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Nontrivalent graph cocycle and cohomology
of the long knot space

KEIICHI SAKAI

In this paper we show that via the configuration space integral construction a nontriva-
lent graph cocycle can also yield a nonzero cohomology class of the space of higher
(and even) codimensional long knots. This simultaneously proves that the Browder
operation induced by the operad action defined by R Budney is not trivial.

58D10; 55P48, 81Q30

1 Introduction

Recently the (co)homological properties of the spaces Kn (or �Kn ) of (framed) long
knots in Rn have been widely studied: the classical case (nD 3) by R Budney [3] and
Budney and F Cohen [4] and the case n> 3 by D Sinha [14; 16], V Tourtchine [17],
P Salvatore [13], P Lambrechts, Tourtchine and I Volić [8] and others. Their approaches
in some senses make use of the little disks operad and its action on �Kn , which induces
on H�.�Kn/ the Browder operation, giving a structure of a Poisson algebra. This
Poisson structure has been studied in [13; 17] and by the author in [12], and so on, but
is not well understood.

There is another geometric approach to H�DR.Kn/ (or H�DR.
�Kn/). A Cattaneo, P Cotta-

Ramusino and R Longoni [5] constructed a cochain map from certain graph complex
to the de Rham complex of Kn (n> 3) via perturbative expansion of Chern–Simons
theory, which generalizes the integral expression of the Vassiliev invariants for knots
in R3 due to R Bott and C Taubes [2] and independently to T Kohno [7]. Moreover
they proved that the induced map on cohomology is injective on the trivalent graph
cocycles. The injectivity was proved by evaluating the cohomology classes over the
cycles obtained from chord diagrams.

Almost nothing is known about the cohomology classes coming from nontrivalent
graphs (in the case of ordinary knots, there is a result of Longoni [9]; see below). One
reason is that we do not know the corresponding homology cycles.

In this paper we combine the de Rham theory for Kn (n> 3) with the action of little
disks operad and obtain the first example of a nontrivalent graph cocycle which realizes
a nonzero cohomology class of Kn , n> 3.
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Theorem 1.1 (for notation, see Section 3) Suppose n > 3 is odd. Then the graph
cohomology group H 3;1.D�/ consisting of trivalent graphs with exactly one four-
valent vertex is isomorphic to R. Its generator � gives a nontrivial element I.�/ 2

H 3n�8
DR .Kn/ via the configuration space integral.

Theorem 1.1 is an analogous result to those of Salvatore [13] and the author [12],
but the proof is more geometric. We prove the nontriviality of I.�/ by evaluating it
on a cycle produced by the action of little disks operad on the space �Kn , defined by
Budney [3]. Thus we immediately obtain the following.

Corollary 1.2 When n > 3 is odd, the Browder operation induced by the operad
action on �Kn in the sense of [3] is nontrivial.

Remark 1.3 Our cycle represents an element of H3n�8.�Kn/, the homology of the
space of framed long knots. But what we will prove is that its image in H3n�8.Kn/,
the homology of the space of long knots itself, via the map r W �Kn!Kn (see Lemma
2.2) does not vanish.

The cohomology classes of Kn obtained from trivalent graphs can be seen as “higher
dimensional analogues” of the finite type invariants for knots in R3 . But the cohomology
class obtained in Theorem 1.1 is not such a one. It would be an interesting problem to
determine where the cohomology class of K3 corresponding to the class obtained in
Theorem 1.1 (if it exists) fits in the recursive formula (see Budney and Cohen [4]) for
the homotopy type of components of K3 .

When the first version of this paper was submitted, the author was not aware of
Longoni’s result [9] for the space Emb .S1;Rn/ of closed (ordinary) knots in Rn .
Longoni found a nontrivalent graph cocycle (different from ours) when n > 3 is even
and made a nonzero element of H 3.n�3/C1.Emb .S1;Rn// from the cocycle. The
proof is also similar to ours, that is, the evaluation of the cocycle on the dual cycle. But
the construction of the cycle naturally differs from ours, since there is no operad action
on Emb .S1;Rn/. Longoni’s cycle is “secondarily” defined by using 4–term relations,
while we use an operad action.

This paper is organized as follows. In the Section 2 we recall the action of little
disks operad on the space of framed knots, following Budney [3], and construct a
cycle on which our cocycle will be evaluated. Section 3 is devoted to reviewing the
configuration space integral. The readers familiar with the construction due to Cattaneo,
Cotta-Ramusino and Longoni [5] may skip this section, except for Section 3.4 where
our nontrivalent graph cocycle is given. In Section 4 we will prove Theorem 1.1 and
give a brief comment on the further computation on H

k.n�3/C1
DR .Kn/, k � 4.
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2 The space of long knots and little disks action

2.1 The space of long knots

In this paper we always assume n> 3 is odd.

Definition 2.1 A long knot in dimension n is an embedding

f W R1 ,!Rn

such that f .t/D .0; : : : ; 0; t/ if jt j � 1.

Denote the unit ball in Rm by Bm ;

Bm
WD fx 2Rm

j jxj � 1g:

A framed long knot in dimension n is an embedding

gW Bn�1
�R1 ,! Bn�1

�R1

such that g.x; t/D .x; t/ if jt j � 1. Denote the space of all (framed) long knots in Rn

by Kn (respectively �Kn ).

The space �Kn defined as above was denoted by EC.1;Bn�1/ by Budney [3]. We
define the framed long knots as in the cylinder, because it becomes easier in this setting
to define the little disks action.

We have a forgetting map r W �Kn!Kn defined by

r.f /.t/D f .0; t/; 8f 2 �Kn:

Lemma 2.2 [3] The map r is equivalent to a trivial fibration with fiber �SO.n� 1/.
Hence �Kn 'Kn ��SO.n� 1/.
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2.2 Some cycles

The subgroup
L

k�0 H.n�3/k.Kn/ is known to be nontrivial (see Cattaneo, Cotta-
Ramusino and Longoni [5], Longoni [9], Sinha [16] and Tourtchine [17]) since it
contains the subalgebra isomorphic to the algebra A of chord diagrams modulo 4–term
and 1–term relations. Few other cycles are known. The purpose of this paper is to find
another (co)cycle which does not come from any chord diagrams.

Here we explain two examples of cycles made from chord diagrams, namely, e 2

Hn�3.�Kn/ and v2 2H2.n�3/.Kn/ which we will use later. More general treatments
can be found in [5; 9; 12; 17].

2.2.1 The cycle v2 Consider the chord diagram V in Figure 1, which is thought of
as corresponding to an immersion f with two transversal doublepoints zi D f .�i/D

f .�iC2/, i D 1; 2, �1 < �2 < �3 < �4 , see Figure 2. Since we assume n > 3, the
immersion f is determined uniquely up to homotopy.

Figure 1: Chord diagram V

At each self-intersections zi we have resolutions of f parametrized by Sn�3 (see
Figure 3), so we obtain a map

˛.V /W .Sn�3/2 �!Kn:

More explicitly, the knot ˛.V /.u1;u2/ is defined in [5; 9] by

˛.V /.u1;u2/.t/D

8<:f .t/C ıiui exp
�

1

.t��i /2�"
2
i

�
jt � �i j< "i ; i D 1; 2

f .t/ otherwise

where ıi and "i are small positive numbers, and ui 2 Sn�3 is realized as a unit vector
in Rn which is perpendicular to f 0.�i/ and f 0.�iC2/.

Remark 2.3 [5] All the resolutions generate Sn�2 ;

Si WD

[
ui2Sn�3

[
jt��i j<"i

˛.V /.u1;u2/.t/� Sn�2;
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z1

z2H) H)

Figure 2: The correspondence V 7! fV 7! ˛.V /

f

Sn�3

ui

zi D f .�i/D f .�iC2/

˛.V /.u1;u2/

Figure 3: Resolution of the self-intersection

which has the linking number one with the segment Ii WD f .�iC2 � "i ; �iC2 C "i/,
i D 1; 2 (see Figure 3).

We regard the map ˛.V / as a 2.n� 3/–cycle of Kn , and denote its homology class
by v2 2H2.n�3/.Kn/ (because it can be seen as a dual of the order two invariant for
knots in R3 ; see Bott and Taubes [2] and Kohno [7]).

This construction extends to general chord diagrams.

Proposition 2.4 [5; 9; 12; 17] The correspondence � 7! ˛.�/ is defined for any
chord diagrams and determines an injective homomorphism of algebras

˛W A �!
M
k�0

Hk.n�3/.Kn/;

where A is an algebra generated by chord diagrams modulo 4–term relations (see
Figure 4) and 1–term relation, that is, a chord diagram with an isolated chord (a chord
which does not intersect with other chords) is regarded as zero. The product of A
is defined as the concatenation of diagrams, while that of H�.Kn/ is induced by the
connecting sum (see Figure 5).
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D

D

�

�

�

Figure 4: 4–term relations� D

D#

V1 V2 V1 V2

f g
f

g

Figure 5: Product of two chord diagrams V1 , V2 , and connect sum of two
long knots f , g

2.2.2 The cycle e A resolution of an isolated chord yields a null-homologous cycle
of Kn (recall the Reidemeister move I for knots in R3 ). Instead we assign a homology
cycle e 2 Hn�3.�SO.n � 1// to �0 , a chord diagram with only one chord. First
consider the cycle e0 of SO.n� 1/ realized by a map

e0W †Sn�3
�! SO.n� 1/;

called “the clutching map for the tangent bundle of Sn�1 ,” defined below; where the
suspension †Sn�3�Sn�2 is defined by collapsing the subsets .�1;�1��Sn�3 and
Œ1;1/�Sn�3 of R1 �Sn�3 to points. We think of Sn�3 as a unit sphere in Rn�2

and †Sn�3 as in Rn�1 , by using an inclusion †Sn�3!Rn�2 �R1 ,

Œs;u� 7�!

8̂<̂
:
.
p

1� s2 u; s/ s 2 Œ�1; 1�;

.0;�1/ s � �1;

.0; 1/ s � 1:
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The map e0W †Sn�3! SO.n� 1/ is defined by

e0Œs;u�DHxn�1
HŒs;u�;

where HŒs;u� 2O.n� 1/ is the reflection with respect to the orthogonal complement
of Œs;u� 2Rn�1 (Hxn�1

is the reflection with respect to the hyperplane fxn�1 D 0g).
Since e0.1;u/D e0.�1;u/D In�1 , the adjoint map

eW Sn�3
�!�SO.n� 1/; e.u/.s/ WD e0Œs;u�

to e0 is defined and represents the desired cycle Œe�. It is known that Œe� determines
nontrivial homology class only if n is odd.

We regard e 2Hn�3.�Kn/ by composing e with j W �SO.n� 1/ ,! �Kn defined by

j .
 /.x; t/D .
 .t/x; t/;

here 
 .t/ 2 SO.n� 1/ is seen as a linear transformation in Rn�1 � f0g.

We have described two cycles e and v2 . Below we will show that the Poisson bracket
�.e; v2/ is not zero. The Poisson structure is induced from an action of little disks
operad, and will be explained in the next subsection.

2.3 Little disks action

Definition 2.5 A little m–ball is an embedding bW Bm ,! Bm of the form

b.x/D r.x�p/

for some p 2 Bm and 0< r � 1. Define the little m–balls operad Bm by setting

Bm.k/ WD

�
.b1; : : : ; bk/

ˇ̌̌̌
bi a little m-ball;

bi.Int Bm/\ bj .Int Bm/D∅ if i ¤ j

�
for k � 1. The operad structure is defined in a familiar way (see May [10]).

Here we recall the operad action of B2 on �Kn defined by Budney [3], that is, the
“associative” maps

�.k/W B2.k/� .�Kn/
k
�! �Kn; k � 1:

Given b D .b1; : : : ; bk/ 2 B2.k/, consider the projections

Ij WD pr1 ı bj .B
2/� Œ�1; 1�; 1� j � k:

There are the little 1–balls lj .t/ D aj t C bj such that lj .Œ�1; 1�/ D Ij , 1 � j � k

(l1; : : : ; lk are not necessarily disjoint mutually).

Algebraic & Geometric Topology, Volume 8 (2008)
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A little 1–ball l W Œ�1; 1� ! Œ�1; 1�, l.t/ D at C b , extends to a diffeomorphism
zl W R1!R1 in an obvious way, and determines a map

�l W
�Kn �!

�Kn;

�l.f / WD .idBn�1 �zl/ ıf ı .idBn�1 �zl�1/:

For any little 2–ball b , define the number tb 2 Œ�1; 1� by

tb Dmin fy j .x;y/ 2 b.B2/ for some xg:

With this notation in hand, we can define the map � by

�.k/..b1; : : : ; bk/I .f1; : : : ; fk// WD �l�.1/.f�.1// ı � � � ı�l�.k/.f�.k//;

where � 2Sk is such that tb�.1/ � � � � � tb�.k/ .

Theorem 2.6 [3] The maps �.k/ (k � 1) are well defined and defines an action of
the operad B2 on �Kn .

In particular, �.2/W B2.2/�.�Kn/
2! �Kn is “pushing one long knot f1 through another

long knot f2 , afterward pushing f2 through f1 ” (see Figure 6 and [3, Figures 2, 5, 7]).

f D g D

f #g

S1

g#f

Figure 6: A picture of �.2/; notice that B2.2/' S1 .
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The space B2.2/ is homotopy equivalent to S1 . The map �.2/W B2.2/� .�Kn/
2! �Kn

induces on homology two products

�W Hp.�Kn/˝Hq.�Kn/ �!HpCq.�Kn/;

�W Hp.�Kn/˝Hq.�Kn/ �!HpCqC1.�Kn/

corresponding to generators of Hp.B2.2//, pD 0; 1, respectively. The former product
is equal to that induced by the connecting sum. The latter � is called Browder operation
and is a 1–Poisson bracket, that is, a Lie bracket of degree one, satisfying the Leibniz
rule (see Cohen [6]).

Our attention will be paid to the element �.e; v2/ 2 H3n�8.�Kn/ or its image ƒ WD
r��.e; v2/ 2 H3n�8.Kn/ via the forgetful map r W �Kn ! Kn . For definiteness, we
choose a map

vW .Sn�3/2 �!Kn

representing v2 by resolving an immersion f (Figure 7). Most part of the embedding
lies in the xn�1xn –plane. The self-intersections to be resolved are zi D f .�i/ D

f .�iC2/, �i < �iC2 , i D 1; 2. The vectors ui 2 Sn�3 , i D 1; 2 (which are normal to
xn�1xn –plane) produce the resolutions of the self-intersections zi , respectively. The
segments l are included in the xn –axis.

xn�1

z1 z2

l

xn

Figure 7: The cycle v2

Given the “trivial frame,” v can represent the cycle Œv�D v2 2H2.n�3/.�Kn/.

Then the representative �.e; v/ is the family of embeddings defined by “pushing e

through v , afterward pushing v through e .”

We want to know the representative of ƒD r�.�.e; v2// 2H3n�8.Kn/. ƒ is obtained
from �.e; v/ by forgetting the frame. When e goes through v , the frame of v “near”

Algebraic & Geometric Topology, Volume 8 (2008)
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e would be agitated. But this phenomenon disappears after forgetting the frame via
r W �Kn!Kn . In contrast, when v passes through e , the whole embedding v “rotates”
around xn –axis via the frame e , and this phenomenon does not disappear even if we
forget the frame. Thus ƒ is represented by “v rotated by e .”

More precisely, if we think of SO.n� 1/ as a subgroup of SO.n/ fixing the xn –axis,
then ƒ can be represented by the map

ƒW †Sn�3
� .Sn�3/2 �!Kn;

ƒ.Œs;u0�;u1;u2/.t/ WD e.Œ2sCp.v.u1;u2/.t//;u0�/v.u1;u2/.t/; t 2R1;

where pW Rn!R1 is the projection .x1; : : : ;xn/ 7! xn . Thus ƒ.Œs;u0�;u1;u2/ is a
long knot v.u1;u2/ with its intersection with p�1.a/ being rotated around the xn –axis
by the frame eŒ2sC a;u0� 2 SO.n� 1/, jaj � 1.

The cycle ƒ has a simpler description; for 0� � � 1, define

ƒ0� W †Sn�3
� .Sn�3/2 �!Kn;

ƒ0� .Œs;u0�;u1;u2/.t/ WD e.Œ.2� �/sC .1� �/p.v.u1;u2/.t//;u0�/v.u1;u2/.t/;

then ƒ0� is well defined for any � 2 Œ0; 1�, ƒ0
0
Dƒ and

ƒ01.Œs;u0�;u1;u2/.t/D e.Œs;u0�/v.u1;u2/.t/:

Below we rewrite ƒ WD Œƒ0
1
� 2H3n�8.Kn/. This ƒ is v.u1;u2/ rotated all together

by eŒs;u0�.

Remark 2.7 There are several ways to define the action of B2 . In [16] D Sinha
constructed a cosimplicial model for the space K0n of “long knots modulo immersions,”
a space which relates to �Kn , and proved that the space is a little disks object by means
of McClure–Smith machinery [11]. It can be proved [13; 12] that, when n> 3 is odd,
the induced Browder operation is not zero;

�W Hn�3.K0n;R/˝H2.n�3/.K0n;R/
Š
�!H3n�8.K0n;R/:

It is still unknown how the operad actions on �Kn and K0n relate to each other. So
Corollary 1.2 is the first result about the nontriviality of the Browder operation in the
sense of Budney [3] in higher codimensional case (when nD 3, the Browder operation
is highly nontrivial; see Budney and Cohen [4]).

Algebraic & Geometric Topology, Volume 8 (2008)
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3 Configuration space integral

Here we recall the main result of Cattaneo, Cotta-Ramusino and Longoni [5] when
n> 3 is odd (this paper also treats the even-dimensional case). Readers can also refer
to Bott and Taubes [2], Kohno [7] and Volić [18].

3.1 Graph complex

Definition 3.1 [5] Our graph consists of the following data.

(1) Any graph has an oriented line called the special line.

(2) A graph has two types of vertices (the set of vertices is possibly empty); those on
the special line and those not on the line. In [18] the former vertices are called
interval ones, while the latter free. The vertices are labeled by 1; 2; : : : ;m for
an appropriate m� 0 so that the labels of the interval vertices are smaller than
those of free vertices.

(3) Vertices are connected by oriented edges so that the graph is connected. The
valency of each vertex is at least three. An edge may have only one interval
vertex as its endpoints (such an edge is called a small loop).

(4) If an edge e is a small loop at the interval vertex, then we give the order of the
half-edges of e (which is defined independently of the orientation of e ).

Let � be a graph with e edges, vi interval vertices and vf free vertices. Define

ord� WD e� vf ;

deg� WD 2e� 3vf � vi :

An example of a graph is shown in Figure 8.

1 3 8 2 6 7 9 4 5

11 10

Figure 8: An element of D7;3

Remark 3.2 For any graph � , its order and degree are not less than zero. One can
easily prove that 1� ord� is equal to the Euler characteristic of the one dimensional
CW–complex � , and that deg� is zero if and only if � is a trivalent graph.

Algebraic & Geometric Topology, Volume 8 (2008)
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Consider the vector space spanned by the graphs with ord�Dk and deg�D l modulo
the subspace generated by

(1) � , two vertices of which are joined by more than one edges,

(2) � with a small loop whose endpoint is a free vertex, and

(3) � 0�.�1/sign�� , here � 0 is obtained from � by a permutation � which permutes
the labels of the vertices (so that the labels of the interval vertices are less than
those of free vertices) or reversing the orientations of the edges.

We denote the quotient space by Dk;l .

The differential ıW Dk;l !Dk;lC1 is defined as follows. For any graph � , ı� is the
signed sum of graphs obtained by contracting, one at a time, the edges one of whose
endpoint is not an interval vertex, and the arcs, portions of the special line bounded by
two consecutive interval vertices.

Determining precisely the labels and signs of the graphs after contraction [5], we can
show the following directly by definition.

Theorem 3.3 [5] The map ı sends Dk;l to Dk;lC1 , and ı2 D 0.

Example 3.4 Two examples of ıW D2;0!D2;1 are given in Figure 9, which shows

�1 D

�2 D

ı

ı

� C

� C

Figure 9: Examples of the coboundary operator

that a cochain �1��2 is a cocycle in D2;0 .

3.2 Configuration space integrals

Below we will associate a differential form of Kn with a given graph � .

We denote the configuration space by

Conf.X;m/ WD f.x1; : : : ;xm/ 2X m
jxi ¤ xj g:

Algebraic & Geometric Topology, Volume 8 (2008)
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For any N , the Gauss maps 'ij W Conf.RN ;m/! SN�1 (1� i ¤ j �m) are defined
by

'ij .x1; : : : ;xm/D
xi �xj

jxi �xj j
:

We use the compactifications of the configuration spaces.

Theorem 3.5 (Axelrod and Singer [1], Bott and Taubes [2] and Sinha [15]) For any
manifold M , we can construct a compact manifold ConfŒM;m� with corners, which
is a compactification of Conf.M;m/ in the sense that the interior of ConfŒM;m� is
Conf.M;m/. When M D RN , then the Gauss maps 'ij can be extended smoothly
onto the boundary of ConfŒRN ;m�.

Roughly speaking, the points in ConfŒM;m� may “collide with each other,” but in such
cases, information of the directions of the collision must be recorded.

Let � 2Dk;l be a graph with e edges, vi interval vertices and vf free vertices (hence
e� vf D k , 2e� 3vf � vi D l ). Consider the following pullback square:

ConfŒRnI vi ; vf �

p

��

�ev // ConfŒRn; vi C vf �

�vl

��

'ij // Sn�1

Conf0ŒR
1; vi ��Kn

ev // ConfŒRn; vi �

Here Conf0ŒR
1;m� is a connected component corresponding to t1 � t2 � � � � � tm and,

on the interior, ev and �� are defined by

ev..t1; : : : ; tvi
/; f / WD .f .t1/; : : : ; f .tvi

//;

�vi
.x1; : : : ;xviCvf / WD .x1; : : : ;xvi

/:

ConfŒRnI vi ; vf � is the space of pairs ..x1; : : : ;xviCvf /; f /, where

.x1; : : : ;xviCvf / 2 ConfŒRn; vi C vf �

and f 2Kn , with x1; : : : ;xvi
on the knot f .

With an edge (or a small loop)
�!
ij of � , we assign a differential form

�ij 2�
n�1.ConfŒRn

I vi ; vf �/

�ij WD

(�ev�'�ij volSn�1 i ¤ j ;

D�i volSn�1 i D j:
defined by

Algebraic & Geometric Topology, Volume 8 (2008)
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Here, for 1� i � vi ,

Di W ConfŒBn�1
�R1

I vi ; vf � �! Sn�1;

Di.f .t1/; : : : ; f .tvi
/;x1; : : : ;xvf /D

f 0.ti/

jf 0.ti/j
:

We define a form �� 2�
.n�1/e.ConfŒRnI vi ; vf �/ by

�� WD
^

edges
�!
ij of �

�ij :

Note that this form is defined independently of the order of �ij ’s, since they are even
forms.

Integrating this form along the fiber of

ConfŒRn
I vi ; vf �

p
�! Conf0ŒR

1; vi ��Kn

pr2
�!Kn;

we obtain a differential form

I.�/ WD .pr2 ıp/��� 2�
�.Kn/:

This integral converges since we compactify the configuration spaces. The degree of
the form I.�/ is

.n� 1/e� nvf � vi D .n� 3/.e� vf /C 2e� 3vf � vi

D .n� 3/kC l:

Thus we have a map
I W Dk;l

�!�.n�3/kCl.Kn/:

Theorem 3.6 [5] If n> 3 is odd, then the above map I is a cochain map.

Outline of proof By Stokes’ theorem, the differential dI.�/ is an integration along
the boundary of ConfŒRnI vi ; vf �. Recall that the boundary of ConfŒRnI vi ; vf � is
stratified via the “complexities of degenerations of the configurations” (see Axelrod and
Singer [1]). The codimension one strata correspond to the simultaneous collisions of
points. We can see [2; 5; 18] that, when n>3, only the “principal faces” (corresponding
to the collisions of exactly two points) contribute to the integration dI.�/. These
collisions exactly correspond to the differential ı of the graph complex D� , hence
dI.�/D I.ı�/.
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3.3 Trivalent graph cocycles

Notice that a chord diagram with k chords is thought of as in Dk;0 if some orientation
of edges are given to � . The chord diagram has eD k edges, vi D 2k interval vertices,
and no free vertices (vf D 0).

The proof of the following is a combinatorial one.

Lemma 3.7 [5] Let �D
P

i ai�i 2Dk;0 be a nonzero cocycle with each �i trivalent
graphs. Then there is at least one graph, say �1 , which is a chord diagram. Moreover,
all the chord diagrams contained in the summand of � has no isolated chord.

For example, a cochain �1��2 given in Example 3.4 contains a chord diagram �1 ,
and there is no isolated chord.

Let � D
P

i ai�i 2 Dk;0 be a nonzero cocycle, and suppose �1 is a chord diagram
with a1 ¤ 0. Then I.�/ 2 H

.n�3/k
DR .Kn/ turns out to be not zero by the following

theorem.

Theorem 3.8 [5] Denote by h ; i the pairing of cocycles with cycles. Then we have
hI.�/; ˛.�1/i D ˙a1 .

A detailed proof can be found in [5]. Here, as an example, we compute hI.�/; v2i

where � D �1��2 is a cocycle given in Example 3.4 (notice that the cycle v2 is equal
to ˛.�1/). This computation is easily generalized to prove Theorem 3.8, and gives us
a lot of useful suggestions for the proof of our main theorem.

Let vi and vf the numbers of interval and free vertices of the graph �j , j D 1; 2 (if
j D 1, then vi D 4 and vf D 0; if j D 2, then vi D 3, vf D 1). Consider the following
pullback square:

.id�˛.�1//
� ConfŒRnI vi ; vf �

ˇ //

zp

��

ConfŒRnI vi ; vf �

p

��
Conf0ŒR

1; vi �� .S
n�3/2

id�˛.�1/ //

pr2

��

Conf0ŒR
1; vi ��Kn

pr2

��
.Sn�3/2

˛.�1/ // Kn

Then

hI.�j /; ˛.�1/i D

Z
.Sn�3/2

.pr2 ı zp/�ˇ
���j D

Z
Conf0ŒR1;vi ��.Sn�3/2

zp�ˇ
���j ;
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and in this case the integrands are

��1
D �13�24; ��2

D �14�24�34:

Recall that the immersion f has the transversal self-intersections ziDf .�i/Df .�iC2/,
�1 < �2 < �3 < �4 . Let "i > 0 (i D 1; 2) be sufficiently small numbers which
appear in the definition of the resolution of f (Section 2.2) and define the subspace
C D C" � Conf0ŒR

1; vi � by

C� WD

�
.t1; : : : ; tvi

/ 2 Conf0ŒR
1; vi �

ˇ̌̌̌
1� 9 i � 4; jtm� �i j> "i

for any 1�m� vi

�
:

Notice that the complementary set Conf0ŒR
1; vi � nC is the set of configurations such

that there is at least one tm near �i , 1� i � 4.

Write !.j/ WD zp�ˇ���j and

!
.j/
C
WD

Z
C

!.j/; �
.j/
C
WD

Z
Conf0ŒR1;vi �nC

!.j/:

hI.�j /; ˛.�1/i D

Z
.Sn�3/2

!
.j/
C
C

Z
.Sn�3/2

�
.j/
C
:Then

Even if we reduce the “sizes” ıi of the resolutions of i –th self-intersection of the
immersion f (see Section 2.2), we still have a homologous cycle ˛.�1/, hence the
value hI.�/; ˛.�1/i remains unchanged. So we have

hI.�/; v2i D lim
ı1;ı2!0

X
jD1;2

�Z
.Sn�3/2

!
.j/
C
C

Z
.Sn�3/2

�
.j/
C

�
:

But the limit of the integration of !.j/
C

is zero, since on C there is at least one �i
whose neighborhood does not contain any configuration point tm , then the size of the
resolution can be reduced to exactly zero at the corresponding doublepoint zk (because
collision of configuration points never occur), and the dimension of the cycle decreases.

Thus only the second term, the integration over Conf0ŒR
1; vi � nC contributes to the

limit of hI.�/; ˛.�1/i. Since there are four �i ’s, Conf0ŒR
1; vi �nC ¤∅ only if vi � 4.

But �2 has only three interval vertices, so cannot contribute to the pairing, while
�1 may contribute to the pairing since it has four interval vertices (in general cases,
Conf0ŒR

1; vi � nC ¤∅ only for the graphs which are chord diagrams).
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So it suffices to compute the limit ofZ
.Sn�3/2

�
.1/
C
D

Z
.Conf0ŒR1;4�nC /�.Sn�3/2

zp�ˇ
���1

D

Z
ˇ zp�1f.Conf0ŒR1;4�nC /�.Sn�3/2g

�13�24:

Recall from Remark 2.3 the .n� 2/–sphere Si generated by all the resolution of zi ,
which has the linking number one with the segment Ii (i D 1; 2). The set

ˇ zp�1
f.Conf0ŒR

1; 4� nC /� .Sn�3/2g

is precisely the disjoint union
F

iD1;2 Si t Ii , and the above integration isY
iD1;2

Z
Si�Ii

'�i volSn�1

for the Gauss map 'i W Si � Ii! Sn�1 . Its limit is the product of the linking numbers
of Si and Ii (i D 1; 2), thus equal to one. Thus

hI.�/; ˛.�1/i D lim
ıi!0
hI.�1/; ˛.�1/i D ˙1:

3.4 Nontrivalent graph cocycle

At present it is not known in general whether the map I W H k;l.D�/!H
.n�3/kCl
DR .Kn/,

l > 0, yields nontrivial cohomology class of Kn . But we can see (using work of
Salvatore [13], Tourtchine [17] and the author [12]) that, when n> 3 is odd,

rank H3n�8.Kn/D 1:

So we can expect that I W H 3;1.D�/!H 3n�8
DR .Kn/ might produce a nontrivial coho-

mology class which is dual to the generator of H3n�8.Kn;R/.

It is difficult to compute H 3;l.D�/ (l � 1) by hand, but computer calculus tells us the
following.

Lemma 3.9 If n is odd, then H 3;1.D�/ Š R. As a generator we can choose the
cochain shown as in Figure 10.

It can be easily seen by a direct computation that the cochain � in Figure 10 is really a
cocycle. It cannot be a coboundary, since I.�/ 2H 3n�8.Kn/ is not zero as we will
prove later.

In Figure 10, we omit the labels of the vertices and the orientations of the edges. Unless
otherwise indicated,

Algebraic & Geometric Topology, Volume 8 (2008)



1516 Keiichi Sakai

� the labels of interval vertices are defined accordingly to the orientation of the
line, and

� the orientations of the edges are defined so that the label of the initial vertex of
an edge is smaller than that of the terminal one.

4 5

4

3 5

5

43

� D�2 C C2

�2 C2 �

� C �

Figure 10: A generator � 2H 3;1.D�/

Remark 3.10 It can be easily seen that H 3;l.D�/D f0g, l � 4. The author has not
computed H 3;l.D�/, l D 2; 3. But Tourtchine’s computation [17, Appendix B] of
certain spectral sequence related to D� suggests that H 3;l.D�/ might be zero for
l D 2; 3. In fact H 3;0.D�/ŠR and the Euler characteristic of the complex D3;� is
zero, so rank H 3;2.D�/� rank H 3;3.D�/D 0. Thus there would be no contradiction
even if H 3;2.D�/DH 3;3.D�/D 0. Of course it is not difficult to compute H 3;l.D�/,
l D 2; 3, though it would be exhausting.

4 Evaluation

Suppose n > 3 is odd and let � 2 H 3;1.D�/ be the cocycle in Figure 10. Recall
ƒ 2H3n�8.Kn/ from Section 2.3. The following theorem proves our main result.

Theorem 4.1 The pairing hI.�/; ƒi is not zero.

Proof We name the nine graphs in Figure 10 �1; : : : ; �9 , respectively; so

� D�2�1C�2C 2�3� 2�4C 2�5��6��7C�8��9:

First we remark the following fact [5]; the configuration space integral construction
explained in Section 3 can be proceeded as long as the volume form of Sn�1 is
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symmetric, that is, i� volSn�1 D � volSn�1 for the antipodal map i W Sn�1! Sn�1

(we are assuming n is odd). When n > 4, the cohomology classes of Kn obtained
via the configuration space integrals do not depend on the choice of such symmetric
volume forms. So below we use the symmetric volume form whose support is localized
in the (sufficiently small) neighborhood of .˙1; 0; : : : ; 0/ 2 Sn�1 �Rn .

Let ıi > 0 (i D 1; 2) be the “sizes” of resolutions of the self-intersections zi D f .�i/D

f .�iC2/ (i D 1; 2) of the immersion f representing v2 (see Sections 2.2 and 2.3). We
set ıi D "2

i , i D 1; 2 ("i appears in the description of the resolution; see Section 2.2).
We will compute the limit "i! 0 of the pairing hI.�/; ƒi. The homology class Œƒ�
is independent of the values "i , and so is the pairing. But in the limit, as we will prove
later, all the graphs �j except for �2 do not contribute to hI.�/; ƒi (Lemmas 4.2,
4.3, 4.4 and 4.5), and hI.�2/; ƒi is not zero (Lemmas 4.6 and 4.7).

Lemma 4.2 In the limit, hI.�j /; ƒi ! 0 for j D 7; 8; 9.

Proof As in the computation in Section 3.3, only the integration over Conf0ŒR
1; vi �nC"

contributes to the above pairing in the limit. So the graphs �j with less than four
interval vertices never contribute to the pairing in the limit "i! 0.

Lemma 4.3 In the limit, hI.�j /; ƒi ! 0 for j D 4; 5.

Proof The graphs �4 and �5 have four vertices on the special line. So the correspond-
ing points .t1; : : : ; t4/ is in Conf0ŒR

1; 4� nC" if and only if jti � �i j � "i , 1 � i � 4.
Then in the case of �4 , the integrand �11 is zero since we take the immersion f so
that D1f .t1/ with jt1� �1j � "1 cannot be near .˙1; 0; : : : ; 0/, the support of our
volume form. In the case of �5 , the integrand �12 also vanishes by similar reason.

Lemma 4.4 In the limit, hI.�6/; ƒi ! 0.

Proof The points .t1; : : : ; t4/ 2 Conf0ŒR
1; 4� nC" corresponding to interval vertices

should be as in the above Lemma. So the integrand �15�25�45 vanishes unless the
point x5 corresponding to the free vertex 5 is “near .˙1; 0; : : : ; 0/,” since otherwise
the images of 'i5 ı �ev, i D 1; 2; 4, cannot be in the support of volSn�1 simultaneously.

Now we look at two maps 'i5ı �ev, i D 2; 4. In the limit "2! 0, the points f .t2/2S2

and f .t4/ 2 I2 are very near (S2 � Sn�2 and the interval I2 have been introduced in
Remark 2.3), and the free point x5 has to be far from them. So the image of the map

.'25 ı �ev/� .'45 ı �ev/W S2 � I2 �! .Sn�1/2
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is near the diagonal set �D f.v; v/ 2 .Sn�1/2g. More precisely, for any open neigh-
borhood U of �, there exists �0 > 0 such that the image of .'25 ı �ev/� .'45 ı �ev/ is
contained in U for any "2 < "0 .

Thus on Conf0ŒR
1; 4� nC" the integrand �45 can be written as

�45 D .'25 ı �evC "0'/� volSn�1

for the Gauss map 'W S2 � I2! Sn�1 and some "0 > 0 such that "0
"2#0
���! 0. Hence

the integrand is
�13�15�25�45 D "

0�13�15�25'
�.volSn�1/

and its integration converges to zero as "2! 0.

Lemma 4.5 In the limit, hI.�j /; ƒi ! 0 for j D 1; 3.

Proof First we prove hI.�1/; ƒi ! 0; the integrand �12 is not zero only if t 2

Conf0ŒR
1; 4� nC is such that t1 is near �1 and t2 is near �3 . But then no other ti can

be near �2 .

hI.�3/; ƒi ! 0 since if t 2 Conf0ŒR
1; 4� nC then t1 � �1 and thus �11 DD�

1
vol is

always zero by our choice of f .

Lemma 4.6 The limit of hI.�2/; ƒi is not zero.

Proof The integrand �13�14�25 does not vanish only if the t 2 Conf0.R
1; 5/ nC is

such that t1 is near �1 , t3; t4 are near �3 , t2 is near �2 and t5 is near �4 , and the images
of direction maps 'ij ı �ev (.i; j /D .1; 3/; .1; 4/; .2; 5/) are “near” .˙1; 0; : : : ; 0/ (see
Figure 11).

Integration with respect to t2; t5 and u2 2 Sn�3 is the linking number, and hence
equals to one (Remark 2.3). So it remains to compute the integration with respect to
t1; t3; t4 and u1 2 Sn�3 . We reformulate the situation around the resolved singular
point z1 (which is indicated in Figures 7 and 11) as follows (see Figure 12):

� a point P1 (corresponding to f .t1/) is on

M WD fx2
1 C � � �Cx2

n�2Cx2
n D 1; xn�1 D 0g

(this sphere corresponds to S1 � Sn�2 introduced in Section 3.3),

� two points .P4;P3/ 2 Conf0ŒR
1; 2� (corresponding to f .t4/; f .t3/) are on the

xn�1 –axis (corresponding to the interval I1 ), and

� the frame eŒs;u� 2 SO.n� 1/ ( Œs;u� 2†Sn�3 ) acts on Rn , fixing the xn –axis.
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t1

t4 t3

z1

t2

t5

Figure 11: A configuration .t1; : : : ; t5/ which contributes to hI.�2/; ƒi

xn�1

P3

P4

'13

'14

x1; : : : ;xn�2

M

P1

xn

Figure 12: Integration around z1

If we define

F W N �! .Sn�1/2 .N WD†Sn�3
�Sn�2

�Conf0ŒR
1; 2�/

F.Œs;u�;P1; .P4;P3// W D .'13; '14/.eŒs;u�Pi/iD1;3;4by

D

�
eŒs;u�

P1�P3

jP1�P3j
; eŒs;u�

P1�P4

jP1�P4j

�
;

then our aim is to compute the integralZ
N

F�.vol.Sn�1/2/
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where vol.Sn�1/2 D pr�
1

volSn�1 ^ pr�
2

volSn�1 is a top form of .Sn�1/2 (remember
the support of volSn�1 is localized in the neighborhood of .˙1; 0; : : : ; 0/).

The map F has its image in

A WD f.x;y/ 2 .Sn�1/2 jxnyn � 0g

where xn is the n–th coordinate of x 2Sn�1�Rn . In fact, as we will prove in Lemma
4.7, the map F is two-fold covering on Int A branched on the diagonal �D f.v; v/ 2
.Sn�1/2g, thus the image of F covers the half of the support of vol.Sn�1/2 twice.
Moreover, for any p; q 2F�1.Int An�/ with F.p/DF.q/, the map GW TpN!TqN

defined by the commutative diagram

TpN

F�

Š &&MMMMMMMMMM
G

Š
// TqN

Š

F�

xxrrrrrrrrrr

TF.p/.S
n�1/2

is an isomorphism of oriented tangent spaces for suitable orientations of N and
.Sn�1/2 . Thus the limit of the above integral is ˙1=2� 2D˙1.

Lemma 4.7 F jInt N is two-fold smooth covering onto Int An� and G is an orientation
preserving map.

Proof We denote by .v/n the n–th coordinate of v 2Rn . We will show that for any
.v3; v4/2 Int An� (then .v3/n.v4/n>0), we can find .Œs;u�;Pi/ so that F.Œs;u�;Pi/D

.v3; v4/, that is,

(4–1) eŒs;u�
P1�Pi

jP1�Pi j
D vi ; i D 3; 4:

Consider the 2–plane H.v3; v4/ � Rn spanned by two vectors v3; v4 . Then the
intersection

l.v3; v4/ WDH.v3; v4/\fxn D 0g

is a one-dimensional linear subspace of fxn D 0g.

Since .Œs;u�;Pi/ should satisfy (4–1), the points eŒs;u�Pi (i D 3; 4) should be on
l.v3; v4/ and eŒs;u�P1 should be on H.v3; v4/\eŒs;u�M . So the frame .s;u/ should
transpose xn�1 –axis to l.v3; v4/. There are two such frames, namely, Œs;u� and
Œ�s;�u� for some Œs;u� 2†Sn�3 . We have eŒs;u�M D eŒ�s;�u�M , and this sphere
intersects with H.v3; v4/ at two points. One has positive n–th coordinate and the
other has negative one. When .v3/n > 0 (resp. .v3/n < 0), we choose positive (resp.
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negative) one and name it eŒs;u�P1 . Then P3 and P4 are determined uniquely so that
'1i.P1;P3;P4/D eŒs;u��1vi .

Thus we have two points .˙Œs;u�;Pi/ which are mapped to .v3; v4/ 2 .S
n�1/2 via F .

The map F is clearly smooth. The above arguments show that F�1 is also smooth,
hence F jInt N is locally diffeomorphic two-fold covering.

The map G is orientation preserving, since it is essentially the antipodal map †Sn�3!

†Sn�3 and it preserves orientation (we assume n is odd).

Remark 4.8 In general, nothing is known about H k;1.D�/, k � 4. But anyway sup-
pose we have �D

P
ai�i 2H k;1.D�/. Let � 0 be a chord diagram with .k�1/ chords.

Then, in a similar way as above, we can compute the pairing hI.�/; r��.˛.�
0/; e/i;

choose an immersion f representing ˛.� 0/ so that almost all of the image of f lies
in xn�1xn –axis. We proceed the configuration space integral construction by using
the symmetric volume form of Sn�1 whose support is localized in the neighborhood
of .˙1; 0; : : : ; 0/. Let ıi > 0 be the “size” of the i –th resolution of the immersion f .
Then, in the limit ıi! 0 (1� i � k � 1), only the graphs �i obtained from � 0 with
one of its chord “doubled” contribute to the pairing (see Figure 13).

H)

Figure 13: Doubling operation
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