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High distance knots

YAIR N MINSKY

YOAV MORIAH

SAUL SCHLEIMER

We construct knots in S3 with Heegaard splittings of arbitrarily high distance, in any
genus. As an application, for any positive integers t and b we find a tunnel number t

knot in the three-sphere which has no .t; b/–decomposition.

57M25, 57M27

1 Introduction

In this paper we address the problem of generating knots in S3 with high distance,
in the sense of Hempel. Without any restriction on the ambient manifold, knots with
high distance are easy to construct: Hempel [9], adapting an idea of Kobayashi [13],
constructs Heegaard splittings .V;W / of arbitrarily high distance. Given such a splitting
remove an unknotted solid torus from, say, V to obtain a compression body V0 . The
result is a knot space in some manifold M and clearly the distance of the Heegaard
splitting .V0;W / is at least the distance of .V;W /. See Section 2 for definitions.

The problem becomes more challenging if the ambient manifold M is specified
beforehand. The argument above fails if M does not admit any high distance splitting.
The case of S3 is of particular interest, and here we know (see Waldhausen [24])
that every Heegaard splitting is isotopic to a standard one. The disk complexes for a
standard splitting have distance zero, and indeed an infinite-diameter intersection. This
makes finding an appropriate compression body more difficult. Nevertheless, we prove:

Theorem 3.1 For any pair of integers g > 1 and n> 0 there is a knot K � S3 and a
genus g splitting of its exterior E.K/ having distance greater than n.

We can consider another measure of complexity of a knot: K � M has a .g; b/–
decomposition if K may be isotoped to have exactly b bridges with respect to a genus
g Heegaard splitting of M . When bD 0 we further insist that K be a core of one of the
handlebodies (see Remark 2.4). The classical notion of “bridge position” corresponds
to a .0; b/–decomposition.
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Work of Scharlemann–Tomova [20] and Tomova [23; 22] links these two notions of
complexity. It implies in particular that the existence of a .g; b/–decomposition gives
upper bounds on the distance of Heegaard splittings of genus greater than g (see
Section 4 for details). With this we obtain the following consequence of Theorem 3.1:

Theorem 4.2 For any positive integers t and b there is a knot K � S3 with tunnel
number t so that K has no .t; b/–decomposition.

This theorem answers a question of Kobayashi–Rieck [15, Question 1.9]. Note that
any knot K with tunnel number t (see Section 2) has by definition a .t C 1; 0/–
decomposition. The corresponding splitting surface of E.K/ has minimal genus. In
Kobayashi–Rieck [14], these results are used to disprove Morimoto’s conjecture on
subadditivity of Heegaard genus.

Previous constructions have yielded tunnel number t knots without .t; 1/–decom-
positions (Moriah and Rubinstein [17], Morimoto, Sakuma, and Yokota [18], and
Eudave-Muñoz [6]). The knots described in [17] have .t; 2/–decompositions. The
knots in [18] are all tunnel number one knots and have .1; 2/–decompositions. The
knots in [6] are all tunnel number one and some are known to be .1; 2/ while the rest
have unknown optimal .1; b/–decomposition.

More recently Eudave-Muñoz [5] has exhibited tunnel number one knots in S3 which
are not .1; 2/. His examples are either .1; 3/ or .1; 4/ knots but exactly which is not
yet known.

Johnson and Thompson have shown, in [11] (see also Johnson [10]), that for arbitrarily
large n there are tunnel number one knots which have no .1; n/–decomposition. Their
proof also uses the Scharlemann–Tomova results to relate Heegaard distance to bridge
position. Constructing high distance tunnel number one knots is simplified by the
special properties of disk complexes in genus 2 compression bodies – see the discussion
in Section 3.

Further questions

One is tempted to speculate that Theorem 3.1 holds for any 3–manifold. We note
however that our construction fails for the standard Heegaard splitting of a connected
sum of S2 � S1 ’s, because the disk complexes on both sides of that splitting are
identical. A more plausible conjecture is that, after stabilizing once or possibly twice,
any Heegaard splitting will admit a construction like the one we have used.
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2 Preliminaries

A compression body is a 3–manifold V obtained from a surface S cross an interval Œ0; 1�
by attaching a finite number of 2–handles and 3–handles to S � f0g. The component
S � f1g of the boundary will be denoted by @CV , and @V X@CV will be denoted by
@�V . The trivial cases where V is a handlebody or V D S � Œ0; 1� are allowed.

A Heegaard splitting for a 3–manifold M is a decomposition M D V [S W where
V;W are compression bodies so that S D @CV D @CW D V \W . The surface S

will be called the Heegaard surface of the Heegaard splitting.

2.1 Complexes

Let CS be the 1–skeleton of Harvey’s complex of curves (see [7]). That is, given a
closed connected orientable surface S of genus at least two, let CS be the graph whose
vertices are isotopy classes of essential simple closed curves and whose edges connect
distinct vertices with disjoint representatives. As usual, we only distinguish curves
from their isotopy classes when necessary.

We remark that CS is connected. Place a metric d.�; �/ on CS by setting the length of
every edge to be one. For subsets X;Y � CS we define d.X;Y /Dminfd.x;y/ j x 2
X; y 2 Y g.

An essential curve ˛ � S D @CV is a meridian of the compression body V if ˛
bounds an essential disk in V . Given a compression body V so that @CV D S , let
DV be the sub-complex of CS spanned by meridians of V . This is the one-skeleton of
McCullough’s disk complex (see [16]).

Hempel [9] defined the distance of a Heegaard splitting V [S W to be

d.V;W /D d.DV ;DW /:
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2.2 Laminations

We let PML.S/ denote the space of projective measured laminations on S. For a
good reference on measured laminations see Bonahon [2], Casson and Bleiler [3], or
Hatcher [8].

We will need the following lemma due to Hempel [9], who generalized an argument of
Kobayashi [13].

Lemma 2.1 Suppose that X;Y � CS , and let SX and SY denote their closures in
PML.S/. Let ˆ be a pseudo-Anosov map with stable and unstable laminations �˙ .
Assume that �� 62 SY and �C 62 SX . Then d.X; ˆn.Y //!1 as n!1.

This statement is virtually identical to that of Abrams–Schleimer [1, Theorem 2.4], the
only difference being that X D Y there. The same proof carries through.

2.3 Pants, waves and seams

Given a surface S and an essential subsurface Y � S , a wave in Y is a properly
embedded arc in Y not homotopic rel @Y into @Y , and with both ends incident to the
same boundary component of Y from the same side.

A pair of pants is a three-holed sphere. A pants decomposition P D f˛ig of a surface
S is a maximal collection of essential simple closed curves which are disjoint and not
parallel; hence (we are assuming genus at least two) S �P is a union of pairs of pants.

A seam in a pair of pants is an essential properly embedded arc connecting distinct
boundary components. Up to isotopy rel boundary, a pair of pants has three distinct
waves and three distinct seams.

We say an essential curve or a lamination ˛ � S traverses or has a wave (seam) with
respect to Y if ˛ intersects Y minimally in its isotopy class and a component of ˛\Y

is a wave (seam).

A standard outermost bigon argument proves the existence of waves among meridians
in a compression body:

Lemma 2.2 Let V be a compression body and let M be a maximal collection of
non-parallel, disjoint meridians on S D @CV . If ˛ is a meridian of V then ˛ is
either parallel to a component of M or ˛ has a wave with respect to one of the pants
components of SXM.
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Let V;S and M be as above, and let DV denote closure in PML.S/. Here and in
what follows, by a “seam of a curve system” we mean a seam of a pants component of
its complement. We then have:

Lemma 2.3 No lamination � 2DV traverses all seams of M.

Proof Suppose that fˇig2DV is a sequence of meridians converging to �2PML.S/.
If �2M then clearly � does not traverse all seams of M. By passing to a subsequence,
we may assume that none of the ˇi lie in M. It follows from Lemma 2.2 that all ˇi

have a wave in some pants of SXM. Passing to subsequences again we may assume
that all of the ˇi have the same wave w in the same pair of pants Y .

If � traversed all seams of M, then for large enough index i the curve ˇi would also
traverse all these seams. Since one of the seams of Y intersects w essentially it would
follow that ˇi self-intersects, a contradiction.

2.4 .g; b/–Decompositions

Suppose A� V is a disjoint collection of properly embedded arcs in a compression
body V where @A� @CV . We say A is unknotted if A can be properly isotoped, rel
boundary, into @V .

The following well-known generalization of bridge position is due to Doll [4]: Suppose
that M D V [S W and K is a knot in M . The knot K is in bridge position with
respect to S if K is transverse to S and either

(i) K\S ¤∅, and both K\V and K\W are unknotted, or

(ii) K\S D∅, K�V (without loss of generality), and V Xn.K/ is a compression
body.

If g D g.S/ and b D jK\S j=2 then we say that K admits a .g; b/–decomposition.

Remark 2.4 Our definition of a .g; 0/–decomposition is non-standard, due to the
additional requirement on V Xn.K/. In particular this definition makes a .g; 0/–
decomposition equivalent to a Heegaard splitting of E.K/ of genus g .

2.5 Tunnel number

Given a knot K in a 3–manifold M , a tunnel system for K is a collection T D
fa1; : : : ; ang of disjoint arcs, properly embedded in MXK , such that MXn.T [K/
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is a handlebody. The tunnel number t.K/ of the knot is the minimal cardinality n of
such a tunnel system.

We note that a knot with tunnel number t has a .tC1; 0/–decomposition, and that tC1

is the minimal genus for which this is possible. Hence it becomes interesting to reduce
the genus by one, and ask what .t; b/–decompositions such a knot admits.

Of course, if K has a .g; b/–decomposition then K also has .g; bC1/ and .gC1; b/–
decompositions. With a bit more care one can check that any knot with a .g; b/–
decomposition also has a .gC1; b�1/–decomposition. On the other hand, when going
from a .g; b/ to a .g�1; b0/–decomposition, b0 may need to grow arbitarily. This
follows from Theorem 4.2 applied in the case .g; b/D .tC1; 0/.

3 High distance

We now restate and prove our main theorem on high distance Heegaard splittings for
knots.

Theorem 3.1 For any pair of integers g > 1 and n > 0 there is knot K � S3 and a
genus g splitting S �E.K/ having distance greater than n.

Consider S3 D V [S W with the standard genus g Heegaard splitting. Let CS , DV ,
and DW be the corresponding curve and disk complexes. Let D � V be a disk cutting
V into a solid torus X and a handlebody Y with genus g�1. Take K0 to be the core
of X . Thus V0 D V � n.K0/ is a compression body and V0[W equals E.K0/.

We must find a sequence of compression bodies Vn � V each homeomorphic to V0 so
that @CVn D @V and

d.DVn
;DW /!1

as n!1. The knots Kn � S3 defined by the compression bodies Vn will satisfy the
conclusion of the theorem.

When g D 2, which is the case treated by Johnson [10] and Johnson–Thompson [11],
V0 has a unique non-separating disk and all other disks may be isotoped to be disjoint
from it (see, for example, [10, Lemma 11]). Hence diam.DV0

/D 2 and it suffices to
find a sequence Vn whose non-separating disks get arbitrarily far from DW . In the
general case diam.DV0

/D1 so clearly a different construction is needed.

To begin, set ı D @D . As shown in Figure 1, extend ı to a pants decomposition P
whose curves are all meridians of V . Likewise, choose a pants decomposition Q whose
boundary curves are meridians of W . For later reference we denote by Q1; : : : ;Qg
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the curves of Q (listed in increasing size) that cross X in the front of the picture. The
parallel curves on the back of the picture are denoted by Q0

2
; : : : ;Q0

g�1
; note that Q1

and Qg are their own parallels. Let QgC1 denote the curve going around the second
hole in the picture.

Qg

Q1 QgC1

ı

P:

Q:

Figure 1: The pants decompositions P of V and Q of W . Each component
Qi of Q (except the littlest and the biggest) has a symmetric “partner” Q0i
on the underside of V .

Set S0 D @Y \S . This is the once-punctured genus g� 1 surface to the right of ı .
Let P0 D P \S0 be the pair of pants decomposition of S0 induced by P (note P0

includes ı ). The important feature of our chosen decompositions is that the curves of
P0 traverse every seam of Q which can be isotoped rel Q into S0 .

The construction of Vn can be broken up as follows:

Step 1 Find a meridian curve a 2DV such that:

(a1) a traverses all seams of Q.

(a2) a traverses all seams of P0 .

Step 2 Use the curve a to construct a pseudo-Anosov map ˆW S! S which extends
over V and whose stable lamination �C and unstable lamination �� satisfy:

(�1) �C traverses all seams of Q.

(�2) �� traverses all seams of P0 .
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Step 3 Show that d.DW ; ˆ
n.DV0

//!1 as n!1.

Conclusion Since ˆ extends over V , we may define Vn D ˆn.V0/ and Kn D

ˆn.K0/� S3 , so that .Vn;W / is a Heegaard splitting for the knot exterior E.Kn/.
As desired in the conclusion of the theorem we have:

d.DVn
;DW /!1:

3.1 Proof of Theorem 3.1

We now carry out the steps outlined above.

Step 1 We will first find a useful curve 
 � S0 . We will then use two copies of 

and a band sum construction to build the desired meridian a. So consider a train track
� adapted to P0 and depicted in Figure 2.

Figure 2: The train track in S0

The train track has the following properties:

(1) � contains P0Xfıg and additional branches. These branches traverse all seams
of P0 , with the exception of the two seams incident to ı .

(2) The entire picture is invariant under a 180ı rotation about the horizontal line
meeting V in gC 1 arcs.

(3) The directions in which incident branches attach to each component of P0Xfıg

on the two sides are consistent, so that there is a train route spiraling around any
component of P0Xfıg.
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Note that these conditions determine the track up to the choice of spiraling direction.

Observe that � is a “maximal standard train-track” in S0 , in the sense of Penner–
Harer [19]. Hence [19, Theorem 3.1.2] tells us that positive measures on � , modulo
scaling, parameterize an open set in PML.S0/. This open set contains a filling minimal
lamination (for example, the stable lamination of a pseudo-Anosov homeomorphism)
since these are dense in PML.S0/. Since simple closed curves are also dense in
PML.S0/ we may approximate this minimal lamination as well as we like by simple
closed curves carried on � . Hence there exists a simple closed curve 
 carried on � ,
traversing every branch at least twice. Note that 
 has the following properties:

(1) It traverses every seam of P0 , again excluding the two seams incident to ı .

(2) It traverses every seam of Q which is isotopic rel Q into S0 .

These properties follow from the corresponding properties of � , once we observe
that the intersections of � with Q are essential, that is, there are no bigons in their
complement, and similarly that the intersections of 
 with P0Xfıg are essential.

The curve 
 fails to traverse just four seams of Q, which we denote as follows: Let
�1;2 be the seam connecting Q1 to Q2 , in the front of V . Let � 0

1;2
be the seam

connecting Q1 to Q0
2

, in the back of V . There are two seams connecting Q1 and
QgC1 : one in the front, denoted �1;gC1 , and one in the back denoted � 0

1;gC1
.

Q1

Q2

ı

l1

l2

QgC1

y

Figure 3: The meridian a is constructed via an enlargement � 0 of � . The
figure shows the 2–holed torus Z . The added loops are labeled l1 and l2 .

To build the meridian a we add two loops l1 and l2 to the train track � as shown in
Figure 3. Let Z denote the 2–holed torus obtained as the union along ı of the 1–holed
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torus in @X bounded by ı and the adjacent pair of pants of S0XP0 . Each loop begins
inside one of the switches of � in Z , enters X , goes once around the meridian disk,
and then returns to the same switch. We define an integer measure on this new train
track � 0 : Let � be the measure on � that defines 
 . Hence 2� defines two copies of

 . Now subtract 2 from the weight that 2� puts on the branch y of � that connects
the boundaries of Z , and put a weight of 1 on each of the new loops. This measure on
� 0 defines a. One can see that a is a band sum of two copies of the meridian of X

along a doubled arc of 
 – hence it is a meridian of V .

Note that the intersection pattern of � 0 with the curves Q1; : : : ;QgC1 and Q0
2
; : : : ;Q0g

has no bigons, and hence all intersections shown are essential (the Q0i are not pictured,
but lie directly below the corresponding Qi ). One then checks that � 0 traverses all
four seams that were previously excluded, namely �1;2 , � 0

1;2
, �1;gC1 and � 0

1;gC1
.

Similarly there are no bigons in the intersection pattern with P0 , and we see that � 0

traverses the two seams of P0 incident to ı . Since a places positive measure on every
branch of � 0 , it traverses all the same seams, and so satisfies conditions .a1/ and .a2/.

Step 2 Choose two meridians b; c 2DV so that b and c together fill S . (For example:
realize V as an I –bundle over a compact surface F with exactly one boundary
component. Let e and f be arcs in F so that every nontrivial arc and curve in F

meets one of e or f essentially. Then the I –bundles over e and f will be the desired
disks, because e [ f cuts F into disks each of which meets @F in at most a single
interval. See also Kobayashi [12, Proof of Lemma 2.2].) Let �a , �b and �c denote the
Dehn twists about a, b and c respectively. Set

ˆ0 D �b ı �
�1
c :

It follows from Thurston’s construction [21] that ˆ0 is pseudo-Anosov, with sta-
ble/unstable laminations �˙

0
. Since ˆ0 is a composition of Dehn twists along meridian

disks it extends over V . Define

ˆN D �
N
a ıˆ0 ı �

�N
a :

Since a is a meridian ˆN also extends over V . The stable and unstable laminations
�˙

N
of ˆN are just �N

a .�
˙
0
/. Since a intersects �˙

0
(the latter is filling), as N !1

the laminations �˙
N

converge to Œa� in PML.S/. Hence eventually both laminations
satisfy conditions .a1/ and .a2/. Take ˆDˆN for such a large N and take �˙D�˙

N
.

Thus conditions .�1/ and .�2/ are satisfied.

Step 3 Since conditions .�1/ and .�2/ hold, we can conclude via Lemma 2.3 that
�� 62 SDV0

and �C 62 SDW . The fact that d.DW ; ˆ
n.DV0

//!1 now follows from
Lemma 2.1. This completes the proof of Theorem 3.1.
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4 Ruling out simple decompositions

In order to prove Theorem 4.2 we use a generalization by Tomova [22] of a theorem of
hers [23], which is itself a considerable refinement of a theorem of Scharlemann and
Tomova [20] (see also Kobayashi and Rieck [14] for another proof).

Theorem 4.1 Let K � S3 be a knot and S be a Heegaard splitting surface of the
exterior of K . Suppose that Q is Heegaard splitting surface of S3 so that

(1) K is in bridge position with respect to Q and

(2) the genus of Q is less than the genus of S .

Then the distance of the Heegaard splitting S is at most 2��.Q�K/.

Condition (2) is actually stronger than necessary for Tomova’s result, but this version
suffices for our needs. We are now in position to prove Theorem 4.2:

Theorem 4.2 For any positive integers t and b there is a knot K � S3 with tunnel
number t so that K has no .t; b/–decomposition.

Proof Choose a Heegaard splitting S3 D V [S W of genus t C 1 and construct the
knot K � S3 , as in Theorem 3.1, so that the associated splitting E.K/D V 0[S W

has distance d.V 0;W / > 2t C 2b .

We claim that K has no .g; c/–decomposition for any g� t , c � b . For if it did, let Q

be the associated splitting surface of S3 . The genus g of Q is less than that of S , so we
may apply Theorem 4.1 to obtain d.V 0;W /�2��.Q�K/D2�.2�2g�2c/�2tC2b ,
a contradiction.

Setting c D 0 we also conclude that E.K/ has no splitting of genus less than t C 1,
and hence that K has tunnel number t .
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