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The plastikstufe – a generalization of the overtwisted disk to
higher dimensions

KLAUS NIEDERKRÜGER

In this article, we give a first prototype-definition of overtwistedness in higher di-
mensions. According to this definition, a contact manifold is called overtwisted if it
contains a plastikstufe, a submanifold foliated by the contact structure in a certain
way. In three dimensions the definition of the plastikstufe is identical to the one of
the overtwisted disk. The main justification for this definition lies in the fact that
the existence of a plastikstufe implies that the contact manifold does not have a
(semipositive) symplectic filling.

53D10, 57R17; 53D35

The situation of contact topology can be roughly stated like this: the 3–dimensional
contact manifolds can be understood very adequately by topological methods, a far-
reaching classification has been achieved and relations to many other fields have been
established. In contrast, the world map of higher-dimensional contact geometry consists
almost entirely of white spots. A powerful method for constructing such manifolds is
contact surgery, the most promising technique developed so far to distinguish different
contact structures is contact homology and with Giroux’s open book decomposition, it
is hoped that some classification results could be obtained.

The first structural distinction found for contact 3–manifolds was the notion of over-
twistedness. It turned out that such manifolds firstly do not allow an (even weak)
symplectic filling by Eliashberg [4] and Gromov [8], and secondly can be classified in
a very satisfactory way as in Eliashberg [3].

In higher dimensions, surprisingly, no analogous criterion has yet been found. Giroux
has proposed a definition based on his open book decomposition, which in three
dimensions is completely equivalent to the standard one. In contrast, our definition
is based on the existence of a plastikstufe, a direct generalization of the overtwisted
disk. In Gromov’s famous paper on holomorphic curves [8], a sketchy description
of something, which possibly could be a plastikstufe, is given. The generalization of
overtwistedness described in this article was found independently by Yuri Chekanov.
Interestingly, his (unpublished) proof of Theorem 1 uses very different methods.
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The definition of the plastikstufe given in this paper is certainly only a preliminary
version, meant as a prototype leading to a criterion for nonfillability in higher dimensions.
Our definition implies the following theorem.

Theorem 1 Let .M; ˛/ be a contact manifold containing an embedded plastikstufe.
Then M does not have any semipositive symplectic filling. If dim M � 5, then M

does not have any symplectic filling at all.

The proof of this statement will be given in Section 2.

Remark 1 A 2n–dimensional symplectic manifold .M; !/ is called semipositive if
every A 2 �2.M / with !.A/ > 0 and c1.A/� 3� n has nonnegative Chern number.
Note that every symplectic 4– or 6–manifold is semipositive.

There are several shortcomings of the definition of overtwisted given here, the most
important being that no example of a closed contact manifold containing an embedded
plastikstufe has been found so far. It is relatively easy though to construct open mani-
folds containing an embedded plastikstufe. As observed by Chekanov, the plastikstufe
can be used to detect exotic contact structures on R2n�1 (see Section 5.1).

From a practical viewpoint the definition of the plastikstufe is also rather cumbersome,
because it is less topological than the overtwisted disk in dimension 3 (Remark 5).

Remark 2 At the time of the final revision of this article, Francisco Presas Mata
announced a method which allows one to construct closed contact manifolds that
contain embedded plastikstufes [12].
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0 Preliminaries

The following notions are standard in symplectic topology, but for completeness we
briefly repeat them here.

Definition Let .W; !/ be a symplectic manifold. A Liouville vector field XL is a
vector field on W , whose flow makes the symplectic form expand exponentially. This
property can be formulated equivalently as

LXL
! D !:

A (convex) symplectic filling .W; !/ of a contact manifold .M; ˛/ is a compact sym-
plectic manifold with boundary @W DM , such that there exists a Liouville vector
field XL in a neighborhood of @W that points outwards, and such that

˛ D
�
�XL

!
�ˇ̌

TM
:

Remark 3 We can define a function hW U ! .�1; 0� on a neighborhood U �W of
M , by considering the time tp it takes a point p 2U to flow along XL to M , and then
setting h.p/ WD �tp . Define z̨ WD �XL

! . By taking on each level set Mt WD h�1.t/

(sufficiently close to M ) the Reeb field of the contact form ˛t WD z̨jTMt
, we obtain a

smooth vector field, which we denote by XReeb .

In the context of this article we will use the term “compatible almost complex structure”
in the following sense.

Definition Let .W; !/ be a symplectic filling of a contact manifold .M; ˛/. A
compatible almost complex structure J is a smooth section of the endomorphism
bundle End.T W / such that J 2 D�1, that is compatible with ! in the usual sense,
which means that for all X;Y 2 TpW , the following equation holds

!.JX;J Y /D !.X;Y /;

g.X;Y / WD !.JX;Y /and

defines a Riemannian metric. Additionally, we require J to satisfy close to the boundary
M D @W the following properties: for the two vector fields XL and XReeb introduced
above, J is defined as

JXL DXReeb and JXReeb D�XL;

and J leaves the subbundle �t D ker˛t � TMt invariant.
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Proposition 2 Let uW V \H!W be a J –holomorphic map (V � C is an open set,
and H� C is the upper halfplane). The function h ıuW V \H! R is subharmonic.

Proof A short computation shows that

0� u�! D u�d �XL
! D u�d z̨ D u�d

�
�dh ıJ

�
D�u�ddch

D�ddc.h ıu/D
�@2h ıu

@x2
C
@2h ıu

@y2

�
dx ^ dy:

Corollary 3 By the strong maximum principle and the boundary point lemma (eg
Gilbarg and Trudinger [6]), any J –holomorphic curve uW .†; @†/! .W; @W / is either
constant or it intersects M D @W only at @†, and this intersection is transverse.

Finally, we will denote the moduli space of J –holomorphic disks lying in U with
boundary in zU and with one marked point z0 2 @D2 by the symbol M.U; zU ; z0/.

1 Definition of the plastikstufe

Before giving the definition of the plastikstufe, we first introduce some preliminary
definitions.

Definition A maximally foliated submanifold L in a .2n � 1/–dimensional con-
tact manifold .M; ˛/ is a submanifold of dimension n on which ker ˛jTL defines a
(possibly singular) foliation.

Remark 4 The term “maximally” in the definition above means that L is not contained
in some higher dimensional submanifold also foliated by ˛ . The condition on the
dimension is imposed by the fact that the leaves of the foliation are locally Legendrian
submanifolds.

Remark 5 Frobenius’ Theorem implies that L is foliated by ˛jTL if and only if
.˛^ d˛/jTL � 0.

Remark 6 The main reason why these submanifolds are interesting in the setting of
this paper, is that if .M; ˛/ is the convex boundary of a symplectic manifold .W; !/,
and W is given an almost complex structure J compatible on M with � D ker˛ ,
then a maximally foliated submanifold L ,!M will be (at the nonsingular points
of the foliation) a totally real submanifold in W such that the Fredholm theory of
J –holomorphic curves can be applied.
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Definition An elliptic singular set S inside a maximally foliated submanifold L is a
closed codimension 2 submanifold inside L whose neighborhood is diffeomorphic to
D2�S ,!L with coordinates .x;yI s/ such that ˛jTL is represented by x dy�y dx

on this neighborhood (see Figure 1).

.0; "/�S

S

Figure 1: The foliation around a set of elliptic singularities consists of a circle
of stripes .0; "/�S forming a circle of rays touching in the singular set.

Example 1 It is very easy to find examples of maximally foliated submanifolds with
elliptic singularities (at least locally). As Figure 1 already suggests, there is a similarity
between an elliptic singularity and the binding of an open book.

By a result of Giroux [7], every contact manifold .M; ˛/ has a compatible open book
decomposition .P; #/ with binding .B; ˛B/, where B D @P and ˛B D ˛jTB . The
normal form of the neighborhood of .B; ˛B/ can then be chosen to be�

B �D2; ˛BC
1

2
.x dy �y dx/

�
;

where .x;y/ are the coordinates on the 2–disk. If one chooses any Legendrian
submanifold S inside B (which exist in abundance by Ekholm, Etnyre and Sullivan
[2]), then the set S �D2 ,! B �D2 is a maximally foliated submanifold with elliptic
singular set S .

An interesting problem would then be to try extend this submanifold into M �B .

The following definition is fundamental in 3–dimensional contact topology.

Definition Let .M; ˛/ be a 3–dimensional contact manifold. An embedded 2–disk

�W D2 ,!M

is called an overtwisted disk DOT , if there is only one point on the disk where the
foliation given by ��˛ is singular, and if the boundary of DOT is the only closed leaf
of this foliation (see Figure 2).
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Figure 2: Foliation induced by ��˛ on the overtwisted disk

Now we will give a conceivable generalization to higher dimensions: let .M; ˛/ be a
.2n� 1/–dimensional contact manifold, and let S be a closed .n� 2/–dimensional
manifold.

Definition A plastikstufe PS.S/ with singular set S in M is an embedding of the
n–dimensional manifold

�W D2
�S ,!M

that is maximally foliated by the 1–form ˇ WD ��˛ . The boundary @PS.S/ of the
plastikstufe should be the only closed leaf, and there should be an elliptic singular set
at f0g �S . The rest of the plastikstufe should be foliated by an S1 –family of stripes,
each one diffeomorphic to .0; 1/�S , which are spanned between the singular set on
one end and approach @PS.S/ on the other side asymptotically.

Remark 7 An overtwisted disk DOT is equal to a 2–dimensional plastikstufe PS.fpg/.

Remark 8 As mentioned in Remark 5, kerˇ defines a foliation on D2 �S , if and
only if ˇ^dˇ � 0. This means that the definition above requires � to satisfy a partial
differential equation, in contrast to 3–dimensional contact topology, where the foliation
condition is trivially satisfied.

Remark 9 The boundary of the plastikstufe is a Legendrian submanifold @PS.S/Š
S1 �S of M .

Definition A .2n�1/–dimensional contact manifold .M; ˛/ will be called overtwisted
if it contains an n–dimensional plastikstufe.
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S Š S1

Figure 3: The plastikstufe in a 5–dimensional contact manifold

Example 2 It is easy to construct for any closed manifold S an (unfortunately
only) open contact manifold that contains the plastikstufe PS.S/: let .N 3; ˛0/ be
an overtwisted 3–manifold with overtwisted disk �0W DOT ,! N . Let M be the
.2n� 1/–dimensional manifold M WDN �T �S with the 1–form

˛ D ˛0C�can;

where �can D�p � dq is the canonical 1–form of the cotangent bundle T �S .

The 1–form ˛ is a contact form, and it is easy to check that the embedding

�W PS.S/ ,!M; .p; s/ 7! .�0.p/; �0.s//;

where �0W S ,! T �S is the zero-section, really defines an n–dimensional plastikstufe.

2 Sketch of the proof of Theorem 1

The proof follows the line of the original proof in dimension 3. We study a certain
moduli space M of holomorphic disks, and there we find a cycle representing the
trivial homology class in M, but at the same time we show that it is mapped by the
evaluation map to a nontrivial element of homology thus producing a contradiction.

Let .M; ˛/ be a .2n�1/–dimensional closed compact manifold that contains a plastik-
stufe PS.S/. Assume that .W; !/ is a semipositive symplectic filling of M . We will
choose a compatible almost complex structure J on W (in the sense of the definition
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given in Section 0). The most important properties of J –holomorphic curves with
respect to the convex boundary M is that a holomorphic curve uW †!W cannot be
tangent to M , and in particular if p 2 u.†/ is a point, where the holomorphic curve
intersects M , then Tpu\ �p D f0g. Note that TpuD 0 at a point p 2M implies that
u� p .

In the rest of the proof, we consider the J –holomorphic disks uW D2!W , whose
boundary u.@D2/ lies on the plastikstufe, and which have a marked point z0 2 @D2

on their boundary. If u 6� const, then u.@D2/ is transverse to the foliation on PS.S/,
and u.@D2/ cannot touch the boundary of PS.S/. The boundary of every such curve
is linked with the singular set S , because otherwise it could not be transverse to the
foliation. This also implies that the only constant curves in the compactification of the
moduli space lie in S .

In Section 3, we study the Bishop family of disks emanating from the singular set of the
plastikstufe: for a small neighborhood U of S , we find a standard model, where we
can choose a carefully prepared almost complex structure J (which can be extended
to a regular J on the whole symplectic filling). For this J and for zU WD U \PS.S/,
the evaluation map evz0

is a diffeomorphism between the moduli space M.U; zU ; z0/

and zU . Stated differently, for every point p 2 zU there is a unique holomorphic disk
u lying inside U such that u.z0/D p . We can explicitly write down this continuous
family

 W zU !M.W;PS.S/; z0/;

such that evz0
ı D id zU . The curves  .s/ for every s 2 S are constant disks, and the

boundary of every other disk  .p/ with p … S is linked once with the singular set S .

Next, we show that the model neighborhood U is foliated by compact codimension 2

manifolds, which are J –holomorphic. An intersection argument then allows us to
show that any holomorphic disk u lying partially in U and whose boundary can be
capped off by attaching a disk lying inside PS.S/ has to be completely contained in
U . Hence the disk u lies in the image of the map  .

With the results obtained in Section 3, one can see that the N –dimensional moduli
space of holomorphic disks (N D dimPS.S/) described above only has a single end
touching the singular set S , and stays otherwise at a finite distance from S .

The compactness result of Gromov states that the moduli space of holomorphic disks
with bounded energy is always compact, provided we allow bubbling. More precisely,
in a compact symplectic manifold every moduli space of simple disks with uniformly
bounded energy, whose boundary sits on a compact totally real submanifold is a smooth
manifold that can be compactified by including bubbled curves. In Section 4, we first
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disks touching @PS.S/

disks touching SBishop family at S

bubbling at the boundary

disks with tangencies
to @W

Figure 4: The possible boundary components of the moduli space
M.W;PS.S/; z0/ are given by disks touching the singular set S or the
boundary of the plastikstufe @PS.S/ , disks with tangencies to the boundary
of the symplectic manifold @W , or curves having bubbles at their boundary.
Different arguments show that with exception of the Bishop family all of
these cases can be excluded.

show that there is a uniform energy bound for all curves in M.W;PS.S/; z0/. In
our situation, PS.S/�S is not a compact totally real manifold, but since only the
Bishop family comes close to S , the compactness property still holds in a suitable
sense. There are two possible types of bubbles that can occur: either a sphere can
bubble off at the interior of the holomorphic disks or a new holomorphic disk can
form at the boundary of the disks. The foliation of the plastikstufe PS.S/ imposes a
constraint on holomorphic curves, which forbids the second type of bubbling.

The treatment of interior bubbles is more technical, so we will first assume that no
bubbling at all can happen to illustrate more easily the geometrical idea of the proof.
The moduli space M.W;PS.S/; z0/ is a smooth manifold, which could have several
“boundary components” (see Figure 4). By the arguments given so far (and by the
assumption that no spheres can bubble off), the only boundary of the moduli space
corresponds to the Bishop family  (see Figure 5).
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With the evaluation map at z0 2 @D2 , it is easy to see that

C" WD
n
 .p/

ˇ̌̌
p 2 PS.S/; d.p;S/D "

o
;

for " > 0 sufficiently small, maps to the generator of HN�1.PS.S/�S/ with N D

dimPS.S/. Hence it follows that C" has to represents a nontrivial cycle in the moduli
space (see Figure 5). But this leads to a contradiction, because C" is the only boundary
component of the moduli space (if we remove all Cr with r <"), and hence it represents
a boundary in homology.

Bishop family at S

C"

Figure 5: The moduli space M.W;PS.S/; z0/ only has one boundary
component, and hence it follows that ŒC"� represent the trivial class in
HN

�
M.W;PS.S/; z0/

�
for N D dimM� 1 .

The conclusion is that the Bishop family cannot be the only boundary component of
the moduli space. The only assumption made to exclude other components was that
W is a convex filling of the contact manifold M . This assumption must be false, and
hence M is not fillable.

The general situation, ie the one where interior bubbles can occur, can be treated like
this: trace a path 
 .I/ (with I D Œ0; 1�) on PS.S/ running from the singular set S

to the boundary @PS.S/. If the evaluation map evz0
WM.W;PS.S/; z0/! PS.S/

is transverse to 
 , then ev�1
z0

�

 .I/

�
will be a smooth 1–dimensional submanifold of
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M.W;PS.S/; z0/. Define a projection � by

� WPS.S/�S ! @PS.S/

.z; s/ 7!
� z

jzj
; s
�
:

The preimage of a point .ei'0 ; s0/ under � is a radial line in the plastikstufe joining
S and @PS.S/. By Sard’s Theorem, the set of singular values of the map � ı evz0

has measure 0, and because that map is surjective (consider the restriction to the
Bishop family  ), we find plenty of radial curves 
 such that ev�1

z0

�

 .I/

�
will be a

1–dimensional submanifold of M.W;PS.S/; z0/.

In Section 4, we show that the evaluation map evz0
is a pseudocycle (in the sense of

McDuff and Salamon [10]), which means that the image of the evaluation map on the
complement SM�M (ie on the bubbled curves) lies in the closed image of finitely
many codimension 2 manifolds. The projection of this set under � still has at least
codimension 1, and hence, almost every point in @PS.S/ is a regular value of � ıevz0

and not contained in the image of the bubbled curves.

For such a value .ei'0 ; s0/, the corresponding preimage in M.W;PS.S/; z0/ is
a collection of compact 1–dimensional submanifolds that can only have boundary
points, at the boundary of the moduli space. Since it avoids the bubble curves, it can
actually only have boundary points on C" . But because the Bishop family  is a
diffeomorphism, the 1–dimensional submanifold only touches C" exactly once. This
is a contradiction, because it means there is one component of the preimage that is a
compact 1–dimensional manifold with only one boundary component.

3 A Bishop family around elliptic singularities

The aim of this section is to show that there exists a unique family of holomorphic
curves growing out of each component S of the elliptic singular set of a maximally
foliated submanifold. I’m indebted to Frédéric Bourgeois for orienting me through the
theory of Cauchy–Riemann operators.

The main idea consists in arranging a certain almost complex structure around S ,
where it is possible to do all required computations explicitly.

3.1 A local model for a neighborhood of the singular set

Let .M; ˛/ denote always in this section a contact .2n � 1/–manifold, which has
a symplectic filling .W; !/. Assume further that M contains a maximally foliated
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submanifold F , with an elliptic singular set, and let S be one component of this set.
To simplify the calculation, we want to find some standard form for the neighborhood
of the singular set S .

Proposition 4 There is a small neighborhood of the singular set S � F in M that is
contactomorphic to a neighborhood of f0g �S in the contact manifold�

D3
�T �S; dzC

1

2
.x dy �y dx/C�can

�
;

where .x;y; z/ are the coordinates on the 3–ball, and �can D�p � dqD�
P

j pj dqj

is the canonical 1–form on T �S . In this neighborhood, the maximally foliated sub-
manifold F lies in the set

˚
.x;y; 0I �0.s//

	
, where �0 denotes the zero-section in

T �S .

Proof By our definition of an elliptic singular set, we find a neighborhood around
S inside F that can be written as f.wI s/ 2 C�Sg, and the restriction of the contact
form is equal to

˛jTF D
1

2

�
x dy �y dx

�
;

with w D xC iy .

Choose now a d˛–compatible complex structure J on �D ker˛ . Note that the tangent
space of Sw0

WD fw0g �S for any fixed w0 2 C lies in the contact structure � , and
secondly that J � TSw0

is transverse to F , because if there was a nonzero vector
X 2 TSw0

such that JX 2 TF , then

0¤ d˛.X;JX /D dx ^ dy.X;JX /D 0;

which is a contradiction. Hence it follows that

J � .TSw0
/\TF D f0g:

Similarly, since the Reeb field XReeb is transverse to the contact structure � , it follows
in particular that XReeb is transverse both to J � .TSw0

/, and (at least close to the
singular set S ) to the maximally foliated submanifold F , because TF � � on S .

Choose now a metric g on M such that J �.TSw0
/?F , XReeb?F , and kXReebkD 1.

This gives an identification for the normal bundle

�F Š hXReebi˚J � .TSw0
/;
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which can be combined with the map

hXReebi˚J � .TSw0
/! R3

�T �S

.x;y;qI z �XReebCJ Pq/ 7! .x;y; zIq;g. Pq; �//:

By using the exponential map as in the proof of the tubular neighborhood theorem, one
gets a diffeomorphism from a neighborhood of f0g�S in R3�T �S to a neighborhood
of the singular set S in M such that E WD f.x;y; 0I �0.S/g is mapped into the
submanifold F .

The pullback of the contact form evaluates in this model on E to

˛jE D dzC
1

2
.x dy �y dx/;

because @z is equal to the Reeb field, and the restriction of ˛ to F is equal to the
second term. The q– and p–directions lie at every point of E in the contact structure.
The 2–form d˛ is written on E as

d˛jE D dx ^ dyC dq^ dpCRest;

where “Rest” are terms pairing dx and dy with p–coordinates.

In the final step, we use now an improved version of the Moser trick (as explained for
example in Geiges [5, Theorem 2.24]) to find a vector field Xt that isotopes the contact
form given into the desired one dzC 1

2
.x dy � y dx/C �can . Let ˛t , t 2 Œ0; 1�, be

the linear interpolation between both 1–forms. Assume there is an isotopy  t defined
around S such that  �t ˛t D ˛0 . The field Xt generating this isotopy satisfies the
equation

LXt
˛t C P̨ t D 0:

By writing Xt DHt Rt CYt , where Ht is a smooth function, Rt is the Reeb vector
field of ˛t , and Yt 2 ker˛t , we obtain plugging then Rt into the equation above

dHt .Rt /D� P̨ t .Rt /:

The vector field Yt is completely determined by Ht , because Yt satisfies the equations

�Yt
˛t D 0;

�Yt
d˛t D�dHt � P̨ t ;

hence it suffices to find a suitable function Ht . Consider the 1–parameter family of
Reeb fields Rt as a single vector field on the manifold Œ0; 1��

�
R3 �T �S

�
. Since Rt

is transverse to the submanifold N WD Œ0; 1��
�
R2 � f0g �T �S

�
along Œ0; 1��E , it is

possible to define a solution Ht to dHt .Rt /D� P̨ t .Rt /, such that Ht jN � 0. In fact,
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because P̨ jE D 0, it follows that dHt jE D 0, and so the vector field Xt DHt RtCYt

vanishes on E . Hence Xt can be integrated on a small neighborhood of E , and E is
not moved under the flow, which finishes the proof of the proposition.

We can easily choose a compatible almost complex structure J on the symplectization�
W D R� .D3

�T �S/; ! D d
�
et .dzC

1

2
.x dy �y dx/C�can/

��
;

by observing that the Reeb field is given by XReeb D e�t@z , and that the kernel
of ˛ is spanned by @x C

y
2
@z , @y �

x
2
@z , and the vectors X � �can.X / @z for all

X 2 T .T �S/. Choose a metric g on S , and let J0 be the almost complex structure
on T �S constructed in Appendix B that is compatible with d�can .

With this, we can define a J on W by J@t DXReeb , JXReebD�@t , J.@xC
y
2
@z/D

@y�
x
2
@z , J.@y�

x
2
@z/D�@x�

y
2
@z , and J.X��can.X / @z/DJ0X��can.J0X / @z .

The last equation can also be written as JX D J0X � et �can.X / @t ��can.J0X / @z .

As a matrix, the complex structure J takes the form:

J.t Ix;y; zIq;p/D

0BBBB@
0 y

2
et �

x
2

et �et �et �can

0 0 �1 0 0

0 1 0 0 0

e�t �
x
2
�

y
2

0 ��can ıJ0

0 0 0 0 J0

1CCCCA
Note that the last row and column represent linear maps from or to T .T �S/. A lengthy
computation (which becomes very easy on the singular set S ) shows that this structure
is compatible with ! .

Proposition 5 The almost complex manifold .W;J / can be mapped with a biholo-
morphism to

.C2
�T �S; i ˚J0/:

Proof The desired biholomorphism is

ˆ.t;x;y; zIq;p/D .zt ; zx; zy; zzI zq; zp/D
�
� e�t

�
x2Cy2

4
�F;x;y; zIq;p

�
;

with the function

F W T �M ! R; .q;p/ 7!
kpk2

2
:
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It brings J into standard form with respect to the coordinate pairs .zx; zy/, .zt ; zz/. More
explicitly, by pulling back J under the inverse of ˆ

ˆ�1.zt ; zx; zy; zzI zq; zp/D .t;x;y; zIq;p/D
�
� ln.�zt �

zx2C zy2

4
�F /; zx; zy; zzI zq; zp

�
;

ie by computing Dˆ �J �Dˆ�1 , we obtain the matrix

Dˆ �J �Dˆ�1
D

0BBBB@
0 0 0 �1 ��can� dF ıJ0

0 0 �1 0 0

0 1 0 0 0

1 0 0 0 dF ��can ıJ0

0 0 0 0 J0

1CCCCA ;

and since, according to Appendix B, dF ıJ0 D��can , this gives the desired normal
form.

As just proved, the neighborhood of the singular set S in W can be regarded as
C2 �T �S D f.w1; w2Iq;p/g with the almost complex structure i ˚J0 . The contact
manifold M is given in this model by the setn

.w1; w2Iq;p/ 2 C2
�T �S

ˇ̌̌
Rew1 D�

1

4
jw2j

2
�

1

2
kpk2

o
:

The contact manifold is thus a hypersurface, represented by a graph, which is curved
downward by the distance from the singular set (Figure 6). By using the form of
a maximally foliated submanifold F found in Proposition 4, one can write F in a
neighborhood of its singular set as the graph

C�S ! C2
�T �S

.w;q/ 7!
�
�

1

4
jwj2; wIq; 0

�
:

3.2 Explicit solutions for the Cauchy–Riemann operator

With the local form obtained in the section above for elliptic singularities, it is very easy
to write down explicitly a family of holomorphic disks with boundary on the maximally
foliated submanifold F . We will then show that no other simple J –holomorphic
curves, which can be capped off with a disk that lies in F , can enter this neighborhood.
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S

F

Imw1

M
Rew1

.w2;p/

Figure 6: The contact manifold M DfRew1D�
1
2
jw2j

2
�

1
4
kpk2g appears

in the standard neighborhood of S like a parabola curved downwards in half
of the directions.

Let in this section denote .W; !/ again a 2n–dimensional symplectic filling of .M; ˛/,
and let U be the neighborhood of S

U D
n
.z1; z2Iq;p/ 2 C2

�T �S
ˇ̌̌
�C < Re z1 � 0; �C < Im z1 < C;

Re z1C
1

4
jz2j

2
C

1

2
kpk2 � 0

o
�W

for C > 0 small enough (U is the half-space below the parabola in Figure 7).

Proposition 6 Let us consider the set of J –holomorphic curves f W †!W whose
boundary sits on the maximally foliated submanifold F . Among those, the disks

ut0;q0
WD2
! C2

�T �S

z 7! .�t0; 2
p

t0 zIq0; 0/;

for fixed q0 2 S , and t0 2 R>0 are (up to reparametrization) the only simple curves
that are completely contained in the neighborhood U of the singular set S just defined.

Proof That the maps ut0;q0
are really J –holomorphic disks is obvious, and that they

sit on F can also be checked very easily.

Assume now, there was a holomorphic curve uW †! W different from any of the
solutions ut0;q0

. If @† D ∅, then u has to be constant, because ! is exact in the
considered neighborhood. Note that the projections �1 and �2 of C2 � T �S onto
C2 or onto T �S can be concatenated with the map u to provide easier holomorphic
curves. In particular, it follows that u2 WD �2 ı uW †! T �S is a J0 –holomorphic
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curve, whose boundary sits on the zero-section of the cotangent bundle. The energy of
u2 is given by

E.u2/D

Z
u2

d�can D

Z
†

u�2d�can D

Z
@†

u�2�can D 0:

Hence it follows that u2 D �2 ıu� q0 is a constant curve.

The other component �1 ıu of the holomorphic curve can be written as two ordinary
holomorphic functions

.f1; f2/ WD �1 ıu:

The first function f1W †!C has vanishing imaginary part on all boundary components,
and hence it has vanishing imaginary part everywhere. As a consequence, it follows
that the real part of f1 is constant, as can be seen by using the Cauchy–Riemann
equations, and deleting the vanishing imaginary part.

So far, we have shown that any solution is of the form z 7! .�t0; f2.z/Iq0; 0/, where
f2W †!C is a holomorphic function, such that

ˇ̌
f2

ˇ̌
@†

ˇ̌2
� 4t0 . Assume for simplicity

that t0 D 1=4, then with the maximum principle it follows that f2.†/� D2 .

For any p 2 int†, there exist holomorphic charts around p and f2.p/ such that f2

takes the form w 7! wk , but if k ¤ 1, then f2 is locally a branched covering, and
u cannot be simple. It follows that f2 does not have any critical points, and so it is
a local injective diffeomorphism in the interior of †. In particular, † has only one
boundary component, and has to be a disk D2 .

hwWD
2
! D2The map

z 7!
z�w

1� xwz

is a biholomorphism on D2 , that maps w 2 D2 to 0. If we set w D f2.0/, then the
concatenation H1 WD hw ıf2 is a holomorphic map from the unit disk to itself, such
that H1.0/D 0. The winding number of H1jS1 is still 1.

Define now a function H2.z/ WD H1.z/=z , this map is holomorphic on D2 � f0g,
and can be continuously extended to 0 by setting H2.0/ WDH 0

1
.0/. This extension

is also holomorphic. Furthermore, H2.S
1/� S1 , and by the maximum principle

H2.D
2/ � D2 . The winding number of H2jS1 is zero, and hence it follows that

@'H2.e
i'/ vanishes for some angle '0 . With the Cauchy–Riemann equation it follows

that @r H2.e
i'/D 0, because

@'H2 D .x @y �y @x/ .Re H2C i Im H2/D i @r H2:
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In particular it follows that the function jH2j
2 has vanishing derivative at ei'0 , but

this contradicts the boundary point lemma [6, Lemma 3.4], and hence H2 � const and
H1.z/D ei#0z .

The next remark allows us to apply Proposition 7 in our situation.

Remark 10 Any J –holomorphic disk u that lies in the moduli space of curves
starting at a Bishop family, can be capped off by a (topological) disk that is completely
contained in the maximally foliated submanifold F .

Proposition 7 The only nontrivial holomorphic curves intersecting the neighbor-
hood U that can be capped off by attaching disks lying in the maximally foliated
submanifold F are the curves ut0;q0

(and their multiple covers) defined in Proposition 6.

Proof Suppose first that the restriction uju�1.U / of the curve u has constant .Im z1/–
coordinate on one component of u�1.U /. Then the whole curve u is contained in U ,
because with the Cauchy–Riemann equation, it follows already that z1 is constant on
this component of u�1.U /. If u approaches the boundary of the neighborhood U , then
either the p– or the z2 –coordinate have to grow, but as soon as Re z1C

1
4
jz2j

2
C

1
2
kpk2

vanishes, u touches the contact manifold M , so that u is trapped by the hypersurface
M inside U .

By Proposition 6, this means that the only nontrivial holomorphic curves u intersecting
the neighborhood U , having constant .Im z1/–coordinate on a component of u�1.U /,
are the disks ut0;q0

given above (and their multiple covers).

Assume now that a curve u enters U , but does not have constant .Im z1/–coordinate.
To disprove the existence of u, we will use an intersection argument similar to the
classical one in dimension 4.

Consider for every c D cxC icy 2 C the submanifold (as drawn in Figure 7)

Ac WD

�˚
xC icy 2 C

ˇ̌
x � cxg �C�T �S

�
\U:

Such an Ac is the codimension 1 submanifold in U obtained by taking a slice with
constant imaginary z1 –coordinate and chopping off everything having smaller real
z1 –coordinate than cx . The boundary of Ac is composed by two smooth manifolds:
one of them is

Bc WD

�˚
cg �C�T �S

�
\U

which is a compact J –holomorphic codimension 2 submanifold. Note that U is
foliated by the Bc for different values of c 2 C.
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The second part of the boundary is given by the set Ac \M . Since the boundary is
convex, holomorphic curves can only touch Ac \M at their own boundary, but since
the boundary of the holomorphic curves u we are considering, lies in F , u will never
intersect Ac \M if cy ¤ 0.

Thus, we have obtained a (nonsmooth) closed manifold bB c D @Ac , that represents the
trivial homology class in H2n�2.W /, and which allows us to compute the intersection
number with holomorphic curves.

S

F

Im z1

M

Re z1

Bc

Ac

Figure 7: The neighborhood U of the singular set is foliated by J –
holomorphic codimension 2 submanifolds Bc , which represent one part
of the boundary of the slices Ac . This gives rise to an intersection argument.

Let u be now any holomorphic curve that passes through the model neighborhood U ,
and whose boundary lies on the maximally foliated submanifold F . Assume u can be
capped off by attaching a disk in F , and denote u together with its attached disk by bu .

If u has nonconstant imaginary z2 –coordinate in the model neighborhood U , then
there is (by Sard’s Theorem) a submanifold Bc (with Im c ¤ 0) that intersects u

transversally at a discrete set of points. The two homology classes Œbu � and ŒbB c � have
positive intersection number, because the only intersections between both classes lie in
the subset, where both are represented by J –holomorphic submanifolds. But a positive
intersection number is not possible, since ŒbB c � represents the trivial homology class in
H2n�2.W /.

3.3 Expected dimension for the bishop family

The expected dimension for the solution space of the Cauchy–Riemann operator at a
holomorphic disk u, whose boundary lies on a totally real submanifold F , is given by
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the formula (see McDuff and Salamon [10, Theorem C.1.10])

index x@J D
dim W

2
C�.u�T W;u�TF /;

where we have used that the Euler characteristic of a disk is �.D2/ D 1. Here
�.EC;ER/ denotes the Maslov index of a complex vector bundle EC over a disk
D2 with respect to a totally real subbundle ER � ECjS1 over the boundary of D2 .

To obtain the expected dimension of the moduli space, we have to subtract 2, which
corresponds to the dimension of the automorphism group of the holomorphic unit disk
with one marked point on the boundary.

Proposition 8 The Maslov index �.u�T W;u�TF / is equal to 2 for any of the
holomorphic disks

uWD2 ,! C2
�T �S

z 7! .�t0; 2
p

t0 zIq0; 0/

given in Proposition 6 above.

Proof We can trivialize u�T W by choosing the obvious complex basis

u�T W D h@x1
; @x2

; @q1 ; : : : ; @qniC:

The totally real subbundle at the boundary of u.ei'/ is spanned by the vectors

.uj@D2/
� TF D h@x2

�
p

t0 cos' @x1
; @y2
�
p

t0 sin' @x1
; @q1 ; : : : ; @qniR:

This subbundle can be represented at a point .�t0; 2
p

t0 ei' Iq0/ 2 F by the matrix

ƒ.ei'/D

0@�pt0 cos' �
p

t0 sin' 0

1 i 0

0 0 1

1A
with respect to the complex basis of u�T W . It follows that the Maslov index
�.u�T W;u�TF / is given by

�.u�T W;u�TF /D deg
detƒ2

detƒ�ƒ
D deg

�t0 .cos2 ' � sin2 'C 2i sin' cos'/
t0

D deg.�e2i'/D 2:

The expected dimension of the moduli space MDM.C2 �T �S; z0/ is thus

dimMD
dim W

2
C 2� 2D

dim W

2
;
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which means that the family of solutions, we have found above are locally all solutions,
if the Cauchy–Riemann operator for the given J is regular. That this is indeed the case
will be shown below.

3.4 Surjectivity of the linearized Cauchy–Riemann operator

In this section, we will show that the linearized Cauchy–Riemann operator x@J at any
of the curves ut0;q0

from Proposition 6 is surjective. Since we have shown that these
disks are the only holomorphic curves contained in our model neighborhood, we can
apply [10, Remark 3.2.3]. Thus it will be enough to perturb J outside the model
neighborhood to obtain a regular Cauchy–Riemann operator for the whole moduli
space.

Proposition 9 The linearized Cauchy–Riemann operator Du
x@J is surjective at any of

the disks uD ut0;q0
specified in Proposition 6.

Proof Instead of checking that Du
x@J is surjective, we will compute the dimension of

its kernel, and see that it coincides with the index of the operator. It then follows that
the cokernel must be trivial.

Write again W for the neighborhood C2 � T �S , and let v C iw be the standard
coordinates on the disk. The linearized Cauchy–Riemann operator at a disk uW D2!W

is given by

.Du
x@J / PuD

@ Pu

@v
CJ.u/

@ Pu

@w
C

�
d

ds

ˇ̌̌̌
sD0

J.uC s Pu/

�
@u

@w
;

where Pu denotes a section of u�T W , which restricts to a section of u�TF along the
boundary of D2 . To compute the kernel, we have to find all solutions Pu of the equation
.Du
x@J / PuD 0.

Note that the linearized Cauchy–Riemann equation simplifies to

@ Pu

@v
CJ.u/

@ Pu

@w
D 0;

because the derivative of the almost complex structure can be dropped: for the C2

part, this is obvious, because the complex structure is constant; for the T �S part, this
follows, because we multiply with @wu, which vanishes in the cotangent bundle for
any of the curves uD ut0;q0

from Proposition 6.
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Take a canonical chart f.z1; z2Iq;p/g in W containing the disk u, and use this to
express Pu as

PuWD2
! C2

�R2n�4

vC iw 7! .Pz1; Pz2I Pq; Pp/:

The boundary conditions give Im.Pz1/jS1 � 0, Re.Pz1/jS1 D
1
4

�
z2
xPz2 C xz2 Pz2

�
and

PpjS1 � 0.

The linearized Cauchy–Riemann equation decomposes into two independent equations,
one on C2 , and one on T �S . We will first analyze the part on T �S . The holomorphic
disk at which we are linearizing is just the constant map .q0; 0/ 2 T �S . We can
assume the chart .q1; : : : ; qn�2;p1; : : : ;pn�2/ to be induced by a geodesic normal
chart .q1; : : : ; qn�2/ around q0 2 S . The explicit form of J0 in such a chart can be
found in the proof of Theorem 13 in Appendix B. The linearized Cauchy–Riemann
equation becomes

@ Pq
@v
�
@ Pp
@w
D 0 and

@ Pp
@v
C
@ Pq
@w
D 0:

This gives rise to the equation � Pp D 0, which in turn together with the boundary
condition implies that Pp� 0. By plugging this into the Cauchy–Riemann equation, it
finally follows that Pq� const. That means we find n� 2 degrees of freedom from the
T �S part.

The equation for z1 is the standard Cauchy–Riemann equation, ie

@Pz1

@v
C i

@Pz1

@w
D 0;

or split into real part and imaginary part (with Pz1 D Px1C i Py1 )

@ Px1

@v
�
@ Py1

@w
D 0 and

@ Py1

@v
C
@ Px1

@w
D 0:

Combining these equations, we obtain � Py1 � 0, and together with the boundary
condition, it follows that Py1 � 0. Using this result again in the linearized Cauchy–
Riemann equation, we obtain Px1 � const.

The function Pz2 is a holomorphic function on the unit disk, ie we can write Pz2 down
as a power series

Pz2.vC iw/ W D

1X
kD0

ak .vC iw/k ;

Algebraic & Geometric Topology, Volume 6 (2006)



The plastikstufe – a generalization of the overtwisted disk 2495

or when restricted to the boundary S1 D fei'g and assuming that ak D bk C ick ,

Pz2.e
i'/ W D

1X
kD0

.bk C ick/ eik' :

The function Pz1 � const was coupled to Pz2 by the boundary condition

Pz1jS1 D
1

4

�
z2
xPz2Cxz2 Pz2

�ˇ̌̌
S1
;

and by using that z2 D
p

t0 .vC iw/ (after a reparametrization), it follows that

const� e�i'
1X

kD0

.bk C ick/ eik'
C ei'

1X
kD0

.bk � ick/ e�ik'

D

1X
kD0

.bk C ick/ ei .k�1/ '
C

1X
kD0

.bk � ick/ e�i .k�1/ '

D

1X
kD�1

.bkC1C ickC1/ eik'
C

1X
kD�1

.bkC1� ickC1/ e�ik'

D 2

1X
kD�1

bkC1 cos k' � 2

1X
kD�1

ckC1 sin k'

D 2b1� 2c1C 2 .b0C b2/ cos'C 2 .c0� c2/ sin'

C 2

1X
kD2

�
bkC1 cos k' � ckC1 sin k'

�
:

And hence the coefficients a0 and a1 can be chosen arbitrarily, a2 D �xa0 , and
a3Da4D : : :D0 must all vanish. The function Pz2 is thus given by Pz2Da0Ca1z�xa0z2 ,
and so the C2 part contributes a 4–dimensional kernel to the linearized Cauchy–
Riemann operator.

Since both parts are independent, the dimension of the kernel of the linearized Cauchy–
Riemann operator is equal to 4Cdim SDdim W =2C2, which is equal to the Fredholm
index, as we wanted to show.

4 Bubbling off analysis

The moduli spaces of holomorphic disks, whose boundary lies on a compact totally
real submanifold, and which have a uniform energy bound, are compact, provided
one includes two different types of bubbling: the curves can either form a bubble at
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their boundary or a bubble in their interior. Though a maximally foliated submanifold
F with elliptic singularities is not compact, if one removes the singularities (or not
totally real, if one does not remove the singularities), we still have compactness for the
moduli spaces coming from Bishop families, because we have proved in Proposition 7
that elliptic singularities have a small neighborhood, which blocks out every curve
with exception of a Bishop family. This confines the movement of all other disks to
a compact totally real submanifold. But first, we will show that the energy for every
curve of the moduli space is bounded.

Proposition 10 Let .M 2n�1; ˛/ be a closed contact manifold that has a symplectic
filling .W; !/. Assume that M contains a plastikstufe PS.S/. Let uW .D2;S1/!

.W;PS.S// be a holomorphic disk that lies in the same moduli space as the Bishop
family found in Proposition 6.

There is a constant C , which only depends on ˛jTPS.S/ that bounds the energy

E.u/D

Z
u

!

of any such disk.

Proof The disk u is in .W;PS.S// homotopic to a point, hence the energy E.u/ of
u can be obtained by

E.u/D

Z
u

! D

Z
@u

˛:

Let now P denote the submanifold PS.S/� .S [ @PS.S//, ie the plastikstufe with
its boundary and the interior singularity removed. Note that the standard leaves of the
foliation of PS.S/ can be labeled bijectively with elements ei' 2S1 , and in fact there
is a smooth surjective map

# WP ! S1;

such that #.p/ D #.q/ if and only if, p and q lie on the same leaf of the foliation.
The differential d# can be regarded as a 1–form on P . Note that there is a unique
smooth function f W P ! R>0 such that

˛ D f d#;

because the kernel of both 1–forms agree on P .

The boundary of every holomorphic disk u in our moduli space is transverse to the
foliation, because if the tangent direction of u at a boundary point z 2 @D2 lay in
ker˛ , then by our definition of J the whole tangent space Tu.z/u would be tangent to
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M . But this contradicts Corollary 3, and hence it follows that # ı ujS1 makes exactly
one turn, or expressed in a different way,Z

@u

d# D 2�:

For every point p0 on @PS.S/, we find a chart U �R�0�RN�1 (N WD dimPS.S/)
mapping p0 to 0 such that the intersection of the leaves with U is given by the planes

Fx D

�
fxg �RN�1

�
\U;

for x � 0, and F0 corresponds to the boundary @PS.S/\U . The local picture alone
does not allow us to see, which two sheets are contained in the same leaf (see Figure 8),
but since the leaves in P approach the boundary of the plastikstufe asymptotically, it
follows that for every leaf, there is a monotonous sequence ak converging to 0 such
that all Fak

lie in the same global leaf (and such that every other hyperplane Fb lies
in another leaf).

R

RN�1p0

Fx2

Fx3

Fx1

Figure 8: In a neighborhood of a point p0 2 PS.S/ , the leaves can be
represented by horizontal hyperplanes Fx . The global shape of the foliation
in P connects certain Fx .

Since @PS.S/ is compact, we can cover the whole boundary of the plastikstufe by
using only a finite number of such charts fU1; : : : ;Un0

g, n0 2 N. On each chart Uk ,
˛ can be written as gk dx1 , where gk W Uk ! R is a smooth function. In particular,
jgk j is bounded by a number ck .
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For any smooth path 
 in Uk connecting Fa with Fb crossing each leaf transversely
in increasing direction, we can estimate the integral byZ




˛ � ck jb� aj:

The intersection @u\Uk , where @u is the boundary of a J –holomorphic disk, gives a
collection of paths 
j � Uk . But since @u crosses every global leaf in the plastikstufe
once, we can order the segments of paths in such a way that the end point of 
j lies on
Fbj

, and the segment 
jC1 starts on FajC1
with bj < ajC1 . Hence the total estimate

gives Z
@u\Uk

D

X
j

Z

j

˛ � ck

X
j

ˇ̌
bj � aj

ˇ̌
< ckLk ;

where Lk is the length of Uk in x1 –direction.

Finally cover now the whole plastikstufe with sets fK;U1; : : : ;Un0
g, where K is a

compact set that never touches the boundary of the plastikstufe.

The energy of a holomorphic disk u in our moduli space with boundary @u can now
be bounded by a number C in the following way:

E.u/D

Z
@u

˛ �

Z
@u\K

˛C

n0X
kD1

Z
@u\Uk

˛ �

Z
@u\K

˛C

n0X
kD1

ckLk :

The energy of the segments of @u contained in K can be estimated byZ
@u\K

˛ D

Z
@u\K

f d# � sup
p2K

f .p/

Z
@u\K

d# � 2� sup
p2K

f .p/:

By setting C WD 2� supK f C
Pn0

kD1
ckLk , we obtain a uniform estimate for all disks

in our moduli space.

Proposition 11 Let .M 2n�1; ˛/ be a closed contact manifold that has a symplectic
filling .W; !/, and assume that M contains a plastikstufe PS.S/.

Let uk W D2 ! W be a sequence of holomorphic disks, whose boundary lies in the
plastikstufe with fixed linking number lk.@uk ;S/D 1. The sequence uk has a subse-
quence that converges either to a constant map, whose image lies in the singular set S ,
or to a simple smooth holomorphic disk and a finite number of bubble spheres.

Proof Assume first, there was a subsequence of disks
�
ukl

�
l

coming arbitrarily close
to the singular set. By Proposition 7, it follows that for kl sufficiently large, the disks
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ukl
lie in the Bishop family, and then

�
ukl

�
l

has a further subsequence that converges
to a point of S .

If all the disks stay at a finite distance C > 0 from S , then the boundary of all disks
is contained in a compact subset of a totally real submanifold, and hence by Gromov
compactness, there is a subsequence

�
ukl

�
l

that converges to a bubbled curve.

One possible type of bubbles that could occur, are disks growing at the boundary of
the family

�
ukl

�
l
. Let

# WPS.S/� .S [ @PS.S//! S1

be the function already defined in the proof of Proposition 10. Since the boundary
of every disk uk is transverse to the foliation, and the linking number is 1, we can
define smooth bijective maps fk WD # ı uk jS1 W @D2! S1 . The sequence

�
ukl

�
l

converges to a continuous map u1W D2!W in C 0 –norm, and
�
fkl

�
l

converges then
to f1 WD # ı u1jS1 . The map f1 is continuous, monotonous, and has degree 1. It
follows that the only way to split u1 into subbubbles is by assuming that one of the
bubbles is constant at its boundary, which also implies by the same energy argument as
above that the bubble is constant.

This means that the only type of bubbling, which is allowed, is bubbling in the interior
of the disk. In this situation, all the bubbles are spherical. The base of the bubble tree
is a simple disk u0 , because the restriction to the boundary of u0 is by the argument
above injective.

Definition Let A be a subset of a manifold M . We say that A has at most dimension
n, if there is an n–dimensional manifold X (with finite amount of components) and a
smooth map f W X !M with closed image such that A� f .X /.

Remark 11 To apply the general theory of moduli spaces of J –holomorphic curves,
we always assume regularity of the Cauchy–Riemann operator for every curve in
M.W;PS.S/; z0/ and for all the bubble trees considered in the proof of the next
proposition. Below we will briefly sketch the argument, why this is indeed possible.

The almost complex structure J on W is first defined only in a neighborhood of the
singular set S of PS.S/ as explained in Section 3.4. In this neighborhood, regularity
works as proved for M.W;PS.S/; z0/ and since no holomorphic spheres can enter
the domain, no problem occurs.

In a second step J is extended to a small collar neighborhood of M , such that J is
compatible with the convex boundary as defined in Section 0. Again holomorphic

Algebraic & Geometric Topology, Volume 6 (2006)



2500 Klaus Niederkrüger

spheres pose no problem, and since all holomorphic disks in our moduli space are
simple, by perturbing J , one can achieve regularity for all disks contained in the collar.

In the last step, J is finally extended over the rest of the symplectic manifold W , now
only requiring that J is compatible with ! . For disks, one could suspect a difficulty,
because the boundary part of the disk lies in the collar where J has already been
defined, but [10, Remark 3.2.3] tells us that, regularity for these curves can be achieved
even by perturbing J only in the interior of W . For the bubble trees, we also obtain
by perturbations of J regularity as explained in [10].

Proposition 12 To compactify the moduli space M.W;PS.S/; z0/, one has to add
bubbled curves. The image of these bubbled curves under the evaluation map evz0

has
at most dimension n� 2, where dim W D 2n.

Proof The standard way to treat bubbled curves consists in considering them as
elements in a bubble tree: here such a tree is composed by a simple holomorphic disk
u0W .D

2;S1/! .W;PS.S// and holomorphic spheres u1; : : : ;uk0 W S2!W . These
holomorphic curves are connected to each other in a certain way. We formalize this
relation by saying that the holomorphic curves are vertices in a tree, ie in a connected
graph without cycles. We denote the edges of this graph by fui ;uj g, 0� i < j � k 0 .

Now we assign to any edge two nodal points zij and zji , the first one in the domain
of the bubble ui , the other one in the domain of uj , and we require that evzij

.ui/D

evzj i
.uj /. For technical reasons, we also require nodal points on each holomorphic

curve to be pairwise distinct. To include into the theory, trees with more than one
bubble connected at the same point to a holomorphic curve, we add “ghost bubbles”.
These are constant holomorphic spheres inserted at the point where several bubbles are
joined to a single curve. Now all the links at that point are opened and reattached at
the ghost bubble. Ghost bubbles are the only constant holomorphic spheres we allow
in a bubble tree.

The aim is to give a manifold structure to these bubble trees. Unfortunately this is in
general not always possible, because already for a single sphere, one can only obtain
regularity of the Cauchy–Riemann operator, if the sphere is simple.

Instead, we note that the image of every bubble tree is equal to the image of a simple
bubble tree, that means, to a tree, where every holomorphic sphere is simple and any
two spheres have different image. Since we are only interested in the image of the
evaluation map on the bubble trees, it is for our purposes equivalent to consider the
simple bubble tree instead of the original one. The disk u0 is always simple, and does
not need to be replaced by another simple curve.
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Let u0;u1; : : : ;uk0 be the holomorphic curves composing the original bubble tree, and
let Ai 2 H2.W / be the homology class represented by the holomorphic sphere ui .
The simple tree is composed by u0; v1; : : : ; vk such that for every uj there is a bubble
sphere vij with

uj .S
2/D vij .S

2/

and in particular Aj Dmj Bij , where Bij D Œvij � 2H2.W / and mj � 1 is an integer.
Denote the sum

Pk0

jD1 Aj by A and the sum
Pk

iD1 Bi by B . Below we will now
compute the dimension of this simple bubble tree.

The initial bubble tree u0;u1; : : : ;uk0 is the limit of a sequence in the moduli space
M.W;PS.S/; z0/. Hence the connected sum u1 WD u0] : : : ]uk0 is, as element of
�2.W;PS.S//, homotopic to a disk u in the bishop family, and the Maslov indices

�.u/ WD �.u�T W;u�TPS.S// and �.u1/ WD �.u
�
1T W;u�1TPS.S//

have to be equal. By Proposition 8 and standard rules for the Maslov index, we obtain

2D �.u/D �.u1/D �.u0/C

k0X
jD1

2c1.Œuj �/D �.u0/C 2c1.A/:

The dimension of the unconnected set of holomorphic curves

MŒu0�.W;PS.S/; z0/�

kY
jD1

MBj
.W /

for the simple bubble tree is

�
nC�.u0/

�
C

kX
jD1

2
�
nC c1.Bj /

�
D nC 2� 2c1.A/C 2nkC

kX
jD1

2c1.Bj /

D nC 2C 2nkC 2
�
c1.B/� c1.A/

�
:

In the next step, we want to consider the subset of connected bubbles, ie we choose
a total of k pairs of nodal points, which then have to be pairwise equal under the
evaluation map. The nodal points span a manifold

Z.2k/�
˚
.1; : : : ; 2k/! D2 P[S2 P[ : : : P[S2
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of dimension 4k . The dimension reduction comes from requiring that the evaluation
map

evWMŒu0�.W;PS.S/; z0/�

kY
jD1

MBj
.W /�Z.2k/!W 2k

sends pairs of nodal points to the same image in the symplectic manifold. By regularity
and transversality of the evaluation map to the diagonal submanifold 4.k/ ,!W 2k ,
the dimension of the space of holomorphic curves is reduced by the codimension of
4.k/, which is 2nk .

As a last step, we have to take the quotient by the automorphism group to obtain the
moduli space. The dimension of the automorphism group is 6k C 2 (the last term
corresponds to the automorphism group of the holomorphic disk with one marked point
on its boundary). Hence the dimension of the total moduli space is

nC 2C 2nkC 2
�
c1.B/� c1.A/

�
C 4k � 2nk � .6kC 2/

D n� 2kC 2
�
c1.B/� c1.A/

�
� n� 2k:

The inequality holds because by the assumption of semipositivity, all the Chern
classes are nonnegative on holomorphic spheres, and all coefficients nj in the dif-
ference c1.B/� c1.A/ D

P
j c1.Bj /�

P
i c1.Ai/ D

P
j c1.Bj /�

P
i mic1.Bji

/ DP
j nj c1.Bj / are nonpositive integers.

5 Applications

5.1 Exotic contact structures on R2n�1

A contact structure on R2n�1 containing a plastikstufe is obviously exotic, because
it cannot embed into the standard sphere .S2n�1; ˛0/. This application is due to
Chekanov and Gromov [8, 2.4.D0

2
.(c)].

Instead of using the most general setup, we will just give one example. Bates and
Peschke [1] have constructed an exotic symplectic structure ! D �d� (see also
[9, Example 13.8]) on R4 that contains a Lagrangian torus T2 such that �jT2 � 0. Let
˛� be an overtwisted contact structure on R3 . Then�

R7
D R3

�R4; ˛�C�
�

is an exotic contact structure, because it contains the plastikstufe PS.T2/. To the
author’s knowledge, there is until now, no other way to distinguishing these contact
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structures from the standard one: classical invariants fail to do so, and contact homology
on open manifolds has not yet been rigorously developed.

Other examples of exotic contact structures on R2n�1 were known before (eg Muller
shows that the symplectization of an exotic R5 she constructs, contains a Lagrangian
sphere [11]), but with the plastikstufe it is easy to construct examples in any dimension
(embed the neighborhood of a plastikstufe into R2n�1 , and use the h–principle to
extend the contact structure over the whole Euclidean space).

5.2 Filling with holomorphic curves in higher dimensions

In this section, we will apply the ideas in the proof of Theorem 1 to an example not
directly related to the plastikstufe. This example can be seen as a generalization of
[8, 2.4.D0

1
] to higher dimensions, and the main difficulty consists again in finding a

replacement for positivity of intersections.

Consider a closed contact .2n� 1/–manifold .M; ˛/, which is the convex boundary
of a semipositive symplectic manifold .W; !/. Any Darboux chart U �M contains
subsets contactomorphic to S2n�1�f.0; : : : ; 0; 1/g with the standard contact form

˛0 D

nX
jD1

�
xj dyj �yj dxj

�
;

where zj D xj C iyj are complex coordinates of Cn , and S2n�1 is embedded in the
standard way into Cn . Note that the canonical SO.n/–action on Cn (ie the one by
matrix multiplication) restricts to the sphere and leaves ˛0 invariant.

Let Pt0
be the 3–plane

Pt0
D
˚
.xC iy; zC i t0; 0; : : : ; 0/

ˇ̌
x;y; z 2 R

	
:

Denote the intersection Pt0
\ S2n�1 by S2

t0
. It is a 2–sphere (if t0 2 .�1; 1/),

and the foliation induced by ˛0 has only two singularities, at the north pole N D

.0;
p

1� t2
0
C i t0; 0; : : : ; 0/ and the south pole S D .0;�

p
1� t2

0
C i t0; 0; : : : ; 0/.

Every leaf circles down from N to S .

Now we consider the flow-out Ft0
WD SO.n� 1/ �S2

t0
obtained by taking the set of all

SO.n� 1/–orbits, where we use the embedding

SO.n� 1/ ,! SO.n/

A 7!

�
1 0

0 A

�
:
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Each orbit is diffeomorphic to an .n� 2/–sphere Sn�2 Š SO.n� 1/=SO.n� 2/, and
lies inside the contact structure ker˛0 . Hence it follows that Ft0

Š S2 �Sn�2 is a
maximally foliated submanifold, with the two elliptic singularities fSg �Sn�2 and
fN g�Sn�2 . The regular leaves connect the upper singularity with the lower one. We
just have shown that we can find such a maximally foliated submanifold Ft0

in any
Darboux chart.

By choosing now the almost complex structure from Section 3 around both elliptic
singularities, and extending this to a generic !–compatible structure on W , we obtain
around each of the poles of the sphere a Bishop family, and the aim will be to show
that in fact the upper and lower family lie in the same moduli space.

In the same way, as in the proof of Theorem 1, it can be excluded that the moduli space
has any boundary components apart from the Bishop ends, so the moduli space is either
connected with two boundary components, one for each of the Bishop families, or it
consists of two disconnected spaces, each with one boundary component (see Figure 9).
If the moduli space was disconnected, then the Bishop end would represent a trivial
homology class, but its image under the homology class is not, giving a contradiction.

Bishop family at S

Bishop family at N

Figure 9: The moduli space has either a single component with two ends or
two components each with a single end.

Appendix A Outlook and open problems

The notion of overtwistedness plays a very central role in 3–dimensional contact
topology. The main implications are, as mentioned in the introduction, the nonfillability
and the easy classification of such manifolds. We have tried to generalize the definition
to higher dimensions, and have proved that our definition implies nonfillability, but
clearly, the easy classification of overtwisted 3–manifolds is for contact topology the
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more important of the two properties. In particular, it has been shown that any oriented
3–manifold supports overtwisted contact structures. Thus it is very disappointing that
we have not been able to find a single closed contact manifold of higher dimensions
containing a plastikstufe.

An interesting future research goal could consist in trying to find a relation between
the plastikstufe and the work of Giroux. He discovered that contact manifolds can be
decomposed into open books, which are compatible with the contact structure. He
also recognized that any contact open book, whose monodromy is composed only
by right-handed Dehn twists, leads to a fillable contact manifold. Guided by this
realization, one could try to find for example a plastikstufe in the sphere .S2nC1; ˛�/,
whose open book decomposition has page P Š .T �Sn; d�can/ and whose monodromy
consists of a single left-handed Dehn twist. In the 3–dimensional case, it is easy to
find explicitly an overtwisted disk. More generally, if a plastikstufe could be found,
one could ask:

Question 1 Can one read off from an open book decomposition, whether the contact
manifold, contains a plastikstufe?

Finding examples of closed manifolds is the most immediate problem, but other
questions are also interesting. The only application of the plastikstufe so far is the
detection of exotic contact structures on R2n�1 . There are many constructions leading
to such manifolds, which could potentially lead to nonequivalent contact forms. Use
for example different overtwisted contact structures on R3 in Section 5.1 to create
exotic structures on R7 .

Question 2 Can one somehow distinguish some of the exotic contact structures on
R2n�1 containing a plastikstufe?

In dimension 7 and higher, there are many different plastikstufes, because one can use
different choices for the singular set S .

Question 3 Are the different versions of the plastikstufe in higher dimension somehow
equivalent?

Appendix B The almost complex structure on the cotangent
bundle

The following statements about the cotangent bundle can certainly be found in many
references, but for completeness, we still repeat them here: the aim will be to associate
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to any Riemannian manifold .M;g/ a natural metric on the cotangent bundle T �M

(ie a bundle metric on T .T �M /), and use this to choose an almost complex structure
Jg on T �M .

Let � W T �M !M be the standard projection, and let g| be the bundle metric on
T �M induced by g . The vertical bundle V .T �M / of T .T �M /, ie the kernel of
��W T .T

�M /! TM , can be naturally identified with the bundle ��.T �M / over
T �M by taking two covectors ˇ1; ˇ2 2 T �p M , and considering the derivative of the
path ˇ1C t ˇ2 � T �p M at t D 0. This identification makes it possible to use g| to
define a bundle metric on V .T �M /.

The Levi-Civita connection gives the natural splitting

T .T �M /DH.T �M /˚V .T �M /

into horizontal and vertical bundle. Denote the vertical part of a vector v 2 T .T �M /

by vV and the horizontal one by vH . This splitting induces a natural metric zg on
T �M (ie a bundle metric on T .T �M /)

zg.v; w/ WD g.��v; ��w/Cg|.vV ; wV /;

where we used the natural identification of the vertical bundle described above.

Theorem 13 There is a unique almost complex structure Jg on T �M that is compat-
ible with d�can and zg . Furthermore the function

F.q;p/ WD
1

2
g|.p;p/

on T �M satisfies

dF ıJg D��can:

Proof We need to check that there is a unique solution Jg for the equation

d�can.�;Jg �/D zg.�; �/;

such that d�can.Jg �;Jg �/D d�can.�; �/ and J 2
g D�1.

The equations are independent of any chart, hence it suffices to check them at every
point in one special chart explicitly. Choose for a point q0 2M a geodesic normal chart,
ie coordinates .q1; : : : ; qn/ such that the h@q1 ; : : : ; @qni form at q0 an orthonormal
basis, and such that all Christoffel symbols vanish at that point. For the cotangent
bundle, we obtain a chart .q1; : : : ; qn;p1; : : : ;pn/, where the vertical bundle

V.q0;p/.T
�M /D

n
.q0;pI 0; Pp/

ˇ̌̌
p; Pp 2 Rn

o
;
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and horizontal bundle

H.q0;p/.T
�M /D

n
.q0;pI Pq; 0/

ˇ̌̌
p; Pq 2 Rn

o
at T �q0

M take the very easy form written above. The metric zg can be represented at
q0 in the chart by the matrix

�
1 0
0 1

�
, and the 2–form d�can by

�
0 1
�1 0

�
. It follows that

at the given point, Jg is the map that sends @qj to @pj
and @pj

to �@qj . This solves
the first claim of the theorem.

To check the equality for the function F , we will again use a normal geodesic chart
around q0 as explained above. A short computation at q0 shows that (the gij denote
the coefficients of the metric g| )

dF D
1

2

@gij

@qk
pipj dqk

Cgij pi dpj D pj dpj :

Since Jg sends @qj to @pj
, it follows that

dF ıJg D pj dpj ıJg D pj dqj
D��can

at the considered point, but since there is a geodesic normal chart around any point,
the equation holds everywhere.
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