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Angle-deformations in Coxeter groups

TIMOTHÉE MARQUIS

BERNHARD MÜHLHERR

The isomorphism problem for Coxeter groups has been reduced to its “reflection
preserving version” by B Howlett and the second author. Thus, in order to solve it, it
suffices to determine for a given Coxeter system .W;R/ all Coxeter generating sets
S of W which are contained in RW , the set of reflections of .W;R/ . In this paper,
we provide a further reduction: it suffices to determine all Coxeter generating sets
S �RW which are sharp-angled with respect to R .

20F55; 51F15

1 Introduction

Let W be a group and let R � W . We call R a Coxeter generating set of W if
.W;R/ is a Coxeter system. All Coxeter systems .W;R/ considered in this paper are
assumed to have finite rank, ie R is a finite set.

Let .W;R/ be a Coxeter system and let S �RW be a Coxeter generating set of W . A
subset J of S is called spherical if it generates a finite subgroup; if it is of cardinality 2,
it is called an edge of S . Let fs; tg � S be an edge of S . By basic results on Coxeter
groups, one knows that there exist r; r 0 2 R and w 2W such that hs; tiw D hr; r 0i.
If there exist r; r 0 2R and w 2W such that fs; tgw D fr; r 0g, then we call the edge
fs; tg sharp-angled with respect to R. We call S sharp-angled with respect to R if
all edges of S are sharp-angled with respect to R. The trivial example of the dihedral
groups shows that there are examples of Coxeter systems .W;R/ admitting Coxeter
generating sets S �RW which are not sharp-angled with respect to R.

In [11], the second author conjectured that for any Coxeter generating set S �RW ,
there exists an automorphism ˛ of W such that ˛.S/�RW and such that ˛.S/ is
sharp-angled [11, Conjecture 1]. This conjecture may be seen as a reduction step in
order to state the main conjecture about the solution of the isomorphism problem for
Coxeter groups, which is Conjecture 2 in [11] (see Remark 1 below).

It was mentioned without proof in [11] that Conjecture 1 is true if there is no subdi-
agram of type H3 . It turned out that this conjecture was too optimistic if there are
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H3 –subdiagrams. Counterexamples have been found independently by Ratcliffe and
Tschantz [12] and by Grassi [9]. This motivates the question whether it is still true that
one can reduce the solution for the isomorphism problem to the main conjecture. The
goal of this paper is to show that this is indeed the case.

Our first result is the following.

Theorem 1 Let .W;R/ be a Coxeter system. Let S �RW be a Coxeter generating
set of W having no subsystem of type H3 . Then there exists an automorphism ˛ of W

such that ˛.S/ is sharp-angled with respect to R.

As already mentioned before, Theorem 1 was announced in [11] and it is a special case
of Theorem 2 below. Its proof is given in Section 6. We prefer to present it separately
since it is rather easy and provides at the same time a good overview on the kind of
arguments that will yield Theorem 2.

The situation becomes considerably more complicated if H3 –subdiagrams are allowed.
First of all, the counterexamples to [11, Conjecture 1] show that one cannot expect
to produce sharp-angled Coxeter generating sets from S by automorphisms. So, we
have to produce the desired Coxeter generating set starting from S by a sequence of
operations which we call angle-deformations.

In order to define angle-deformations, we analyse the situation where we are given
a Coxeter system .W;R/ and a Coxeter generating set S � RW such that there is
an edge J of S which is not sharp-angled with respect to R. It turns out that the
Coxeter diagram of the system .W;S/ has to satisfy several conditions with respect to
the subset J . These conditions will be deduced in Section 8. An edge satisfying these
conditions will be called a �–edge.

Let .W;S/ be a Coxeter system and J D fr; sg be a �–edge of S . Then we construct
a mapping ıW S ! W such that ı.s/ D s; ı.r/ 2 hs; ri and such that S 0 WD fı.x/ j

x 2 Sg is a Coxeter generating set with the property that all spherical 2–subsets
fx0;y0g ¤ fı.r/; ı.s/g are sharp-angled with respect to S . We call these mappings
J –deformations. In the case where there are no H3 –subdiagrams, it is easy to give
the definition of these J –deformations. If there are H3 –subdiagrams, the definition is
given recursively. We first define J –deformations for a class of diagrams which we
call tame. The general case will then be treated by induction on the number of “wild”
vertices.

The construction of J –deformations will enable us to prove our main result, which is
the following.
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Theorem 2 Let .W;R/ be a Coxeter system and let S �RW be a Coxeter generating
set of W . Then there exists a sequence S D S0; : : : ;Sk D S 0 of Coxeter generating
sets Si such that Si is a Ji –deformation of Si�1 for some �–edge Ji of Si�1 for
each 1� i � k , and such that S 0 is sharp-angled with respect to R.

We remark that the proof of Theorem 2 is constructive. Hence it provides a concrete
algorithm to obtain the set S 0 starting from S . Combining the theorem above with
the fact that the isomorphism problem for Coxeter groups is reduced to its “reflection-
preserving version” (as described in [11]), we obtain the following.

Corollary 1.1 The isomorphism problem for Coxeter groups is solved as soon as the
following problem is solved.

Problem Let .W;R/ be a Coxeter system. Find all Coxeter generating sets S �RW

such that S is sharp-angled with respect to R.

Remark 1 There is a conjecture about the solution of the above problem. This is
Conjecture 2 in [11] and it is a refinement of Conjecture 8.1 in Brady–McCammond–
Mühlherr–Neumann [2]. It says that if R and S are as in the problem above, one can
transform S into R by a sequence of twists introduced in [2]. The conjecture has been
proved for various classes of Coxeter systems; the reader may refer to [11] for a survey
on its status in 2005. Recently, it was shown by Ratcliffe and Tschantz in [12] that the
conjecture holds for chordal Coxeter systems as well.

Remark 2 In [12], Ratcliffe and Tschantz obtained Theorem 2 for chordal Coxeter
systems. Their methods are quite different from ours. Their arguments rely heavily on
a very strong property of chordal Coxeter groups which is not available in the general
case.

The paper is organized as follows. In Section 2, we fix notation, recall some basic facts
on Coxeter groups and provide some preliminary results. In Section 3, we introduce
angle-deformations and make some observations about them. In Section 4, we prepare
the proof of Theorem 1. In this section we introduce ‚–edges, which are special
cases of �–edges. Section 5 is devoted to introducing and investigating the notion of
a sharp-angled set of reflections in a Coxeter group. This will enable us to give the
proof of Theorem 1 in Section 6. In Section 7, we collect information about angle-
deformations of Coxeter systems with subdiagrams of type H3 and H4 . In Section 8,
we define �–edges. Later on, these turn out to be precisely the edges of a Coxeter
system for which there are nontrivial angle-deformations. This fact is a consequence
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of Proposition 6.1 and Theorem 10.4, and it is indeed the key ingredient of the proof
of our main result. Section 9 can be seen as a preparatory section for the proof of
Theorem 10.4 which will be completed in Section 10. In Section 11, we finally give
the proof of our main result, Theorem 2.

2 Preliminaries

2.1 Graphs

For a set X , denote by P2.X / the set of all subsets of X having cardinality 2. A
graph is a pair .V;E/ consisting of a set V and a set E � P2.V /. The elements of
V and E are called vertices and edges respectively.

Let � D .V;E/ be a graph. Let v ,w be two vertices of � . They are called adjacent if
fv;wg 2E . In this paper, a path from v to w is a sequence v D v0; v1; : : : ; vk D w ,
where vi�1 is adjacent to vi for all 1 � i � k and where v1; : : : ; vk are pairwise
distinct; the number k is the length of the path. The path is minimal if it is of minimal
length. The distance between v and w (denoted by ı.v; w/) is the length of a minimal
path joining them; if there is no path joining v and w , we put ı.v; w/D1.

A path v D v0; v1; : : : ; vk D w is said to be chordfree if E \ P2.fv0; : : : ; vkg/ D

ffv0; v1g; fv1; v2g; : : : ; fvk�1; vkgg. A path v D v0; v1; : : : ; vk Dw is called a circuit
if v D w and k � 2.

The relation R � V � V defined by R D f.v; w/jı.v; w/ ¤ 1g is an equivalence
relation whose equivalence classes are called the connected components of � . A graph
is said to be connected if it has only one connected component.

2.2 Coxeter systems

Let .W;S/ be a pair consisting of a group W and a set S �W of involutions. For
r; s 2S , denote by mrs 2N[f1g the order of the product rs in W . Note that we will
also use the notation o.rs/ instead of mrs . Define E.S/ WDffr; sg�S j 1¤mrs¤1g

to be the set of edges of S . Then �.S/ is the graph .S;E.S// whose edges are labelled
by the corresponding mrs . Throughout this text, any graph notion (such as paths and
circuits) associated to the pair .W;S/ must be understood as being in �.S/. In
particular, when we speak about the “diagram of .W;S/”, we refer to �.S/.

The Coxeter diagram associated to .W;S/ is the graph .S;E0.S// where E0.S/ WD

ffr; sg � S jmrs � 3g and where the edges are labelled by the corresponding mrs .
A subset K of S is said to be irreducible if the underlying Coxeter subdiagram
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.K;E0.K// is connected. We call K spherical if it generates a finite group. Finally, K

is 2–spherical if mrs <1 for all r; s 2K . If S is irreducible, spherical or 2–spherical,
we say that .W;S/ is irreducible, spherical or 2–spherical, respectively. Note that
sometimes, we use the same notions for �.S/ instead of .W;S/.

We say that .W;S/ is a Coxeter system if S generates W and if the relations
..rs/mr s /r;s2S form a presentation of W . We call R � W a Coxeter generating
set if .W;R/ is a Coxeter system.

Let .W;R/ be a Coxeter system. An element of W is called a reflection if it is
conjugate in W to an element of R; the set of all reflections is denoted by RW .

2.3 Conventions about figures

Here are some conventions about the figures appearing in the paper, which the reader
may refer back to when needed.

Throughout this text, all figures represent diagrams of the form �.K/ for some Coxeter
system .W;S/ and K � S . The edges in plain have a finite label, while the edges in
strips have an infinite label. An absence of edge does not imply anything. If there is a
single edge with more than one label (say m> 1), then the figure must be understood
as m different figures, one for each of these labels. If there are two or more edges with
more than one label, then these edges will have the same number m> 1 of labels. In
that case, the figure must be understood as m different figures, the i –th figure being
obtained by taking the i –th label from each of these edges.

A dotted line between two vertices means that there is a path (in plain) joining these
two vertices, but the other vertices in the path were omitted. (It will be always clear
from the context what the omitted vertices are). For example, in Section 8, Figure 2
and Figure 3 contain a path fS.1/;S.2/; : : : ;S.n� 1/;S.n/g. We denote by X this
set and we assume n� 2. Let X1 WDX n fS.1/g and Xn WDX n fS.n/g. We assume
X has the following property:

o.S.i/S.j //D1 for all i; j such that 1� i < j � n and ji � j j � 2:

Finally, for a vertex y …X1 , we mean by X1y D1 that mxy D1 for all x 2X1 .

2.4 Coxeter generating sets and automorphisms

Lemma 2.1 Let .W;S/ be a Coxeter system and let S1;S2 be subsets of S such that
each edge of S is contained in S1 or S2 . Put S0W D S1 \S2 . Let ıW S !W be a
mapping such that ı.Si/ is a Coxeter generating set of hSii for i D 0; 1; 2. Then ı.S/
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is a Coxeter generating set of W . Moreover, if the restrictions of ı to S1 and S2 extend
to automorphisms of hS1i and hS2i respectively, then ı extends to an automorphism
of W .

Proof This follows immediately from the fact that W D hS1i �hS0i
hS2i.

The following lemma follows easily by the pigeon-hole principle.

Lemma 2.2 Let G be a finite group, let ˛ be an automorphism of G and let g 2G .
Then ˛m.g/˛m�1.g/ : : : ˛2.g/˛.g/g D 1G for some m� 0.

Using the previous lemma, one immediately obtains the following proposition.

Proposition 2.3 Let .W;S/ be a Coxeter system and let ˛W W !W be an epimor-
phism. Suppose that there is a subset K of 2S such that the following holds:

(1) All elements of K are spherical.

(2) For all K 2K, the mapping ˛jhK i is an automorphism of hKi.

(3) For all s 2 S , there exists ws 2
S

K2KhKi such that ˛.s/D wssw�1
s .

Then ˛ is an automorphism of W which is of finite order.

2.5 The geometric representation of a Coxeter system

In this subsection, we collect several basic results about the geometric representation
of a Coxeter system. The standard references are Bourbaki [1] and Humphreys [10].

Throughout this paper, � and �0 are the following subsets of R:

� WD fcos.�=m/ jm 2Ng[ Œ1;1/

and �0 WD� n f�1g. Moreover, we define a mapping C W N [f1g!�� by setting
C.m/ WD � cos.�=m/ if m 2 N and C.1/ WD �1.

Let V be a real vector space endowed with a symmetric bilinear form bW V �V !R.
The set of vectors v 2 V with b.v; v/D 1 is denoted by U.V; b/ and for each such
vector, the corresponding orthogonal reflection with respect to b is denoted by �v ;
hence �v.x/D x� 2b.x; v/v for each x 2 V .

Let .W;R/ be a Coxeter system. Let V WD RR and .er /r2R be the canonical basis
of V . Furthermore, let bW V � V ! R be the symmetric bilinear form defined by
b.er ; es/ WD C.o.rs//.
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Theorem 2.4 The mapping r 7! �er
from R into O.V; b/ extends to a monomor-

phism from W into O.V; b/.

Thus, by the above construction, we obtain a canonical faithful linear representation of
the Coxeter group W which is called the geometric representation of .W;R/. We now
identify W with its image in O.V; b/ and we put ˆ.W;R/ WD fw.er / jw 2W; r 2Rg.
We have the following:

Lemma 2.5 For all r 2 R and w 2 W , we have �w.er / D wrw�1 ; in particular,
RW D f�˛ j ˛ 2ˆ.W;R/g. Moreover, if ˛; ˇ 2ˆ.W;R/ are such that �˛ D �ˇ , then
ˇ D ˛ or ˇ D�˛ .

The set ˆ WDˆ.W;R/ is called the root system of .W;R/. We put

V C WD f†r2R�r er j �r � 0 for all r 2Rg

and V � WD �V C ; furthermore, we put ˆC WD V C\ˆ and ˆ� WD V �\ˆ.

Lemma 2.6 ˆDˆC[ˆ� .

The elements of ˆC are called the positive roots of .W;R/. A subset … of ˆ is called
a root-subbase of ˆ if …�ˆC and if b.˛; ˇ/ 2 ��0 for all ˛ ¤ ˇ 2….

The following theorem is a consequence of the main result in Deodhar [6] and Dyer [7].

Theorem 2.7 Let … be a root subbase of ˆ and put S WDf�˛ j˛2…g. Then .hSi;S/
is a Coxeter system. Conversely, let W 0 be a subgroup of W which is generated by a set
of reflections. Then there exists a root-subbase …0 of ˆ such that W 0 D h�˛ j ˛ 2…

0i.

2.6 Flexibility

Let .W;S/ be a Coxeter system and J � S . We define the following notions and
notation:

� J? WD fs 2 S j 8 j 2 J W msj D 2g.

� J fin WD fs 2 S nJ j msj <1 8 j 2 J g.

� J1 WD fs 2 S nJ j 9 j 2 J W msj D1g.

� GJ WD .J
1; ffa; bg � J1 j mab <1g/.

� A J –component is a connected component of GJ .
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� Let L be a J –component. We shall say that j 2 J is L–free if mjl D1 for
all l 2L.

� An element j of J is J1–free if it is L–free for every J –component L.

� The J –component L is said to be flexible if there exists j 2 J such that j is
L–free.

� Finally, we will say that J is flexible if all J –components are.

Here is a first observation.

Lemma 2.8 Let .W;S/ be a Coxeter system and let J Dfr; sg be an edge of S . Then
J is flexible if and only if there is no chordfree circuit in �.S/ of length at least 4
containing J .

Proof Suppose first J is not flexible. Then there exists a J –component L and
x;y 2L such that mxr <1 and mys <1. Let xDx0;x1; : : : ;xk D y be a minimal
path in L joining x to y . Define

M WDmin
˚
i j 0< i � kI mxi s <1

	
m WDmax

˚
i j 0� i <M I mxi r <1

	
:and

Then the subpath xm;xmC1; : : : ;xM from xm to xM is still minimal, hence chordfree,
and possesses the following properties:

(1) mxi s D1 for all i such that m� i <M (by definition of M).

(2) mxi r D1 for all i such that m< i �M (by definition of m).

Moreover, mxM s <1 and mxmr <1. We then obtain a chordfree circuit r;xm;

xmC1; : : : ;xM ; s; r , as required. The situation is illustrated on Figure 1.

The converse is obvious.

3 Angle-deformations

Definition 3.1 Let .W;S/ be a Coxeter system, let J D fr; sg be an edge of S and
let ! 2 hJ i be such that !r!�1 and s generate hJ i. An .r; s; !/–deformation of S

is a mapping ıW S !W satisfying the following properties:

(AD1) ı.x/ 2 SW for all x 2 S .

(AD2) ı.r/D !r!�1 and ı.s/D s .
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r s

xm xM

x y

Figure 1. Lemma 2.8

(AD3) ı.S/ is a Coxeter generating set of W .

(AD4) There exists a bijection � from the set of edges of S onto the set of edges of
ı.S/ such that �.J /D f!r!�1; sg and such that for each edge K ¤ J of
S , there exists wK 2W with �.K/DKwK .

Definition 3.2 Let .W;S/ be a Coxeter system and let J D fr; sg be an edge of S .
A J –deformation of S is an .r; s; !/–deformation of S for some ! 2 hJ i. An
angle-deformation of S is a J –deformation for some edge J of S .

The following proposition is a consequence of Lemma 2.1.

Proposition 3.3 Let .W;S/ be a Coxeter system and let S1;S2 be subsets of S such
that each edge of S is contained in S1 or S2 and put S0 WD S1 \ S2 . Let J be an
edge contained in S0 and assume that ıi W Si ! hSii are J –deformations of Si for
i D 0; 1; 2 and that ı0 D ıi jS0

for i D 1; 2. Define ıW S1[S2!hS1[S2i by setting
ıjSi
WD ıi for i D 1; 2. Then ı is a J –deformation of S1[S2 .

Proposition 3.4 Let .W;S/ be a Coxeter system, J WD fr; sg be an edge of S and let
! 2 hJ i be such that !r!�1 and s generate hJ i. Let K be a set of spherical subsets
of S such that each element of K contains J and let ıW S !W be a mapping with
the following properties:

a) ı.r/D !r!�1 and ı.s/D s .

b) hı.S/i DW .

c) For all x 2 S , there exists an element wx in
S

K2KhKi such that ı.x/ D
wxxw�1

x .
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d) For each edge E of S different from J , there exists an element wE 2W such
that ı.E/DEwE .

Then ı is an .r; s; !/–deformation of S which extends to an automorphism of W .

Proof By the universal property of .W;S/ and Property d), ı extends to an endomor-
phism ˛ of W which is in fact an epimorphism because of Property b). By Proposition
2.3, it follows now from Property c) that ˛ is an automorphism. Hence ı.S/ is a
Coxeter generating set of W and the mapping E 7! ı.E/ is a bijection as required in
Condition (AD4). As (AD1) is a consequence of Property c), and as (AD2) is precisely
Property a), the proposition is proved.

4 Angle-deformations involving dihedral groups

Throughout this section, .W;S/ is a Coxeter system and J D fr; sg is an edge of S

such that o.rs/� 3.

4.1 Condition (TWa)

Definition 4.1 Let a 2 J . We say that J is an a–special subset of S if the following
condition (TWa) holds.

(TWa) For all x 2 S nJ we have o.xa/ 2 f2;1g, and if o.xa/D 2 then x 2 J? .

The following observation is immediate.

Lemma 4.2 Let a 2 J be such that J is a–special. Then the following holds.

a) fJ;J1;J?g is a partition of S .

b) a is J1–free; in particular, J is flexible.

For the remainder of this subsection, we assume that a 2 J is such that J is a–special,
and ! 2 hJ i is such that !r!�1 and s generate hJ i. We put � WD 1W if a D r

and � WD ! if a D s . Moreover, we let ıW S ! W be the mapping defined by
ı.r/D !r!�1 , ı.y/D y for y 2 fsg[J? and ı.x/ WD �x��1 if x 2 J1 .

Lemma 4.3 Let E D fx;yg be an edge of S different from J . Then there exists wE

such that ı.E/DEwE .
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Proof Note first that each y 2 J? commutes with ! and � . Hence, if E � fsg[J? ,
then we may choose wE D 1W ; if E � frg[J? , then we may choose wE D ! ; and
if E � J1[J? , then we may choose wE D � .

By the previous lemma, we are left with the case where E�J[J1 . As a is J1–free
and E ¤ J , we are now left with the case where E D fb;xg for some x 2 J1 and
where b is the element of J distinct from a. If aD r , we may choose wE D 1W and
if aD s , we may choose wE D ! .

Proposition 4.4 The mapping ı is an .r; s; !/–deformation of S which extends to an
automorphism of W .

Proof Setting K WD fJ g, Properties a), b) and c) required in Proposition 3.4 are clear
from the definition of ı and Property d) is settled by the previous lemma.

4.2 ‚–edges

Definition 4.5 We say that J is a ‚–edge of S if J is flexible and if there is no
2–spherical and irreducible subset of S containing J properly.

Remark If J is a ‚–edge, then fJ;J1;J?g is a partition of S .

For the remainder of this subsection, we suppose that J is a ‚–edge of S . Moreover,
we assume that ! 2 hJ i is such that !r!�1 and s generate hJ i.

Let L be a J –component. We denote the set of L–free vertices in J by ….L/. It
is nonempty because J is assumed to be flexible. If r 2….L/, we put aL WD r and
L WD1W ; if this is not the case, we set aL WD s and L WD! . We set KL WDJ[L[J? .
We define ıLW KL ! hKLi by ıL.r/ WD !r!�1 , ıL.y/ WD y for all y 2 fsg [ J?

and ıL.x/ WD Lx�1
L

for all x 2L.

Proposition 4.6 Let ıW S ! W be the unique mapping such that ıjKL
D ıL for

every J –component L. Then ı is an .r; s; !/–deformation of S which extends to an
automorphism of W .

Proof Let L be a J –component. The edge J is an aL –special subset of KL and
hence it follows by Proposition 4.4 that ıL is an .r; s; !/–deformation of KL . An
obvious induction on the number of J –components using Proposition 3.3 and Lemma
2.1 yields the claim.
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5 Sharp-angled sets of reflections

Throughout this section, .W;R/ denotes a Coxeter system, where W is identified
with its image in O.V; b/ by its geometric representation and ˆ� U.V; b/ is its root
system.

Lemma 5.1 Let ˛; ˇ 2ˆ.

a) If jb.˛; ˇ/j < 1, then o.�˛�ˇ/ is finite and b.˛; ˇ/ D � cos.p�=q/ for some
integers p and q .

b) If �˛ ¤ �ˇ and jb.˛; ˇ/j � 1, then �˛�ˇ has infinite order.

c) If �˛ ¤ �ˇ , then o.�˛�ˇ/ is finite if and only if jb.˛; ˇ/j< 1.

Proof Assertion a) is Proposition 1.4 in Brink and Howlett [3], whereas Assertion b)
is an easy exercise in linear algebra. Assertion c) is an immediate consequence of a)
and b).

Definition 5.2 Let s¤ t 2RW be such that o.st/ is finite. Let ˛; ˇ 2ˆ be such that
s D �˛ and t D �ˇ . Then we call the 2-set fs; tg sharp-angled if jb.˛; ˇ/j 2�.

Remark Note that this definition does not depend on the choice of ˛ and ˇ in view
of the last statement of Lemma 2.5.

The following two lemmas are easy.

Lemma 5.3 Let s ¤ r 2RW be such that o.rs/ is finite. If fr; sg is not sharp-angled,
then o.rs/� 5.

Lemma 5.4 Let s ¤ r 2 RW be such that o.rs/ is finite and suppose fr; sg is not
sharp-angled. Then there exists an element w 2 hs; ri such that the set fs; wrw�1g is
sharp-angled. Moreover, if o.rs/D 5, we may choose w to be srs .

Definition 5.5 A set S �RW is called sharp-angled if each edge of S is sharp-angled.

The following lemma follows from the fact that W is a subgroup of O.V; b/ and from
the first statement of Lemma 2.5.

Lemma 5.6 Let S be a set of reflections and let w 2W . Then Sw is sharp-angled if
and only if S is sharp-angled.

The following fact follows from the definition of a root-subbase:

Lemma 5.7 Let … be a root-subbase of ˆ and S WD f�˛ j ˛ 2 …g. Then S is
sharp-angled.
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5.1 Fundamental sets of reflections

Definition 5.8 A subset S of RW is called fundamental if .hSi;S/ is a Coxeter
system.

Theorem 5.9 Let S �RW be a fundamental set of reflections and suppose that one
of the following holds:

A) The Coxeter system .hSi;S/ is 2–spherical, irreducible and nonspherical.

B) �.S/ is a chordfree circuit of length at least 4.

Then S is sharp-angled.

Proof As W 0 WD hSi is generated by a set of reflections, we may apply the second
part of Theorem 2.7 to see that there is a root-subbase … of ˆ such that the set
S 0 WD f�˛ j ˛ 2 …g is a Coxeter generating set of W 0 . It is known by Caprace–
Mühlherr [4] and Charney–Davis [5] that the Coxeter system .hSi;S/ is strongly
reflection rigid and hence S and S 0 are conjugate in W 0 and the claim follows from
Lemma 5.6 and Lemma 5.7.

6 Proof of Theorem 1

Throughout this section, .W;R/ is a Coxeter system and S �RW is a fundamental
set of reflections. Moreover, we assume that S contains no subset of type H3 .

Proposition 6.1 Suppose that J is an edge of S which is not sharp-angled. Then J

is a ‚–edge of S .

Proof Put J D fr; sg. By Lemma 5.3, we have o.rs/ � 5. Let t 2 S be such that
o.r t/ and o.st/ are finite. By Theorem 5.9 and our hypothesis that there are no subsets
of type H3 , we have that t 2 J? . Hence there is no irreducible 2–spherical subset of
S containing J properly. Furthermore, again by Theorem 5.9, there is no chordfree
circuit of length at least 4 containing J . By Lemma 2.8, it follows that J is flexible.
Hence J is indeed a ‚–edge of S .

Corollary 6.2 Suppose that J is an edge of S which is not sharp-angled. Then there
exists a J –deformation ı of S such that ı.J / is sharp-angled and such that ı is the
restriction of an automorphism of hSi.
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Proof Put J D fr; sg. By Lemma 5.4, we can find an element ! 2 hJ i such that
!r!�1 and s generate ! 2 hJ i and such that f!r!�1; sg is sharp-angled. By the
previous proposition, we know that J is a ‚–edge of S and hence, by Proposition
4.6, we can find an .r; s; !/–deformation of S which extends to an automorphism of
hSi and we are done.

Conclusion of the proof of Theorem 1 Let S � RW be a Coxeter generating set
which is not sharp-angled. Suppose S contains n � 1 edges which are not sharp-
angled and choose one of them. Call it J . By the previous corollary, there exists a
J –deformation ı of S which extends to an automorphism of W (because hSi DW )
and such that ı.J / is sharp-angled. Let J 0 be an edge of S different from J . Then
ı.J 0/ is W –conjugate to J 0 by Property (AD4) of ı ; in particular, ı.J 0/ is sharp-
angled if and only if J 0 is sharp-angled. Hence the number of edges in ı.S/ which
are not sharp-angled is n� 1. Thus the statement follows by an obvious induction on
the number of edges of S which are not sharp-angled.

7 Angle-deformations involving Hk

7.1 Coxeter systems of type H3

Lemma 7.1 Let .W;S/ be a Coxeter system of type H3 , where S D fr; s; tg and
o.rs/D 5, o.st/D 3. Set ! WD tsr tst , � WD t rs and define ıW S !W by ı.r/ WD
rsr; ı.s/ WD s and ı.t/ WD !t!�1 . Then we have the following:

(1) !s!�1 D s , !t!�1 D �r��1 , � t��1 D rsr .

(2) There is an automorphism ˛ of W which extends ı .

(3) ı is an .r; s; srs/–deformation of .W;S/.

Proof Part (1) is a straightforward calculation. Moreover, it is clear that ı.S/ is
contained in SW and that it generates W . It follows from (1) that fı.s/; ı.t/gD fs; tg!

and fı.r/; ı.t/g D fr; tg� . Furthermore, we have o.ı.r/ı.s//D o.rsrs/D 5. By the
universal property of Coxeter systems, it follows that ı extends to an endomorphism ˛

of W . Since ı.S/ generates W , ˛ is surjective and hence an automorphism because
W is finite. This finishes (2) and shows in particular that ı.S/ is a Coxeter generating
set. Assertion (3) is now a consequence of the information collected so far.
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Corollary 7.2 Let .W;S/, ! , � and ı be as in the previous lemma and set c WD rsrs ,
!1 WD c! , �1 WD c� and ı1 WD c ıı , where c is the inner automorphism w 7! cwc�1

of W . Then we have the following:

(1) !1 D rsr tsrst , �1 D rsrsr ts .

(2) !1s!�1
1
D srs , !1t!�1

1
D �1r��1

1
and �1t��1

1
D r .

(3) There is an automorphism ˛1 of W which extends ı1 .

(4) ı1 is an .s; r; rsr/–deformation of .W;S/.

Proof Assertions (1) and (2) are straightforward calculations. Since c is a reflection-
preserving automorphism of W , Assertions (3) and (4) follow from Assertions (2) and
(3) of the previous lemma, respectively.

Corollary 7.3 Let .W;S/ be a Coxeter system of type H3 where S D fr; s; tg and
o.rs/ D 5, o.r t/ D 3. Set ! WD srst rsr t , � WD srsrst r and define ıW S !W by
ı.r/ WD rsr; ı.s/ WD s and ı.t/ WD !t!�1 . Then we have the following:

(1) !r!�1 D rsr , !t!�1 D �s��1 and � t��1 D s .

(2) There is an automorphism ˛ of W which extends ı .

(3) ı is an .r; s; srs/–deformation of .W;S/.

Proof This follows by exchanging the roles of r and s in the previous corollary.

Remark Corollary 7.3 is obtained from Lemma 7.1 by conjugating by rsrs and then
relabelling. We refer to this technique again in Section 7.7 without giving further
details.

7.2 Coxeter systems of type H4

Throughout this subsection, .W;S/ is a Coxeter system of type H4 , where S D

fr; s; t;ug and o.rs/ D 5, o.st/ D 3. Set J WD fr; sg, !1 WD rsturst rsrstusrst rs ,
!2 WD tsrsrutsrsr tsrsutsrsr , !3 WD srsrutsrsr tsrsutsrsr tsr , ! WD rsrsr!2 ,
� W D !!1utu, � WD t rs!3!

�1 and define ıW S ! W by ı.r/ WD rsr , ı.s/ WD s ,
ı.t/ WD !t!�1 and ı.u/D u.

Lemma 7.4 We have the following:

a) �r��1 D rsr , !s!�1 D s , !t!�1 D � t��1 and !u!�1 D uD �u��1 .

b) fı.r/; ı.t/g D fr; tg� , fı.r/; ı.u/g D fr;ugsrs , fı.s/; ı.t/g D fs; tg! ,
fı.s/; ı.u/g D fs;ug1W and fı.t/; ı.u/g D ft;ug! .
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c) � rsr��1 D rsr , �s��1 D s and �!t!�1��1 D .tsr tst/t.tsr tst/�1 .

Proof The relations in a) and c) are easily deduced from relations given in Franzsen
and Howlett [8, page 333], and b) is an immediate consequence of a).

Note The relations for � will only be needed in Section 10.

Proposition 7.5 ı is an .r; s; srs/–deformation of S which extends to an automor-
phism of W .

Proof Clearly, rsrD .srs/r.srs/ and s generate hJ i and ı.S/ generates W . Setting
K WDfSg, it follows that ı has Properties a), b) and c) of Proposition 3.4, while Property
d) is a consequence of the previous lemma. This proves the claim.

7.3 Conditions (TWa)–(TWt)

Throughout this subsection, .W;S/ is a Coxeter system and K is a subset of S of type
Hk , where k 2 f3; 4g and where r; s; t 2K are such that o.rs/D 5 and o.st/D 3;
if k D 4, the unique element in K n fr; s; tg is denoted by u. Furthermore, we put
J WD fr; sg and ! WD tsr tst if k D 3, ! WD rsrsr!2 if k D 4, � WD t rs if k D 3 and
� WD rsrsr!2!1utu if k D 4, where !1 and !2 are as in Section 7.2.

Definition 7.6 Let a 2 J . We say that K is an a–special subset of S or that K is
a–special in S if the following two Conditions (TWa) and (TWt) hold.

(TWa) For all x 2 S nK we have o.xa/ 2 f2;1g, and if o.xa/D 2 then x 2 J? .

(TWt) If y 2 J? nK is such that o.xy/ <1 for some x 2 J1[ftg, then y 2K? .

Lemma 7.7 Let a 2 J be such that K is a–special in S . Then we have the following.

a) fK;J1;J? nKg is a partition of S ; if k D 3 then K\J? D∅ and if k D 4

then K\J? D fug.

b) If y 2 J? is such that o.xy/ <1 for some x 2 J1 [ ftg, then y commutes
with ! and with � .

Proof Part a) is immediate and Part b) is a consequence of (TWt) and Lemma 7.4 a).
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7.4 Angle-deformations for a–special subsets of S

We adopt the hypotheses of the previous subsection. Furthermore, we assume that
a 2 J is such that K is a–special in S .

We define the mapping ıW S ! W as follows. We put ı.r/ WD rsr , ı.y/ WD y for
all y 2 fsg [J? and ı.t/ WD !t!�1 . Let x 2 J1 . Then we put ı.x/ WD !x!�1 if
aD r and ı.x/ WD �x��1 if aD s .

Lemma 7.8 The mapping ı has the following properties.

a) ı.r/D .srs/r.srs/ and ı.s/D s generate hJ i.

b) ı.S/ generates W .

c) ı jK is an .r; s; srs/–deformation of K which extends to an automorphism
of hKi.

d) For each x 2 S , there exists an element wx 2 hKi such that ı.x/D wxxw�1
x .

Proof Assertion a) is obvious. Assertions b) and d) are immediate consequences of
the definition of ı . Finally, Assertion c) is a consequence of Lemma 7.1 if k D 3 and
of Proposition 7.5 if k D 4.

Lemma 7.9 Let E be an edge of S different from J . If k D 3 and aD s , suppose
in addition that E is not of the form fz;xg with z 2 fr; tg and x 2 J1 . Then there
exists an element wE 2W with ı.E/DEwE .

Proof Let E D fx;yg be such an edge of S .

If E is contained in K , the assertion follows from Lemma 7.1 for k D 3 and Lemma
7.4 for k D 4.

If E is contained in J1 , then we may choose wE D ! if a D r and wE D � if
aD s .

If E is contained in fsg[J? , we may choose wE D 1W .

If E is contained in frg[J? , we may choose wE D srs .

Suppose E is contained in ftg[J? . As the case E � J? is already covered by the
above, we may assume that E D ft;yg for some y 2 J? . Since o.yt/ is finite, it
follows from Lemma 7.7 b) that y commutes with ! . Hence we may choose wE D ! .

Suppose now that x 2 J1 and y 2 J? . Again by Lemma 7.7 b), we know that y

commutes with ! and with � . Hence, we may choose wE D ! if aD r and wE D �

if aD s .
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Up to renaming the elements of E , we are now left with the case where x 2 fr; s; tg

and y 2 J1 .

Suppose first that aD r . Then the case xD r is not possible and hence E is contained
in fs; tg [ J1 . As s commutes with ! (by Lemma 7.4 a)), we may thus choose
wE D ! .

Suppose now that aD s . Then the case x D s is not possible and by hypothesis, we
only have to consider the case k D 4. In view of the relations given in Lemma 7.4 b),
we may choose wE D � in this case, and we are done.

Proposition 7.10 If .a; k/¤ .s; 3/, then ı is an .r; s; srs/–deformation of S which
is the restriction of an automorphism of W .

Proof Setting KD fKg in Proposition 3.4, the two previous lemmas show that ı has
the required properties and we are done.

Lemma 7.11 Suppose .a; k/D .s; 3/ and let x 2 J1 . Then ı.fr;xg/D ft;xg� and
ı.ft;xg/D fr;xg� .

Proof This is an immediate consequence of the relations given in Lemma 7.1 and the
definition of ı .

7.5 K –Mirrors

Throughout this subsection, let .W;S/ be a Coxeter system and let K D fr; s; tg � S

be of type H3 such that o.rs/D 5 and o.st/D 3.

Definition 7.12 The K–mirror of .W;S/ is the Coxeter system . SW ; xS/ with the
property that there exists a bijection x 7! xx from S onto xS such that o.xr xx/D o.tx/

and o.xt xx/D o.rx/ if x 2 J1 , and o.xx xy/D o.xy/ in the remaining cases.

Remark Let . SW ; xS/ be the K–mirror of .W;S/ and for each X �S , put xX WD fxx j
x 2X g. Then xK is a subset of xS of type H3 and .W;S/ is the xK–mirror of . SW ; xS/.

Remark Let . SW ; xS/ be the K–mirror of .W;S/. Then we have an obvious bijection
between the edges of S and the edges of xS which we will call the canonical bijection
and which will be denoted by � .

The following lemma is obvious.

Lemma 7.13 Let . SW ; xS/ be the K–mirror of .W;S/. Then K is s–special in S if
and only if xK is xs–special in xS .
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7.6 The case .a; k/ D .s; 3/

Throughout this subsection, let .W;S/ be a Coxeter system and let K D fr; s; tg � S

be of type H3 such that o.rs/ D 5 and o.st/ D 3. We put ! WD tsr tst , � WD t rs

and J WD fr; sg. Moreover, . SW ; xS/ denotes the K–mirror of .W;S/. We assume
furthermore that K is s–special in S . Note that this implies that xK is xs–special in xS .

We define the mapping ıW S !W by ı.x/ WD x if x 2 J?[fsg, ı.x/ WD �x��1 if
x 2 J1 , ı.r/ WD rsr and ı.t/ WD !t!�1 .

Lemma 7.14 Let fx;yg be an edge of S . Then o.ı.x/ı.y//D o.xx xy/.

Proof This is a consequence of Lemmas 7.9 and 7.11.

Lemma 7.15 ı.S/ is a Coxeter generating set of W . Moreover, there exists a bijection
� from the set of edges of S onto the set of edges of ı.S/ such that �.J /D frsr; sg

and such that for each edge E ¤ J of S , there exists wE 2W with �.E/DEwE .

Proof By the universal property of . SW ; xS/ and Lemma 7.14 and Lemma 7.8, there is
an epimorphism x̌W SW !W W xx 7! ı.x/ with the following properties:

a) x̌j
h xK i is an isomorphism from h xKi onto hKi.

b) For each x 2 S , there exists an element wx 2 hKi such that x̌.xx/D wxxw�1
x .

By Lemma 7.13, xK is xs–special in xS . Hence, by defining x!; x� 2 SW and xıW xS ! SW
for . SW ; xS/, we obtain also an epimorphism ˇW W ! SW with the following properties:

a) ˇjhK i is an isomorphism from hKi onto h xKi.

b) For each x 2 S , there exists an element xwx 2 h
xKi such that ˇ.x/D xwxxx xw

�1
x .

We put ˛ WD x̌ıˇ and for each x 2 S , we set vx W D
x̌. xwx/wx . Then ˛W W !W is

an epimorphism with the following properties:

a) ˛jhK i is an automorphism of hKi.

b) For each x 2 S , we have vx 2 hKi and ˛.x/D vxxv�1
x .

Now, it follows from Proposition 2.3 (with KD fKg) that ˛ is an automorphism of
W . In particular, x̌ is an isomorphism. As ı.S/D x̌. xS/, the set ı.S/ is a Coxeter
generating set of W .

It remains to find an appropriate �. As x̌ is an isomorphism, we have a canonical
bijection �1 from the set of edges of xS onto the set of edges of ı.S/. Let � be the
canonical bijection from the set of edges of S onto the set of edges of xS . It is then
readily verified, using Lemmas 7.9 and 7.11, that � WD�1 ı� is the required bijection.
This finishes the proof of the lemma.
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Proposition 7.16 ı is an .r; s; srs/–deformation of .W;S/.

Proof This is a consequence of the two previous lemmas.

7.7 The relabeled version

Throughout this subsection, .W;S/ is a Coxeter system and K is a subset of S

of type Hk , where k 2 f3; 4g and where r; s; t 2 K are such that o.rs/ D 5 and
o.r t/ D 3; if k D 4, the unique element in K n fr; s; tg is denoted by u. Define
x!i for i 2 f1; 2g by exchanging r and s in the expression of !i given in Section
7.2, where t and u are as above. Also, let c WD rsrs and xc WD srsr . We put
J WD fr; sg, ! WD xct rst r t D srst rsr t if k D 3, ! WD xcsrsrsx!2 D r x!2 if k D 4,
� WD xctsr D srsrst r if k D 3 and � WD xcsrsrsx!2x!1utuD r x!2x!1utu if k D 4. We
assume that a 2 J is such that K is a–special in S and we define ıW S ! W as
follows. We put ı.r/ WD rsr , ı.y/ WD y for all y 2 fsg[J? and ı.t/ WD !t!�1 . Let
x 2 J1 . Then we put ı.x/ WD !x!�1 if aD s and ı.x/ WD �x��1 if aD r .

The following proposition is obtained from Proposition 7.10 and Proposition 7.16 by
relabelling.

Proposition 7.17 The mapping ı is an .r; s; srs/–deformation of .W;S/. Moreover,
if .k; a/¤ .3; r/, it is the restriction of an automorphism of W .

8 �–edges

8.1 Some particular diagrams

Throughout this subsection, we put � WD 2 cos.�=5/.

Let .W1;R1/ be a Coxeter system whose diagram is as in Figure 2 and let .W2;R2/ be
a Coxeter system whose diagram is as in Figure 3. Hence, we have R1 D fr; s; tg[X

and R2 D fr; s; t;ug[X where X D fS.i/ j 1� i � ng.

For kD 1; 2, we consider the geometric representation of .Wk ;Rk/ and its root system
ˆk ; in particular we identify Wk with its image in O.Vk ; bk/.

We put ˛1 WD rs.er /D �er C�es , …1 WD f˛1; etg[ feS.i/ j 1� i � ng, S1 WD f�˛ j

˛ 2…1g and !1 WD rst .

We put ˛2 WD srst rs.er /D .�C1/erC2�esC�et , …2 WDf˛2; eug[feS.i/ j1� i �ng,
S2 WD f�˛ j ˛ 2…2g and !2 WD srst rsut .
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Figure 2. (DE3): n � 2

and X1t D1 and Xn �

fr; sg1:

r

S.n/

s
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2

2=3

S.n� 1/

S.n� 2/S.1/

u

t

3

2

Figure 3. (DE4): n � 2

and X1u D 1 and Xn �

fr; s; tg1 and r; s; t;u form
an H4 .

The following facts are easily verified for k D 1; 2:

a) �˛k
D !kr!�1

k
.

b) …k is a root subbase of ˆk ; in particular Sk is a fundamental set.

c) �.Sk/ is a chordfree circuit.

d) !1s!�1
1
D t and !2s!�1

2
D u.

8.2 Coxeter systems containing some particular subsystems

Throughout this subsection, .W;R/ is a Coxeter system and W is identified with its
image in O.V; b/ via its geometric representation.

Proposition 8.1 For k D 1; 2, let Rk �RW be a fundamental set of reflections and
put Wk WD hRki. Suppose that .Wk ;Rk/ is a Coxeter system whose diagram is as in
Figure 2 if k D 1 and as in Figure 3 if k D 2. Then fr; sg is sharp-angled.

Proof For k D 1; 2, we define !k 2 Wk as in the previous subsection. We put
S1 WD .R1 n fr; sg/ [ f!1r!�1

1
g and S2 WD .R2 n fr; s; tg/ [ f!2r!�1

2
g. By the

considerations above, we know that the set Sk is a fundamental set of reflections.
Moreover, �.Sk/ is a chordfree circuit. By Theorem 5.9, it follows that Sk is sharp-
angled. Hence f!1r!�1

1
; tg and f!2r!�1

2
;ug are sharp-angled. As !k is an element

of W which conjugates fr; sg onto f!1r!�1
1
; tg for k D 1, and onto f!kr!�1

k
;ug

for k D 2, it follows that fr; sg is sharp-angled as well.
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Corollary 8.2 Let S �RW be a fundamental set of reflections and let J D fr; sg be
an edge of S such that o.rs/ D 5, and which is not sharp-angled. Then there is no
subset K of S as in Figure 2 or Figure 3.

8.3 Definition of �–edges

Definition 8.3 Let W be a group and S a subset of involutions of W . Let J D fr; sg

be an edge of S . We call J a �–edge of S if there is no subset K of S containing
J having one of the following properties:
(DE1) �.K/ is nonspherical, 2–spherical and irreducible.
(DE2) �.K/ is a chordfree circuit of length at least 4.
(DE3) �.K/ is a diagram as shown in Figure 2.
(DE4) �.K/ is a diagram as shown in Figure 3.

Remark Note that if o.rs/¤ 5, then J is a �–edge if and only if (DE1) and (DE2)
hold; if o.rs/D 5, the same remains true if there is no subset of type H3 containing J .

The definition of �–edges is motivated by the following proposition, which is a
consequence of Theorem 5.9 and Corollary 8.2.

Proposition 8.4 Let .W;R/ be a Coxeter system, let S �RW be a fundamental set
of reflections and suppose that J is an edge of S which is not sharp-angled with respect
to R. Then J is a �–edge of S .

9 �–edges of type H2

Throughout this section, .W;S/ is a Coxeter system and J D fr; sg � S is a �–edge
of .W;S/ with o.rs/D 5. Moreover, we define several subsets of S as follows.
� T WD ft 2 S j type(fr; s; tg/DH3g D TrqTs , where Tr WD ft 2 T j mrt D 3g

and Ts WD ft 2 T j mst D 3g.
� For a J –component L, put TL WD ft 2 T j 9x 2L W mxt <1g.
� U WD fu 2 S j 9t 2 T such that type(fr; s; t;ug)DH4g.
� For t 2 T , set Ut WD fu 2 U j type(fr; s; t;ug)DH4g.
� For t 2 T and L a Jt –component, let UL WD fu 2 Ut j 9x 2L W mxu <1g.
� For t 2 T and u 2 Ut , let Jt WD J [ftg and Jt;u WD J [ftg[ fug.
� For u 2 U , set Tu WD ft 2 T j type(fr; s; t;ug)DH4g.
� T 3 WD ft 2 T j Ut D∅g.
� T 4 WD T nT 3 .
� For a 2 J and k 2 f3; 4g, put T k

a WD Ta\T k .
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9.1 Some preliminary observations

Lemma 9.1 J is flexible.

Proof This is Lemma 2.8.

Lemma 9.2 There are no edges in T and for each t 2 T , there are no edges in Ut .

Proof This follows from (DE1).

9.2 Flexibility of Jt and consequences

Proposition 9.3 For all t 2 T , the set Jt is flexible.

Proof Let t 2 T and let L be a Jt –component. If L is also a J –component, then L

is flexible by Lemma 9.1 and we are done. So, we may assume there exists an x 2L

such that x 2 J fin (thus mxt D1). Suppose by contradiction there exists y 2L such
that myt <1. Then myr D1 or mys D1.

Let x D x0;x1; : : : ;xk D y be a minimal path in L joining x to y . Define

M WDminfi j 0< i � kI mxi t <1g

m WDmaxfi j 0� i <M I xi 2 J fin
g:and

Then the subpath xm;xmC1; : : : ;xM from xm to xM is still minimal, hence chordfree,
and possesses the following properties:

(1) .mxmr ;mxms/ 2 f.2; 2/; .2; 3/; .3; 2/g (by (DE1)).

(2) mxi t D1 for all i such that m� i <M (by definition of M).

(3) xi 2 J1 for all i such that m< i �M (by definition of m).

Moreover, mxM t <1. Thus, we obtain a subgraph fr;xm;xmC1; : : : ;xM ; t; sg as
pictured in Figure 4, contradicting (DE3).

Corollary 9.4 Let t 2 T and let L be a J –component such that there exists z 2 L

with o.zt/ <1. If y 2 J fin n ftg is such that there exists an x 2L with o.xy/ <1,
then y 2 J fin

t .

Proof Let L0 be the Jt –component containing L. If o.yt/ D1, we get y 2 L0

because o.xy/ <1. But then z and y belong to L0 , contradicting the fact that Jt is
flexible. Hence o.yt/ <1 and so y 2 J fin

t because y 2 J fin by assumption.

Algebraic & Geometric Topology, Volume 8 (2008)



2198 Timothée Marquis and Bernhard Mühlherr

s

r

xm

x

xM

y

t

3 5

2

2=3=2

2=2=3

Figure 4. Contradicts (DE3)

Corollary 9.5 Let L be a J –component, then jTLj � 1.

Proof This follows from the previous corollary and Lemma 9.2.

Definition 9.6 Let L be a J –component. If TL is nonempty, then t.L/ denotes its
unique element; if TL is empty, we put t.L/ WD1.

9.3 Flexibility of Jt;u and consequences

Proposition 9.7 Let t 2 T and u 2 Ut . Then Jt;u is flexible.

Proof Let L be a Jt;u –component. If L is also a Jt –component, then it is free by
Proposition 9.3 and we are done. So, we may assume there exists an x 2L such that
x 2 J fin

t (thus mxu D 1). Suppose by contradiction there exists y 2 L such that
myu <1. Then y 2 J1t .

Let x D x0;x1; : : : ;xk D y be a minimal path in L joining x to y . Define

M WDminfi j 0< i � kI mxi u <1g

m WDmaxfi j 0� i <M I xi 2 J fin
t g:and

Then the subpath xm;xmC1; : : : ;xM from xm to xM is still minimal, hence chordfree,
and possesses the following properties:

(1) .mxmr ;mxms;mxmt / 2 f.2; 2; 2/; .2; 2; 3/g (by (DE1)).
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(2) mxi u D1 for all i such that m� i <M (by definition of M).

(3) xi 2 J1t for all i such that m< i �M (by definition of m).

Moreover, mxM u <1. Thus, we obtain a subgraph fr;xm;xmC1; : : : ;xM ;u; t; sg as
pictured in Figure 5, contradicting (DE4).

r

s

xm

x

xMy

u

t

2 5

3 2

2

2=3

3

Figure 5. Contradicts (DE4)

Corollary 9.8 Let t 2 T , u 2 Ut and L be a Jt –component containing an element z

with o.zu/<1. Suppose that y 2J fin
t is such that there exists x 2L with o.xy/<1.

Then y 2 J fin
t;u[fug; in particular, if y ¤ u, then y 2 J?t;u .

Proof Let L0 be the Jt;u –component containing L and suppose y¤u. If o.yu/D1,
we get y 2 L0 since o.xy/ <1. But then z and y belong to L0 , contradicting the
flexibility of Jt;u . Hence o.yu/ <1 and so y 2 J fin

t;u because y 2 J fin
t by assumption.

Now, (DE1) implies that J fin
t;u D J?t;u , so we are done.

Corollary 9.9 Let t 2 T and let L be a Jt –component. Then jULj � 1.

Proof This follows from the previous corollary.

Definition 9.10 Let t 2 T and let L be a Jt –component. If UL is nonempty, then
u.L/ denotes its unique element; if UL is empty, we put u.L/ WD1.
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Remark Let t ¤ t 0 2 T . By Lemma 9.2, we can talk about the “Jt –component
containing t 0” as we will do in the following proposition.

Proposition 9.11 Let t ¤ t 0 2 T , let L be the Jt –component containing t 0 and put
K WD Jt [UL . Then J fin

t 0 is contained in Kfin[L[UL .

Proof Let y 2 J fin
t 0 . Then we have in particular o.yt 0/ <1. Hence, if o.yt/D1,

we have y 2L. Thus we are left with the case where o.yt/ <1. As y 2 J fin
t 0 , we get

that y 2 J fin
t . In particular, we are already done if u.L/D1.

Let us now assume that UL ¤ ∅ and put u WD u.L/. Then there exists an element
z 2L such that o.uz/ <1 and there exists an element x 2L (namely t 0 ) such that
o.xy/ <1. As y 2 J fin

t , the claim follows from Corollary 9.8.

9.4 Tameness

Definition 9.12 Let t 2 T and let K be a subset of S containing Jt . Then t is
called tame in K if there is no subset K0 of K containing Jt such that �.K0/ is as in
Figure 6. We call t tame, if it is tame in S . Otherwise, we call it wild.

r s t

u

u0

5 3

2

2
3

2=3

2

2

Figure 6. Tameness

Here are some basic observations. The first two of them are obvious whereas the third
one is a consequence of Lemma 9.2.

Lemma 9.13 Let t 2 T and K1 � K be subsets of S containing Jt . If t is tame
in K , then it is tame in K1 .

Lemma 9.14 If t 2 T 3 , then t is tame.
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Lemma 9.15 If t is tame, then jUt j � 1.

Let t 2 T be tame. Then we put Kt WD Jt [Ut .

Lemma 9.16 Let t 2 T be tame. Then J?t DK?t and J fin
t [Jt DKt [K?t .

Proof We start with the first equality which is trivial if Ut is empty. Suppose Ut is
nonempty and let u denote its unique element. Obviously, we have K?t � J?t . Let
now y 2 J?t . If o.yu/D1, we get a contradiction to the tameness of t (using (DE1))
and if 2 < o.yu/ <1, we get a contradiction to (DE1). Hence o.uy/ D 2 and the
first equality holds.

The second equality follows now from the fact that J fin
t D J?t [Ut (because of (DE1)),

the definition of Kt and the first equality.

Lemma 9.17 Let t 2 T be tame, K WDKt , let L be a J –component with t D t.L/

and let a 2 J be L–free. Then K is an a–special subset of S 0 WDK[L[J? .

Proof Note first that S 0 nK � L[ J? . Thus, as a is L–free, Condition (TWa) is
obviously satisfied.

We now show that Condition (TWt) holds as well. Note first that J1\S 0 DL. Let
y 2 J? nK such that o.yx/ <1 for some x 2 .J1\S 0/[ftg DL[ftg. We first
show that y 2 J fin

t , which is obvious if x D t . Hence we may assume x 2 L. As
t D t.L/, there exists z 2L such that o.tz/ <1. Therefore, y 2 J? � J fin n ftg and
we can apply Corollary 9.4 to see that y 2 J fin

t .

Now, as t is tame and y is not in K , we have y 2 J?t and we are done if Ut D ∅.
Suppose Ut ¤ ∅ and let u be the unique element of Ut . If o.yu/ D1, we get a
contradiction to the tameness of t and if 2 < o.yu/ <1, we get a contradiction to
(DE1). Hence o.yu/D 2 and y 2K? because K D Jt [fug and y 2 J?t .

9.5 The degree of a subset containing J

Definition 9.18 Let K be a subset of S containing J . The degree of K is the number
of elements in K\T which are wild in K . It is denoted by deg.K/.

Here is a preliminary observation.

Lemma 9.19 Let J �K1 �K � S . Then deg.K1/� deg.K/.
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Definition 9.20 Let t 2 T . For each u 2 �Ut WD Ut [ f1g, we define the sets
Vu;Wu;Xu;Yu and Zu as follows.

� V1 WD Jt and Vu WD Jt;u for u 2 Ut .
� Wu WD Vu[V ?u .
� Xu is the union of all Jt –components L such that u.L/D u.
� Yu WDWu[Xu .
� Zu WD Yu[Y1 .

Lemma 9.21 Let t 2 T and u 2 �Ut . Then t is tame in Yu . In particular, if t is wild
then deg.Yu/ < deg.S/.

The following is a consequence of Proposition 9.11.

Lemma 9.22 Let t ¤ t 0 2 T and u 2 �Ut . If t 0 is contained in Xu , then J fin
t 0 � Yu .

Lemma 9.23 Let u 2Ut . Then Yu\Y1D Jt [J?t;u and if E is an edge of Zu , then
E � Yu or E � Y1 .

Proof The first statement follows from the definition of the sets Yu and Y1 .

Let E D fx;yg be an edge of Zu and suppose that x 2 Yu and y 2 Y1 .

Suppose first that x 2Xu . Then y cannot be in X1 since in that case x and y would
be in different Jt –components. Hence, y 2 Jt [ J?t . If y 2 Jt [ J?t;u , then y is in
Yu and we are done. Suppose by contradiction that y 2 J?t nJ?t;u . Then we have
o.yu/D1 by (DE1). Let L be the Jt –component containing x . Then there is an
element z in L such that o.uz/ is finite. Let L0 be the Jt;u –component containing
L. Then x;y and z are contained in L0 , contradicting the flexibility of Jt;u .

Thus we may assume that x 2 Jt;u[J?t;u . If x¤ u, we have x 2 Y1 and we are done.
Suppose that x D u. Then the case y 2 X1 is not possible, because otherwise we
would have uD u.L/ for the Jt –component L containing y . Thus we may assume
that y 2 Jt [ J?t . By (DE1), we then get y 2 Jt [ J?t;u and hence E � Yu in this
case.

10 Existence of angle-deformations

Throughout this section, .W;S/ is a Coxeter system and J D fr; sg � S is a �–edge
of .W;S/ with o.rs/D 5.

We adopt the notation of the previous section.
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10.1 Conventions for tame elements and standard deformations

If t 2 T is tame, we fix the following notation:

� By Lemma 9.15, there exists precisely one element in Ut for each t 2T 4 , which
we will denote by ut .

� If t 2 T 3
s , we put !t WD tsr tst and �t WD t rs .

� If t 2 T 3
r , we put !t WD srst rsr t and �t WD srsrst r .

� If t 2 T 4
s , we put !t WD rsrsr!2 and �t WD rsrsr!2!1tut , where u WD ut

and !1 , !2 are as in Section 7.2.

� If t 2 T 4
r , we put !t WD r x!2 and �t WD r x!2x!1utu, where u WD ut and x!1 , x!2

are as in Section 7.7.

� For t 2 T 3 , we put Kt WD Jt and for t 2 T 4 , we put Kt WD Jt [futg.

� We put �T WD T [f1g, K1 D J1 WD J , !1 WD 1W and �1 WD srs .

� Finally, for t 2 �T , we put Kdef
t DKt [K?t .

Let t 2 �T and if t ¤ 1, suppose it is tame. We define ıt W K
def
t ! hKdef

t i by
ıt .r/ D rsr; ıt .s/ D s , ıt .t/ D !t t!

�1
t (for t ¤1), ıt .ut / WD ut for t 2 T 4 and

ıt .x/ WD x for all x 2K?t .

Proposition 10.1 ıt is an .r; s; srs/–deformation of Kdef
t .

Proof This is a consequence of Lemma 7.1, Corollary 7.3 and Proposition 7.5 together
with its relabeled version.

Definition 10.2 We call ıt the standard deformation of Kdef
t .

10.2 Tame angle-deformations

Definition 10.3 Let K be a subset of S containing J and let ıW K ! hKi be an
.r; s; srs/–deformation of K . Then we call ı tame if for each t 2 T \K which is
tame in K , there exists an element wt 2 hKi such that ı.x/ D wtıt .x/w

�1
t for all

x 2Kdef
t .

The goal of this section is to prove the following result.

Theorem 10.4 There exists a tame .r; s; srs/–deformation of S .
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10.3 The tame case

Throughout this subsection, we assume the following.

(TAME) All elements in T are tame.

For each t 2 �T , let ıt W K
def
t ! hK

def
t i be the standard deformation.

We put yJ WD J [T [J? and we define yıW yJ ! h yJ i by yıjK def
t
WD ıt for each t 2 �T

and yıjJ ? WD idJ ? . Note that yı is well-defined.

Our first goal is to prove the following proposition.

Proposition 10.5 yı is a tame .r; s; srs/–deformation of .h yJ i; yJ /.

Lemma 10.6 Let t 2 T and y 2 J? such that o.ty/ <1. Then, y commutes with
!t and �t .

Proof If t 2 T 3 or if y ¤ ut , then the tameness of t and (DE1) imply that y 2 J?t ,
and hence y 2K?t by Lemma 9.16 and we are done. If y D ut , then the result follows
from Lemma 7.4 a).

Lemma 10.7 Let E WD fx;yg be an edge of yJ different from J . Then, there is an
element wE 2

S
t2�T hJt i such that yı.E/DEwE .

Proof If E is contained in Jt for some t 2T , then there exists an element wE 2 hJt i

such that yı.E/DEwE . This follows from Lemma 7.1 and Corollary 7.3.

If E is contained in J? [ fsg, then yı.E/DE1W . Hence, the case s 2E is settled
completely.

Suppose now x D r . In this case, we may assume y 2 J? because the case y 2 T

is already covered above. For all y 2 J? , we have ysrs D srsy and therefore
yı.E/DEsrs .

By Lemma 9.2, it remains to consider the case where x 2 T and y 2 J? . Set x D t .
As fx;yg is an edge, it follows from Lemma 10.6 that y commutes with !t . Hence
we have yı.E/DE!t in this case.

Proof of Proposition 10.5 It is readily verified that yı. yJ / generates h yJ i and by
Lemma 10.7 and Proposition 2.3 (with KD fJt j t 2 �T g), it follows that yı extends
to an automorphism y̨ of h yJ i, which implies in particular that yı. yJ / is a Coxeter
generating set of h yJ i. Using Lemma 10.7, it is now straightforward to check that yı
satisfies Properties (AD1)–(AD4). The tameness of yı is a consequence of its definition.
This concludes the proof of Proposition 10.5.
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Let L be a J –component and define the set TL � T as before. Since we assume that
J is a �–edge, we know by Corollary 9.5 that jTLj � 1. We define t.L/ as in Section
9.2. Moreover, we put JL WDKt.L/ , KL WD JL[J?[L and ML WDKL[T .

Let ….L/ be the set of L–free vertices of J ; since J is flexible (by Lemma 9.1), we
know that ….L/¤∅.

For each J –component L, we define L 2 hJLi as follows.

If t.L/D1 and r 2….L/, we put L WD 1W .

If t.L/D1 and ….L/D fsg, we put L WD srs .

If t.L/ 2 Ts and r 2….L/, we put aL WD r and L WD !t .

If t.L/ 2 Ts and ….L/D fsg, we put aL WD s and L WD �t .

If t.L/ 2 Tr and s 2….L/, we put aL WD s and L WD !t .

If t.L/ 2 Tr and ….L/D frg, we put aL WD r and L WD �t .

Finally, we define ıLW KL!hKLi by ıLjJL
WDıt.L/jJL

, ıLjJ ?D idJ ? and ıL.x/ WD
Lx�1

L
for all x 2L. Note that ıL is well-defined.

Lemma 10.8 Let L be a J –component with t WD t.L/ ¤1. Then Kt is an aL –
special subset of KL .

Proof This is a consequence of Lemma 9.17.

Lemma 10.9 Let L be a J –component. Then ıL is an .r; s; srs/–deformation
of KL .

Proof This is a consequence of the previous lemma and Propositions 7.10, 7.16 and
7.17 applied to the Coxeter system .hKLi;KL/ if t.L/¤1, and of Proposition 4.4
applied to the same Coxeter system otherwise.

Proposition 10.10 Let L be a J –component. Define yıLW ML!hMLi by yıLjKL
WD

ıL and yıLj yJ WD
yı . Then yıL is an .r; s; srs/–deformation of ML .

Proof Note first that yıL is well-defined. By the previous lemma, ıL is an .r; s; srs/–
deformation of KL and by Proposition 10.5, yı is an .r; s; srs/–deformation of yJ . As
KLn

yJ DL and yJ nKLDT nTL , all edges of ML are contained in at least one of the
two sets. Now, as ı restricted to ML\KL D JL[J? is an .r; s; rsr/–deformation
of ML\KL , Proposition 3.3 finishes the proof.
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Theorem 10.11 Let ıW S ! W be the mapping defined by ıjML
WD yıL for each

J –component L. Then ı is a tame .r; s; srs/–deformation of .W;S/.

Proof Note that for two different J –components L and L0 , we have ML\ML0 D

T [J?[J , which is independent of L and L0 . Moreover, ı restricted to T [J?[J

is an .r; s; rsr/–deformation of T [J?[J . The claim now follows by induction on
the number of J –components using Propositions 3.3 and 10.10, the tameness being a
consequence of Proposition 10.5.

10.4 Proof of Theorem 10.4

The theorem will be proved by induction on deg.S/. If deg.S/D 0, all elements in T

are tame and we are done by Theorem 10.11. Suppose now that the degree of S is at
least 1. Then there exists a wild t 2 T , which we fix throughout this subsection.

For each u 2 �Ut , we define the sets Vu;Wu;Xu;Yu and Zu as in Section 9.5. For
u 2 Ut , we put �u WD � where � is defined as in Section 7.2 and �1 WD 1W .

Let u 2 �Ut . By Lemma 9.21, we know that deg.Yu/ < deg.S/. Thus, we know by
induction that there is a tame .r; s; srs/–deformation �u of Yu . Again by Lemma 9.21,
t is tame in Yu and if we define Kdef

t as in Section 10.1 with respect to Yu , we have
Wu DKdef

t . Hence, there is an wu 2 hYui such that Int.wu/ ı �ujWu
is the standard

deformation of Wu . We put ‚u WD Int.wu/ ı �u . The discussion above yields the
following.

Lemma 10.12 For each u 2 �Ut , there exists a tame .r; s; srs/ deformation ‚u of Yu

such that ‚ujWu
is the standard deformation of Wu .

For each u 2 �Ut , let ‚u be as in the previous lemma and put ıu WD Int.�u/ ı‚u .

Lemma 10.13 For each u 2 �Ut the mapping ıuW Yu ! hYui is a tame .r; s; srs/–
deformation of Yu . Moreover, we have ıujYu\Y1

D ı1jYu\Y1
. In particular, there

exists an .r; s; srs/–deformation yıu of Zu such that yıujYu
D ıu and yıujY1

D ı1 .

Proof The first assertion of the lemma is clear, because ‚u is tame and �u 2 hYui.

The second assertion is trivial for uD1, so we may assume u 2 Ut . First remark
that Yu\Y1 D Jt [J?t;u by Lemma 9.23. Since ‚ujWu

is the standard deformation
and as �u 2 hJt;ui commutes with all elements in J?t;u and with rsr and s (by Lemma
7.4 c)), it follows that ıujJ[J ?

t;u
D ı1jJ[J ?

t;u
. Thus, it remains only to check whether

ıu.t/ D ı1.t/; but this is also a consequence of Lemma 7.4 c). This concludes the
proof of the second assertion.

The last assertion is a consequence of the second, Lemma 9.23 and Proposition 3.3.
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Lemma 10.14 There exists an .r; s; srs/–deformation ı of S such that ıjYu
D ıu for

each u 2 �Ut .

Proof As t is assumed to be wild, we have jUt j�1. We prove the lemma by induction
on jUt j. If jUt j D 1 and if u denotes the unique element in Ut , then S DZu and we
are done by the previous lemma.

Suppose now jUt j > 1 and let u 2 Ut . Put Cu WD
S

u¤u02Ut
Zu0 . Note first that

Cu\Zu D Y1 and that each edge in S is contained in Cu or in Zu . By induction,
there exists an .r; s; srs/–deformation ı0u of Cu such that ı0ujYu0 D ıu0 for each u0 2 �Ut

different from u. By the previous lemma, there exists an .r; s; srs/–deformation yıu
of Zu such that yıujYa

D ıa for a 2 fu;1g. Now Proposition 3.3 yields the existence
of ı .

Conclusion of the proof of Theorem 10.4 The previous lemma yields the existence
of an .r; s; srs/–deformation ı of S such that ıjYu

D ıu for each u 2 �Ut . It remains
to show that ı is tame. Let t 0 2 T be tame in S . Since t is assumed to be wild, we
have t 0 ¤ t . By Lemmas 9.22 and 9.16, there is an u 2 �Ut such that Kdef

t 0 is contained
in Yu . By Lemma 10.13, we know that ıu is a tame .r; s; srs/–deformation. Hence
there exists an element v 2 hYui such that Int.v/ ı ıujK def

t0
is the standard deformation

of Kdef
t 0 . As ıjYu

D ıu , it follows that Int.v/ ı ıjK def
t0

is the standard deformation of
Kdef

t 0 . Hence ı is tame.

11 Proof of Theorem 2

Let .W;R/ be a Coxeter system and let S �RW be a Coxeter generating set which
is not sharp-angled. Suppose S contains k � 1 edges which are not sharp-angled and
choose one of them. Call it J . By Theorem 1, we can assume that J D fr; sg with
o.rs/D 5. By Proposition 8.4, J is a �–edge. Hence, by Theorem 10.4, there exists
a J –deformation ı of S sending J onto frsr; sg. Hence, by Lemma 5.4, ı.J / is a
sharp-angled edge of ı.S/. Let now J 0 be an edge of S different from J . Then ı.J 0/
is W –conjugate to J 0 by Property (AD4) of ı ; in particular, ı.J 0/ is sharp-angled
if and only if J 0 is sharp-angled. Hence the number of edges in ı.S/ which are not
sharp-angled is k � 1. Thus the statement follows by an obvious induction on the
number of edges of S which are not sharp-angled.
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