A.23). By (A.22), the simplices yF1 and ya0 thus map to the same value
in XfBg1 , which is zero by (A.21), proving that (A.25), and thus (A.24), in fact hold.
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By the outer induction hypothesis that Definition 2.1(b) holds, the augmented simplicial
abelian group

(A.27) V�f�Bg
"
�!�0Xf�Bg D �f�n�2W n

g

is realized by W �

Œn�1�
through simplicial dimension n� 1, so that

(A.28) Vkf�Bg Š �0M‚W k
Œn�1�f�Bg D ŒW k

Œn�1�; �B �

for k D 1 and 0.

Since, by (A.24), Œya0� is a 0–cycle in (A.27), which is acyclic, there is a Moore 1–chain

1 2V1f�Bg with @V1

0
.
1/D Œya

0�. As in (A.18) of Step V, this can be used to produce
a map F1W C 1W �

Œn�1�
! PB such that

(A.29) F1
ı d1
D 0;

yielding a0W W 0
Œn�1�

!�B (by Step III) having a nullhomotopy yF0W a0 � 0 (again,
as in Step V). Moreover, (A.29) and (A.23) together imply that (after replacing yF1 by
F1 in (A.26)) one can deduce that

(A.30) "Œn�1�.a
0/D 0 in Xf�Bg;

as required.

VII Step k D 0 of the descending induction For k D 0, let C WD �n�2W n .
The nullhomotopy yF0W a0 ı w0 � 0 is represented as in Step VI by a 1–simplex
yF02M‚W 0

Œn�1�
fC g1 with d0

yF0Da0 , and d1
yF0D0. Thus for "Œn�1�. yF

0/2XfC g1
we have d0."Œn�1�. yF

0//D "Œn�1�.a
0/D 0, by (A.30), as well as d1."Œn�1�. yF

0//D 0.

Therefore, as in (A.22) we obtain ya 2 Xf�C g0 with j ı � ı ��.ya/D "Œn�1�. yF
0/.

Note that this argument fails if we do not have the mapping algebra X (with ‚ as
in Remark A.2), which allows us to obtain an element Œya� 2 �f�C g D �f�n�1W ng

from the nullhomotopy yF0W W 0
Œn�1�

! PC .

Again we use the acyclicity of (A.27) to deduce the existence of a Moore 0–chain

0 2 V0f�C g with

(A.31) ".
0/D Œya� 2 �f�C g:

We no longer require Lemma 2.22 to deduce that we can represent 
0 by a map
g0W W 0

Œn�1�
!�C , corresponding to a 0–simplex g0 2M‚W 0

Œn�1�
f�C g0 , and thus
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a 1–simplex

(A.32) H WD .j ı � ı ��/.g
0/ 2M‚W 0

Œn�1�fC g1 with d0H D d1H D 0:

Since M‚W 0
Œn�1�
fC g is a homotopy group object in S� , with homotopy group struc-

ture ? and inverse .�/�1 induced from those of C 2 ‚ � C , we may define a new
1–simplex

(A.33) F0
WD yF0 ?H�1

2M‚W 0
Œn�1�fC g1 with d0F0

D a0 and d1F0
D 0:

Since "Œn�1�.a
0/ D 0, the 1–simplex "Œn�1�.F

0/ 2 XfC g1 is in the image of the
composite inclusion

Xf�C g0
��
�!�XfC g0

�
�!PXfC g0

j
�!XfC g1:

Thus, there is a 0–simplex a 2 Xf�C g0 with

(A.34) .j ı � ı ��/.a/D "Œn�1�.F
0/:

Moreover, since .j ı � ı ��/ and "Œn�1� commute with the homotopy group structure,

.j ı�ı��/.a/D"Œn�1�. yF
0/?."Œn�1�.H /�1/D Œ.j ı�ı��/.ya/�?Œ.j ı�ı��/."Œn�1�g

0/��1;

by (A.32) and (A.34). Since j ı � ı �� is monic, this implies that

(A.35) a D ya ? ."Œn�1�g
0/�1:

By (A.31) there is a 1–simplex G 2 Xf�C g with d0G D ya and d1G D "Œn�1�.g
0/

in Xf�C g0 . Therefore, G0 WDG ? .s0"Œn�1�.g
0//�1 2 Xf�C g1 satisfies

(A.36) d0G0 D ya ? ."Œn�1�.g
0//�1 and d1G0 D "Œn�1�.g

0/ ? ."Œn�1�.g
0//�1:

Since �C is a homotopy group object, there is a 1–simplex K 2 Xf�C g1 with

(A.37) d0K D "Œn�1�.g
0/ ? ."Œn�1�.g

0//�1 and d1K D 0:

Since Xf�C g is a Kan complex, we have � 2Xf�C g2 with d0� DG0 and d1� DK ,
so if we set yF WD d2� , we find

(A.38) d0
yF D ya ? ."Œn�1�.g

0//�1 and d1
yF D 0:

We deduce from (A.35) that yF is a nullhomotopy for a in Xf�C g, as required in
Step III, thus completing the construction of the restricted cosimplicial object �W �

Œn�
.
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Since making the cosimplicial object �W �

Œk�
as in Section 2.5(iii) Reedy fibrant or

cofibrant does not change �W 0
Œk�

, we see by induction from (2.17) that

(A.39) �W 0
Œn� DW 0

Œn�1� �P�C D

nY
kD0

P�k�1W k

(using the convention of (2.7)). Note that all the factors on the right-hand side of (A.39)
are in ‚ by Remark A.2, so �W 0

Œn�
is, too.

Thus, by Lemma A.4, the augmentation z"Œn�W M‚
�W 0
Œn�
! X is determined by the

choice of a suitable 0–simplex

e D .e0; e00/ 2 Xf �W 0
Œn�g0 D XfW 0

Œn�1� �P�C g0 D XfW 0
Œn�1�g0 �PXf�C g0

by (A.10), using Remark A.2(a), where the component e0 2 XfW 0
Œn�1�
g corresponds to

the given "Œn�1�W M‚W 0
Œn�1�

! X.

On the other hand, as before, e00 corresponds to the nullhomotopy yF 2 Xf�C g1 ,
which actually lands in PXf�C g0 .

The cosimplicial identity

(A.40) z"Œn� ı .d
0
0 /
�
D z"Œn� ı .d

1
0 /
�
W M‚

�W 1
Œn�! X

may be verified using Lemma A.4 by representing both sides of the equation by elements
in

Xf �W 1
Œn�g0 D XfW 1

Œn�1�g0 �XfPC g0;

where the components in XfW 1
Œn�1�
g0 agree because ."Œn�1�/

�W M‚W �

Œn�1�
! X is

an augmented simplicial ‚–mapping algebra, by the outer induction hypothesis. Here
we are using the last assumption in Remark A.2 to deduce that W 1

Œn�1�
2‚ .

Thus it remains to identify the corresponding components in XfPC g0 . On the one hand,
q1
Œn�
ı d0

0
W �W 0

Œn�1�
! PC is the map F0 ı 0

Œn�
, and z"Œn� ı . 0

Œn�
/�W M‚W 0

Œn�1�
! X

is the given "Œn�1� by construction, and since .F0/�W M‚PC ! M‚W 0
Œn�1�

is
represented according to Lemma A.4 by F0 2 M‚W 0

Œn�1�
fPC g, we see that the

composite z"Œn� ı .q1
Œn�
ı d0

0
/� is represented in XfPC g0 by

"Œn�1�.F
0/D .j ı ��/.a/;

according to (A.34).
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On the other hand, q1
Œn�
ı d1

0
W �W 0

Œn�1�
! PC equals � ıp ı q0

Œn�
, so

z"Œn� ı .d
1
0 /
�
D z"Œn� ı .q

0
Œn�/
�
ı .� ıp/�;

where z"Œn� ı .q0
Œn�
/�W M‚P�C ! X is represented by yF 2 Xf�C g1 , so

z"Œn� ı .q
0
Œn�/
�
ı .� ıp/�

is represented by
.j ı ��/.d0

yF /D .j ı ��/.a/ 2 XfPC g0

as above.

This completes the nth step of the outer induction in case (1).

VIII Making W cofibrant in case (2) Note that when we represent the attaching
map x@n

0
W Vn!Zn�1V� for V� by a map �W Vn˝� Sn�1! C�V� as in Remark 1.14,

� extends to a map of augmented .n�1/–truncated chain complexes in ‚–Alg, ending
in C�1V� WD � . Moreover, in case (2) the cochain map F W C �W �

Œn�1�
!D� realizing

� which we have constructed in the outer induction above also extends to a map of
coaugmented .n�1/–truncated cochain complexes, with C�1W �

Œn�1�
WD Y , ı�1 given

by "Œn�1� , and F�1 given by Lemma 4.5.

In the left Reedy model category structure on the category ChC�1���n�1 of .n�1/–
truncated coaugmented cochain complexes in C , factor F as a cofibration

GW C �W �

Œn�1� ,!E�

followed by a trivial fibration T W E��D� . Applying the functorial construction of
Definition 2.1(c) to G yields W �

Œn�
as required for the cofibrant sequential realization W.

The vertical trivial fibrations of (2.9) are induced by T .
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