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Khovanov–Rozansky homology via a canopolis formalism

BEN WEBSTER

In this paper, we describe a canopolis (ie categorified planar algebra) formalism for
Khovanov and Rozansky’s link homology theory. We show how this allows us to
organize simplifications in the matrix factorizations appearing in their theory. In
particular, it will put the equivalence of the original definition of Khovanov–Rozansky
homology and the definition using Soergel bimodules in a more general context, allow
us to give a new proof of the invariance of triply graded homology and give a new
analysis of the behavior of triply graded homology under the Reidemeister IIb move.

57M27; 13D02

In [9; 10], Khovanov and Rozansky introduced a series of homology theories for
links. These theories categorify the quantum invariants for sln , and the HOMFLYPT
polynomial. Unfortunately, they remain very difficult to calculate, not least because of
the complicated matrix factorizations used in their original combinatorial definition.
Later work of I Frenkel, Khovanov and Stroppel [6; 8; 14; 15] has suggested a more
systematic definition of these invariants and a connection between these theories and
the structure of the BGG category O for the Lie algebra gln , but progress toward
computational simplifications along these lines has been slow.

In this paper, we will show that these invariants can be understood, computed and in
fact, defined in the context of canopolises. We hope that this approach will both lead
to computational benefits and help the reader to understand the definition of Khovanov–
Rozansky homology better. A canopolis1 is a categorification of the notion of a planar
algebra defined by Bar-Natan [2] (see Section 2).

Consider a disk in the plane with m disks removed from its interior (we call the places
left by these removed disks “holes”). An oriented planar arc diagram (or “spaghetti-
and-meatballs diagram”) � on this disk is a collection of oriented simple curves with
endpoints on the boundary of the disk (including the boundary of the holes), along with
choice of a distinguished point on each boundary of a component (in diagrams, this
point is distinguished by putting a star next to it), and an ordering of the holes of the
diagram.

1Bar-Natan uses the term “canopoly” in the published version of [2], but the consensus choice now
seems to be the more etymologically correct “canopolis.”
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Let Qi.�/ be the set of planar arc diagrams ! such that the outer boundary of ! matches
the boundary of the i –th hole of �. That is, there is the same number of endpoints,
and if we order the endpoints, starting at our distinguished point, the orientations of
the arcs match.

Any fixed planar arc diagram � with a distinguished hole defines an operation

z�W Q1.�/� � � � �Qm.�/!Q0.�/;

by shrinking the given m–tuple of diagrams, and pasting it into the holes of �, as
is shown in Figure 1. This “multiplication” is a particular instance of an algebraic
structure called an colored operad.

The operad of planar arc diagrams acts on tangle diagrams in a disk as well. Phrased
in the language of [2], the set of tangle diagrams TS;� in a disk, with endpoints on the
boundary and a marked point on the boundary, partitioned according to the orientation
�W S ! f˙1g of the endpoints, form a planar algebra, that is, a set on which the
operad of planar arc diagrams acts. In fact, one can build any tangle diagram from
single crossings in a disk and the action of a planar arc diagram. More generally, we
will be interested in factoring a tangle as the action of a planar arc diagram on simpler
tangle diagrams. We depict these operations in Figure 2.

One fruitful approach to the Jones polynomial and other quantum invariants is to
regard each as a homomorphism of planar algebras. Thus, one can compute the Jones
polynomial of a tangle once (recall that this is an element of a certain vector space
over C.q/, rather than just a polynomial), and then whenever one wishes to compute
the Jones polynomial of a knot, one cuts it into a planar arc diagram acting on tangles
whose Jones polynomial is known.

This approach is of more than theoretical value; if programmed skillfully, it can be
extremely efficient. Bar-Natan [1; 2] presented a beautiful extension of this approach to
Khovanov’s original link homology (the sl2 –version of Khovanov–Rozansky), which at
once gives a simple description of the knot homology and is extremely computationally
efficient, allowing the computation by computer of Khovanov homology for knots of
dozens of crossings.

Unfortunately, we do not know how to give a similar, matrix factorization–free de-
scription of Khovanov–Rozansky. Instead, we will show that Khovanov–Rozansky can
be defined using certain homotopy categories of matrix factorizations which admit an
action of planar arc diagrams, that is, a canopolis structure, which we can see as an
analogue of Bar-Natan’s geometric canopolis.

While this is an essentially formal construction, it allows us to simplify the KR-
complex of a small tangle before or after we apply the action of a planar arc diagram
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Figure 1: The action of planar arc diagrams

(where “simplify” has a very precise definition, given in Section 2.2), allowing us to
organize computations of KR homology according to Bar-Natan’s “divide and conquer”
philosophy. In particular, it will give us a new understanding of the equivalence between
KR homology and the homology defined by Soergel bimodules, shown by Khovanov
in the HOMFLYPT case [8].

We will also apply this approach to the triply graded homology theory discussed in
[8; 10] to give a new proof of invariance and show that the changes in triply graded
homology when the diagram undergoes a second Reidemeister move is controlled by a
certain spectral sequence.
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Figure 2: Factoring a tangle (a) as a product of crossings and a planar arc
diagram or (b) as a more general factorization
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1 Matrix factorizations

1.1 Preliminaries on matrix factorizations

We will attempt to follow the notations and terminology of Rasmussen [11]. Let M be
a Z–graded module over a ring S .

Definition 1 A (Z–graded) matrix factorization on M with potential ' 2 S is a map
d D dCC d�W M !M with d˙ of graded degree ˙1 such that d2 D ' .

Though this is not usual definition of a matrix factorization (where typically we only
assume a Z=2 grading), this richer structure is more useful from the perspective of
knot theory.

Matrix factorizations over S with a fixed potential naturally form an abelian category,
with morphisms given by maps commuting with d . We only assume that these maps
are homogeneous with respect to the Z=2–grading.
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Even better, we can think of all matrix factorizations over all unital rings as a 2–category
MF such that:

� The objects are given by a pairs of a unital ring and an element of that ring
.S; '/.

� The 1–morphisms between .S1; '1/ and .S2; '2/ are given by matrix factoriza-
tions over S1˝S2 with potential '1˝ 1� 1˝'2 , and composition is given by
tensor product of matrix factorizations of bimodules.

� The 2–morphisms between two matrix factorizations are given by morphisms in
the usual sense.

While matrix factorizations may seem strange, in fact, they arise very naturally in
homological algebra (see, for example, Eisenbud [4]). Consider a module N , and a
ring element ' 2 S which annihilates N . Fix a finite-length free resolution M� of N

(by convention, we give this resolution the cohomological grading, ie the differential is
of degree 1), and let M be the direct sum of all its components. Let dCW M !M be
the differential, and 'M be the action of multiplication by ' on M . Since the induced
map 'N is 0, by standard homological algebra, 'M is homotopic to 0, ie there exists
a map d�W M�!M� of degree 1 such that dCd�C d�dC D ' .

Now, assume that d� also defines the structure of a chain complex on M� , that is,
d2
� D 0. Let d D dCC d� . By the homotopy formula above, we have

d2
D d2
CC dCd�C d�dCC d2

� D ';

that is, d defines a matrix factorization with potential ' on M with the grading given
by homological degree.

Recall for an ordered n–tuple .x1; : : : ;xn/ 2Rn in a commutative ring R is called
a regular sequence if the action of xi is a non-zerodivisor (multiplication by it is
injective) on R=.x1; : : : ;xi�1/ for all i .

In the case when N is the quotient S=.x/ of S by the ideal generated by a regular
sequence x D fx1; : : : ;xmg, the matrix factorizations constructed from N have a
particularly nice interpretation, as described in slightly different language by Eisenbud
in [5, Section 17.4]. Let Zxi

denote the two-term complex S xi
�!S . If S is graded and

each xi is homogeneous, then we can shift gradings so that this differential is of degree
2 (while this may seem like a peculiar choice, it the one which makes this grading match
with the standard variable q in the quantum invariants which KR homology should
categorify). This is clearly a free resolution of S=.xi/. Thus, the easiest possible guess
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for a free resolution of N is the Koszul complex

Zx D

mO
iD1

Zxi
:

This complex is indeed a resolution of N , since x is regular [5, Section 17.2] (otherwise,
it might have higher cohomology).

Since 'N D 0, we must have ' D
Pm

iD1 yixi for some sequence (not necessarily
unique or regular) yD fy1; : : : ;yng. Instead of taking the complex Zxi

, consider the
matrix factorization

zZxi ;yi
D S

xi
)) S

yi

ii :

By analogy with the Koszul resolution, we define the Koszul matrix factorization of
the pair .x; y/ to be the tensor product

zZx;y D

mO
iD1

zZxi ;yi
:

This is a matrix factorization with potential
P

i xiyi D ' .

1.2 Near-isomorphisms

We would like to generalize the following standard fact of homological algebra:

Proposition 1.1 Let f W C ! C 0 be a chain map between complexes of S modules
which induces an isomorphism on homology, that is, a quasi-isomorphism. Then for
any complex of D of projective S–modules, f ˝ 1W C ˝D ! C 0 ˝D is also a
quasi-isomorphism.

Proof We use a spectral sequence on C ˝D , associated to the filtration

Fn D

M
i�n

Cj ˝Di :

In this case Fn=Fn�1 Š C ˝ Dn . Since f ˝ 1 is filtered, it induces a map of
spectral sequence, and since Dn is projective, the induced map on the E0 term is
an isomorphism. Thus it is an isomorphism on the E1 term as well, which is the
associated graded module of H�.C ˝D/. Thus, f is a quasi-isomorphism.
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Note that this result depends heavily on the fact that D is projective (or more generally,
flat).

How might such a fact be generalized to matrix factorizations? First, let us define a
class of maps analogous to quasi-isomorphisms of complexes (unfortunately “quasi-
isomorphism of matrix factorizations,” as defined by Rasmussen [11] means something
slightly different, and more analogous to a homotopy equivalence of complexes).

Definition 2 We call a chain map f W MC !M 0
C a near-isomorphism if for each

matrix factorization D on a projective S–module of potential �' , the map

H t .M ˝D/!H t .M 0
˝D/

is an isomorphism.

Unlike in the case where ' D 0, the hard part now will be identifying such morphisms.
While we know of no explicit characterization, one example will be sufficient for our
purposes

Let M be a matrix factorization of potential ' with M i D 0 for all i > 0, and
let H.M / be H 0.MC/. Obviously, there is a chain map � W MC!H.M /, where
H.M / is considered as a complex concentrated is degree 0. Note that H.M / must be
annihilated by ' , since the image of dC in M 0 contains ' �M 0 .

Theorem 1.2 If the natural map � W MC!H.M / is a quasi-isomorphism of com-
plexes, then it is also a near-isomorphism of matrix factorizations.

Proof Let K D ker dC �M . Fix a matrix factorization of projective modules D of
potential �' , and consider the following filtration on M ˝D :

Gn
D

� M
i<n;j2Z

M i
˝Dj

�
˚

�M
j2Z

Kn
˝Dj

�
This filtration is a mix of the standard choice on a tensor product of complexes, and that
used by Rasmussen for any matrix factorization of potential zero [11, Lemma 5.11].

Since d D dCCd� preserves this filtration, there is an associated spectral sequence,
converging to H t .M ˝D/.

The E0 term of this spectral sequence is

GnC1=Gn Š
�
KnC1

˚M n=Kn
�
˝D;
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and as Rasmussen computed, the differential d0 is given by the total differential on the
above tensor product, when we make KnC1˚M n=Kn into a matrix factorization by

KnC1

dM
� --

M n=Kn:

dM
C

ll

Since we assumed that H i.MC/D0 for all i¤0, the map dM
C induces an isomorphism

M i=Ki ŠKiC1 for all n¤ 0, the complex .GnC1=Gn/C is exact and the homology
of GnC1=Gn is trivial if n¤ 0.

Thus, all higher differentials have trivial source or trivial target, so our sequence
collapses at E1 . Since G1=G0 ŠH.M /˝D , we find that

H t .M ˝D/ŠH t .H.M /˝D/;

with the isomorphism induced by the natural projection � .

1.3 Khovanov–Rozansky matrix factorizations

Matrix factorizations appear in knot theory through the work of Khovanov and Rozansky:
they associate to any oriented tangle diagram T and any polynomial p , which vanishes
at 0, a complex of matrix factorizations we denote by Rp.T /, defined as follows:

Consider the graph G.T / of T which has vertices corresponding to crossings or end
points of components of T and edges corresponding to segments of diagram between
crossings. The orientation of T induces an orientation on G.T /. Let F.T / denote the
set of flags of the graph G.T /, that is, pairs .x; e/ of adjacent edges and vertices. Let
zST D zS be polynomials over k in the variables tx;e , where .x; e/ ranges over F.T /.

x.i/

x.j /

x.k/x.l/

x

Figure 3: The labeling of edges around a crossing

For each crossing x , number the adjacent edges as shown in Figure 3. Let th D tx;eh
,

where hD i; j ; k; `.
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Let L0x be a Koszul matrix factorization on the Koszul resolution of

t0x D .ti C tj � tk � t`; ti tj � tk t`/

with potential 'xDp.ti/Cp.tj /�p.tk/�p.t`/. Recall that we have fixed the grading
on Koszul resolutions such that dC has graded degree 2 and the 0–th term has the same
grading as the ring itself with no shift. Such a factorization exists, since p.ti/Cp.tj /

is a polynomial in ti C tj and ti tj , by the fundamental theorem of symmetric function
theory. Its exact form will not be important for us at the moment. Since t0x is regular,
.L0x/C is a free resolution of H.M / Š zS=.t0x/, where .t0x/ denotes the ideal in zS
generated by the elements of t0x .

Let L00x be a Koszul matrix factorization with potential 'x on the Koszul complex
of t00x D .ti � t`; tj � tk/. As with t0x , this is a regular sequence, so .L00x/C is a free
resolution of H.M /Š zS=.t00x/.

Khovanov and Rozansky define a two term complex Lx which depends on whether
the crossing was positive or negative; if x is positive, it is a complex of the form
�Cx W L

0
x!L00x and if x is negative, it is of the form ��x W L

00
x!L0xf�2g, where fag

denotes grading shift by a, in each case with L00x in homological degree 0. The exact
form of these maps will not be important to us at the moment. We only note that after
applying H.�/:

� The induced map H.�Cx /W
zS=.t0/! zS=.t00/ is the obvious projection.

� The induced map H.��x /W
zS=.t00/! zS=.t0/f�2g is that induced by multiplication

by ti � tk .

It’s worth noting that the complex H.Lx/ is independent of p .

For each edge e , directed from xa to xb , we let Le be the Koszul matrix factorization
of the pair x D .ta � tb/ and y D .p.ta/ � p.tb//=.ta� tb/, where ta D txa;e and
tb D txb;e , again with polynomial grading such that dC is of degree 2.

We define the Khovanov–Rozansky complex of the diagram T to be the complex of
matrix factorizations given by the tensor product

Rp.T /D

�O
e

Le

�
˝

�O
x

Lx

�
:

Since each matrix factorization in this complex is a direct sum of Koszul matrix
factorizations, we can apply the functor H component-wise, to obtain a complex of
modules over zS , which we will refer to as the “naive Khovanov–Rozansky complex”
N.T / D H.Rp.T //. As with a single crossing, N.T / is independent of p , since
Rp.T /C is independent of p .
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Let L.T / � F.T / be the set of flags containing vertices of degree 1. There is only
one such flag for each vertex of degree 1, and these correspond to the open ends of the
tangle T . Let ST denote the subring of zS generated by the variables corresponding to
elements of L.T /. Define �W F.T /! f˙1g by:

�.x; e/D

(
1 e is directed into x

�1 e is directed out of x

Then the potential of Rp.T / is given by the sum:

'T D

X
.`;e/2L.T /

�.`; e/p.t`;e/

In particular, we can consider Rp.T / as a complex of matrix factorizations over ST ,
a change which seems small, but will be key to simplifications we do later.

If T is the diagram of a link (ie a closed tangle), then Rp.T / has potential 0, and
we can take the total homology of each matrix factorization. In this case, we obtain a
complex of graded vector spaces, which we call Kp.T /. The homology of this complex
(as a bigraded vector space) is what is typically called unreduced Khovanov–Rozansky
homology. We can obtain reduced Khovanov–Rozansky (for a knot) by quotienting out
by the action of one of the generators of ST on Kp.T /, and then taking homology. If
p is homogeneous (ie p.x/D xNC1 for some N ) then on both these homologies two
gradings will survive (otherwise, we will only have the homological grading). We will
not go into the details, as they are not of great importance to the rest of the paper, and
are covered in great detail in [11, Section 2].

2 Canopolises

2.1 Canopolises of matrix factorizations

The theory of planar algebras originated with Vaughan Jones’s theory of subfactors
[7], and they have shown themselves to be a very useful formalism for dealing with
knot invariants. In his reformulation of Khovanov homology, Bar-Natan [2] uses a
categorification of a planar algebra, called a canopolis:

Definition 3 A (oriented) canopolis is an assignment of:

(1) A category CX
� for each set totally ordered finite set X equipped with sign

map �W X ! fC;�g. We think of this as being associated to a disk with signed
marked points on the boundary, and with a distinguished marked point (so points
are totally ordered, not just cyclically ordered).
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(2) A functor z�W CX1

�.1/
�� � ��CXm

�.m/
! CX0

�.0/
, for each oriented planar arc diagram �,

where Xj denotes the set of endpoints of arcs on the j –th boundary component,
with the sign determined by the orientation of the arc at that point. The action of
planar arc diagrams should commute with composition of functors.

Bar-Natan’s original examples were for the most part very geometric, being modi-
fications of various cobordism categories. Rather than attempt to do justice to his
presentation, we refer the interested reader to his paper [2, p 31].

The geometric canopolis of interest to us will be as follows:

Let CX
� be the category of oriented tangles in a thickening of the disk D2 to a 3–

ball †D2 D B3 , with the endpoints of the tangles on the distinguished points X ,
and the orientation of the tangle matching the sign sequence � . Morphisms between
T and T 0 are oriented cobordisms embedded in I � B3 , with boundary given by
T � f0g[T 0 � f1g[X � I . We denote this canopolis by C.

As promised, for any polynomial p (vanishing at 0, as before), we will define an
associated canopolis Mp of matrix factorizations, which is a natural home for KR
homology.

First, associated to the sign sequence �W X !fC;�g is the category MF
X ;p
� of matrix

factorizations over a polynomial ring kŒX � with generators indexed by C of potentialP
x2X �xp.tx/.

As we discussed before, the most natural functors from MF
X1;p

�.1/
� � � � �MF

Xm;p

�.m/
to

MF
X0;p

�.0/
are those induced by tensor product with a matrix factorization over the ring

kŒX0; : : : ;Xm� with potential:

X
x2X0

�x.0/p.tx/�

mX
jD1

X
x2Xj

�x.j /p.tx/

In fact, there is a clear choice in this category: Let A.�/ be the set of arcs of �. Each
arc ˛ 2A.�/ has a head ˛C and a tail ˛� .

Now define sequences x; y by

xD
�
t˛C � t˛�

�
˛2A.�/

yD
�

p.t˛C/�p.t˛�/

t˛C � t˛�

�
˛2A.�/
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and let zZ� be the Koszul matrix factorization of this pair. This is a matrix factorization
over kŒX0; : : : ;Xm�, and its potential isX

˛2A.�/

p.t˛C/�p.t˛�/D
X

x2X0

�x.0/p.tx/�

mX
jD1

X
x2Xj

�x.j /p.tx/

since each marked point on any boundary of � is the endpoint of exactly one arc.

The canopolis functor z�W MF
X1;p

�.1/
� � � � �MF

Xm;p

�.m/
!MF

X0;p

�.0/
will simply be tensor

product with zZ� over kŒX1; : : : ;Xm� .

Note that this also induces a canopolis structure on the categories of complexes of matrix
factorizations Kom.MF

X ;p
� / and the homotopy category of complexes K.MF

X ;p
� /,

since tensoring with zZ� is exact.

Theorem 2.1 These functors define a canopolis structure Mp on K.MF
X ;p
� /. Further-

more, RpW C!Mp is a functor of canopolises, ie the diagram
mY

jD1

TXj ;�.j/

Rp

��

z� // TX0;�.0/

Rp

��mY
jD1

K.MF
Xj ;p

�.j/
/
z�

// K.MF
X0;p

�.0/
/

is commutative. In particular, if z�.T / is closed, then Kp.z�.T // and H�.z�p.Rp.T ///

are isomorphic as complexes.

Note that while Rp is a Z–graded matrix factorization, the maps associated to cobor-
disms typically only preserve the Z=2–grading.

Proof Luckily, all the necessary computations were done by Khovanov and Rozansky
in [9]. Checking that the composition of planar arc diagrams matches with composition
of functors is simply applying [9, Proposition 15] at each pair of boundary points which
are glued together.

The commutation with the functor Rp is simply rephrasing the original definition, after
placing a mark on each connected pair of boundary points.

In particular, though Rp.T / was first defined over a ring zST with variables correspond
to all elements of F.T /, this canopolis formalism shows that we need only remember
the action of variables corresponding to endpoints, not to internal edges of G.T /. Often
after restricting to this smaller subring, we can identify trivial summands of the complex
Rp.T /.

Algebraic & Geometric Topology, Volume 7 (2007)
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2.2 Simplifications in Rp.T /

For our purposes, a simplification of a matrix factorization will be a quotient such that
the projection map is a near-isomorphism.

Consider a Koszul matrix factorization M D zZx;y . Then we expect M to have a great
number of simplifications. For any n < m, we can rewrite M as a tensor product
M ŠM 0˝S M 00 , where M 0 D zZx0;y0 and M 00 D zZx00;y00 , and

x0 D .x1; : : : ;xn/; y0 D .y1; : : : ;yn/;

x00 D .xnC1; : : : ;xm/; y00 D .ynC1; : : : ;ym/:

Now, assume x0 is a regular sequence. In this case M 0
C is a free resolution of H.M 0/D

S=.x0/. By Theorem 1.2, the natural map � W M 0
C!H.M 0/ is an near-isomorphism,

and thus, � ˝ 1W M !H.M 0/˝S M 00 is as well.

This is a very useful principle in Khovanov–Rozansky homology. For instance, it
gives a new proof of the equivalence of Rasmussen’s definition of KR homology
with the original definition: simply apply the above construction the subsequence
.te;˛.e/�te;!.e//E2G.T / , which appears in the sequence for each term of the Khovanov–
Rozansky complex.

We will concentrate on the dual approach of simplifying the matrix factorizations
corresponding to crossings. This explains why we want a different notion of equivalence
for matrix factorizations from Rasmussen’s: his approach was adapted to keeping
projective matrix factorizations on crossings, and tensoring them with nonprojective
modules on edges, whereas ours is adapted to having nonprojective complexes on
crossings, and projective matrix factorizations on edges.

First of all, we note that simplifications are preserved by the canopolis action.

Proposition 2.2 If f is a near-isomorphism, then z�.f / is also a near-isomorphism.
Thus if f is a simplification, so is z�.f /.

Proof For the first statement, note that zZ� is a matrix factorization on a projective
module, and thus tensor product with it preserves near-isomorphisms. For the second,
we need only recall that tensor product is right exact.

Thus, if we would like to calculate Kp.T / for some link diagram T , but do not know
how to simplify Rp.T /, then we might hope to factor T as T Dz�.T 0

1
; : : : ;T 0m/, where

the T 0j are simpler tangles for which we can simplify Rp.T /, and then apply the action
of our canopolis.
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For example, we have a simplification of Rp.T˙/, where T˙ is a disk with a single
positive or negative crossing. In this case, Rp.T˙/ is simply the two term complex
Lx corresponding to the single vertex in the graph of its projection.

Proposition 2.3 The map Lx!H.Lx/ is a degree-wise near-isomorphism.

Proof We noted in Section 1.3 that L0x and L00x are both matrix factorizations on free
resolutions, and the map Lx!H.Lx/ is just the map to H applied degree-wise (in the
homological grading). Thus, by Theorem 1.2, it is a degree-wise near-isomorphism.

If we factor a tangle into disks with a single crossing and a planar arc diagram �, as
shown in Figure 2(a), then Rp.T /Š z�.fLxg/ where x ranges over crossings, ordered
according to the order chosen on the holes of �.

Let bR.T / be the complex z�.fH.Lx/g/ Š
�N

x H.Lx/
�
˝
�N

e Le

�
. Combining

Proposition 2.2 and Proposition 2.3, we obtain the following:

Proposition 2.4 The natural map Rp.T /! bRp.T / is a degree-wise near-isomorph-
ism.

Thus, we have a new complex of matrix factorizations which is the tensor product of
a complex of modules and a single regular Koszul matrix factorization, and whose
homology is Kp.T /.

Of course, we may hope that we can simplify more general tangles than single crossings
using this philosophy. For each tangle, we have a map �T W Rp.T /!N.T / from the
honest KR complex to the naive one. In Khovanov–Rozansky homology, as in life,
things would be easier if we could just be naive, but if we aren’t savvy often enough,
we can run into trouble. While Rasmussen’s results show we can be “savvy” about
crossings and “naive” about edges, and Proposition 2.4 shows we can be “naive” about
crossings and “savvy” about edges, we will lose too much information if try to take the
naive Khovanov–Rozansky of an entire knot. After all, the naive Khovanov–Rozansky
homology does not depend on the polynomial p , but the honest Khovanov–Rozansky
homology does, since different choices of p categorify sln invariants for all n.

Thus, we would like to find a class of tangles about which we can be naive, while still
recovering honest KR homology.
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2.3 Acyclic tangles

Definition 4 We call an oriented tangle diagram acyclic if the graph G.T / has no
oriented cycles.

Obviously a single crossing is acyclic. Also, the tangles inside of the dashed circles
in Figure 2(b) are acyclic, whereas the entire tangle is not. Note that a tangle with a
closed component is never acyclic, whereas a braid always is.

Theorem 2.5 If T is acyclic, then �T W Rp.T /!N.T / is an near-isomorphism.

Proof Since it is irrelevant to question at hand, we forget about the chain complex
structure on Rp.T / and consider it simply as a matrix factorization. By Theorem 1.2,
we need only show that Hi.Rp.T /C/D 0, for any i ¤ 0.

We induct on the number of crossings. Since T is acyclic, the direction of edges induces
a partial ordering on vertices. Take any maximal element x . Using the conventions
shown in Figure 3, i.x/ and j .x/ must be leaves or the adjacent vertex would be
higher than x in our partial order. We will assume for simplicity that k.x/ and `.x/
are not leaves. The case where they are follows from the same arguments we present
below.

Let T 0 be T with the crossing x removed. Thus, ST Š ST 0˝kŒxi ;xj ;xk ;x`� where,
as before, we let th D tx;h.x/ where hD i; j ; k; `, and we have:

Rp.T /C ŠRp.T
0/C˝k .Lx/C˝k .L`.x//C˝k .Lk.x/C

Since Rp.T
0/C˝k .Lx/C is projective as a ST module, we can project .L`.x//C

and .Lk.x/C to their cohomology without changing the cohomology of Rp.T /. This
simplification is isomorphic to Rp.T

0/C˝kŒt`;tk � .Lx/C where we let kŒt`; tk � act on
Rp.T /C by the variable t`0 ; tk0 corresponding to the other end of the edges `.x/; k.x/.

Since both Rp.T
0/C and .Lx/C are projective resolutions, the cohomology of this

complex is Tori
kŒx`;tk �

.N.T /;H.Lx//.

Both H.L0x/ and H.L00x/ are free as kŒx`; tk �–modules, as was proved by Soergel [13].
Thus, all higher Tor’s vanish, and we are done.

Corollary 2.6 Let T be a tangle diagram which can be factored as the action of � on a
set of acyclic tangles fTig, then the natural map Rp.T /Š z�.fRp.Ti/g/! z�.fN.Ti/g/

is a near-isomorphism. If T is a link diagram, then Kp.T /ŠH�.z�.fN.Ti/g//:
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While this may not look like an impressive simplification, it does have a significant
advantage: as a complex of modules, it is much easier to identify trivial summands of
the naive complex N.Ti/ in a way that was not at all clear in the matrix factorization
picture.

Remark 1 For instance, this allows us to replace Khovanov and Rozansky’s exhaustive
computations for invariance under Reidemeister moves with simple computations in
Soergel bimodules (done by Rouquier [12]) for all Reidemeister moves except type I
and type IIb. This is because we can go between any two projections by

� applying Vogel’s algorithm which uses only moves of type IIb and passing
strands through infinity on the 2–sphere (which doesn’t change Khovanov–
Rozansky, since it doesn’t change the topology of the knot projection) to take
both projections to braid-like ones;

� applying type I moves and identities in the braid group (covered by Rouquier)
to move from one braid projection to the other, which is possible by Markov’s
theorem.

2.4 Braids

Braids have an important role to play here, especially when we wish to consider
HOMFLYPT homology, as we will in Section 3. As we noted, one of the best examples
of a complicated acyclic tangle is a braid. Thus, Proposition 2.2 and Theorem 2.5
show that if our diagram L is the closure of a d –strand braid � (all Seifert circles
are nested), then Rp.L/ is near-isomorphic to zd .N.�//, where d is the planar arc
diagram shown in Figure 4.

Figure 4: The braid closure arc diagram for 3 strands, 3

In this case, the naive KR complex N.�/ can be considered a complex of bimodules
over a polynomial ring S D kŒx1; : : : ;xd � with generators xi indexed by strands of
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our braid, and composition of braids (which can also be written as the action of a planar
arc diagram) passes to tensor product of complexes, so

N.�� 0/ŠN.�/˝S N.� 0/:

Thus, we can consider N as a categorification of the braid group. In fact, this is precisely
the categorification of the braid group described by Rouquier [12]. The bimodules which
appear in this complex are so-called Soergel bimodules, which appeared in Soergel’s
research on category O . Furthermore, zd is simply the Koszul matrix factorization
zZp of the sequences

fxi ˝ 1� 1˝xig and
�

p.xi ˝ 1/�p.1˝xi/

xi ˝ 1� 1˝xi

�
:

This is an sln version of the result of Khovanov relating the Rouquier complex and
Khovanov homology:

Theorem 2.7 The complex H t
�
N.�/˝ zZp

�
is isomorphic to Kp.x�/.

The functor H t .�˝ zZp/ is defined for any bimodule over kŒx1; � � �xd �, and it would
very interesting to interpret it in terms of more familiar homological algebra. As is,
there is a spectral sequence

HH�.�/)H t .�˝ zZp/;

where HH�.�/D Tor�S˝Sop.�;S/ denotes Hochschild homology, since

HH i.�/ŠH i
�
�˝. zZp/C

�
:

Since there are, in all, d! different indecomposable Soergel bimodules, the complex
N.�/ typically has a very large number of redundant summands. In fact, the complex
N.�i/ for a braid generator splits after tensor product with exactly half of these modules,
which alone leads to huge number of trivial summands in N.�/ for any large braid.
This is discussed by Khovanov in the last section of [8], and will be covered in more
detail in future work by the author.

It would be even better if we could implement these cancellations for more general
acyclic tangle diagrams, since typically, a braid representative of a given knot has many
more crossings than the smallest planar diagram of the same knot, which slows down
computation if we have to use braid diagrams.
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Figure 5: The Reidemeister IIb move

2.5 The IIb move

Another application which illustrates the power of this approach is the IIb Reidemeister
move, which creates trouble in HOMFLY homology.

We only need to understand the local picture involving the tangles T and T 0 as shown
in Figure 5. The tangle T is acyclic ,and thus quite easy to understand, but T 0 is not.
Thus, we will cut open the oriented cycle, consider the naive complex of the resulting
tangle T 00 , and then act with a planar diagram � to get Rp.T /, as shown in Figure 6.
Let R0 D kŒa; b; c; d �.

a

b

c

d

e

g h

T 0

T 00

Figure 6: A decomposition of the tangle T 0

Proposition 2.8 The complex Rp.T
0/ has a simplification which is a two-term com-

plex of modules N1
�
�!N2 where

N1 DR0f�2g=.a� bC c � d; .b� d/.c � d//

N2 DR0f�2g=.a� b; c � d/

and � is the natural projection.
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Note that the kernel of this surjection is isomorphic to R0=.b� d; a� c/, which is, in
turn near-isomorphic to Rp.T /. Thus, if this surjection were to split, we would have
shown the invariance of KR homology under the second Reidemeister move. However,
it does not; N1 is indecomposable as a graded module over R0 , since it is generated
by a single element in minimal grade. However, as we shall see, this calculation can
still give us interesting information about this Reidemeister move.

Proof Using the labels on edges above, and removing the variables g and h using
the identity aC e�g� b D cC e� h� d D 0, we get that the naive complex of T 00

is the 3 term complex

(1) M1 M4

M2

M3

˚

1 11cccccccccccccc

e�b
--[[[[[[[[[[[[[[

e�b
--[[[[[[[[[[[[[[

1

11cccccccccccccc

where RD kŒa; b; c; d; e� and

M1 DR=.a� b; .c � d/.e� d//

M2 DRf�2g=.a� b; c � d/

M3 DR=..a� b/.e� b/; .c � d/.e� d//

M4 DRf�2g=..a� b/.e� b/; c � d/:

Since the variable e corresponds to an edge that is closed, we will only be concerned
with the structure of N.T 00/ as an R0 module, but the purposes of calculations, it will
be useful to remember the action of e .

Note that M1 has a decomposition as an R0–module into M 0
1
D R0 � 1 and M 00

1
D

R � .e� d/, and M4 into M 0
4
DR0 � 1 and M 00

4
DR � .e� b/D im M2 .

The module M3 also has a decomposition along these lines, but a slightly more subtle
one. We let M 0

3
DR0 �1CR0 �e , and M 00

3
DR�.e�b/.e�d/. Clearly, M3DM 0

3
CM 00

3
,

since we write any expression with en for n> 1 appearing can be rewritten as the sum
of an element of M 00

1
and a expression with a lower degree in e . On the other hand,

the intersection of these submodules is trivial, so they give a direct sum decomposition.

Thus, we can rewrite (1) as:

(2)

M 0
1

M 00
1

M2

M 0
3

M 00
3

M 0
4

M 00
4

˚

˚

˚

˚

1 ,,YYYYYYYYYYYYY

�

%%LLLLLLLLLLLLLLLLe�b 22eeeeeeeeeeeeee
1

,,YYYYYYYYYYYYYY

e�b

22eeeeeeeeeeeeee 1 ,,YYYYYYYYYYYYYY

e�b

22eeeeeeeeeeeee

1

,,YYYYYYYYYYYYYY
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Each module in (2) is generated by a single element over R or R0 , so most maps
are induced by multiplication by a ring element, and thus these have been denoted by
the corresponding element. The single exception is the map �, which is the natural
(nonsplit) projection �W M 0

3
!M 0

3
=.R0 � 1/, composed with the natural isomorphism

of the target with the submodule of M 00
4

generated over R0 by e� b .

Now, the maps above from M 00
1

to M 00
3

and from M2 to M 00
4

are isomorphisms. Let �
be the homotopy on this complex given by the inverse of these maps, killing all other
components.

One can easily calculate that �@C @� is the identity on M 00
1
;M2;M

00
3

and M 00
4

, and 0
on M 0

1
;M 0

3
and M 0

4
. Thus, the complex N.T 00/ is homotopic to (2) with the lower

diamond removed:

(3) M 0
1

e�b
�!M 0

3

1
�!M 0

4

Let s D a� b � cC d . Then acting with the planar diagram � to connect the ends
corresponds on the matrix factorization side to tensor product with a two-term matrix
factorization, whose positive complex is just R0

s
�!R0 .

Thus, we are interested in the vertical homology of the following complex:

(4)

M 0
1

// M 0
3

// M 0
4

M 0
1

//

s

OO

M 0
3

//

s

OO

M 0
4

s

OO

Since M 0
1
Š R0=.a� b/ and M 0

4
Š R0=.c � d/, the element s is manifestly not a

zero-divisor on either of these modules.

For M 0
3

, we need only note that M 0
3

has a basis of the form B1[B2 where

B1 D fa
˛bˇcdıg and B2 D fb

ˇc � .e� b/g:

Note that .c�d/.e�b/D .c�d/.b�d/. Thus, s �B2 is a linearly independent subset
of span.B1/ with no a’s appearing, whereas any k –linear combination of s �B1 has
leading term containing an a. Thus, s � .B1[B2/ is linearly independent, and s is not
a zero-divisor, so (4) has no vertical homology.

Applying Theorem 1.2 again, we obtain that Rp.T
0/ is near-isomorphic to

zM1
e�b
�! zM3

1
�! zM4

where zMi DMi=sMi . Unlike the situation before we quotiented by the action of s ,
the image of zM1 in zM2 is now complementary to R0 � 1 � zM3 . Thus, we can do
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another reducing homotopy, and see that Rp.T
0/ is, in fact, near-isomorphic to the two

term complex N1D
zM3= zM1!N2D

zM4 where the map is the obvious surjection.

3 HOMFLYPT homology

Thus far, we have not discussed the triply graded theory of Khovanov–Rozansky defined
in [10; 8] which categorifies the HOMFLYPT polynomial. Unfortunately, this theory
lacks many of the good properties of the finite Khovanov–Rozansky theories. Most
notably, it is unclear at the moment how it changes when the IIb move is applied to
the diagram T , and it is not known whether or how it is functorial with respect to
embedded cobordisms.

Typically, because of the issues surrounding the IIb move, HOMFLYPT homology is
defined only using a braid representation of the knot. We would rather take the perspec-
tive that it is an invariant of tangle diagrams with good properties under Reidemeister
moves. We will briefly discuss how our computational schema extends to HOMFLYPT
homology, and use this to obtain some information about how this homology theory
reacts to the IIb move.

Having already built up our machinery around Rp , defining HOMFLYPT homology
is simple: we consider R0 , that is, the bicomplex given by considering the positive
complex of each matrix factorization in Rp . As before, we take homology first in
the “matrix factorization” direction, and then take homology of the resulting chain
complexes, and apply a grading shift of �wC b in the polynomial grading, wC b� 1

in the “matrix factorization” grading and w� bC 1 in the “cohomological” grading.

We will draw our complexes with the “matrix factorization” direction being horizontal
and the “cohomological” direction being vertical, and henceforth use these terms to
describe them. We denote the i –th “horizontal” homology (remember this is itself
a single chain complex) H i

h
.C / and denote “horizontal then vertical” homology by

H
i;j

hv
.C /DH

j
v .H

i
h
.C // for any bicomplex C .

In line with our previous notation we denote H i
h
.R0.T // by Ki

0
.T /. The direct sum

of these over i is the (now bi-graded) complex K0.T /

Since each group H
i;j

hv
.R0.T // is still a graded module over ST , we have three

gradings, one inherited from the polynomial ring ST , and two cohomological gradings.

Most of our previous theorems remain true, and in fact, are much easier to prove, since
we no longer need to consider matrix factorizations. We have lost invariance under
Reidemeister moves, but if we consider R0 only as an invariant of tangle diagrams,
essentially everything works as before.
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Theorem 3.1 For a sequence of tangles fTig and compatible oriented planar arc
diagram �, we have

R0.z�.fTig//Š z�.fR0.Ti/g/:

If R0.Ti/!N.Ti/ is a quasi-isomorphism, term-wise, then R0.z�.fTig//!z�.N.Ti//

is also a quasi-isomorphism.

In fact, since complexes are easier to deal with than matrix factorizations, in this case,
our invariants can be understood in terms of standard homological algebra.

For instance, if we factor a closed diagram T into a planar arc diagram � acting on a
set fTig of acyclic tangles (as shown in Figure 2), then we can partition the set X of
endpoints of the tangles Ti into pairs ˛C; ˛� where ˛ ranges over A.�/, the set of
arcs of �. Let S D

N
i STi

D kŒX � be the ring over which the bicomplex
N

i N.Ti/ is
defined, and U D kŒA.�/�. In this case, S can be written as a tensor product U ˝Uop

with the left action of te being teC and its right action being te� . Thus, we can also
consider

N
i N.Ti/ as a complex of bimodules over U .

Proposition 3.2 The horizontal homology complex Ki
0
.T / is naturally isomorphic to

the Hochschild homology HHU
i

�N
i N.Ti/

�
where HHU

i .�/ is applied term-wise.

Proof By Theorem 3.1, Ki
0
.T /ŠH i

h
.z� .fN.Ti/g//. The bicomplex z�.fN.Ti/g/ is

simply the tensor product of ˝iN.Ti/ (thought of as a vertical bicomplex) with the
horizontal bicomplex which is the Koszul complex of .te˝ 1� 1˝ te/ over S . This
complex is a free resolution of U as a module over S (ie as a bimodules over itself), so
the homology of the tensor product of this complex with a bimodule over U is precisely
the Hochschild homology of that bimodule.

Note that if T1 is a braid, and T its closure, this theorem reduces precisely to
[8, Theorem 1].

As this result suggests, we can use a stronger notion of equivalence in this HOMFLY
case. Recall that Db.ST /, the derived category of ST –modules, is the category of
complexes of ST –modules, with a formal inverse to each quasi-isomorphism added.
Since this category is additive, the homotopy category K.ST / of complexes in Db.ST /

is well defined.

Of course, the operation of H�
h
.�/ is still well defined over K.ST /, and results

in a series of chain complexes of ST –modules. Furthermore, any nullhomotopic
map in K.ST / induces nullhomotopic maps on these complexes. Thus the functor
H
�;�
hv

.�/W K.ST /! ST –mod is well-defined. Furthermore, using Proposition 1.1, we
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see that tensor product with a bicomplex of ST ˝ST 0 –modules which is projective as
a ST –module D defines a functor D˝�W K.ST /!K.S 0

T
/.

Thus, we have the following proposition.

Proposition 3.3 The bigraded complex K0.T / only depends (up to homotopy) on
the class of R0.T / in K.ST /. Furthermore, the canopolis M0 defined in Section 2.1
descends to a canopolis structure M0

0
on the categories K.ST /.

To show the power of this approach, let us give a proof of the invariance of HOMFLYPT
using it. Recall the famous theorem of Markov:

Theorem 3.4 (Markov [3]) Two closed braid projections represent the same knot
if and only if they are related by isotopy, identities in the braid group, and type I
Reidemeister moves.

a b

cd

Figure 7: The Reidemeister I move

Proof of invariance of HOMFLYPT homology Isotopy does not affect the structure
of the KR complex, and relations in the braid group have been dealt with by Rouquier
[12]. Thus, we need only consider type I moves. In both cases, we will only obtain
invariance with respect to a grading shift. This is accounted for in the global grading
shift, which also depends on the diagram.

The left side of a type I move is simply the bicomplex which is kŒa; b�=.a� b/ in
cohomological grading .0; 0/.

The right side is the tensor product of two 2–term bicomplexes, one being the naive
complex of the crossing, and the other corresponding to the diagram closing one end
of the crossing. Let

S D kŒa; b; c; d �

M0 D S=.a� b; c � d/

M1 D S= .aC c � b� d; .a� b/.a� c// :
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Note that multiplication by a�c defines a map �W M0f2g!M1 , which is injective. Let
M 00

1
denote the image of � . As a kŒa; b�–submodule, we have a decomposition of the

form M 00
1
D˚1

iD0
kŒa; b� � ci.a� c/, and this image has a complement M 0

1
D kŒa; b� �1

ie M1 ŠM 0
1
˚M 00

1
(of course, M 0

1
is not a kŒa; b; c�–submodule).

For the negative move, the bicomplex R0.TC/ is:

M0

M 00
1
f�2g
˚

M 0
1
f�2g

M0

M 00
1
f�2g
˚

M 0
1
f�2g

�
��

�
��

a�b

//

Since the vertical map induces an isomorphism from M0 to M 0
1

, after removing the
nullhomotopic summand, R0.TC/ is just the horizontal complex M 0

1
a�b
�!M 0

1
, which

is, in turn, quasi-isomorphic to kŒa; b�=.a� b/f�2g with a vertical shift of 1.

For the positive move, we must be a bit more subtle. We start with the following
complex:

M 0
1

˚
M 00

1

M0

a�c ��//// 1



��������
M 0

1
˚

M 00
1

M0

a�c ��//// 1



��������

a�b //

Note that by the decomposition mentioned earlier M0 ŠM0f2g˚ kŒa; b�=.a� b/. In
the derived category, we can replace kŒa; b�=.a�b/ by the complex M 0

1
a�b
�!M 0

1
. Thus,

we can write another representative of this complex in the derived category:

M 0
1

˚
M 00

1

M 0
1

˚

M0

M 0
1
˚

M 00
1

M 0
1
˚

M0f2g

1

��
a�c

��

1

���������������

1

��
1

��a�b

//

a�b //

The the top row of M 0
1

’s and its image in the bottom row form a nullhomotopic
subcomplex, as does the far right column. Canceling these off, we obtain a split
injection (by the same decomposition we used before), with cokernel kŒa; b�=.a� b/.
Thus, R0.T�/ is equivalent to a single copy of kŒa; b�=.a�b/ but now with a horizontal
shift of �1.
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3.1 IIb again

Let us return to the IIb move. As we mentioned earlier, the behavior of HOMFLYPT
homology under this Reidemeister move is not well understood. Using the results of
the previous sections, we will make some headway toward understanding HOMFLYPT
homology for general diagrams.

As we showed in Section 2.5, the homology R0.T
0/ is near-isomorphic (or more

precisely, derived homotopic) to a two term complex N1
�
�!N2 , which is quasi-

isomorphic but not homotopic to R0.T /.

Thus, if K is any link diagram, with T a subdiagram which is isotopic to that on
the left side of the IIb move, and K0 the diagram which results after a IIb move, we
can construct representatives in K.SK / of R0.K/ and R0.K

0/ such that there is an
injective map �W R0.K/!R0.K

0/, with the cokernel of � given by the tensor product
R0.KnT /˝

�
N2

id
�!N2

�
.

Of course, we are interested in understanding ker
�
H

i;j

hv
.�/
�

and coker
�
H

i;j

hv
.�/
�
.

Proposition 3.5 There is a spectral sequence E
i;j
n such that:

E
i;j
2
D

8̂<̂
:

ker .H i;j

hv
.�// i D 3k

coker .H i;j

hv
.�// i D 3kC 1

0 i D 3kC 2

)E
i;j
1 D 0

Furthermore, we have a complex

� � ��!H
i;j

hv
.K/

H
i;j

hv
.�/

����!H
i;j

hv
.K0/

˛i
�!H

i�1;j�1

hv
.K/

H
i�1;j�1

hv
.�/

��������!H
i�1;j�1

hv
.K0/�!� � �

which exact if and only if the spectral sequence above collapses at the E3 –term (ie
d i D 0 for i � 3).

Thus, if this spectral sequence collapses early on, the IIb move does relatively little
damage; part of the HOMFLY homology shifts by one in horizontal and vertical grading,
and part of it does not. Unfortunately, as of the moment, we have not able to obtain
any real control over the higher differentials.

In the author’s view, the most optimistic hope is that the spectral sequence does collapse
at E3 , and that H

i;j

hv
.�/ is a isomorphism if the crossing strands of the IIb move lie on

the different Seifert circles and 0 (and thus ˛i is an isomorphism) if they lie on the
same Seifert circle. This would imply that with the grading shifts described earlier,
HOMFLY homology was independent of the diagram chosen.
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Another weaker possibility is that the spectral sequence collapses, and there is some
good description of the differentials less clean than the hope above.

Weaker still is the hope that d3n D 0 for all n � 1. This would at least imply that
the total rank does not change under the IIb move, and in fact that each piece of the
homology shifts by a vector lying in one of two affine rays in Z3 .

Proof By the usual yoga, since we have a short exact sequence of bi-complexes
(though of a vertical complexes of horizontal chain complexes) we obtain a long exact
sequence of vertical complexes:

� � � !H i
h .R0.K//!H i

h

�
R0.K

0/
�
!H i

h .coker �/!H i�1
h .R0.K//! � � �

Now, think of this long exact sequence itself as a bicomplex. Then we have a pair
of spectral sequences converging from “vertical then horizontal” homology to total
homology and from “horizontal then vertical” homology to total homology. Since this
is an exact sequence of complexes, the horizontal homology, and thus total homology is
trivial. On the other hand, taking vertical homology first, we obtain a spectral sequence
converging to 0 with E1 page:

:::
:::

:::
:::

� � � // H
i;j

hv
.R0.K//

H
i;j
hv
.�/

// H
i;j

hv
.R0.K

0// // 0 // H
i�1;j

hv
R0.K/ // � � �

� � � // H
i;j�1

hv
.R0.K//

H
i;j�1
hv

.�/

// H
i;j�1

hv
.R0.K

0// // 0 // H
i�1;j�1

hv
.R0.K//

// � � �
:::

:::
:::

:::

Taking homology, we see that the E2 page of the same spectral sequence is:

:::

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX :::

++VVVVVVVVVVVVVVVVVVVVV :::
:::

� � �

++XXXXXXXXXXXXXXXXXXXXXXX ker H
i;j

hv
.�/

++XXXXXXXXXXXXXXXXXXXXXXXXX coker H
i;j

hv
.�/

++WWWWWWWWWWWWWWWW 0

++WWWWWWWWWWWWWWWWWWWWWWWWW ker H
i�1;j

hv
.�/ � � �

� � � ker H
i;j�1

hv
.�/

++XXXXXXXXXXXXXXXXXXXXXXXX coker H
i;j�1

hv
.�/

++WWWWWWWWWWWWWWWWWWW
0 ker H

i�1;j�1

hv
.�/ � � �

:::
:::

:::
:::

This is the desired spectral sequence. Furthermore, by composition with the pro-
jection to coker H

i;j

hv
.�/ and the inclusion of ker H

i�1;j�1

hv
.�/, d2 defines a map

˛i W H
i;j

hv
.R0.K

0//!H
i�1;j�1

hv
.R0.K//. These maps define a complex by definition,

and this complex is exact if and only if d2 is an isomorphism. Since this spectral
sequence converges to 0, it collapses at En if and only if dn�1 is an isomorphism.

Algebraic & Geometric Topology, Volume 7 (2007)



Khovanov–Rozansky homology via a canopolis formalism 699

References
[1] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom.

Topol. 2 (2002) 337–370 MR1917056

[2] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9
(2005) 1443–1499 MR2174270

[3] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies
82, Princeton University Press, Princeton, N.J. (1974) MR0375281

[4] D Eisenbud, Homological algebra on a complete intersection, with an application to
group representations, Trans. Amer. Math. Soc. 260 (1980) 35–64 MR570778

[5] D Eisenbud, Commutative algebra, Graduate Texts in Mathematics 150, Springer, New
York (1995) MR1322960With a view toward algebraic geometry

[6] I Frenkel, M Khovanov, C Stroppel, A categorification of finite-dimensional
irreducible representations of quantum sl(2) and their tensor products arXiv:
math.QA/0511467

[7] V F R Jones, Planar algebras, I arXiv:math.QA/9909027

[8] M Khovanov, Triply-graded link homology and Hochschild homology of Soergel
bimodules arXiv:math.GT/0510265

[9] M Khovanov, L Rozansky, Matrix factorizations and link homology arXiv:
math.QA/0401268

[10] M Khovanov, L Rozansky, Matrix factorizations and link homology II arXiv:
math.QA/0505056

[11] J Rasmussen, Some differentials on Khovanov-Rozansky homology arXiv:
math.GT/0607544

[12] R Rouquier, Categorification of the braid groups arXiv:math.RT/0409593

[13] W Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math.
429 (1992) 49–74 MR1173115

[14] C Stroppel, Perverse sheaves on Grassmannians, Springer fibres and Khovanov ho-
mology arXiv:math.RT/0608234

[15] C Stroppel, TQFT with corners and tilting functors in the Kac-Moody case arXiv:
math.RT/0605103

Department of Mathematics, University of California
Berkeley, CA 94720

bwebste@math.berkeley.edu

http://math.berkeley.edu/~bwebste

Received: 23 February 2007

Algebraic & Geometric Topology, Volume 7 (2007)

http://dx.doi.org/10.2140/agt.2002.2.337
http://www.ams.org/mathscinet-getitem?mr=1917056
http://dx.doi.org/10.2140/gt.2005.9.1443
http://www.ams.org/mathscinet-getitem?mr=2174270
http://www.ams.org/mathscinet-getitem?mr=0375281
http://dx.doi.org/10.2307/1999875
http://dx.doi.org/10.2307/1999875
http://www.ams.org/mathscinet-getitem?mr=570778
http://www.ams.org/mathscinet-getitem?mr=1322960
http://arxiv.org/abs/math.QA/0511467
http://arxiv.org/abs/math.QA/0511467
http://arxiv.org/abs/math.QA/9909027
http://arxiv.org/abs/math.GT/0510265
http://arxiv.org/abs/math.QA/0401268
http://arxiv.org/abs/math.QA/0401268
http://arxiv.org/abs/math.QA/0505056
http://arxiv.org/abs/math.QA/0505056
http://arxiv.org/abs/math.GT/0607544
http://arxiv.org/abs/math.GT/0607544
http://arxiv.org/abs/math.RT/0409593
http://www.ams.org/mathscinet-getitem?mr=1173115
http://arxiv.org/abs/math.RT/0608234
http://arxiv.org/abs/math.RT/0605103
http://arxiv.org/abs/math.RT/0605103
mailto:bwebste@math.berkeley.edu
http://math.berkeley.edu/~bwebste

	1. Matrix factorizations
	1.1. Preliminaries on matrix factorizations
	1.2. Near-isomorphisms
	1.3. Khovanov--Rozansky matrix factorizations

	2. Canopolises
	2.1. Canopolises of matrix factorizations
	2.2. Simplifications in R_p(T)
	2.3. Acyclic tangles
	2.4. Braids
	2.5. The IIb move

	3. HOMFLYPT homology
	3.1. IIb again

	References

