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Eulerian cube complexes and reciprocity

RICHARD SCOTT

Let G be the fundamental group of a compact nonpositively curved cube complex Y .
With respect to a basepoint x, one obtains an integer-valued length function on G
by counting the number of edges in a minimal length edge-path representing each
group element. The growth series of G with respect to x is then defined to be the
power series Gy (1) =) ¢ 4@ where £(g) denotes the length of g. Using the fact
that G admits a suitable automatic structure, G (¢) can be shown to be a rational
function. We prove that if Y is a manifold of dimension 7, then this rational function
satisfies the reciprocity formula G, (t~!) = (—1)" G (t). We prove the formula in a
more general setting, replacing the group with the fundamental groupoid, replacing
the growth series with the characteristic series for a suitable regular language, and
only assuming Y is Eulerian.

20F55; 20F10, 05A15

1 Introduction

Given a group G and a length function £: G — Z, the growth series of G with respect
to £ is the formal power series

Ge(t)=>) 1'®.

geCG

The literature has several instances of known reciprocity formulas for growth series
when the length function is derived from some action of the group on a manifold or
nonsingular cell complex. Serre [13] observed that G(¢~!) = &G (¢) for affine Coxeter
groups and the standard word length. Floyd and Plotnick [6] noted other examples for
Fuchsian groups. Charney and Davis [1] generalized the formulas for affine Coxeter
groups to multivariate growth series for Coxeter groups whose associated Davis complex
was an Eulerian complex, and Dymara [4] and Davis, Dymara, Januszkiewicz and
Okun [2] later gave a geometric interpretation in terms of “weighted L2-cohomology’
and Poincaré duality. The author [12] described a multivariate noncommuative version
of the formula for right-angled Coxeter groups with Eulerian Davis complex, and with
Okun [8] gave a partial interpretation of it in terms of weighted L?—cohomology.
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Right-angled Coxeter groups fall into the more general class of groups acting on
CAT(0) cube complexes. This paper arose from the observation that an extension of
the author’s methods in [12] establishes the reciprocity formula for many more groups
in this class. In particular, reciprocity also holds for the fundamental group of any
compact, Eulerian, nonpositively curved cubical complex. We stick to this case for the
remainder of the introduction (and most of the paper) since the argument is easier to
follow. A generalization to orbihedra (which includes the case of right-angled Coxeter
groups) is mentioned in Section 5.3 at the end of the paper.

Let X be a connected CAT(0) cube complex and let G be a group acting freely,
cellularly, and cocompactly on X . Then the quotient space ¥ = X/ G is a nonpositively
curved cube complex with universal cover X and fundamental group isomorphic to
G. We let V denote the vertices of X', and V /G denote the vertices of Y. Then the
set of homotopy classes of paths in Y that start and end at vertices in V /G forms a
groupoid which we denote by G. We let G, denote the morphisms in G that start
at x and end at y. The vertex group G, = Gy x is precisely the fundmental group
1 (Y, x) and, hence, isomorphic to G.

The complex X comes equipped with a family of hyperplanes, obtained by extending
the perpendicular bisectors of the 1-dimensional cubes. We denote the set of hyper-
planes in X by H, and their images in Y by H/G. For each element of G, we define
a multivariable “length” by counting the number of times a representative path crosses
each hyperplane in H /G . More precisely, we let Q((¢)) denote the multivariate ring of
formal Laurent series with indeterminates ¢ = (#;) indexed by elements & € H/G . For
any homotopy class [y] € Gy, , we choose a representative ) that lies in the 1—skeleton
of Y (ie an “edge path” in Y') and we assume that it is a minimal length representative
(uses as few edges as possible). We then define the weight of [y] to be

(D= ] 4™

heH/G

where my counts the number of times that the edge path y crosses the hyperplane
h. It can be shown (Section 4) that the weight on [y] is independent of the choice of
representative, so we obtain a well-defined (multivariate) growth series Gy y(t) € Q((t))
by summing over Gy y:

Gey (=Y =(y).

[¥1€Gx.y

The (ordinary) growth series is the single-variable power series Gy ,(¢) obtained by
substituting ¢ for each indeterminate #; in the multivariate growth series. Using a result
of Niblo and Reeves [7], it can be shown that these growth series are, in fact, rational
functions.
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In order to state our theorem, we briefly recall the definition of an Eulerian complex. Let
K be a cell complex such that the link of every (nonempty) cell is a simplicial complex.
We say that K is Eulerian of dimension n if every maximal cell is n—dimensional and
for every (nonempty) cell o in K, the Euler characteristic of the link is equal to the
Euler characteristic of the sphere of the same dimension, ie

X(Lk(o’)) =1+ (_l)dimLk(a).

If, in addition, the Euler characteristic of K is the same as the Euler characteristic
of the n—sphere, then K is called an Eulerian n—sphere. In particular, if K is an
n—dimensional homology manifold, then it is Eulerian, and if in addition # is odd,
K is an Eulerian n sphere (by Poincaré duality). The main result of this paper is the
following theorem.

Theorem Let G be a group acting freely, cellularly, and cocompactly on a connected
CAT(0) cube complex X, and let V be the set of vertices of X . If X/G is Eulerian
of dimension n, then for any x,y € V /G, the multivariate growth series Gy (t)
(regarded as a rational function) satisfies

gx,y(t_l) = (_1)ngx,y(t)-

The proof of the theorem actually establishes a more general formula that holds for a
certain regular language encoding the fundamental groupoid. In Section 2, we collect
and discuss requisite facts from formal language theory. In Section 3, we discuss groups
acting on CAT(0) cube complexes. In Section 4, we discuss growth series and give
some sample computations. In Section 5, we give the proof of the main theorem.

2 Regular languages

Given a set A, we let A* denote the free monoid on A. We refer to A as an alphabet
and elements of A* as words over A. Any subset £ C A* is called a language over
A. A language is called regular if it is the language accepted by some finite state
automaton. For our purposes, a finite state automaton will consist of a finite directed
graph with vertex set S (the state set) and two designated subsets B, £ C S (the initial
states and the accept states, respectively). The directed edges (called transitions) of the
graph are labeled by elements of some alphabet A, and the labeling is further assumed
to have the property that for each @ € A and each i € S there is at most one edge
labeled a emanating from /. Any directed path in the graph then determines a word in
A* by writing down (left to right) the labels on the consecutive edges of the path. The
language accepted by the automaton is the set of all words corresponding to paths that
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start at one of the initial or “begin” states i € B and end at one of the accept or “end”
states i € £.

Remark 2.0.1 Our definition of a finite state automaton is less restrictive than a
deterministic one (we allow more than one start state), but more restrictive than a
nondeterministic one (we don’t include a padding symbol). Since deterministic and
nondeterministic automata define the same language class (ie regular languages), so
does ours.

2.1 Characteristic series

Formal languages are often considered in an algebraic context by identifying them with
their characteristic series, a power series whose terms are the words in the language.
For convenience, we shall work in the ring Q((.A)) consisting of formal Laurent series
over QQ in noncommuting indeterminates indexed by .A. To avoid extra notation, we
use the same symbols for these indeterminates as for the elements of A, and for a € A,
we let a~! denote the formal inverse in Q((A)). Given a language £ over A, we
define its characteristic series to be
A= Z o,

a€eL

which we regard as an element of Q((A)). If £ is a regular language, then its charac-
teristic series A has the rational algebraic representation (see [10, Theorem 5.1])

(1) A=B(I-Q)'E=BUI+Q+0*+0°+---)E,

where B is a row vector with entries in QQ, E is a column vector with entries in Q,
and Q is a square matrix whose entries are formal sums of elements in .A. In fact,
given a finite state automaton that accepts £, the matrices B, £ and Q can be given
explicitly as follows.

e ( is the § xS matrix whose (i, j)—entry is the sum of all « € A that label
transitions from i to j.

e B isthe 1 xS matrix with all zeros except for 1 in the entries corresponding to
initial states.

e F isthe S x 1 matrix with all zeros except for 1 in the entries corresponding to
accept states.

Since Q is determined by the transitions in the automaton, we shall refer to Q as a
transition matrix for A.
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2.2 Reciprocity

If £ is a regular language, then the entries of any transition matrix Q will be a sum
of elements in A. By replacing each such element with its reciprocal (ie its formal
inverse), we obtain an S x S matrix Q defined over Q((A)). We then define the
reciprocal of the characteristic series A by

L=B(I-0)'E,

provided that 7 — Q is invertible over Q((A)) (note that the formal expansion I +
0+ 0%?+ Q3 +--- is not defined when QO has terms with negative exponents, so
invertibility of 7 — Q is not automatic). It can be shown that if the reciprocal of the
characteristic series for a regular language exists, then it is independent of the choice
of automaton [12, Proposition 4.1].

2.3 Specialization

Given any ring homomorphism ¢: Q((A)) — R, we refer to the image of any element
A € Q((A)) as the specialization of A (with respect to ¢ ). The most common examples
are specializations to commutative Laurent series rings induced by monomial substi-
tutions. More precisely, given an arbitrary indexing set I, we let Q7 ((¢)) (or simply
Q((2)) if I is clear from the context) denote the ring of Laurent series in commuting
indeterminates ¢ = (¢;);<7 . Then any assignment ¢ — ¢, from elements in .4 to nontriv-
ial monomials in Q((¢)) induces a specialization homomorphism ¢: Q((A)) — Q((¢)).
For such a specialization, we denote the image of A € Q((A)) by A(¢), suppressing
the index set / and the homomorphism ¢. If A is the characterstic series for a regular
language L, then the series A(f) is the power series expansion of a rational function.
(This follows from the fact that the specialization of I — Q in the representation (1) is
invertible over the ring of rational functions in #.) For such a characteristic series A, if
the reciprocal A exists, then its specialization is given by A(¢) = A(t 1), where ¢!
denotes the tuple (7; Dier.

3 Cube complexes and cube paths

A cube complex is a piecewise-Euclidean metric cell complex obtained by gluing
Euclidean cubes together via isometries along their faces. A cube complex is CAT(0) if
it is simply-connected, and the link of every vertex is a flag complex (a flag complex is
a simplicial complex such that every set of pairwise-adjacent vertices spans a simplex).
If X is CAT(0) and v is a vertex, we let Lk(v) denote the link of v.
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3.1 Diagonals and cube paths

Let X be a CAT(0) cube complex. Every cell in X is an isometrically embedded
cube. A segment that starts at one vertex of an embedded cube and ends at the opposite
vertex will be called a (directed) diagonal in X . Note that we include the set of trivial
diagonals, which start and end at the same vertex. For a diagonal d, we adopt the
following notation:

e d* is the oppositely oriented diagonal (d*=d if and only if d is a trivial diagonal).
e «a(d) is the initial vertex.

e w(d) is the terminal vertex.

e ((d) is the cube spanned by d .

e dimd or |d| is the dimension of the cube C(d).

e 0(d) is the image of C(d) in Lk(x(d)).

We define a cube path in X to be a sequence d = (dy,...,d,) of diagonals such that
w(d;) = a(djyq) fori =1,...,n—1. Note that this condition means that for each
i, o0(d}) and o(d;4) are both simplices in the link of the vertex v; = w(d;). The
length of a cube path d , which we denote by |d| is the sum of the dimensions of the
corresponding cubes, ie

|d| = |di] + -+ |dn].

A cube path is reduced if it contains no trivial diagonals. A reduced cube path is called
normal if St(o(d}")) No(d;4+1) = @. Here St(0), the star of o, denotes the union of
all simplices in the link that contain o as a face.

Remark 3.1.1 The defining condition for normal cube paths are often given in terms
of cubes in X rather than simplices in the link. In this case, the requirement would be
St(C(di)) N C(di+1) = {v;i} (where St(C) now denotes the union of all cubes in X
that contain C as a face).

Proposition 3.1.2 [7, Proposition 3.3] If X is a connected CAT(0) cube complex
and u and v are any two vertices in X , then there exists a unique normal cube path
fromu to v.
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3.2 The fundamental groupoid induced by a G —-action

Let G be a group acting freely, cellularly, and cocompactly on a connected CAT(0)
cube complex X . Then X is the universal cover of X/G and we let p: X — X/G
denote the projection map. Let V' denote the vertex set of X. Since G actson V', we
can define a groupoid G whose objects are the orbits V /G and whose morphisms are
homotopy classes of paths in X/ G that start and end in V' /G . In other words, G is
the subgroupoid of the fundamental groupoid 71 (X/G) obtained by restricting the
objects to the subset V /G € X/G. Given x,y € V/G, we let G , denote the set of
morphisms from x to y, and we let Gy denote the vertex group Gy x. Since the action
on X is free, Gy coincides with the fundamental group 1 (X /G, x), which is in turn
isomorphic to G.

Given a cube C or diagonal d in X, we let C and d denote the respective projections
in X/G.Wecall C (resp., d) acube in X/G (resp., diagonal in X/G). Any diagonal
d has a well-defined initial and final vertex in V/G defined by «(d) = a(d) and
a)(d )=w(d). Thus, we can define a cube path in X /G to be any sequence of diagonals

=(dy.d,, ..., dy) satisfying w(d;) = a(d;;). Given a lift v for the initial vertex
a(d 1), any such path has a unique lift to a cube path in X starting at v. Thus, cube
paths in X /G correspond to G —orbits of cube paths in X. A cube path in X/G will
be called normal if any (hence every) lift is a normal cube path in X .

Given x, y € V/G and respective lifts X, y € X, any (continuous) path y from x to
y in X/ G has a unique lift to a path y from X to gy for some (unique) g € G. Since
X is the universal cover for X/G, any path homotopic to y in X projects to a path
homotopic to y in X/G. Since any path in X with endpoints in V' is homotopic to
a cube path, any element of the groupoid G is represented by a cube path in X/G.
Moreover, since there is a unique normal representative for any such cube path (by
Proposition 3.1.2), the elements (morphisms) of G correspond bijectively to normal
cube paths in X /G or, equivalently, to G —orbits of normal cube paths in X .

3.3 Automata for the groupoid

Let A denote the set of all nontrivial diagonals in X/G. Given any cube path in
X /G, we obtain a word in A* by reading off the nontrivial diagonals in the cube path.
We let £ € A* denote the set of words corresponding to normal cube paths. By the
previous paragraph, we have a bijections £ — G, hence £ defines a normal form for
the groupoid G.

Proposition 3.3.1 [7, Propositions 5.1 and 5.2] The normal form L provides a
biautomatic structure for G (in the sense of [5, Chapter 11]). In particular, L is a
regular language.
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Given x,y € V/G, we let Ly , € L denote the sublanguages corresponding to Gy .
A non-deterministic automaton for £ is given in [7] using A as both the alphabet and
the state set. Since we will be interested in the characteristic series for the sublanguages
Lyx,y, we modify the automaton in [7] by enlarging the state set to S = AU (V/G).
Thus, elements of S are precisely the diagonals (both nontrivial and trivial) in X/G.
Before defining the transitions, we first note that because the G —action is free, we have
the following:

e Themap j — j*: S — S given by j* = d*, where d is any lift of j is a
well-defined involution on S.

e For any vertex v € V, the projection o +— & defines an isomorphism from the
link of v in X to the link of v in X/G . For any diagonal d with initial vertex
v, we let o(d) denote the image of o(d) in Lk(v).

The transitions for our automaton are then defined as follows. Given (nontrivial) states
i,j € A, there is a transition from i to j labeled by i whenever w(i) = «(j) and
St(o(i*)) No(j) = @. We also have transitions from states in A to states in V/G.
Namely, for each i € A, we add a transition from i to y € V /G labeled i whenever
w(i) = y. Since the condition defining transitions is precisely the condition defining
normal cube paths, we obtain an automaton that accepts Ly, , by taking the initial
states to be By, = {i | (i) = x} and the accept states to be the singleton set £ = {y}.

Remark 3.3.2 The automaton above has transitions corresponding to pairs of compos-
able diagonals such that the final vertex of the first diagonal is the initial vertex of the
second. One obtains a different automaton (accepting the same language) by defining
transitions for composable diagonals when the initial vertex of the first diagonal is the
final vertex of the second. More precisely, given i, j € S, there is a transition from i to
j labeled i* whenever a(i) = w(j) and St(o(i)) No(j*) = &. Since accept states
will now correspond to initial vertices of diagonals, we have additional transitions from
i€Ato yeV/G labeled i * whenever (i) = y. The language L, is then accepted
by the automaton with initial states B, = {i | (i) = x}, and with accept states the
singleton £ = {y}.

Remark 3.3.3 The nondeterministic automaton for the full language £ described in
[7] has states corresponding only to the non-vertex diagonals A, and every state is both
an initial state and an accept state. The transitions (directed edges in the automaton)
are the same as ours, but are labeled by the final state rather than the initial state. That
is, the transition from i to j is labeled by j rather than by i. There is no a priori
reason to prefer one convention over the other; we have chosen ours different from [7]
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only because it matches the setup in [12], and our proofs are based on those results.
On the other hand, the fact that our automaton uses more states than just those in A is
worth justifying. The key issue is that with only nontrivial diagonals as states, the map
from paths in the automaton to words in £ would not be injective. For example, if the
transitions are labeled by their final states, as in [7], then every edge in the automaton
that ends at the state j will correspond to the same word in £, namely j. Likewise,
if transitions are labeled by their initial states, then every edge in the automaton that
starts at 7 will correspond to the same word 7. Adding states corresponding to vertices
in X/G, with the appropriate transitions, fixes the non-injectivity problem.

3.4 Characteristic series for the groupoid

Let Ax,, denote the characteristic series for Ly ;. Then by discussion in Section 2.1
and the definition of the automaton above, we have the rational representation

) Axy = Ba(I—04)7'E,

where By is the 1 xS row vector with all zeros except 1s in the entries corresponding
to the diagonals with initial vertex x, E is the S x 1 column vector with all zeros
except for a 1 in the entry corresponding to y, and Q4 is the S X & matrix given by

i ifi,jeA a(j)=w()and St(c(i*))No(j) =2,
(Q4y)i,j=1i ifieA jeV/Gandw(i) =],

0 otherwise.

Alternatively, using the other automaton described in Remark 3.3.2, we have
(3) hxy = Bo(I~Q-)'E.

where B, is the 1 x S row vector with all zeros except 1 in the entries corresponding
to the diagonals with final vertex x, E is as before, and Q_ is the § x § matrix
given by

i* ifi,jeA ai)=w(j)and St(c(i))No(j*) =

(0-)i,j=1i" ifieA jeV/Ganda(i)=j
0  otherwise.
The transition matrices Q4 and Q_ can be related using the involution j + j*: A —
A. For convenience, we extend this involution S by having it act trivially on the trivial

diagonals V' /G . The following fact follows from the explicit descriptions given above
for the transition matrices.
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Proposition 3.4.1 Let [*] denote the S x S permutation matrix induced by the involu-
tion j — j*: S — S. Then
Q- = [*]Q+[*].

4 Growth series and examples

Throughout this section X is a CAT(0) cube complex, and G is a group acting freely,
cellularly, and cocompactly on X .

4.1 Hyperplanes and weights on cube paths

Parallelism between (unoriented) edges in each cube extends to an equivalence relation
on the edges of X as follows. Two edges ¢ and ¢’ are equivalent if there exists a
sequence of edges ¢ = ey,e5,...,e, = € and a sequence of cubes Cy,...,Cy_q
such that e; is parallel to e;4; in the cube C;. Given an edge e, we let [e] denote its
equivalence class in X', and we let ‘H denote the set of all such equivalence classes.

Remark 4.1.1 Given a cube C in X, we define a midplane to be the intersection of
C with any hyperplane passing through the geometric center of C which is parallel to
a codimension-one face. Any midplane bisects the edges which are perpendicular to
it. Given a parallel class of edges in X, we define the corresponding hyperplane or
wall to be the union of all midplanes that bisect some edge in the parallel class. Any
such hyperplane is an isometrically embedded CAT(0) cube complex and separates X
into two parts called halfspaces. There is a bijection from parallel classes of edges to
the set of hyperplanes given by mapping the parallel class of an edge e to the (unique)
hyperplane spanned my any midplane that bisects e. (Details can be found in [9].) For
this reason, we shall often refer to the elements of / as hyperplanes, and will say that
an edge e crosses the hyperplane H if [e] = H.

Now let H/G denote the set of G—orbits of hyperplanes, and let Q((#)) denote the
ring of Laurent series in commuting indeterminates ¢ = (#) indexed by h € H/G.
We then obtain a monomial “weighting” on the set of cube paths in X/ G as follows.
First we define this weighting on edge paths. By definition, an edge path is a cube path
consisting only of 1-dimensional diagonals (ie consisting only of oriented edges). For
an edge path d = (dy,...,dy) in X, welet [dq],...,[d,] denote the corresponding
sequence of parallel classes (forgetting orientations), and we let /q,..., A, denote
the corresponding G —orbits in H/G. Then we define the G—weight of d to be the
monomial in Q((¢)) given by

‘L’(d) =lhll‘h2~--l‘hn.
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In other words, if we let my denote the number of times the edge path d crosses a
hyperplane in the orbit /2, then

o(d) =[]
h

More generally, we define the G —weight of any cube path. Given a diagonal d with
dimd > 1, we replace it with a minimum length edge path that starts at o(d) and ends
at w(d). If dimd = m then this edge path will cross m hyperplaners, and this set of
hyperplanes depends only on d, not the choice of edge path. Given an arbitrary cube
path d, we then replace each diagonal d; with a corresponding edge path and define
7(d) to be the G-weight of the resulting edge path. (Note that the length of a cube
path d is precisely the length of a representative edge path; this was the reason for
defining the length |d | as we did.)

Proposition 4.1.2 (Sageev [9]) A minimum length edge path crosses a hyperplane at
most once, and two minimum length edge paths with the same endpoints must cross the
same set of hyperplanes.

In particular, the G—weight of a minimum length cube path depends only on its
endpoints.

4.2 Growth series

We can transfer the G —weighting on cube paths to a weighting on the groupoid G as
follows. Given a homotopy class [y] in G, we choose a representative path y and
choose a lift y to X . Since the path p starts and ends at a vertex of X, we can find a
minimum length cube path d in the same homotopy class as y. The G —weight of this
cube path is independent of all choices (by Proposition 4.1.2), so gives a well-defined
G —weight to the morphism [y]. We denote this weight by 7([y]).

Definition 4.2.1 Let G be a group acting freely, cellularly, and cocompactly on a
connected CAT(0) cube complex X . Then the multivariate growth series for G is the
power series G(t) € Q((¢)) defined by

G)y= Y «(¥D.

[vleg

The (ordinary) growth series for G is the single-variable power series G(t) € Q((¢))
obtained by substituting # for each indeterminate #; in the multivariate growth series.
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Given x,y € V/G, we define the growth series Gy, ,(f) and Gy ,(f) by the same
formulas, but only sum over homotopy paths from x to y. In particular, each x e V/G
determines growth series for the group G, given by Gx(t) = Gx x(t) and G« (¢) =
Gx.x(t). It follows from the bijection £ — G and the discussions above, that the growth
series Gy, (t) is the specialization (discussed in Section 2.3) of the characteristic series
Ax,y with respect to the substitution A — Q(¢) that maps each diagonal j = din A
to its corresponding weight t([j]) = 7(d). Applying this same substitution to (2) and
(3), gives the following.

Proposition 4.2.2 Let Q4 (t) (resp., Q+(t)) denote the transition matrix Q4 with
each letter j = d € A replaced by the monomial t(d) (resp., t'%!) where d is any
lift of d. Define Q_(t) and Q_(t) similarly. Then we have the rational function
representations

Gx,y(t) = Boa(I = Q+(1)) "' E = Bo(I = Q—-(1) "' E,
G,y (1) = Ba(I = Q+(1)) ' E = Bo(I = Q-(1)) ' E.

4.3 Examples

For a first example, let Y be the target graph in Figure 1, and let X be the universal
cover. Then X is a connected CAT(0) cube complex and the group G =1 (Y) = Z
acts freely on X .

Figure 1: A 1-dimensional cube complex and its universal cover

There are 2 trivial diagonals x and y and 4 nontrivial diagonals a,a*,b,b* in Y =
X/G. Thus A = {a,a*,b,b*} and S = {a,a*,b,b*, x, y}. The corresponding
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transition matrix (with respect to the ordering (x, y,a,a*, b, b*)) is given by

O+ =

OOQ*OOO
SO Q OO
S O O O o O
e e N e -l
S ST O O
ST oo OO

*

Substituting #1,1,,13,14 for the symbols a,a*,b,b* € A, respectively, and using
Proposition 4.2.2, we obtain the multivariate growth series

11 (2t3t4 — 13 —14) t1 (1 —t3t4)
X, X = 1_ ) X = T N4
Grxlt) - O n0 -
tr(1 — 15t 1 — 152
Gyx(t) = 2(1 —1314) Gy (t) = 34

(1—-13)(1—14) (A—13)(1—14)

With the substitutions ¢; = ¢, we obtain the ordinary growth series

203 —t+1
G () = = —— = 14200+ 2" 4207 4+,
12+t
gx,y(t):gy,x(l)z 1—; =Z+2t2+2[3+2[4+...,
1+1¢
gy,y(l):1—+t=1+2t+2[2+21‘3—|—...‘

For a more intricate example, and one that illustrates our reciprocity formula, we let X
be the cell decomposition of the hyperbolic plane H? that is dual to the tesselation by
right-angled hexagons (Figure 2).

All of the 2—cells of X are squares and if one gives each of them the standard Euclidean
metric, X is a CAT(0) square complex. If W is the right-angled Coxeter group
generated by reflections across the sides of one of the hexagons, then W acts cellularly
and cocompactly (but not freely) on X . If sq,...,s¢ are the reflections across the
lines numbered 1, 2, 3,4, 5, 6 in the figure, then there is a surjective homomorphism
W — Z, x Z, defined by mapping s, 53,55 to (1,0) and s5,54,5¢ to (0,1). The
kernel G of this homomorphism is an index-4 subgroup acting freely on X', and the
quotient X/ G is the surface of genus-2 shown in Figure 3.

The cell structure on X/ G consists of 4 vertices (x, y,z,w), 12 1—cells, and 6 2—
cells. It follows that the state set S will have 52 diagonals, 4 of which are trivial.
There are 12 orbits of edge classes in H/G, so the matrix I — Q4 (¢) isa 52 x 52
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Figure 2: A right-angled hexagonal tiling of H? and its dual tiling by squares

Figure 3: H?/G tiled by 6 squares

matrix with 12 indeterminates. Inverting the single variable matrix / — Q4+ (¢) is much
more manageable and, with Proposition 4.2.2, yields

1—212 414 3¢+ 313 1242
)=—"—"—>—7. =724 D= e+
gx,x() 1—14t2+l4 gxay() 1—14l2+t4 gx,z() 1—14{2+l4
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(By symmetry, each of the remaining series G; j(¢) is equal to one of these.) Note that
the weighting on edge paths corresponding to the single variable growth series has the
interpretation of counting the number of times the path crosses one of the 6 numbered
curves (these are the hyperplane orbits) in Figure 3. In particular, expanding the series
for Gx,x = m1(X/G, x) gives the growth series for the surface group G relative to the
basepoint x,

Gy(t) = 141212 +1681* 4234018 + - .-,

so there are 12 elements that cross 2 curves, 168 that cross 4 curves, 2340 that cross 6
curves, and so on. The indicated loop I', for example, is a minimal length representative
in its homotopy class. It crosses the curves numbered 2, 3, 5, 6 each once and crosses
the curve numbered 1 twice, thus it represents one of the 2340 group elements of
length 6.

For this example, the surface X /G is an Eulerian cube complex (in fact, a manifold),
so the hypotheses of our main theorem hold. In particular, all three of the growth series
Gx,x(t), Gx,y(t) and Gy ;(7) satisfy the reciprocity formula Gt ) =G@).

S Reciprocity for Eulerian cube complexes

In this section we shall prove the main theorem stated in the introduction, but in the
more general setting of characteristic series rather than growth series. To state this
theorem, we first extend the involution d + d* defined on A to the entire monoid
A*. Given aword d = dd,---d,, we define d” tobe 67’;67; 67;1" By linearity,
this extends to an involution on Q((A)). Given a matrix M defined over Q((A)) we
define M* to be the matrix defined by (M*); ; = Mi’:‘j. It follows that if a series
A € Q((A)) has rational expression of the form

A=B(I-0)'E
as in Section 2.1, then so does A* and we have
“) A*=B(I—-0%7'E.

In terms of the characteristic series for normal cube paths, our reciprocity formula is
the following.

Theorem 5.0.1 Let G be a group acting freely, cellularly, and cocompactly on a
CAT(0) cube complex X, and let V be the set of vertices of X . If X /G is Eulerian
of dimension n, then for any x,y € V /G, the reciprocal Ay, , exists and is given by

hxy = (—=D"2%,
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To obtain the theorem stated in the introduction, we simply specialize the series A and
A* to the commutative ring Q((¢)). Any diagonal d € A is mapped to the product of
indeterminates 7, where 4 is a hyperplane in X/G crossed by d. Since d and d*
cross the same hyperplanes, both Ax,y and A% ), specialize to the same growth series
Gx,y(t). Since A,y specializes to Gx,,(t~1), we then obtain the formula

Gr,y(t™) = Gxy(t)

from the introduction. The remainder of this section will be devoted to the proof of
Theorem 5.0.1.

5.1 Properties of the transition matrices

Let Q denote the transition matrix Q4 for the automaton given in Section 3.4 for the
language L. Since the nonzero entries in a given row are always equal, we can factor
out a diagonal matrix on the left. We define S x & matrices Jy and Dgy by

(=DlI=1 " if Q; j #0,
Ja): i = ’
(Jo)i,j {0 otherwise,
Da);: i =
(Do)i, j {0 otherwise,

where |i| denotes the length |d| for any of any lift d for i. Then we have the
factorization Q = DyJj.

To enable various matrix inversions, we define extensions of the matrices Jo, and Dy
by replacing the zero diagonal entries corresponding to states in V /G with £1. We
define J and D by

1 ifi=jeV/G,
) Jij = ] /
(Jo)i,j otherwise,
! ifi=j€evV/a,
" (Do)i,j otherwise.

We now collect various properties of these matrices for future reference. Recall that the
reduced Euler characteristic of a simplicial complex K, denoted by ¥(K), is x(K)—1
where x(K) is the usual Euler characteristic.

Lemma5.1.1 (1) Q= DyJo=DJy= DyJ.
(2) [*]D[*] = D* and [*]Do[*] = Dy .
(3) Forany j € S, the sum of the entries in the j™ column of [x]J is equal to
X(LK(a())))-
(4) If X/G is Eulerian, then J is invertible and J~! = [%]J [%].
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Proof The first two properties follow directly from the definitions. For the second
two, we notice that the entries of the matrix [*]J are given by

—1 ifi=jeV/G,

D=1 ifie A jeV/Gand a(i) =/,

(—DII=Y if i j e A ai) = a(j), and St(a (i) No (j) = @,
0 otherwise.

([*]J)l,j = Ji*,j =

In particular, the (7, j)—entry is zero unless «(i) = «(j), so the matrix breaks into
diagonal blocks corresponding to the partition of S = [ [ Sx, where Sy is the set of
diagonals with initial vertex x. That is

where Jy is the Sy XSy block of [*]J . For each x, the matrix J is the “anti-incidence
matrix” introduced in [12, Definition 7.1] for the simplicial complex Lk(x). By [12,
Theorem 7.13], the columns of J, all have sum ¥(Lk(x)). By the block decomposition
of [%]J, the j™ column of [*]J has sum ¥(Lk(x(;))), proving (3). The second part
of [12, Theorem 7.13] states that the anti-incidence matrix for Lk(x) is an involution
if Lk(x) is an Eulerian sphere. It follows that J,, and hence [*]J is an involution,
proving (4). a

5.2 Proof of reciprocity

We now prove Theorem 5.0.1. As above, we let O = Q. By definition, the reciprocal
Ax,y exists if the matrix / — Q (obtained by replacing every entry j € A with j™h
is invertible over Q((.A)), in which case we have

(6) Axy=Ba(I-0Q)'E.
Since D~! = D, we can rewrite 7 — Q as
I-Q=1—-DyJ=DD—-DyJ =DDy—DJ,

where the last equation follows from the fact that D D is obtained from D Dy by putting
1 in entries 7, j whenever i = j € V/G, and DJ is obtained from DyJ by putting
—1 in these same entries. Now using algebra and (1), (2) and (4) of Lemma 5.1.1,
we have

I—0=-D(I—-DyJ Y =—-D({ - Dy[+]J[x])J
=—D(I —[¥]DgJ[x])J = —D(I —[*]Q*[*])J.
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By Proposition 3.4.1, this can be rewritten as
I—-0=-D(I-0%)J,
which is invertible with inverse given by
(I =0)" =[xV [+ - Q1) 7' D.
Substituting into (6), we have
@ hx.y =—Ba[*]J[x]( — 0*)”' DE.

Since D is diagonal with (y, y)—entry equal to 1, we have DE = E. The vector By
only has nonzero entries (which are all 1) for those states j whose initial vertex is x,
hence by the block decomposition of [*]J and Lemma 5.1.1(3), we have By[*]J =
% (Lk(x)) By . Substituting into (7), and using the fact that B,[*] = B, gives

hxy = —X(LK(x))Bu(I — 0*)'E.
Since the vertex links of X'/ G are Eulerian spheres of dimension n— 1, this simplifies to
hxy = (=1)"Bu,(I - Q0*)'E.
Finally, using the rational expression for A ) in (3) and Equation (4), we then have
xx,y = (_1)n)‘;,y

This completes the proof. a

5.3 Generalization to orbihedra

One can weaken the assumption slightly on the G —action and assume only that the
action on the vertex set V is free. Since one then still has unique lifts from vertex
links in X/G to vertex links in X', all of the above arguments go through verbatim.
In particular, the main result of this paper then includes the case proved by the author
in [12] where G is a right-angled Coxeter group and X is the corresponding Davis
complex. In this case, there is a single free vertex orbit, but every (nonoriented) diagonal
in X has an order-2 stabilizer that reverses its direction. It follows that the involution
% on the state set S is trivial (so J is its own inverse) and the action of * on Q((¢)) is
trivial. The reciprocity formula therefore takes the form

xx,y = (_l)n)\x,)w

Theorem 5.0.1 also applies more generally to the right-angled mock reflection groups
studied in [3; 11]. By definition, G is a right-angled mock reflection group if it acts on
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a CAT(0) cube complex X with the property that the action is simply-transitive on the
vertex set and the edge stabilizers are all nontrivial. (Any right-angled Coxeter group
acting on its Davis complex is a special case.) Again one has a single free vertex orbit
and for each edge, an involution in the group that reverses its orientation. It follows that
the involution *: S — S on the state set is trivial on the 0 and 1-dimensional diagonals
in X/G. However, for mock reflection groups, the hyperplane dual to an edge need not
be stabilized pointwise by the edge stabilizer, so the involution * need not be trivial on
higher-dimensional diagonals. This time, the reciprocity formula for the characteristic
series requires the more general form Ay y = (=1)"A% ;. However, since A, ) and
A%,y specialize to the same commutative-variable series, one still obtains

gx,y(t_l) = (_l)ngx,y(t)-

In light of this generalization to orbihedra, our theorem applies to finite index subgroups
of right-angled Coxeter groups and, more generally, to finite index subgroups of right-
angled mock reflection groups.

Corollary 5.3.1 Let W be a right-angled Coxeter group or mock reflection group
acting on its corresponding CAT(0) cube complex X, and assume that X is Eulerian
of dimension n. If G is any finite index subgroup of W, and x is the G —orbit of any
vertex, then the growth series of G with respect to x satisfies

Gx(t7") = (=1)"Gx(1).
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