Small exotic 4-manifolds

ANAR AKHMEDOV

In this article, we construct the first example of a simply-connected minimal symplectic 4-manifold that is homeomorphic but not diffeomorphic to $3\mathbb{CP}^2 \#7\overline{\mathbb{CP}}^2$. We also construct the first exotic minimal *symplectic* $\mathbb{CP}^2 \#5\overline{\mathbb{CP}}^2$.

57N65, 57N13; 57M50

1 Introduction

Over the past several years, there has been a considerable amount of progress in the discovery of exotic smooth structures on simply-connected 4-manifolds with small Euler characteristic. In early 2004, Jongil Park [15] has constructed the first example of exotic smooth structure on $\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$, ie 4-manifold homeomorphic but not diffeomorphic to $\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$. Later that year, András Stipsicz and Zoltán Szabó used a similar technique to construct an exotic smooth structure on $\mathbb{CP}^2\#6\overline{\mathbb{CP}}^2$ [18]. Then Fintushel and Stern [5] introduced a new technique, the double node surgery, which demonstrated that in fact $\mathbb{CP}^2\#k\overline{\mathbb{CP}}^2$, k=6, 7 and 8 have infinitely many distinct smooth structures. Using the double node surgery technique [5], Park, Stipsicz and Szabó constructed infinitely many smooth structures on $\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$ [17]. The examples in [17] are not known if symplectic. Based on similar ideas, Stipsicz and Szabó constructed the exotic smooth structures on $3\mathbb{CP}^2\#k\overline{\mathbb{CP}}^2$ for k=9 [19] and Park for k=8 [16]. In this article, we construct an exotic smooth structure on $3\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$. We also construct an exotic $symplectic \mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$, the first known such symplectic example.

Our approach is different from the above constructions in the sense that we do not use any rational-blowdown surgery (Fintushel and Stern [3], Jongil [14]). Also, in contrary to the previous constructions, we use non-simply connected building blocks (Akhmedov [1], Matsumoto [11]) to produce the simply-connected examples. The main surgery technique used in our construction is the symplectic fiber sum operation (Gompf [7], McCarthy and Wolfson [12]) along the genus two surfaces. Our results can be stated as follows.

Published: 9 October 2008 DOI: 10.2140/agt.2008.8.1781

Theorem 1.1 There exist a smooth closed simply-connected minimal symplectic 4–manifold X that is homeomorphic but not diffeomorphic to $3 \mathbb{CP}^2 \# 7 \overline{\mathbb{CP}}^2$.

Theorem 1.2 There exist a smooth closed simply-connected minimal symplectic 4—manifold Y which is homeomorphic but not diffeomorphic to the rational surface $\mathbb{CP}^2 \# 5 \overline{\mathbb{CP}}^2$.

This article is organized as follows. The first two sections give a quick introduction to Seiberg–Witten invariants and a fiber sum operation. In Section 4, we review the symplectic building blocks for our construction. Finally, in Section 5 and Section 6, we construct minimal symplectic 4–manifolds X and Y homeomorphic but not diffeomorphic to $3 \mathbb{CP}^2 \# 7 \mathbb{CP}^2$ and $\mathbb{CP}^2 \# 5 \mathbb{CP}^2$, respectively.

Acknowledgments I would like to thank John Etnyre, Ron Stern and András Stipsicz for their interest in this work and for their encouragement. Also, I am grateful to B Doug Park for the comments on the first draft of this article, kindly pointing out some errors in the fundamental group computations and for the corrections. Finally, I wish to thank the referee for many helpful suggestions which improved the exposition of this article. This work is partially supported by NSF grant FRG-0244663.

Dedication Dedicated to Professor Ronald J Stern on the occasion of his sixtieth birthday.

2 Seiberg-Witten Invariants

In this section, we briefly recall the basics of Seiberg-Witten invariants introduced by Seiberg and Witten. Seiberg-Witten invariant of a smooth closed oriented 4-manifold X with $b_2^+(X) > 1$ is an integer valued function which is defined on the set of spin c structures over X (Witten [23]). For simplicity, we assume that $H_1(X, \mathbf{Z})$ has no 2-torsion. Then there is a one-to-one correspondence between the set of spin c structures over X and the set of characteristic elements of $H^2(X, \mathbf{Z})$.

In this set up, we can view the Seiberg-Witten invariant as an integer valued function

$$SW_X: \{k \in H^2(X, \mathbb{Z}) | k \equiv w_2(TX) \pmod{2}\} \longrightarrow \mathbb{Z}.$$

The Seiberg-Witten invariant SW_X is a diffeomorphism invariant. We call β a basic class of X if $SW_X(\beta) \neq 0$. It is a fundamental fact that the set of basic classes is finite. Also, if β is a basic class, then so is $-\beta$ with

$$SW_X(-\beta) = (-1)^{(e+\sigma)(X)/4} SW_X(\beta)$$

where e(X) is the Euler characteristic and $\sigma(X)$ is the signature of X.

Theorem 2.1 (Taubes [20]) Suppose that (X, ω) is a closed symplectic 4–manifold with $b_2^+(X) > 1$ and the canonical class K_X . Then $SW_X(\pm K_X) = \pm 1$.

3 Fiber Sum

Definition 3.1 Let X and Y be closed, oriented, smooth 4-manifolds each containing a smoothly embedded surface Σ of genus $g \geq 1$. Assume Σ represents a homology class of infinite order and has self-intersection zero in X and Y, so that there exist a tubular neighborhood, say $\nu\Sigma\cong\Sigma\times D^2$, in both X and Y. Using an orientation-reversing and fiber-preserving diffeomorphism $\psi\colon S^1\times\Sigma\longrightarrow S^1\times\Sigma$, we can glue $X\setminus\nu\Sigma$ and $Y\setminus\nu\Sigma$ along the boundary $\partial(\nu\Sigma)\cong\Sigma\times S^1$. This new oriented smooth 4-manifold $X\#_{\psi}Y$ is called a *generalized fiber sum* of X and Y along X, determined by Y.

Definition 3.2 Let e(X) and $\sigma(X)$ denote the Euler characteristic and the signature of a closed oriented smooth 4-manifold X, respectively. We define

$$c_1^2(X) := 2e(X) + 3\sigma(X), \quad \chi_h(X) := \frac{e(X) + \sigma(X)}{4}.$$

In the case that X is a complex surface, then $c_1^2(X)$ and $\chi_h(X)$ are the self-intersection of the first Chern class $c_1(X)$ and the holomorphic Euler characteristic, respectively.

Lemma 3.3 Let X and Y be closed, oriented, smooth 4-manifolds containing an embedded surface Σ of self-intersection 0. Then

$$c_1^2(X \#_{\psi} Y) = c_1^2(X) + c_1^2(Y) + 8(g-1),$$

$$\chi_h(X \#_{\psi} Y) = \chi_h(X) + \chi_h(Y) + (g-1),$$

where g is the genus of the surface Σ .

Proof The above simply follows from the well-known formulas

$$e(X\#_{\psi}Y) = e(X) + e(Y) - 2e(\Sigma), \quad \sigma(X\#_{\psi}Y) = \sigma(X) + \sigma(Y). \qquad \quad \Box$$

If X, Y are symplectic manifolds and Σ is an embedded symplectic submanifold in X and Y, then according to theorem of Gompf [7] $X \#_{\psi} Y$ admits a symplectic structure.

We will use the following theorem of M Usher [21] to show that the symplectic manifolds constructed in Section 5 and Section 6 are minimal. Here we slightly abuse the above notation for the fiber sum.

Theorem 3.4 (Usher [21], Minimality of Symplectic Sums) Let $X = X_1 \#_{F_1 = F_2} X_2$ be symplectic fiber sum of manifolds X_1 and X_2 .

- (i) If either $X_1 \setminus F_1$ or $X_2 \setminus F_2$ contains an embedded symplectic sphere of square -1, then X is not minimal.
- (ii) If one of the summands X_i (say X_1) admits the structure of an S^2 -bundle over a surface of genus g such that F_i is a section of this fiber bundle, then X is minimal if and only if X_2 is minimal.
- (iii) In all other cases, X is minimal.

4 Building blocks

The building blocks for our construction will be as follows.

- (i) The manifold $T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2$ equipped with the genus two Lefschetz fibration of Matsumoto [11].
- (ii) The symplectic manifolds X_K and Y_K [1]. For the convenience of the reader, we recall the construction in [1].

4.1 Matsumoto fibration

First, recall that the manifold $Z=T^2\times S^2\# 4\overline{\mathbb{CP}}^2$ can be described as the double branched cover of $S^2\times T^2$ where the branch set $B_{2,2}$ is the union of two disjoint copies of $S^2\times \{pt\}$ and two disjoint copies of $\{pt\}\times T^2$. The branch cover has 4 singular points, corresponding to the number of the intersections points of the horizontal lines and the vertical tori in the branch set $B_{2,2}$. After desingularizing the above singular manifold, one obtains $T^2\times S^2\# 4\overline{\mathbb{CP}}^2$. The vertical fibration of $S^2\times T^2$ pulls back to give a fibration of $T^2\times S^2\# 4\overline{\mathbb{CP}}^2$ over S^2 . A generic fiber of the vertical fibration is the double cover of T^2 , branched over 2 points. Thus a generic fiber will be a genus two surface. According to Matsumoto [11], this fibration can be perturbed to be a Lefschetz fibration over S^2 with the global monodromy $(\beta_1\beta_2\beta_3\beta_4)^2=1$, where the curves β_1 , β_2 , β_3 and β_4 are shown in Figure 1.

Let us denote the regular fiber by Σ_2' and the images of standard generators of the fundamental group of Σ_2' as a_1 , b_1 , a_2 and b_2 . Using the homotopy exact sequence for a Lefschetz fibration,

$$\pi_1(\Sigma_2') \longrightarrow \pi_1(Z) \longrightarrow \pi_1(S^2)$$

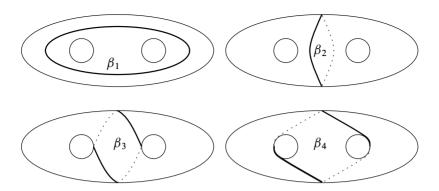


Figure 1: Dehn Twists for Matsumoto Fibration

we have the following identification of the fundamental group of Z [13]:

$$\pi_1(Z) = \pi_1(\Sigma_2')/\langle \beta_1, \beta_2, \beta_3, \beta_4 \rangle.$$

$$\beta_1 = b_1 b_2,$$

(2)
$$\beta_2 = a_1 b_1 a_1^{-1} b_1^{-1} = a_2 b_2 a_2^{-1} b_2^{-1},$$

$$\beta_3 = b_2 a_2 b_2^{-1} a_1,$$

$$\beta_4 = b_2 a_2 a_1 b_1.$$

Hence
$$\pi_1(Z) = \langle a_1, b_1, a_2, b_2 \mid b_1b_2 = [a_1, b_1] = [a_2, b_2] = a_1a_2 = 1 \rangle$$
.

Note that the fundamental group of $T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2$ is $\mathbf{Z} \oplus \mathbf{Z}$, generated by two of these standard generators (say a_1 and b_1). The other two generators a_2 and b_2 are the inverses of a_1 and b_1 in the fundamental group. Also, the fundamental group of the complement of $\nu \Sigma_2'$ is $\mathbf{Z} \oplus \mathbf{Z}$. It is generated by a_1 and b_1 . The normal circle $\lambda' = pt \times \partial D^2$ to Σ_2' can be deformed using one of the exceptional spheres, thus is trivial in $\pi_1(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2 \setminus \nu \Sigma_2') = \mathbf{Z} \oplus \mathbf{Z}$.

Lemma 4.1
$$c_1^2(Z) = -4$$
, $\sigma(Z) = -4$ and $\chi_h(Z) = 0$.

Proof We have
$$c_1^2(Z) = c_1^2(T^2 \times S^2) - 4 = -4$$
, $\sigma(Z) = \sigma(T^2 \times S^2) - 4 = -4$ and $\chi_h(Z) = \chi_h(T^2 \times S^2) = 0$.

Note that this Lefschetz fibration can be given a symplectic structure. This means that Z admits a symplectic structure such that the regular fibers are symplectic submanifolds. We consider such a symplectic structure on Z.

4.2 Symplectic 4–manifolds cohomology equivalent to $S^2 \times S^2$

Our second building block will be X_K , the symplectic cohomology $S^2 \times S^2$ [1], or the symplectic manifold Y_K , an intermediate building block in that construction [1], (see also Fintushel and Stern [4]). For the sake of completeness, the details of this construction are included below. We refer the reader to [1] for more details and for the generalization of these symplectic building blocks.

Let K be a fibered knot of genus one (ie, the trefoil or the figure eight knot) in S^3 and m be a meridional circle to K. We perform 0-framed surgery on K and denote the resulting 3-manifold by M_K . Since K is fibered and has genus one, it follows the 3-manifold M_K is a torus bundle over S^1 ; hence the 4-manifold $M_K \times S^1$ is a torus bundle over a torus. Furthermore, $M_K \times S^1$ admits a symplectic structure, and both the torus fiber and the torus section $T_m = m \times S^1 = m \times x$ are symplectically embedded and have a self-intersection zero. The first homology of $M_K \times S^1$ is generated by the standard first homology generators m and x of the torus section. On the other hand, the classes of circles γ_1 and γ_2 of the fiber F, coming from the Seifert surface, are trivial in homology. In addition, $M_K \times S^1$ is minimal symplectic, ie, it does not contain symplectic -1 sphere.

We form a twisted fiber sum of two copies of the manifold $M_K \times S^1$, we identify the fiber F of one fibration to the section T_m of other. Let Y_K denote the mentioned twisted fiber sum $Y_K = M_K \times S^1 \#_{F=T_m} M_K \times S^1$. It follows from Gompf's theorem [7] that Y_K is symplectic and by Usher's Theorem 3.4 that Y_K is minimal symplectic.

Let T_1 be the section of the first copy of $M_K \times S^1$ and T_2 be the fiber in the second copy. Then the genus two surface $\Sigma_2 = T_1 \# T_2$ symplectically embeds into Y_K and has self-intersection zero. Let X_K be a symplectic 4-manifold constructed as follows: Take two copies of Y_K and form the fiber sum along the genus two surface Σ_2 using the special gluing diffeomorphism ϕ , the vertical involution of Σ_2 with two fixed points. Thus $X_K := Y_K \#_\phi Y_K$. Let m, x, γ_1 and γ_2 denote the generators of $\pi_1(\Sigma_2)$ under the inclusion. The diffeomorphism ϕ : $T_1 \# T_2 \longrightarrow T_1 \# T_2$ of Σ_2 maps on the generators as follows: $\phi_*(m') = \gamma_1$, $\phi_*(x') = \gamma_2$, $\phi_*(\gamma_1') = m$ and $\phi_*(\gamma_2') = x$. In [1] we show that the manifold X_K has first Betti number zero and has the integral cohomology of $S^2 \times S^2$. Furthermore, $H_2(X_K, \mathbf{Z}) = \mathbf{Z} \oplus \mathbf{Z}$, where the basis for the second homology are the classes of $\Sigma_2 = S$ and the new genus two surface T resulting from the last fiber sum operation (two punctured genus one surfaces glues to form a genus two surface). Also, $S^2 = T^2 = 0$ and $S \cdot T = 1$. Furthermore, $c_1^2(X_K) = 8$, $\sigma(X_K) = 0$ and $\chi_h(X_K) = 1$. Since Y_K is minimal symplectic, it follows from Theorem 3.4 that X_K is minimal symplectic as well.

- **4.2.1 Fundamental Group of** $M_K \times S^1$ We will assume that K is the trefoil knot. Let a, b and c denote the Wirtinger generators of the trefoil. The knot group of the trefoil has the following presentations: $\pi_1(K) = \langle a, b, c \mid ab = bc, ca = ab \rangle = \langle a, b \mid aba = bab \rangle = \langle u, v \mid u^2 = v^3 \rangle$ where u = bab and v = ab. The homotopy classes of the meridian and the longitude of the trefoil are given as follows: $m = uv^{-1} = b$ and $l = u^2(uv^{-1})^{-6} = ab^2ab^{-4}$ (Burde and Zieschang [2]). Also, the homotopy classes of γ_1 and γ_2 are given as follows: $\gamma_1 = a^{-1}b$ and $\gamma_2 = b^{-1}aba^{-1}$. Notice that the fundamental group of M_K , 0-surgery on the trefoil, is obtained from the knot group of the trefoil by adjoining the relation $l = u^2(uv^{-1})^{-6} = ab^2ab^{-4} = 1$. Thus, we have $\pi_1(M_K) = \langle u, v \mid u^2 = v^3, u^2(uv^{-1})^{-6} = 1 \rangle = \langle a, b \mid aba = bab, ab^2a = b^4 \rangle$ and $\pi_1(M_K \times S^1) = \langle a, b, x \mid aba = bab, ab^2a = b^4, [x, a] = [x, b] = 1 \rangle$.
- **4.2.2 Fundamental Group of** Y_K The next step is to take two copies of the manifold $M_K \times S^1$ and perform the fiber sum along symplectic tori. In the first copy of $M_K \times S^1$, we take a tubular neighborhood of the torus section T_m , remove it from $M_K \times S^1$ and denote the resulting manifold by C_S . In the second copy, we remove a tubular neighborhood of the fiber F and denote it by C_F . Notice that $C_S = M_K \times S^1 \setminus \nu T_m = (M_K \setminus \nu(m)) \times S^1$. We have $\pi_1(C_S) = \pi_1(K) \oplus \langle x \rangle$ where x is the generator corresponding to the S^1 copy. Also using the above computation, we easily derive: $H_1(C_S) = H_1(M_K) = \langle m \rangle \oplus \langle x \rangle$.

To compute the fundamental group of the C_F , we will use the following observation: νF is the preimage of the small disk on $T_{m'}=m'\times y$. The elements y and m'=d of the $\pi_1(C_F)$ do not commute anymore, but y still commutes with generators γ_1' and γ_2' . The fundamental group and the first homology of the C_F will be isomorphic to the following: $\pi_1(C_F)=\langle d,y,\gamma_1',\gamma_2'\mid [y,\gamma_1']=[y,\gamma_2']=[\gamma_1',\gamma_2']=1,\ d\gamma_1'd^{-1}=\gamma_1'\gamma_2',\ d\gamma_2'd^{-1}=(\gamma_1')^{-1}\rangle$ and $H_1(C_F)=\langle d\rangle\oplus\langle y\rangle$.

We use the Van Kampen's Theorem to compute the fundamental group of Y_K .

$$\pi_{1}(Y_{K}) = \pi_{1}(C_{F}) *_{\pi_{1}(T^{3})} \pi_{1}(C_{F})$$

$$= \langle d, y, \gamma'_{1}, \gamma'_{2} | [y, \gamma'_{1}] = [y, \gamma'_{2}] = [\gamma'_{1}, \gamma'_{2}] = 1, \ d\gamma'_{1}d^{-1} = \gamma'_{1}\gamma'_{2}, \ d\gamma'_{2}d^{-1}$$

$$= (\gamma_{1}')^{-1} \rangle_{\langle \gamma'_{1} = x, \ \gamma'_{2} = b, \ \lambda' = \lambda \rangle} \langle a, b, x | aba = bab, \ [x, a] = [x, b] = 1 \rangle$$

$$= \langle a, b, x, \gamma'_{1}, \gamma'_{2}, d, y | aba = bab, \ [x, a] = [x, b][y, \gamma'_{1}] = [y, \gamma'_{2}]$$

$$= [\gamma'_{1}, \gamma'_{2}] = 1, \ d\gamma'_{1}d^{-1} = \gamma'_{1}\gamma'_{2}, \ d\gamma'_{2}d^{-1} = (\gamma_{1}')^{-1}, \ \gamma'_{1} = x,$$

$$\gamma'_{2} = b, \ [\gamma'_{1}, \gamma'_{2}] = [d, y] \rangle.$$

Inside Y_K , we can find a genus 2 symplectic submanifold Σ_2 which is the internal sum of a punctured fiber in C_S and a punctured section in C_F . The inclusion-induced

homomorphism maps the standard generators of $\pi_1(\Sigma_2)$ to $a^{-1}b$, $b^{-1}aba^{-1}$, d and y in $\pi_1(Y_K)$.

Lemma 4.2 ([1]) There are nonnegative integers m and n such that

$$\pi_1(Y_K \setminus v\Sigma_2) = \langle a, b, x, d, y; g_1, \dots, g_m \mid aba = bab,$$

$$[y, x] = [y, b] = 1, dxd^{-1} = xb, dbd^{-1} = x^{-1},$$

$$ab^2ab^{-4} = [d, y], r_1 = \dots = r_n = 1, r_{n+1} = 1 \rangle,$$

where the generators g_1, \ldots, g_m and relators r_1, \ldots, r_n all lie in the normal subgroup N generated by the element [x, b] and the relator r_{n+1} is a word in x, a and elements of N. Moreover, if we add an extra relation [x, b] = 1, then the relation $r_{n+1} = 1$ simplifies to [x, a] = 1.

Proof This follows from Van Kampen's Theorem. Note that [x, b] is a meridian of Σ_2 in Y_K . Hence setting [x, b] = 1 should turn $\pi_1(Y_K \setminus \nu \Sigma_2)$ into $\pi_1(Y_K)$. Also note that [x, a] is the boundary of a punctured section in $C_S \setminus \nu$ (fiber) and is no longer trivial in $\pi_1(Y_K \setminus \nu \Sigma_2)$. By setting [x, b] = 1, the relation $r_{n+1} = 1$ is to turn into [x, a] = 1.

It remains to check that the relations in $\pi_1(Y_K)$ other than [x,a]=[x,b]=1 remain the same in $\pi_1(Y_K \setminus \nu \Sigma_2)$. By choosing a suitable point $\theta \in S^1$ away from the image of the fiber that forms part of Σ_2 , we obtain an embedding of the knot complement $(S^3 \setminus \nu K) \times \{\theta\} \hookrightarrow C_S \setminus \nu$ (fiber). This means that aba=bab holds in $\pi_1(Y_K \setminus \nu \Sigma_2)$. Since $[\Sigma_2]^2=0$, there exists a parallel copy of Σ_2 outside $\nu \Sigma_2$, wherein the identity $ab^2ab^{-4}=[d,y]$ still holds. The other remaining relations in $\pi_1(Y_K)$ are coming from the monodromy of the torus bundle over a torus. Since these relations will now describe the monodromy of the punctured torus bundle over a punctured torus, they hold true in $\pi_1(Y_K \setminus \nu \Sigma_2)$.

4.2.3 Fundamental Group of X_K Finally, we carry out the computations of the fundamental group and the first homology of X_K . Suppose that e, f, z, s and t are the generators of the fundamental group in the second copy of Y_K corresponding to the generators a, b, x, d and y as in above discussion. Our gluing map ϕ maps the generators of $\pi_1(\Sigma_2)$ as follows:

$$\phi_*(a^{-1}b) = s$$
, $\phi_*(b^{-1}aba^{-1}) = t$, $\phi_*(d) = e^{-1}f$, $\phi_*(y) = f^{-1}efe^{-1}$.

By Van Kampen's Theorem and Lemma 4.2, we have

$$\pi_{1}(X_{K}) = \langle a, b, x, d, y; e, f, z, s, t; g_{1}, \dots, g_{m}; h_{1}, \dots, h_{m} |$$

$$aba = bab, [y, x] = [y, b] = 1,$$

$$dxd^{-1} = xb, dbd^{-1} = x^{-1}, ab^{2}ab^{-4} = [d, y],$$

$$r_{1} = \dots = r_{n+1} = 1, r'_{1} = \dots = r'_{n+1} = 1,$$

$$efe = fef, [t, z] = [t, f] = 1,$$

$$szs^{-1} = zf, sfs^{-1} = z^{-1}, ef^{2}ef^{-4} = [s, t],$$

$$d = e^{-1}f, y = f^{-1}efe^{-1}, a^{-1}b = s, b^{-1}aba^{-1} = t,$$

$$[x, b] = [z, f] \rangle,$$

where the elements g_i, h_i $(i = 1, \dots, m)$ and r_j, r_j' $(j = 1, \dots, n + 1)$ all are in the normal subgroup generated by [x, b] = [z, f].

Notice that it follows from our gluing that the images of standard generators of the fundamental group of Σ_2 are $a^{-1}b$, $b^{-1}aba^{-1}$, d and y in $\pi_1(X_K)$. By abelianizing $\pi_1(X_K)$, we easily see that $H_1(X_K, \mathbf{Z}) = 0$.

5 Construction of an exotic $3 \mathbb{CP}^2 \# 7 \overline{\mathbb{CP}}^2$

In this section, we construct a simply-connected minimal symplectic 4-manifold X homeomorphic but not diffeomorphic to $3\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$. Using Seiberg-Witten invariants, we will distinguish X from $3\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$.

Our manifold X will be the symplectic fiber sum of X_K and $Z = T^2 \times S^2 \# 4 \overline{\mathbb{CP}}^2$ along the genus two surfaces Σ_2 and Σ_2' . Recall that $a^{-1}b$, $b^{-1}aba^{-1}$, d, y and $\lambda = \{\text{pt}\} \times S^1 = [x,b][z,f]^{-1}$ generate the inclusion-induced image of $\pi_1(\Sigma_2 \times S^1)$ inside $\pi_1(X_K \setminus \nu\Sigma_2)$. Let a_1,b_1,a_2,b_2 and $\lambda' = 1$ be generators of $\pi_1(Z \setminus \nu\Sigma_2')$ as in Section 4.1. We choose the gluing diffeomorphism $\psi \colon \Sigma_2 \times S^1 \to \Sigma_2' \times S^1$ that maps the fundamental group generators as follows:

$$\psi_*(a^{-1}b) = a_2, \ \psi_*(b^{-1}aba^{-1}) = b_2, \ \psi_*(d) = a_1, \ \psi_*(y) = b_1, \ \psi_*(\lambda) = \lambda'.$$

 λ and λ' above denote the meridians of Σ and Σ'_2 in X_K and Z, respectively.

It follows from Gompf's theorem [7] that $X=X_K\#_{\psi}(T^2\times S^2\#4\overline{\mathbb{CP}}^2)$ is symplectic.

Lemma 5.1 X is simply connected.

Proof By Van Kampen's theorem, we have

$$\pi_1(X) = \frac{\pi_1(X_K \setminus \nu \Sigma_2) * \pi_1(Z \setminus \nu \Sigma_2')}{\langle a^{-1}b = a_2, b^{-1}aba^{-1} = b_2, d = a_1, y = b_1, \lambda = 1 \rangle}.$$

Since λ' is nullhomotopic in $Z\setminus \nu\Sigma_2'$, the normal circle λ of $\pi_1(X_K\setminus \nu\Sigma_2)$ becomes trivial in $\pi_1(X)$. Also, using the relations $b_1b_2=[a_1,b_1]=[a_2,b_2]=b_2a_2b_2^{-1}a_1=a_1a_2=1$ in $\pi_1(Z\setminus \nu\Sigma_2')$, we get the following relations in the fundamental group of X: $a^{-1}bd=[a^{-1}b,b^{-1}aba^{-1}]=[d,y]=[d,b^{-1}aba^{-1}]=yb^{-1}aba^{-1}=1$. Note that the fundamental group of Z is an abelian group of rank two. In addition, we have the following relations in $\pi_1(X)$ coming from the fundamental group of $\pi_1(X_K\setminus \nu\Sigma_2)$: $aba=bab, efe=fef, [y,b]=[t,f]=1, dbd^{-1}=x^{-1}, dxd^{-1}=xb, sfs^{-1}=z^{-1}, szs^{-1}=zf, a^{-1}b=s, b^{-1}aba^{-1}=t, y=f^{-1}efe^{-1}$ and $e^{-1}f=d$. These set of relations give rise to the following identities:

$$yab = ba,$$

$$(6) a = bd,$$

$$(7) yb = by,$$

$$(8) aba = bab.$$

Next, multiply the relation (5) by a from the right and use aba = bab. We have $yaba = ba^2 \implies ybab = ba^2$. By cancelling the element b, we obtain $yab = a^2$. Finally, applying the relation (5) again, we have $ba = a^2$. The latter implies that b = a. Since a = bd, $dbd^{-1} = x^{-1}$, $dxd^{-1} = xb$, aba = bab and $yb^{-1}aba^{-1} = 1$, we obtain d = y = x = b = a = 1. Furthermore, using the relations $a^{-1}b = s$, $b^{-1}aba^{-1} = t$, efe = fef, $e^{-1}f = d$, $sfs^{-1} = z^{-1}$ and $szs^{-1} = zf$, we similarly have s = t = z = f = e = 1. Thus, we can conclude that the elements a, b, x, d, y, e, f, z, s and t are all trivial in the fundamental group of x. Since we identified $a^{-1}b$ and $a^{-1}b$ and $a^{-1}b$ are trivial in the fundamental group of x as well. This proves that x is simply connected.

Lemma 5.2 $c_1^2(X) = 12$, $\sigma(X) = -4$ and $\chi_h(X) = 2$.

Proof We have $c_1^2(X) = c_1^2(X_K) + c_1^2(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2) + 8$, $\sigma(X) = \sigma(X_K) + \sigma(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2)$ and $\chi_h(X) = \chi_h(X_K) + \chi_h(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2) + 1$. Since $c_1^2(X_K) = 8$, $\sigma(X_K) = 0$ and $\chi_h(X_K) = 1$, the result follows from Lemma 3.3 and Lemma 4.1.

By Freedman's theorem [6], Lemma 5.1 and Lemma 5.2, X is homeomorphic to $3 \mathbb{CP}^2 \# 7 \overline{\mathbb{CP}}^2$. It follows from Taubes Theorem 2.1 that $SW_X(K_X) = \pm 1$. Next we apply the connected sum theorem for the Seiberg-Witten invariant and show that SW function is trivial for $3 \mathbb{CP}^2 \# 7 \overline{\mathbb{CP}}^2$. Since the Seiberg-Witten invariants are diffeomorphism invariants, we conclude that X is not diffeomorphic to $3 \mathbb{CP}^2 \# 7 \overline{\mathbb{CP}}^2$. Notice that case (i) of Theorem 3.4 does not apply and X_K is a minimal symplectic manifold. Thus, we can conclude that X is minimal. Since symplectic minimality implies irreducibility for simply-connected 4-manifolds with $b_2^+ > 1$ (Kotschick [9]), it follows that X is also smoothly irreducible.

6 Construction of an exotic symplectic $\mathbb{CP}^2 \# 5 \overline{\mathbb{CP}}^2$

In this section, we construct a simply-connected minimal symplectic 4-manifold Y homeomorphic but not diffeomorphic to $\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$. Using Usher's Theorem [21], we will distinguish Y from $\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$.

The manifold Y will be the symplectic fiber sum of Y_K and $T^2 \times S^2 \# 4 \overline{\mathbb{CP}}^2$ along the genus two surfaces Σ_2 and Σ_2' . Let us choose the gluing diffeomorphism $\varphi \colon \Sigma_2 \times S^1 \to \Sigma_2' \times S^1$ that maps the generators $a^{-1}b$, $b^{-1}aba^{-1}$, d, y and μ of $\pi_1(Y_K \setminus v\Sigma_2)$ to the generators a_1 , b_1 , a_2 , b_2 and μ' of $\pi_1(Z \setminus v\Sigma_2')$ according to the following rule:

$$\varphi_*(a^{-1}b) = a_2, \ \varphi_*(b^{-1}aba^{-1}) = b_2, \ \varphi_*(d) = a_1, \ \varphi_*(y) = b_1, \ \varphi_*(\mu) = \mu'.$$

Here, μ and μ' denote the meridians of Σ and Σ'_2 .

Again, by Gompf's theorem [7], $Y = Y_K \#_{\varphi}(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2)$ is symplectic.

Lemma 6.1 *Y* is simply connected.

Proof By Van Kampen's theorem, we have

$$\pi_1(Y) = \frac{\pi_1(Y_K \setminus \nu \Sigma_2) * \pi_1(Z \setminus \nu \Sigma_2')}{\langle a^{-1}b = a_2, b^{-1}aba^{-1} = b_2, d = a_1, y = b_1, \lambda = 1 \rangle}.$$

The following set of relations hold in $\pi_1(Y)$.

$$(9) a = bd,$$

$$(10) yb = by,$$

$$(11) aba = bab,$$

$$yab = ba.$$

Using the same argument as in proof of Lemma 5.1, we have a = b = x = d = y = 1. Thus $\pi_1(Y) = 0$.

Lemma 6.2
$$c_1^2(Y) = 4$$
, $\sigma(Y) = -4$ and $\chi_h(Y) = 1$.

Proof We have $c_1^2(Y) = c_1^2(Y_K) + c_1^2(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2) + 8$, $\sigma(Y) = \sigma(Y_K) + \sigma(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2)$ and $\chi_h(Y) = \chi_h(Y_K) + \chi_h(T^2 \times S^2 \# 4\overline{\mathbb{CP}}^2) + 1$. Since $c_1^2(Y_K) = 0$, $\sigma(Y_K) = 0$ and $\chi_h(Y_K) = 0$, the result follows from Lemma 3.3 and Lemma 4.1. \square

By Freedman's classification theorem [6], Lemma 6.1 and Lemma 6.2 above, Y is homeomorphic to $\mathbb{CP}^2\#5\,\overline{\mathbb{CP}}^2$. Notice that Y is a fiber sum of the non-minimal manifold $Z=T^2\times S^2\#4\overline{\mathbb{CP}}^2$ with the minimal manifold Y_K . All 4 exceptional spheres E_1 , E_2 , E_3 and E_4 in Z meet with the genus two fiber $2T+S-E_1-E_2-E_3-E_4$. Also, any embedded symplectic -1 sphere in $T^2\times S^2\#4\overline{\mathbb{CP}}^2$ is of the form $mS\pm E_i$, thus intersect non-trivially with the fiber class $2T+S-E_1-E_2-E_3-E_4$. It follows from Theorem 3.4 that Y is a minimal symplectic manifold. Since symplectic minimality implies irreducibility for simply-connected 4-manifolds for $b_2^+=1$ [8], it follows that Y is also smoothly irreducible. We conclude that Y is not diffeomorphic to $\mathbb{CP}^2\#5\,\overline{\mathbb{CP}}^2$.

Remark Alternatively, one can apply the concept of symplectic Kodaira dimension to prove the exoticness of X and Y. We refer the reader to the articles by Li and Yau [10] and Usher [22] for a detailed treatment of how the Kodaira dimension behaves under the symplectic fiber sum.

References

- [1] **A Akhmedov**, Construction of symplectic cohomology $S^2 \times S^2$, Gökova Geometry-Topology Proc 14 (2007) 36–48
- [2] **G Burde**, **H Zieschang**, *Knots*, de Gruyter Studies in Mathematics 5, Walter de Gruyter & Co., Berlin (1985) MR808776
- [3] **R Fintushel**, **R J Stern**, *Rational blowdowns of smooth 4-manifolds*, J. Differential Geom. 46 (1997) 181–235 MR1484044
- [4] **R Fintushel**, **R J Stern**, Families of simply connected 4–manifolds with the same Seiberg–Witten invariants, Topology 43 (2004) 1449–1467 MR2081432
- [5] **R Fintushel**, **R J Stern**, *Double node neighborhoods and families of simply connected* 4-manifolds with $b^+ = 1$, J. Amer. Math. Soc. 19 (2006) 171–180 MR2169045

- [6] **MH Freedman**, *The topology of four-dimensional manifolds*, J. Differential Geom. 17 (1982) 357–453 MR679066
- [7] **RE Gompf**, *A new construction of symplectic manifolds*, Ann. of Math. (2) 142 (1995) 527–595 MR1356781
- [8] **MJD Hamilton**, **D Kotschick**, *Minimality and irreducibility of symplectic four-manifolds*, Int. Math. Res. Not. (2006) Art. ID 35032, 13 MR2211144
- [9] D Kotschick, The Seiberg-Witten invariants of symplectic four-manifolds (after CH Taubes), Astérisque (1997) Exp. No. 812, 4, 195–220 MR1472540 Séminaire Bourbaki, Vol. 1995/96
- [10] T-J Li, S T Yau, Embedded surfaces and Kodaira Dimension, preprint
- [11] **Y Matsumoto**, Lefschetz fibrations of genus two—a topological approach, from: "Topology and Teichmüller spaces (Katinkulta, 1995)", World Sci. Publ., River Edge, NJ (1996) 123–148 MR1659687
- [12] JD McCarthy, JG Wolfson, Symplectic normal connect sum, Topology 33 (1994) 729–764 MR1293308
- [13] **B Ozbagci**, **AI Stipsicz**, *Noncomplex smooth* 4–*manifolds with genus*–2 *Lefschetz fibrations*, Proc. Amer. Math. Soc. 128 (2000) 3125–3128 MR1670411
- [14] **J Park**, Seiberg–Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997) 363–384 MR1490654
- [15] **J Park**, Simply connected symplectic 4-manifolds with $b_2^+ = 1$ and $c_1^2 = 2$, Invent. Math. 159 (2005) 657–667 MR2125736
- [16] **J Park**, Exotic smooth structures on $3\mathbb{C}P^2\#8\overline{\mathbb{C}P^2}$, Bull. Lond. Math. Soc. 39 (2007) 95–102 MR2303524
- [17] **J Park**, A I Stipsicz, Z Szabó, Exotic smooth structures on $\mathbb{CP}^2 \# 5 \overline{\mathbb{CP}^2}$, Math. Res. Lett. 12 (2005) 701–712 MR2189231
- [18] **A I Stipsicz**, **Z Szabó**, *An exotic smooth structure on* $\mathbb{CP}^2\#6\mathbb{CP}^2$, Geom. Topol. 9 (2005) 813–832 MR2140993
- [19] **A I Stipsicz**, **Z Szabó**, *Small exotic 4–manifolds with* $b_2^+ = 3$, Bull. London Math. Soc. 38 (2006) 501–506 MR2239045
- [20] **C H Taubes**, *The Seiberg–Witten invariants and symplectic forms*, Math. Res. Lett. 1 (1994) 809–822 MR1306023
- [21] M Usher, Minimality and symplectic sums, Int. Math. Res. Not. (2006) Art. ID 49857, 17 MR2250015
- [22] **M Usher**, *Kodaira dimension and Symplectic Sums*, to appear in Commentarii Mathematici Helvetici
- [23] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769–796 MR1306021

Mathematics Department, Columbia University, New York, NY 10027, USA

anar@math.columbia.edu

Received: 12 March 2007 Revised: 7 July 2008