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Limit values of the non-acyclic Reidemeister torsion for knots

YOSHIKAZU YAMAGUCHI

We consider the Reidemeister torsion associated with SL2.C/–representations of a
knot group. A bifurcation point in the SL2.C/–character variety of a knot group is a
character which is given by both an abelian SL2.C/–representation and a nonabelian
one. We show that there exist limits of the non-acyclic Reidemeister torsion at
bifurcation points and the limits are expressed by using the derivation of the Alexander
polynomial of the knot in this paper.

57Q10; 57M05

1 Introduction

The Reidemeister torsion is an invariant of a CW-complex and a representation of its
fundamental group. For a knot exterior and an abelian representation, the Reidemeister
torsion is essentially equal to the Alexander polynomial; see Milnor [15; 16] and
Turaev [19]. In the case of a nonabelian representation, the Reidemeister torsion is
related to the theory of the twisted Alexander invariant; see Kirk and Livingston [11],
Kitano [12], Lin [14] and Wada [21].

The Reidemeister torsion is invariant under taking conjugation of a representation. In
the case of knot exteriors the Reidemeister torsion may be regarded as a function on a
space corresponding to a suitable quotient of the SL2.C/–representations of the knot
group by conjugation, as introduced in Porti [18]. Following Morgan and Shalen [17],
we consider the SL2.C/–character variety of the knot group as a suitable quotient. In
general, the SL2.C/–character variety of a knot group has many components. These
components are roughly classified into two types. One consists of the characters of
abelian representations. The other consists of the characters of nonabelian representa-
tions. We respectively call these sets the abelian part and the nonabelian part of the
character variety. It is known that the abelian part intersects with the nonabelian part.
These intersection points are called bifurcation points. The purpose of this paper is to
show that the Reidemeister torsion of nonabelian representations is given by using the
Alexander polynomials at a bifurcation point as follows.

Let K be a knot in a homology three sphere. A bifurcation point of the SL2.C/–
character variety of K corresponds to a root of the Alexander polynomial; see Burde [1]
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and Klassen [13]. In particular, the bifurcation point corresponding to a simple root
of the Alexander polynomial is a smooth point of the SL2.C/–character variety (see
Heusener, Porti and Suárez [10]). We can construct a function on each of the abelian and
nonabelian part of the character variety by using the Reidemeister torsion. The function
on the abelian part is given by the Reidemeister torsion for abelian representations. In
fact, this function is expressed by using the Alexander polynomial of K and it has
zeros at bifurcation points (see Milnor [15; 16] and Turaev [19]). The other function
on the nonabelian part is given by the non-acyclic Reidemeister torsion for nonabelian
representations; Dubois [6; 7], Porti [18] and Yamaguchi [22] deal with Reidemeister
torsion in such a light. Though the function on the nonabelian part is partially defined
and it is not defined on bifurcation points, we can consider limits of the non-acyclic
Reidemeister torsion at bifurcation points.

We will show that if a bifurcation point corresponds to a simple root of the Alexander
polynomial of K , then there exists the limit of the non-acyclic Reidemeister torsion
at the bifurcation point , and its limit is expressed as the differential coefficient of the
function defined on the abelian part at this point (Theorem 3.4).

This fact was conjectured by Dubois and Kashaev. The author first proved it for a knot
in S3 . Dubois pointed out that the proof may be extended to a knot in a homology
three sphere. This theorem is applied in the paper of Dubois and Kashaev [8].

This paper is organized as follows. In Section 2, we recall the needed notions of
the SL2.C/–character variety of a knot group and the Reidemeister torsion for knot
exteriors. In Section 3, we prove that limits of the non-acyclic Reidemeister torsion
of a knot exterior at bifurcation points are obtained from the derivation of the Alexan-
der polynomial of the knot. We discuss the existences of limits of the non-acyclic
Reidemeister torsion in Section 3.1. We give a formula of these limits in Section 3.2.
This formula implies that a property called �–regularity which holds on irreducible
characters near a bifurcation point can be extended to the bifurcation point. This is
shown in Section 4.

Acknowledgements The author would like to express sincere gratitude to Mikio
Furuta for his suggestions and helpful discussions. He is thankful to Hiroshi Goda,
Takayuki Morifuji, Teruaki Kitano, Masaaki Suzuki and Yuya Koda for helpful sugges-
tions. The author would like to thank Jérôme Dubois for his helpful advice. He also
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2 Preliminaries

2.1 Review on bifurcation points

Let K be a knot in a homology three sphere M , MK its exterior and denote by
R.�1.MK /;SL2.C// the set of SL2.C/–representations of �1.MK /.

A representation � is called abelian if its image �.�1.MK // is an abelian subgroup
of SL2.C/. A representation � is called reducible if there exists a proper subspace
U of C2 such that �.
 /.U /� U for any 
 2 �1.MK /. A representation � is called
irreducible if it is not reducible. We let Rirr.�1.MK /;SL2.C// denote the set of
irreducible ones. Note that all abelian representations are reducible but the converse is
false in general.

Associated to the representation � 2 R.�1.MK /;SL2.C// is its character a map
�� from �1.MK / into C, defined by ��.
 / D Tr .�.
 //. Following Morgan and
Shalen [17], we will focus on the character variety which is the set of characters
of SL2.C/–representations of �1.MK /. Let X.MK / denote the character variety of
�1.MK /. In some sense, X.MK / is the “algebraic quotient” of R.�1.MK /;SL2.C//

by PSL2.C/ because the quotient R.�1.MK /;SL2.C//=PSL2.C/ is not Hausdorff in
general. We let � denote the projection, R.�1.MK /;SL2.C//! X.MK /, defined
by � 7! �� . It is known that R.�1.MK /;SL2.C// and X.MK / have the structure of
complex algebraic affine sets and for each 
 2 �1.MK / the function I
 W X.MK /!

C; �� 7! Tr .�.
 // is a regular function. Two irreducible representations of �1.MK /

with the same character are conjugate by an element of SL2.C/ (see Culler and
Shalen [4, Proposition 1.5.2]). Let X irr.MK / denote �.Rirr.�1.MK /;SL2.C///. The
subsets Rirr.�1.MK /;SL2.C//�R.�1.MK /;SL2.C// and X irr.MK /�X.MK / are
Zariski-open. (For the details, see Morgan and Shalen [17].)

The character variety X.MK / has several components. Let X ab.MK / be the image
under � of the subset of abelian SL2.C/–representations of �1.MK / and X nab the
image of the subset of nonabelian ones. We call X ab.MK / (resp. X nab.MK /) the
abelian (resp. nonabelian) part of X.MK /.

Definition 2.1 If there exist intersection points between the abelian part X ab.MK /

and the nonabelian part X nab.MK / in X.MK /, then these intersection points are called
bifurcation points.

It is well known that �1.MK /=Œ�1.MK /; �1.MK /�ŠH1.MK IZ/Š Z is generated
by the meridian � of K .
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Remark 2.2 In SL2.C/ there exist, up to conjugation, only two maximal abelian
subgroups Hyp.Dhyperbolic/ and Para.Dparabolic/; they are given by

Hyp WD
��

c 0

0 c�1

�
2 SL2.C/

ˇ̌̌̌
c 2 C� D C n f0g

�
;

Para WD
�
˙

�
1 !

0 1

�
2 SL2.C/

ˇ̌̌̌
! 2 C

�
:

As a consequence, each abelian representation of �1.MK / in SL2.C/ is conjugate
either to

'z W �1.MK / 3 � 7!

�
ez 0

0 e�z

�
2 SL2.C/

with z 2 C if it is hyperbolic, or to a representation � with �.�/ D ˙
�

1 1
0 1

�
if it is

parabolic.

The nonabelian part X nab.MK / includes the irreducible characters X irr.MK /. It is
known that an element of X irr.MK / is a smooth point in the complex affine variety
X.MK /, for example see Porti [18, Proposition 3.5]. We focus on the bifurcation
points which are limits of paths in X irr.MK /. Such bifurcation points are related
to roots of the Alexander polynomial �K .t/ of K . This is a well-known result of
Burde [1] and de Rham [5] if K is a knot in S3 .

Lemma 2.3 (Corollary 4.3 in Heusener, Porti and Suárez [10], Klassen [13]) Let z0

be a complex number. There is a reducible nonabelian representation �z0
such that

��z0
D �'z0

if and only if �K .e
2z0/D 0.

It is also known that the following theorem holds.

Theorem 2.4 (Theorem 1.1 in Heusener, Porti and Suárez [10]) Let z0 be a complex
number such that �K .e

2z0/D 0 and �z0
a reducible nonabelian representation such

that ��z0
D �'z0

. If e2z0 is a simple root of �K .t/, then the representation �z0
is

the limit of a sequence of irreducible ones. More precisely, �z0
is a smooth point of

the SL2.C/–representation variety of �1.MK /; it is contained in a unique irreducible
four-dimensional component of the SL2.C/–representation variety.

Heusener, Porti and Suárez also showed that the character of �z0
is a smooth point

of the SL2.C/–character variety X.MK / (see Theorem 1.2 in Heusener, Porti and
Suárez [10]).

We will consider bifurcation points corresponding to simple roots of the Alexander
polynomial �K .t/. These bifurcation points are limits of paths in X irr.MK /.
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2.2 Review on the Reidemeister torsion

Torsion of a chain complex Let C� D .0! Cn
dn
�! Cn�1

dn�1
���! � � �

d1
�! C0! 0/ be

a chain complex of finite dimensional vector spaces over C. Choose a basis ci for Ci

and a basis hi for the i –th homology group Hi DHi.C�/. The torsion of C� with
respect to these choice of bases is defined as follows.

Let bi be a sequence of vectors in Ci such that di.bi/ is a basis of Bi�1D im.di W Ci!

Ci�1/ and let zhi denote a lift of hi in Zi D ker.di W Ci! Ci�1/. The set of vectors
diC1.biC1/zhibi is a basis of Ci . Let ŒdiC1.biC1/zhibi=ci �2C� denote the determinant
of the transition matrix between those bases (the entries of this matrix are coordinates
of vectors in diC1.biC1/zhibi with respect to ci ). The sign-determined Reidemeister
torsion of C� (with respect to the bases c� and h� ) is the following alternating product
(see Turaev [19, Definition 3.1]):

(1) Tor.C�; c�;h�/D .�1/jC�j �

nY
iD0

ŒdiC1.biC1/zhibi=ci �.�1/iC1

2 C�:

Here jC�j D
X
k>0

˛k.C�/ˇk.C�/;

where ˛i.C�/D
Pi

kD0 dim Ck , ˇi.C�/D
Pi

kD0 dim Hk .

The torsion Tor.C�; c�;h�/ does not depend on the choices of bi and zhi . Further
observe that if C� is acyclic (ie, if Hi D 0 for all i ), then jC�j D 0.

Torsion of a CW-complex Let W be a finite CW-complex, V a finite dimensional
vector space over C and � a homomorphism from �1.W / to Aut.V /. We define the
local system of W to be

C�.W IV�/D V�˝ZŒ�1.W /� C�. �W IZ/:
Here C�. �W IZ/ is the complex of the universal cover �W with integer coefficients.
This space is in fact a left ZŒ�1.W /�–module (via the action of �1.W / on �W as the
covering group). And V� denotes the right ZŒ�1.W /�–module via the homomorphism
� , ie the action is given by v �
 D�.
 /�1.v/ for any v 2V and 
 2�1.W /. This chain
complex C�.W IV�/ computes the homology of the local system. We let H�.W IV�/

denote this homology.

Let fe.i/
1
; : : : ; e

.i/
ni
g be the set of i –dimensional cells of W . We lift them to the

universal cover and we choose an arbitrary order and an arbitrary orientation for the
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cells fze.i/
1
; : : : ; ze

.i/
ni
g. If B D ff1; : : : ; fmg is an orthonormal basis of V , where m is

the dimension of V , then we consider the corresponding basis over C

ci
B D

n
f1˝ze

.i/
1
; : : : ; fm˝ze

.i/
1
; : : : ; f1˝ze

.i/
ni
; : : : ; fm˝ze

.i/
ni

o
of Ci.W IV�/. Now choosing for each i a basis hi for the homology group Hi.W IV�/,
we can compute

Tor.C�.W IV�/; c�B;h
�/ 2 C�:

The cells fze.i/j W 0 6 i 6 dim W; 1 6 j 6 nig are in one-to-one correspondence with
the cells of W , their order and orientation induce an order and an orientation for the
cells fe.i/j gi;j , where 0 6 i 6 dim W and 1 6 j 6 ni . Again, corresponding to these
choices, we get a basis ci over R for Ci.W IR/.

Choose a homology orientation of W , which is an orientation of the real vector space
H�.W IR/ D

L
i>0 Hi.W IR/. Let o denote this chosen orientation. Provide each

vector space Hi.W IR/ with a reference basis hi such that the basis
˚
h0; : : : ; hdim W

	
of H�.W IR/ is positively oriented with respect to o. We set

�0 D sgn
�
Tor.C�.W IR/; c�; h�/

�
2 f˙1g:

We define the sign-determined Reidemeister torsion for .W;V�/ with respect to the
homology basis h� and to the homology orientation o to be

(2) TOR.W IV�;h�; o/D �0 �Tor.C�.W IV�/; c�B;h
�/ 2 C�:

This definition only depends on the combinatorial class of W , the conjugacy class of � ,
the choice of h� and the homology orientation o. It is independent of the orthonormal
basis B of V , of the choice of the lifts ze.i/j , and of the choice of the positively oriented
basis of H�.W IR/. Moreover, it is independent of the order and the orientation of the
cells (because they appear twice).

Remark 2.5 If the Euler characteristic of W is zero, then we can use any basis of V

in order to define TOR.W IV�;h�; o/.

One can prove that TOR is invariant under cellular subdivision, homeomorphism and
simple homotopy equivalences. In fact, all these important invariance properties hold
with the sign .�1/jC�j in (1); for details see Farber and Turaev [9, Lemma 3.3].

2.3 Review on the non-acyclic Reidemeister torsion for knot exteriors

This subsection is devoted to a detailed review of the constructions of the non-acyclic
Reidemeister torsion which were made in Dubois [6] and Porti [18].
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Let K be a knot in a homology three sphere M and MK its exterior. We let � denote
an SL2.C/–representation of �1.MK / and Ad be the adjoint action of SL2.C/, ie
AdW SL2.C/! Aut.sl2.C//; A 7! .AdAW x 7!AxA�1/.

We define the local system C�.MK I sl2.C/�/ by

C�.MK I sl2.C/�/ WD sl2.C/�˝ZŒ�1.MK /� C�.
�MK IZ/

where �MK is the universal cover of MK and sl2.C/� is the right ZŒ�1.MK /�–module
via the composition Ad ı� , ie v �
 DAd�.
/�1.v/ for any v 2 sl2.C/ and 
 2�1.MK /.
We call this local system the sl2.C/�–twisted chain complex of MK .

We let H�.MK I sl2.C/�/ denote the homology of this local system. It is known
that dimC H1.MK I sl2.C/�/ is equal to the dimension of the component of X.MK /

which contains �� if � is irreducible. In particular, for an irreducible representation
� , C�.MK I sl2.C/�/ is not acyclic since there are no 0–dimensional components of
X.MK / (see Cooper, Culler, Gillet, Long and Shalen [3, Proposition 2.4]).

Canonical homology orientation of knot exteriors We provide the exterior of K

with its canonical homology orientation defined as follows (see Turaev [20, Section
V.3]). We have

H�.MK IR/DH0.MK IR/˚H1.MK IR/

and we base this R–vector space with fŒpt �; Œ��g. Here Œpt � is the homology class of
a point, and Œ�� is the homology class of the meridian � of K . This reference basis of
H�.MK IR/ induces the so-called canonical homology orientation of MK . We let o

denote the canonical homology orientation of MK .

Regularity for representations In this subsection we briefly review two notions of
regularity (see Dubois [7] and Porti [18]). Let K �M denote an oriented knot.

The meridian � of K is supposed to be oriented according to the rule `k.K; �/DC1,
while the preferred longitude � is oriented according to the condition int.�; �/DC1.
Here int.� ; �/ denotes the intersection form on @MK .

We say that �2Rirr.�1.MK /;SL2.C// is regular if dimC H1.MK I sl2.C/�/D1. This
notion is invariant by conjugation and thus it is well-defined for irreducible characters.
Note that for a regular representation � , we have

dimC H1.MK I sl2.C/�/D 1; dimC H2.MK I sl2.C/�/D 1 and Hj .MK I sl2.C/�/D 0

for all j ¤ 1; 2 by Porti [18, Corollary 3.23]. Let 
 be a simple closed unoriented
curve in @MK . Among irreducible representations we focus on the 
 –regular ones.
We say that a regular representation �W �1.MK /!SL2.C/ is 
 –regular (see Porti [18,
Definition 3.21]), if the following two conditions hold:
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(1) The inclusion �W 
 ,!MK induces a surjective map

��W H1.
 I sl2.C/�/!H1.MK I sl2.C/�/:

(2) If Tr .�.�1.@MK ///� f˙2g, then �.
 /¤˙1.

It is easy to see that this notion is invariant by conjugation. For � 2 X irr.MK / the
notion of 
 –regularity is well-defined.

Constructing natural bases for the twisted homology Let � be a regular SL2.C/–
representation of �1.MK / and fix a generator P� of H0.@MK I sl2.C/�/ (ie the vector
P� in sl2.C/ satisfies the condition that Ad�.g/.P�/D P� for all g 2 �1.@MK /).

Suppose that M is oriented. The exterior of a knot is thus oriented and we know
that it is bounded by a 2–dimensional torus. This boundary inherits an orientation
by the convention “the inward pointing normal vector in the last position”. The
usual inclusion i W @MK ! MK induces (see Dubois [6, Lemma 5.2]) an isomor-
phism i�W H2.@MK I sl2.C/�/! H2.MK I sl2.C/�/. Moreover, one can prove that
H2.@MK I sl2.C/�/ŠH2.@MK IZ/˝C (see Dubois [6, Lemma 5.1]). More precisely,
let Œ@MK �2H2.@MK IZ/ be the fundamental class induced by the orientation of @MK ,
we have that H2.@MK I sl2.C/�/D CŒP�˝A@MK �.

The reference generator of H2.MK I sl2.C/�/ is defined by

(3) h
�

.2/
D i�.ŒP

�
˝A@MK �/:

Let � be a �–regular representation of �1.MK /. Then the reference generator of
H1.MK I sl2.C/�/ is defined by

(4) h
�

.1/
.�/D ��.ŒP

�
˝z��/:

Remark 2.6 The generator h
�

.1/
.�/ of H1.MK I sl2.C/�/ depends on the orientation

of �. If we change the orientation of the longitude � in Equation (4), then the generator
changes into its reverse.

Remark 2.7 Note that Hi.MK I sl2.C/�/ is isomorphic to the dual space of the twisted
cohomology H i.MK I sl2.C/�/. The reference elements defined in Equations (3) and
(4) are dual from ones defined in Dubois [7, ~ 3.4].
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The non-acyclic Reidemeister torsion for knot exteriors Consider a �–regular rep-
resentation �W �1.MK /! SL2.C/. The Reidemeister torsion TK

�
at � is defined to

be

(5) TK
� .�/D TOR

�
MK I sl2.C/�; fh

�

.1/
.�/; h

�

.2/
g; o
�
2 C�:

It is an invariant of knots. Moreover, if �1 and �2 are two �–regular representations
which have the same character, then TK

�
.�1/DTK

�
.�2/. Thus the Reidemeister torsion

TK
�

defines a map on the set X irr
�
.MK /Df�2X irr.MK / j� is �-regularg of �–regular

characters.

Remark 2.8 The Reidemeister torsion TK
�
.�/ defined in Equation (5) is exactly the

inverse of the one considered in Dubois [7].

2.4 Review on the acyclic Reidemeister torsion for knot exteriors

We review the results of the Reidemeister torsion for acyclic local systems of knot
exteriors in this section. Let K be a knot in a homology three sphere M and MK its
exterior.

The acyclic Reidemeister torsion of a knot exterior for abelian representations
Let  z be a homomorphism from �1.MK / to C� such that  z.�/ D ez where z

is a complex number and � is the meridian of K . We let C�.MK IC z
/ denote the

following local system:

C z
˝ZŒ�1.MK /� C�.

�MK IZ/

where �MK is the universal cover of MK and C z
is a right ZŒ�1.MK /�–module via

the homomorphism  , ie w � 
 D  z.
 /
�1w for any w 2 C and 
 2 �1.MK /.

It is known that the torsion of C�.MK IC z
/ can be obtained from the normalized

Alexander polynomial �K .t/ of K as follows.

Theorem 2.9 (Corollary 11.9 of Turaev [19]) If z is a complex number such that
�K .e

z/ 6D 0, then the complex C�.MK IC z
/ is acyclic and Tor.C�.MK IC z

/; c�B/
is equal to

� � enz=2 �K .e
z/

ez=2� e�z=2

where � 2 f˙1g, n is some integer and B is a basis of the Lie algebra of C� , ie some
nonzero element in C.
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We can regard the following function on X ab.MK / as the Reidemeister torsion:

X ab.MK / 3 �'z
7!
�K .e

2z/

ez � e�z
2 C:

The acyclic Reidemeister torsion of a knot exterior for SL2.C/–representations
Let ˛ be the abelianization homomorphism of �1.MK / which send the meridian � to
t . Let � be an SL2.C/–representation of �1.MK /. We let C�.MK IC.t/˝ sl2.C/�/

denote the following local system:

.C.t/˝ sl2.C/�/˝ZŒ�1.MK /� C�.
�MK IZ/

where �MK is the universal cover of MK and C.t/˝ sl2.C/� is a right ZŒ�1.MK /�–
module via the action ˛˝ .Ad ı�/, ie .f .t/˝ v/ � 
 D f .t/t˛.
/˝Ad�.
/�1.v/ for
any f .t/ 2 C.t/, v 2 sl2.C/ and 
 2 �1.MK /. For simplicity of notation, we letesl2.C/� stand for C.t/˝ sl2.C/� .

The following proposition holds for this chain complex.

Proposition 2.10 (Proposition 3.1.1 in Yamaguchi [22]) If an SL2.C/–representation
� is �–regular, then C�.MK I

esl2.C/�/ is acyclic.

Theorem 2.11 (Kirk and Livingston [11], Kitano [12]) Let B be a basis of sl2.C/.
If C�.MK I

esl2.C/�/ is acyclic, then the torsion Tor.C�.MK I
esl2.C/�/; c�B/ coincides

with the twisted Alexander invariant of �1.MK / and Ad ı� .

The twisted Alexander invariant is given by using Fox differentials. We will review it
in the next section.

3 The non-acyclic Reidemeister torsion at bifurcation points

In this section, we will see that the limit of the Reidemeister torsion TK
�

is given by
the differential coefficient of the acyclic Reidemeister torsion �K .e

2z/=.ez � e�z/ at
bifurcation points corresponding to simple roots of the Alexander polynomial of K .
Here �K .t/ is normalized, ie �K .t/D�K .t

�1/ and �K .1/D 1.
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3.1 On the existence of a path of 
–regular characters

We show that there exists a path of characters of 
 –regular representations which
converges to a bifurcation point if the function I
 is not constant on X nab.MK / near
the bifurcation point.

Proposition 3.1 Let z0 be a complex number such that e2z0 is a simple root of the
Alexander polynomial of K and �z0

be a reducible nonabelian SL2.C/–representation
whose character is the same as that of the abelian representation 'z0

. Let 
 denote a
simple closed curve in @MK . If the function I
 is not constant on the component of
X nab.MK / which contains the character ��z0

, then there exists a neighbourhood V of
��z0

such that any point of V except for at most finite points is 
 –regular.

We prepare some notions to prove Proposition 3.1. Let � be an irreducible SL2.C/–
representation of �1.MK / such that �.�1.@MK // contains a nontrivial hyperbolic
element of SL2.C/. Let 
 be a simple closed curve in @MK . We can choose a
neighbourhood U of �� such that for any �0 2 ��1.U /, the image of the peripheral
subgroup �0.�1.@MK // also contains a nontrivial hyperbolic element. We can define
an analytic function ˛
 on U by the following equation:

�0.
 /DA�0

�
e˛
 0

0 e�˛


�
A�1
�0

where A�0 2SL2.C/ (for details, see Porti [18, Definition 3.19]). Note that this function
satisfies the following equation:

e2˛
 .�/� I
 .�/e
˛
 .�/C 1D 0:

Proposition 3.26 in Porti [18] gives a criterion about the 
 –regularity of � .

Lemma 3.2 (Consequence of Proposition 3.26 in Porti [18]) Suppose that the dimen-
sion of the component containing U is equal to 1. The irreducible representation � is

 –regular if and only if ˛
 ı� W ��1.U /�R.�1.MK /;SL2.C//!C is a submersion
at � .

Proposition 3.1 follows from Theorem 2.4 and Lemma 3.2.

Proof of Proposition 3.1 We let X0 denote the component of X nab.MK / which
contains the bifurcation point ��z0

. Theorem 2.4 implies that the dimension of X0

is equal to 1. Since e2zo is a root of the Alexander polynomial of K , I�.��z0
/ is

not equal to ˙2. In particular, �z0
.�/ is a hyperbolic element in SL2.C/. Thus the

subgroup �z0
.�1.@MK // consists of hyperbolic elements.
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By continuity, we can take a neighbourhood U of ��z0
in X0 such that, for every

� 2 U , I�.�/ 6D ˙2. Let V be a compact neighbourhood of ��z0
in U . Since ˛


is analytic and I
 is not constant in V , there exist only finite characters where the
derivation of ˛
 vanishes. Hence, by Lemma 3.2, there are only a finite number of
characters in V which are not 
 –regular.

Corollary 3.3 If the function I� is not constant near ��z0
on X nab.MK /, then there

exists a path of �–regular characters which converges to ��z0
.

3.2 Limits of the non-acyclic Reidemeister torsion for knots at bifurca-
tion points

If the function I� is not constant near a bifurcation point corresponding to a simple
root of �K .t/, then there exists a path of �–regular characters, converging to the
bifurcation point. We can consider the limit of the Reidemeister torsion TK

�
along this

path. This limit is obtained from the differential coefficient of �K .e
2z/=.ez � e�z/ as

follows.

Theorem 3.4 Let z0 be a complex number such that e2z0 is a simple root of the
Alexander polynomial �K .t/ of K. Let �z0

denote the reducible nonabelian SL2.C/–
representation whose character is the same as one of 'z0

. If the function I� is not
constant near ��z0

on X nab.MK /, then the limit of the Reidemeister torsion TK
�

is
expressed as

(6) lim
��!��z0

TK
� .�/D " �

 
1

2

d

dz

��K .e
2z/

ez � e�z

�ˇ̌̌
zDz0

�2

where " 2 f˙1g.

The function �K .e
2z/=.ez � e�z/ is regarded as the Reidemeister torsion for the

abelian representation  z by Theorem 2.9. This relation shows that the Reidemeister
torsion for the nonabelian representation �z0

is determined by the Reidemeister torsion
for the abelian representation  z0

.

3.3 Proof of Theorem 3.4

To prove this theorem, we describe the Reidemeister torsion TK
�
.��/ as the differential

coefficient of the sign-determined Reidemeister torsion of C�.MK I
esl2.C/�/ as follows

(see Theorem 3.1.2 in Yamaguchi [22]):

TK
� .��/D� lim

t!1

T .MK I
esl2.C/�; o/

t � 1
:
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where we write T .MK I
esl2.C/�; o/ instead of TOR.MK I

esl2.C/�;∅; o/ for simplicity.
We want to know the following limit:

lim
�!�z0

�
lim
t!1

T .MK I
esl2.C/�; o/

t � 1

�
:

Here we take the limit along a path of �–regular representations, converging to the
reducible representation �z0

. We investigate the behavior of

T .MK I
esl2.C/�; o/

t � 1

at �D �z0
and t D 1. Since the numerator is regarded as the sign-determined twisted

Alexander invariant for K and Ad ı� (for the details, see Kirk and Livingston [11],
Kitano [12] and Yamaguchi [22]), it is described more explicitly as follows. Suppose
that the group of K has the following presentation:

�1.MK /D hx1; : : : ;xk j r1; : : : ; rk�1i:

Since ˛W �1.MK /! Z is surjective, by interchange columns if necessary, we can
assume that ˛.x1/ 6D 1. Then we have that detˆ.x1�1/ 6D 1. By Proposition 2.10 and
Theorem 2.11, if a representation � of �1.MK / is �–regular, then the chain complex
C�.MK I

esl2.C/�/ is acyclic and its torsion T .MK I
esl2.C/�; o/ is well-defined and

given by

(7) �0 � t
m

det A1
K ;Ad ı�

detˆ.x1� 1/
;

where m is some integer, the symbol ˆ stands for the tensor product homomorphism

˛˝Ad ı�W ZŒ�1.MK /�!M3.CŒt; t
�1�/

with respect to a basis of sl2.C/ and A1
K ;Ad ı� denotes the following 3.k�1/�3.k�1/

matrix over CŒt; t�1�:

A1
K ;Ad ı� D

0BB@
ˆ. @r1

@x2
/ : : : ˆ.@rk�1

@x2
/

:::
: : :

:::

ˆ. @r1

@xk
/ : : : ˆ.@rk�1

@xk
/

1CCA :
This rational function is the twisted Alexander invariant defined by Wada [21]. He
has shown that the twisted Alexander invariant does not depend on the presentation of
the group. (Theorem 1 in Wada [21]) By the Euclidean algorithm, we can choose the
following presentation for the knot group �1.MK /.
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Lemma 3.5 (Lemma 2.1 in Heusener, Porti and Suárez [10]) If necessary, we can
replace the presentation of �1.MK / by hx0

1
; : : : ;x0

k
j r 0

1
; : : : ; r 0

k�1
i such that ˛.x0i/D t

for all i .

Remark 3.6 The chosen presentation is not required to be a Wirtinger presentation in
the case of a knot in S3 .

Therefore we can assume from the beginning that �1.MK / has the presentation

hx1; : : : ;xk j r1; : : : ; rk�1i

such that ˛.xi/D t for all i .

The rational function (7) is expressed as

�0 �
det A1

K ;Ad ı�

detˆ.x1� 1/
D

det A1
K ;Ad ı�

.t � 1/.t2�Tr .�.x2
1
//t C 1/

:

Therefore the torsion T .MK ; esl2.C/�; o/=.t � 1/ is equal to

�0 �
det A1

K ;Ad ı�

.t � 1/2.t2�Tr .�.x2
1
//t C 1/

up to a factor tm . Since we suppose that � is �–regular, we know that .t �1/2 divides
det A1

K ;Ad ı� (see Section 3.3 in Yamaguchi [22]).

Let G�.t/ denote the rational function

.det A1
K ;Adı�/=.t � 1/2:

We will consider the following two functions t2�Tr .�.x2
1
//tC1 and G�.t/ at �D�z0

and t D 1.

Lemma 3.7 The function t2 �Tr .�z0
.x2

1
//t C 1 is smooth and nonzero at � D �z0

and t D 1.

Proof of Lemma 3.7 The function t2�Tr .�.x2
1
//t C 1 depends on � smoothly. We

look for the value of t2�Tr .�.x2
1
//t C 1 at �D �z0

. By the assumption that �z0
has

the same character as 'z0
, we have that Tr .�z0

.x2
1
//D e2z0 C e�2z0 : Since e2z0 is a

simple root of the Alexander polynomial �K .t/ of K and �K .1/D 1, the complex
number e2z0 is not equal to 1. Hence if we substitute t D 1 into the polynomial
t2�Tr .�z0

.x2
1
//t C 1, then its value 2� .e2z0 C e�2z0/ is not zero.
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The following proposition plays an important role when we consider the function G�.t/

and prove Theorem 3.4.

Proposition 3.8 The chain complex C�.MK I
esl2.C/�z0

/ is acyclic. Moreover the
Reidemeister torsion T .MK I

esl2.C/�z0
; o/ is given by

(8) �0 � �t
m
�
�K .t/�K .te

2z0/�K .te
�2z0/

.t � 1/.t2�Tr .�z0
.x2

1
//t C 1/

where � 2 f˙1g, m 2 Z and �K .t/ is the normalized Alexander polynomial of K .

Proof of Proposition 3.8 It is enough to prove the following claims:

� det.ˆ.x1/� 1/ is not zero;

� det A1
K ;Ad ı�z0

is expressed by using the product of the three Alexander polyno-
mials which appear in the numerator of the fraction in Equation (8);

� C�.MK I
esl2.C/�z0

/ is acyclic and its Reidemeister torsion is given as above.

We have seen that det.ˆ.x1� 1// is not zero. We consider det A1
K ;Ad ı�z0

. Since the
SL2.C/–representation �z0

has the same character as 'z0
and ˛.xi/D ˛.�/ for all i ,

we have that
Tr .�z0

.x1//D � � � D Tr .�z0
.xk//D Tr .�z0

.�//:

Furthermore �z0
is reducible, then we can assume that

�z0
.xi/D

�
ez0 ˛i

0 e�z0

�
by taking conjugation, where ˛i is a complex number (Remark 2.2). We take an
ordered basis fE;H;Fg of sl2.C/ as follows:

E D

�
0 1

0 0

�
; H D

�
1 0

0 �1

�
; F D

�
0 0

1 0

�
:

Under this basis, for each xi , the representation matrix of Ad.�z0
.xi// is given by

Ad.�z0
.xi/
�1/D

0@ e�2z0 2˛ie
�z0 �˛2

i

0 1 �˛ie
z0

0 0 e2z0

1A :
Note that each ˆ. @ri

@xj
/ is an upper triangular matrix for any i and j .
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We express the matrix ˆ. @ri

@xj
/ .1� i � k�1; 2� j � k/ by using the following matrix:0@ aij � �

0 bij �

0 0 cij

1A :
Claim 3.9 If �K .t/ is the normalized Alexander polynomial of K , � 2 f˙1g and
m 2 Z, then

det A1
K ;Ad ı�z0

D �tm�K .t/�K .te
2z0/�K .te

�2z0/:

Proof of Claim 3.9

det A1
K ;Ad ı�z0

D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

a12 � � a22 � � � � �

b12 � b22 �
:::

c12 c22 � � �

a13 � � a23 � � � � �

b13 � b23 �
:::

c13 c23 � � �

:::
:::

: : :

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ̌ A � �

B �

C

ˇ̌̌̌
ˇ̌ :

Here A;B and C respectively denote the small matrices .aij /i;j ; .bij /i;j and .cij /i;j
.1� i � k � 1; 2� j � k/.

From the equation ˛.x1/D t and the calculation of the Alexander polynomial using
Fox differentials (Chapter 9 in Burde and Zieschang [2]), we can see that there exist
some integer n0 and � 2 f˙1g such that

det AD �.e�2z0 t/n
0

�K .te
�2z0/;

det B D �tn0�K .t/;

det C D �.e2z0 t/n
0

�K .te
2z0/:

Therefore we have that

det A1
K ;Ad ı�z0

D �t3n0�K .t/�K .te
2z0/�K .te

�2z0/:
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Hence C�.MK I
esl2.C/�z0

/ is acyclic. Furthermore we can see that there exists some
integer m such that the sign-determined Reidemeister torsion of C�.MK I

esl2.C/�z0
/

is expressed as

T .MK I
esl2.C/�z0

; o/D �0 � �t
m
�
�K .t/�K .te

2z0/�K .te
�2z0/

.t � 1/.t2�Tr .�z0
.x2

1
//t C 1/

:

Now we consider the function G�.t/ at �D �z0
and t D 1.

Lemma 3.10 The rational function G�.t/ is smooth and nonzero at � D �z0
and

t D 1.

Proof of Lemma 3.10 Since e2z0 is a simple root of �K .t/ and �K .t/ is symmetric
for t , ie �K .t/D�K .t

�1/, the complex number e�2z0 is also a simple root of �K .t/.
Hence the numerator �K .t/�K .te

2z0/�K .te
�2z0/ of Equation (8) has the second

order zero at t D 1. Therefore the function det A1
K ;Ad ı� can be divided by .t � 1/2

at � D �z0
. We can define G�z0

.t/ 2 CŒt; t�1�. Hence the function G�.t/ changes
smoothly to G�z0

.t/ and there exists nonzero limit of G�.t/ at �D �z0
and t D 1.

Now, we are ready to calculate the limit of the Reidemeister torsion TK
�

by using
Proposition 3.8.

Proof of Theorem 3.4 By Lemma 3.7 and Lemma 3.10, we see that the limit of the
rational function T .MK I

esl2.C/�; o/=.t � 1/ at �D �z0
and t D 1 exists. Moreover

when we express T .MK I
esl2.C/�; o/=.t � 1/ as G�.t/=.t

2�Tr .�.x2
1
//C 1/, both

of the numerator G�.t/ and the denominator t2 � Tr .�.x2
1
//C 1 are smooth and

nonzero near �D �z0
and t D 1. Hence we can change the order of taking limits. By

interchanging the limit of t and that of � and by Proposition 3.8, the limit of TK
�

is
calculated as follows.

lim
�!�z0

TK
� .�/D� lim

�!�z0

�
lim
t!1

T .MK I
esl2.C/�; o/

t � 1

�
D� lim

t!1

T .MK I
esl2.C/�z0

; o/

t � 1

D lim
t!1

�
�K .te

2z0/�K .te
�2z0/

.t � 1/2
�
���0tm�K .t/

t2�Tr .�z0
.x2

1
//t C 1

�
where � 2 f˙1g and m 2 Z.
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Since �K .1/D 1 and e2z0 and e�2z0 are simple roots of �K .t/, we have

lim
t!1

�
�K .te

2z0/�K .te
�2z0/

.t � 1/2
�
���0tm�K .t/

t2�Tr .�z0
.x2

1
//t C 1

�
D

���0

2� .e2z0 C e�2z0/
� lim

t!1

�
�K .te

2z0/

t � 1
�
�K .te

�2z0/

t � 1

�
D
���0�

0
K
.e2z0/�0

K
.e�2z0/

2� .e2z0 C e�2z0/
:(9)

It follows from the symmetry of �K .t/ that

(10) �0K .e
�2z0/D��0K .e

2z0/e4z0 :

If we substitute Equation (10) into Equation (9), then we obtain:

lim
�!�z0

TK
� .�/D��0 � � �

.�0
K
.e2z0/e2z0/2

.e2z0 C e�2z0/� 2
:

On the other hand, the right hand side of Equation (6) is given by a direct calculation:�
1

2

d

dz

��K .e
2z/

ez � e�z

�ˇ̌̌
zDz0

�2

D

�
�0

K
.e2z0/e2z0

ez0 � e�z0

�2

D
.�0

K
.e2z0/e2z0/2

e2z0 C e�2z0 � 2
:

Therefore we have

lim
�!�z0

TK
� .�/D " �

�
1

2

d

dz

��K .e
2z/

ez � e�z

�ˇ̌̌
zDz0

�2

where "D��0 � � , which completes the proof.

4 The reference generators of the sl2.C/�–homology groups
at a bifurcation point

We consider the reference generators of H�.MK I sl2.C/�/ in this section. By Propo-
sition 3.1, the reference generators fh�

.1/
.�/; h

�

.2/
g of H�.MK I sl2.C/�/ exist for any

irreducible representation � sufficiently near the reducible nonabelian representation
�z0

when I� is not constant on the component of X nab.MK /, containing the bifur-
cation point ��z0

. Here the representation �z0
corresponds to a simple root of the

Alexander polynomial of K . We will show that they can be extended to the generator
of H�.MK I sl2.C/�z0

/. In this section, we assume that the regular function I� is not
constant on the component containing the bifurcation point ��z0

in X nab.MK /.
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4.1 On the generator of the second sl2.C/�–twisted homology group at
a bifurcation point

From the following results of Heusener, Porti and Suárez [10] we know the dimensions
of H�.MK I sl2.C/�z0

/ and the basis of H2.MK I sl2.C/�z0
/.

Lemma 4.1 (Lemma 4.1 of Heusener, Porti and Suárez [10]) Let M be a connected,
compact, orientable, irreducible 3–manifold such that @M is a torus and the first Betti
number is one.

Let �W �1.M /!SL2.C/ be a nonabelian representation such that �.�1.@M // contains
a nonparabolic element. We let i denote the inclusion @M ,!M and Z1.M I sl2.C/�/

denote the set of twisted cocycles of M with coefficients in sl2.C/� . If

dimC Z1.M I sl2.C/�/D 4;

then we have an injection

i�W H 1.M I sl2.C/�/!H 1.@M I sl2.C/�/

and an isomorphism

i�W H 2.M I sl2.C/�/!H 2.@M I sl2.C/�/:

We apply this lemma to the knot exterior MK and �z0
. It follows from Proposition

4.4 of Heusener, Porti and Suárez [10] that dimC Z1.MK I sl2.C/�z0
/ D 4. Since

Tr .�z0
.�//D ez0 C e�z0 6D ˙2, we see that �z0

.�1.@MK // contains a nonparabolic
element.

Therefore we have that:

� H0.MK I sl2.C/�z0
/D 0;

� the induced homomorphism i�W H1.@MK I sl2.C/�z0
/!H1.MK I sl2.C/�z0

/ is
surjective;

� the induced homomorphism i�W H2.@MK I sl2.C/�z0
/!H2.MK I sl2.C/�z0

/ is
an isomorphism.

Note that dimC H2.@MK I sl2.C/�z0
/ is equal to 1 since the restriction of �z0

to
�1.@MK / is nontrivial.

Proposition 4.2 The chain i�.P
�z0 ˝A@MK / determines a basis of the homology

group H2.MK I sl2.C/�z0
/, where P�z0 2 sl2.C/ is a vector so that Ad�z0

.
 /.P
�z0 /D

P�z0 for all 
 2 �1.@MK /.
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Proof of Proposition 4.2 By calculations, we see that P�z0 ˝A@MK is a cycle in
C2.@MK I sl2.C/�z0

/ and it determines a nonzero element of H2.MK I sl2.C/�z0
/ (see

Porti [18, Proposition 3.18]).

Since ŒP�z0 ˝A@MK � is a generator of H2.@MK I sl2.C/�z0
/, we can take the image

i�.ŒP
�z0 ˝A@MK �/ as a generator of H2.MK I sl2.C/�z0

/.

4.2 On the generator of the first sl2.C/�–twisted homology group at a
bifurcation point

As @MK is a two-dimensional torus, it follows that H1.@MK I sl2.C/�z0
/ is generated

by ŒP�z0 ˝ z�� and ŒP�z0 ˝ z�� (see Porti [18, Proposition 3.18]). The problem lies
in whether i�.ŒP

�z0 ˝z��/ is zero or not in H1.MK I sl2.C/�z0
/. We shall show that

i�.ŒP
�z0 ˝z��/ is a nonzero class in H1.MK I sl2.C/�z0

/. This follows from the fact
that the limit of the Reidemeister torsion TK

�
is not zero. Together with Proposition

4.2, the following proposition holds.

Proposition 4.3 Let z0 be a complex number such that e2z0 is a simple root of
the Alexander polynomial of K . Let �z0

denote the reducible nonabelian SL2.C/–
representation whose character is the same as that of 'z0

. If I� is not constant near the
bifurcation point ��zo

, then the reference generators h
�

.1/
.�/ and h

�

.2/
can be extended

in H�.MK I sl2.C/�z0
/.

Proof of Proposition 4.3 It is enough to show that i�.ŒP
�z0 ˝ z��/ is a nonzero

class in H1.MK I sl2.C/�z0
/. To this purpose, suppose that i�.ŒP

�z0 ˝z��/ is zero in
H1.MK I sl2.C/�z0

/.

By Theorem 2.4, it follows that dimC H1.MK I sl2.C/�z0
/ D 1 and �z0

is a smooth
point in the SL2.C/–representation variety of the knot group. By Corollary 3.3, there
exists a path f�s j s 2 C; jsj< �g of SL2.C/–representations such that �0 D �z0

and
�s is �–regular at s 6D 0. Here � is a small positive real number. The cohomology
group H 1.MK I sl2.C/�s

/ is isomorphic to the Zariski tangent space of X.MK / at
��s

. We can take a smooth family of generators f�sgs of H 1.MK I sl2.C/�s
/ associ-

ated with the path f�sgs . Using the Kronecker pairing between the homology group
H1.MK I sl2.C/�s

/ and the cohomology group H 1.MK I sl2.C/�s
/, we have a family

f�sgs of generators of H1.MK I sl2.C/�s
/ such that the Kronecker pairing for �s and

�s does not vanish for each s 2 C; jsj< � .

We define a nonzero complex number TK
� .�s/ for each s to be

TK
� .�s/D TOR.MK I sl2.C/�s

; f�s; h
�s

.2/
g; o/
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where h
�s

.2/
is the reference generator of H2.MK I sl2.C/�s

/. This function depends
on s smoothly.

Claim 4.4 Let cs denote the ratio between h
�s

.1/
.�/ and �s , ie h

�s

.1/
.�/D cs � �s . Then

the following equation holds at s 6D 0:

TK
� .�s/D cs �T

K
� .�s/:

Proof of Claim 4.4 This follows from the base change formula for the Reidemeister
torsion (see Dubois [6, Formula (5)] and Porti [18, Proposition 0.2]).

TK
� .�s/D TOR.MK I sl2.C/�s

; fh
�s

.1/
.�/; h

�s

.2/
g; o/

D TOR.MK I sl2.C/�s
; f�s; h

�s

.2/
g; o/ � Œh

�s

.1/
.�/=�s �

D TK
� .�s/ � cs:

The function TK
�
.�s/ also depends on s smoothly. We have known from Theorem 3.4

that there exists the nonzero limit of TK
�
.�s/ taking limit s to 0.

On the other hand, the limit of cs at s D 0 is zero by the assumption. The function
TK
� .�s/ does not have a pole at s D 0 by the construction. Hence if we take a limit

of s to 0, the function cs �T
K
� .�s/ must be zero. This is a contradiction. Therefore

i�.ŒP
�z0 ˝z��/ determines a nonzero class in H1.MK I sl2.C/�z0

/.
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